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Quasisymmetric Koebe uniformization

Sergei Merenkov and Kevin Wildrick

Abstract. We study a quasisymmetric version of the classical Koebe
uniformization theorem in the context of Ahlfors regular metric surfaces.
We provide sufficient conditions for an Ahlfors 2-regular metric space X
homeomorphic to a domain in the standard 2-sphere S2 to be quasisym-
metrically equivalent to a circle domain in S2. We also give an example
showing the sharpness of these conditions.

1. Introduction

Uniformization problems are amongst the oldest and most important problems in
mathematical analysis. A premier example is the measurable Riemann mapping
theorem, which gives a robust existence theory for quasiconformal mappings in
the plane. A quasiconformal mapping between domains in a Euclidean space is
a homeomorphism that sends infinitesimal balls to infinitesimal ellipsoids of uni-
formly bounded eccentricity. The theory of quasiconformal mappings has been
one of the most fruitful in analysis, yielding applications to hyperbolic geome-
try, geometric group theory, complex dynamics, partial differential equations, and
mathematical physics.

In the past few decades, many aspects of the theory of quasiconformal map-
pings have been extended to apply to abstract metric spaces. A key factor in these
developments has been the realization that in metric spaces with controlled ge-
ometry, the infinitesimal condition imposed by quasiconformal mappings actually
implies a stronger global condition called quasisymmetry [15]. The fact that qua-
sisymmetric mappings are required to have good behavior at all scales makes them
well suited to metric spaces that a priori have no useful infinitesimal structure.

A homeomorphism f : X → Y of metric spaces is quasisymmetric if there is
a homeomorphism η : [0,∞) → [0,∞) such that if x, y and z are distinct points
of X , then

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(dX(x, y)

dX(x, z)

)
.
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The homeomorphism η is called a distortion function of f . If we wish to emphasize
that a quasisymmetric mapping has a particular distortion function η, we will call
it η-quasisymmetric.

Despite the highly developed machinery for quasiconformal analysis on metric
spaces, an existence theory for quasisymmetric mappings on metric spaces analo-
gous to that of conformal mappings on Riemann surfaces has only recently been
explored. The motivation for such results arises from geometric group theory [5],
the dynamics of rational maps on the sphere [6], and the analysis of bi-Lipschitz
mappings and rectifiable sets in Euclidean space [4].

More than a decade after foundational results of Tukia and Väisälä in dimension
one [25], Bonk and Kleiner [5] gave simple sufficient conditions for a metric space
to be quasisymmetrically equivalent to the standard 2-sphere S2.

Theorem 1.1 (Bonk–Kleiner). Let X be an Ahlfors 2-regular metric space homeo-
morphic to the sphere S2. Then X is quasisymmetrically equivalent to the sphere S2

if and only if X is linearly locally connected.

The condition that X is linearly locally connected (LLC), which heuristi-
cally means that X does not have cusps, is a quasisymmetric invariant. Ahlfors
2-regularity, which states that the two-dimensional Hausdorff measure of a ball is
uniformly comparable to the square of its radius, is not. See Section 2 for precise
definitions. A version of Theorem 1.1 applying to all simply connected Riemann
surfaces was derived in [27], and a local version given in [28].

In this paper, we seek a version of Theorem 1.1 for a much larger class of Rie-
mann surfaces, namely the class of domains in the sphere. Our motivation comes
from analogous classical conformal uniformization theorems. The most general
such result is Groetzsch’s uniformization onto slit domains [11] (see Section 4).
However, the geometry of a nontrivial slit domain, while harmless from the per-
spective of conformal mappings, is pathological with respect to quasisymmetric
mappings. For this reason, it is more natural to consider uniformization onto
circle domains.

A circle domain is a domain Ω ⊆ S2 such that each component of S2\Ω is
either a round disk or a point. In 1909 [19], Koebe posed the following conjecture,
known as the Kreisnormierungsproblem: every domain in the plane is conformally
equivalent to a circle domain. In the 1920’s [20], Koebe was able to confirm his
conjecture in the finitely connected case.

Theorem 1.2 (Koebe’s uniformization onto circle domains). Let Ω ⊆ C be a
domain with finitely many complementary components. Then Ω is conformally
equivalent to a circle domain.

We first state a quasisymmetric version of Koebe’s theorem, which we obtain
as a consequence of our main result. Denoting the completion of a metric space X
by X, we define the metric boundary of X by ∂X = X\X . We say that a compo-
nent of ∂X is nontrivial if it contains more than one point.
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Theorem 1.3. Let (X, d) be an Ahlfors 2-regular metric space that is homeomor-
phic to a domain in S2, and such that ∂X has finitely many nontrivial components.
Then (X, d) is quasisymmetrically equivalent to a circle domain if and only if (X, d)
is linearly locally connected and the completion X is compact.

Theorem 1.3 is only quantitative in the sense that the distortion function of the
quasisymmetric mapping may be chosen to depend only on the constants associated
to the various conditions on X and on the ratio of the diameter of X to the
minimum distance between components of ∂X . This ratio will tend to infinity as
the number of components of ∂X tends to infinity. It is unknown if the dependence
on this ratio can be removed; see Question 12.3.

In 1993, He and Schramm confirmed Koebe’s conjecture in the case of countably
many complementary components [13]. In full generality the conjecture remains
open. A key tool in He and Schramm’s proof was transfinite induction on the rank
of the boundary of a domain Ω in S2, which measures the complexity with which
components of the boundary converge to one another. The rank of a collection of
boundary components is defined via a canonical topology on the set of components
of the boundary; see Section 3. It is shown there that if a metric space (X, d)
is homeomorphic to a domain Ω in S2 and is linearly locally connected, then the
natural topology on the set of components of the metric boundary is homeomorphic
to the natural topology on the set of boundary components of Ω. This allows us to
define rank as in the classical setting. We denote the topologized collection of
components of ∂X by C(X).

In the following statement, which is our main result, we consider quasisymmet-
ric uniformization onto circle domains Ω with the property that C(Ω) is uniformly
relatively separated, meaning there is a uniform lower bound on the relative distance

�(E,F ) =
dist(E,F )

min{diam(E), diam(F )} ,

between any pair of nontrivial boundary components. Such a circle domain is called
uniformly relatively separated. This condition appears naturally in both classical
quasiconformal analysis and geometric group theory. We employ annular linear
local connectedness (ALLC), which is more natural than the LLC condition in this
setting. Doing so removes the problem of quantitativeness present in Theorem 1.3.

Theorem 1.4. Let (X, d) be a metric space, homeomorphic to a domain in S2,
such that the closure of the collection of nontrivial components of ∂X is countable
and has finite rank. Moreover, suppose that

1. (X, d) is Ahlfors 2-regular;

2. setting, for each integer k ≥ 0,

nk = sup card{E ∈ C(X) : E ∩B(x, r) 
= ∅ and 2−kr < diamE ≤ 2−k+1r},
where the supremum is taken over all x ∈ X and 0 < r < 2 diamX, there
holds

∞∑
k=0

nk 2
−2k < ∞.
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Then (X, d) is quasisymmetrically equivalent to a uniformly relatively separated
circle domain if and only if X has the following properties:

3. the completion X is compact;

4. (X, d) is annularly linearly locally connected;

5. C(X) is uniformly relatively separated.

Theorem 1.4 is quantitative in the sense that the distortion function of the
quasisymmetric mapping may be chosen to depend only on the constants associated
to the various conditions on X , and vice-versa.

This result is new even in the case that (X, d) is assumed to be a subset of S2.
The key new assumption, condition (2), controls the number of components of ∂X
of a given scale at any location. We note that for any Ahlfors 2-regular metric
space X such that C(X) is uniformly relatively separated, there is a constant
C ≥ 1 such that for each k ∈ N, the number nk is bounded above by C22k. Hence,
condition (2) requires a definite reduction in the number of components of ∂X of
a given scale and location compared to the general case.

It is of great interest to know if conditions (1) and (2) can be replaced with
conditions that are quasisymmetrically invariant. By snowflaking (i.e., raising the
metric to power 0 < α < 1) the sphere S2 = R2 ∪ {∞} in one direction only, say,
in the direction of x-axis, one produces a metric space homeomorphic to S2 that
satisfies all the assumptions of Theorem 1.4 (and Theorem 1.1) except for Ahlfors
2-regularity, but fails to be quasisymmetrically equivalent to S2. On the other
hand, not every quasisymmetric image of S2 is Ahlfors 2-regular, as is seen by the
usual snowflaking of the standard metric on S2.

Our second main result is the existence of a metric space satisfying all assump-
tions of Theorem 1.4, except for condition (2), that fails to quasisymmetrically
embed in S2.

Theorem 1.5. There is a metric space (X, d), homeomorphic to a domain in S2,
with the following properties:

• ∂X has rank 1,

• X is Ahlfors 2-regular,

• the completion X is compact,

• X is annularly linearly locally connected,

• the components of ∂X are uniformly relatively separated,

• there is no quasisymmetric embedding of X into S2.

We note that there is a locally isometric embedding of the above example
into S2, and hence Theorem 1.5 highlights the fact that very strong geometric
conditions, e.g., the Loewner condition, must be imposed in order to guarantee
local-to-global results for quasiconformal mappings.
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Theorem 1.4 is related to work of Kapovich and Kleiner on Gromov hyperbolic
groups with Sierpiński carpet boundary [18]. A conjecture of these authors states
that for every Gromov hyperbolic group G with boundary at infinity ∂∞G homeo-
morphic to the Sierpiński carpet, there exists a discrete, co-compact, and isometric
action of G on a convex subset of hyperbolic 3-space with totally geodesic bound-
ary. The Kapovich–Kleiner conjecture is equivalent to the following statement: if G
is a Gromov hyperbolic group, then ∂∞G is homeomorphic to the Sierpiński carpet
if and only if ∂∞G is quasisymmetrically equivalent to a round Sierpiński carpet,
i.e., to a subset of S2 that is homeomorphic to the Sierpiński carpent and has
peripheral curves that are round circles.

Theorem 1.4 can be seen as a uniformization result for domains that might
approximate a Sierpiński carpet arising as the boundary of a hyperbolic group.
If ∂∞G is homeomorphic to the Sierpiński carpet, then it is ALLC and the peri-
pheral circles are uniformly separated uniform quasicirlces. Recent work of Bonk
established the Kapovich–Kleiner conjecture in the case that ∂∞G can be quasi-
symmetrically embedded in S2; see [2]. As noted by Bonk–Kleiner in [1], this is
true when the Assouad dimension of ∂∞G is strictly less than two, a hypothesis
analgous to condition (2) in Theorem 1.4. This observation and its proof provided
ideas that will be used in Section 9.

We now outline the proof of Theorem 1.4 and the structure of the paper. In Sec-
tion 3 we establish a topological characterization of the boundary components of
a metric space as the space of ends of the underlying topological space, at least
in the presense of some control on the geometry of the space. This allows us to
develop a notion of rank, and in Section 5, a theory of crosscuts analogous to the
classical theory. A key tool in this development is the following purely topological
statement: every domain in S2 is homeomorphic to a domain in S2 with totally
disconnected complement. This folklore theorem is proven in Section 4. In Sec-
tion 6, we use crosscuts and a classical topological recognition theorem for S1 to
uniformize the boundary components of X . The resulting theorem, which substan-
tially generalizes Theorem 1.3 of [27], may be of independent interest:

Theorem 1.6. Suppose that X is a metric space that is homeomorphic to a domain
in S2, has compact completion, and satisfies the λ-LLC condition for some λ ≥ 1.
Then each nontrivial component of ∂X is a topological circle satisfying the λ′-LLC
condition for some λ′ ≥ 1 depending only on λ. In particular, if the space X
is additionally assumed to be doubling, then each nontrivial component of ∂X is
quasisymmetrically equivalent to S1 with distortion function depending only on λ
and the doubling constant.

We emphasize that Theorem 1.6 allows for X to be homeomorphic to an arbi-
trary domain in S2; this is the major novelty of the result and the aspect which
requires the machinery of decomposition space theory.

Now, suppose that (X, d) is a space satisfying the hypotheses of Theorem 1.4.
By Theorem 1.6, the components of ∂X are uniformly relatively separated uniform
quasicircles. If there is a quasisymmetric embedding ι : X ↪→ S2, then the boundary
components of the image ι(X) are again uniformly relatively separated uniform
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quasicircles. Hence, in this case, the following important uniformization result of
Bonk [2] yields the conclusion of Theorem 1.4.

Theorem 1.7 (Bonk). Let {Si}i∈N be a collection of uniformly relatively separated
uniform quasicircles in S2 that bound disjoint Jordan domains. Then there is a
quasisymmetric homeomorphism f : S2 → S2 such that for each i ∈ N, the set f(Si)
is a round circle in S2.

In this way, the boundary uniformization given by Theorem 1.6 allows us to
reduce the problem to the problem of finding a quasisymmetric embedding of
(X, d) into S2. We do so as follows. In Section 8 we prove general theorems
implying that each nontrivial component of ∂X has Assouad dimension strictly
less than 2, and hence, up to a bi-Lipschitz mapping, is the boundary of a planar
quasidisk. We describe a general gluing procedure in Section 9, and use it to “fill in”
the nontrivial components of ∂X with the corresponding planar quasidisks. The
resulting space X̂ , which contains a bi-Lipschitz copy of X , is again ALLC and
Ahlfors 2-regular. This assertion depends crucially on condition (2) of Theorem 1.4.
The assumption of finite rank allows us to reduce to the case that there are only
finitely many components of ∂X , where we show that X̂ is homeomorphic to S2,
and apply Theorem 1.1 to find the desired embedding. This step requires the
topological uniformization of the completion of X, given in Section 7.

Acknowledgements. We wish to thank Mario Bonk, Peter Feller, Pekka Koskela,
John Mackay, Daniel Meyer, Raanan Schul, and Jeremy Tyson for useful conver-
sations and critical comments. Some of the research leading to this work took
place at the following institutions: the University of Jyväskylä, the University of
Illinois at Urbana-Champaign, the State University of New York at Stony Brook,
and the Hausdorff Research Institute for Mathematics. We are very thankful for
the hospitality of those institutions.

2. Notation and basic results

We are often concerned with conditions on a mapping or space that involve con-
stants or distortion functions. These constants or distortion functions are referred
to as the data of the conditions. A theorem is said to be quantitative if the data
of the conclusions of theorem depend only on the data of the hypotheses. In the
proof of quantitative theorems, given non-negative quantities A and B, we will
employ the notation A � B if there is a quantity C ≥ 1, depending only on the
data of the conditions in the hypotheses, such that A ≤ CB. We write A 
 B
if A � B and B � A.

2.1. Metric spaces

We will often denote a metric space (X, d) by X . Given a point x ∈ X and a
number r > 0, we define the open and closed balls centered at x of radius r by

B(X,d)(x, r) = {y ∈ X : d(x, y) < r} and B(X,d)(x, r) = {y ∈ X : d(x, y) ≤ r}.
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For 0 ≤ r < R, we denote the open annulus centered at x of inner radius r and
outer radius R by

A(X,d)(x, r, R) = {y ∈ X : r < d(x, y) < R}.

Note that when r = 0, this corresponds to B(X,d)(x,R)\{x}. For r > 0, we define
a metric sphere by

S(X,d)(x, r) = {y ∈ X : d(x, y) = r}.

Where it will not cause confusion, we denote B(X,d)(x, r) by BX(x, r), Bd(x, r),
or B(x, r). A similar convention is used for all other notions which depend implic-
itly on the underlying metric space.

We denote the completion of a metric space X by X, and define the metric
boundary of X by ∂X = X\X . These notions are not to be confused with their
topological counterparts.

For ε > 0, the ε-neighborhood of a subset E ⊆ X is given by

Nε(E) =
⋃
x∈E

B(x, ε).

The diameter of E is denoted by diam(E), and the distance between two subsets
E,F ⊆ X is denoted by dist(E,F ). If at least one of E and F has finite diameter,
then the relative distance of E and F is defined by

�(E,F ) =
dist(E,F )

min{diamE, diamF} ,

with the convention that �(E,F ) = ∞ if at least one of E and F has diameter 0.

Remark 2.1. If f : X → Y is a quasisymmetric homeomorphism of metric spaces,
and E and F are subsets of X , then

�(f(E), f(F )) 
 �(E,F ).

This is easily seen using Proposition 10.10 in [14].

Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the standard 2-sphere equipped
with the restriction of the Euclidean metric on R3. We say that Ω is a domain in S2

if it is an open and connected subset of S2. We always consider a domain in S2

as already metrized, i.e., equipped with the restriction of the standard spherical
metric.

2.2. Dimension and measures

A metric space X is doubling if there is a constant N ∈ N such that for any x ∈ X
and r > 0, the ball B(x, r) can be covered by no more than N balls of radius r/2.
This condition is quantitatively equivalent to the existence of constants α ≥ 0
and C ≥ 1 such that X is (α,C)-homogeneous, meaning that for every x ∈ X ,
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and 0 < r ≤ R, the ball B(x,R) can be covered by no more than C(R/r)α balls
of radius r. The infimum over all α such that X is (α,C)-homogeneous for some
C ≥ 1 is called the Assouad dimension of X . Hence, doubling metric spaces are
precisely those metric spaces with finite Assouad dimension.

In a doubling metric space, some balls may have lower Assouad dimension
than the entire space. To rule out this kind of non-homogeneity, one often employs
a much stricter notion of finite-dimensionality. The metric space (X, d) is Ahlfors
Q-regular, Q ≥ 0, if there is a constant K ≥ 1 such that for all x ∈ X and
0 < r < diamX ,

(2.1)
rQ

K
≤ HQ

X(B(x, r)) ≤ KrQ,

where HQ
X denotes the Q-dimensional Hausdorff measure on X . It is quantitatively

equivalent to instead require that (2.1) hold for all open balls of radius less that
2 diamX . The existence of any Borel regular outer measure onX that satisfies (2.1)
quantitatively implies that X is Ahlfors Q-regular; see Exercise 8.11 in [14].

Remark 2.2. Suppose that (X, d) is Ahlfors Q-regular, Q ≥ 0. Given S ⊆ ∂X ,
the space (X ∪ S, d) is again Ahlfors Q-regular, quantitatively. This is proven as
in Lemma 2.11 of [27].

2.3. Connectivity conditions

Here we describe various conditions that control the existence of “cusps” in a metric
space by means of connectivity. The basic concept of such conditions arose from
the theory of quasiconformal mappings in the plane, where they play an important
role as invariants.

Let λ ≥ 1. A metric space (X, d) is λ-linearly locally connected (λ-LLC) if for
all a ∈ X and r > 0, the following two conditions are satisfied:

(i) for each pair of distinct points x, y ∈ B(a, r), there is a continuum E ⊆
B(a, λr) such that x, y ∈ E,

(ii) for each pair of distinct points x, y ∈ X\B(a, r), there is a continuum E ⊆
X\B(a, r/λ) such that x, y ∈ E.

Individually, conditions (i) and (ii) are referred to as the λ-LLC1 and λ-LLC2

conditions, respectively.
The LLC condition extends in a particularly nice way to the completion of a

metric space. We say that a metric space (X, d) is λ-L̃LC if for all a ∈ X and r > 0
the following conditions are satisfied:

(i) For each pair of distinct points x, y ∈ BX(a, r), there is an embedding
γ : [0, 1] → X such that γ(0) = x, γ(1) = y, γ|(0,1) ⊆ X , and im γ ⊆
BX(a, λr),

(ii) For each pair of distinct points x, y ∈ X\BX(a, r), there is an embedding
γ : [0, 1] → X such that γ(0) = x, γ(1) = y, γ|(0,1) ⊆ X , and im γ ⊆
X\BX(a, r/λ).
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Individually, conditions (i) and (ii) are referred to as the λ-L̃LC1 and λ-L̃LC2

conditions, respectively.
If a metric spaceX is λ-L̃LC, then it is also λ-LLC. The next proposition states

that the two conditions are quantitatively equivalent for the spaces considered in
this paper.

Proposition 2.3. Let i ∈ {1, 2}, and let (X, d) be a locally compact and lo-
cally path-connected metric space that satisfies the λ-LLCi condition. Then X
is λ′-L̃LCi, where λ′ depends only on λ.

Proof. The key ingredient is the following statement: If U ⊆ X is an open subset
of X , and E ⊆ U is a continuum, then any pair of points x, y ∈ E are contained
in an arc in U . The details are straightforward and left to the reader. �

Let λ ≥ 1. A metric space (X, dX) is λ-annularly linearly locally connected
(λ-ALLC) if for all points a ∈ X and all 0 ≤ r < R, each pair of distinct points in
the annulus A(a, r, R) is contained in a continuum in the annulus A(a, r/λ, λR).

The ALLC condition forbids local cut-points in addition to ruling out cusps.
For example, the standard circle S1 is LLC but not ALLC. In our setting, the ALLC
condition is a more natural assumption, and is in some cases equivalent to the LLC
condition.

We omit the proofs of the following three statements. The first is based on
decomposing an arbitrary annulus into dyadic annuli. The second uses the fact
that in a connected space, any distinct pair of points is contained in an annulus
around some third point. The third states that the ALLC condition extends to
the boundary as in Proposition 2.3 and is proven similarly.

Lemma 2.4. Let λ ≥ 1. Suppose that a connected metric space (X, d) satisfies
the condition that for all points a ∈ X and all r > 0, each pair of distinct points in
the annulus A(a, r, 2r) is contained in a continuum in the annulus A(a, r/λ, 2λr).
Then X satisfies the λ-ALLC condition.

Lemma 2.5. Suppose that (X, d) is a connected metric space that satisfies the
λ-ALLC condition. Then (X, d) satisfies the 2λ-LLC condition.

Proposition 2.6. Suppose that (X, d) is a locally compact and locally path-connec-
ted metric space that satisfies the λ-ALLC condition. Then there is a quantity
λ′ ≥ 1, depending only on λ, such that for all a ∈ X and 0 ≤ r < R, and for each
pair of distinct points x, y ∈ AX(a, r, R), there is an embedding γ : [0, 1] → X such
that γ(0) = x, γ(1) = y, γ|(0,1) ⊆ X, and

im γ ⊆ AX(a, r/λ′, λ′R).

There is a close connection between the ALLC condition and the uniform rel-
ative separation of the components of the boundary of a given metric space. The
following statement addresses only circle domains, but a more general result is
probably valid. We postpone the proof until Section 4.
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Proposition 2.7. Let Ω be a circle domain. Then Ω satisfies the ALLC condition
if and only if the components of ∂Ω are uniformly relatively separated, quantita-
tively.

In the case of metric spaces that are homeomorphic to domains in S2 with
finitely many boundary components, the LLC-condition may be upgraded to the
ALLC-condition. Again, we postpone the proof until Section 4.

Proposition 2.8. Let (X, d) be a metric space homeomorphic to a domain in S2,
and assume that the boundary ∂X has finitely many components. If (X, d) is
λ-LLC, λ ≥ 1, then it is Λ-ALLC, where Λ depends on λ and the ratio of the
diameter of X to the minimum distance between components of ∂X.

3. The space of boundary components of a metric space

In this section we assume that (X, d) is a connected, locally compact metric space
with the additional property that the completion X is compact. Note that as X is
locally compact, it is an open subset of X . Hence ∂X is closed in X and therefore
compact.

3.1. Boundary components and ends

Of course, the topological type of ∂X depends on the specific metric d. However,
the goal of this section is to show that under a simple geometric condition, the
collection C(X) of components of ∂X depends only on the topological type of X .

Remark 3.1. This goal cannot be realized without some control on the geometry
of X . The following example was pointed out to us by Daniel Meyer. Let (r, θ, z)
denote cylindrical coordinates on R3, and set

X = {(r, θ, z) : (r − 1)2 + z2 = 1}\{(0, 0, 0)}.

Heuristically, X is a sphere in R3 with its poles pinched together. Equipped
with the standard metric inherited from R3, the space X is homeomorphic to
a punctured disk, and hence has two ends. However, the metric boundary of X
consists only of the point {(0, 0, 0)}.

We define an equivalence relation ∼ on ∂X by declaring that x ∼ y if and
only if x and y are contained in the same component of ∂X . Then there is a
bijection between C(X) and the quotient ∂X/ ∼, and hence we may endow C(X)
with the quotient topology. Since ∂X is compact, the space C(X) is compact as
well. Given a compact set K ⊆ X and a component U of X\K, denote

C(K,U) = {E ⊆ C(X) : E ⊆ (∂U ∩ ∂X)}.

Let U(X) denote the collection of sequences {xi} ⊆ X with the property that
for every compact set K ⊆ X , there is a number N ∈ N and a connected subset U
of X\K such that

{xi}i≥N ⊆ U.
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Define an equivalence relation
e∼ on U(X) by {xi} e∼ {yi} if and only if the

sequence {x1, y1, x2, y2, . . .} is in U(X). An equivalence class E defined by
e∼ is

called an end of X , and we denote the collection of ends of X by E(X).
Given a compact subset K ⊆ X and a component U of X\K, define

E(K,U) = {[{xi}] : {xi} ∈ U(X) and ∃ N ∈ N such that {xi}i≥N ⊆ U}.

That this set is well defined follows from the definition of the equivalence relation
on U(X). Let B be the collection of all such sets.

Proposition 3.2. The collection B generates a unique topology on E(X) such that
every open set is a union of sets in B.

Proof. We employ the standard criteria for proving generation (see Section 13
in [24]). As X is connected, taking K = ∅ shows that B contains E(X). Thus it
suffices to show that given compact subsets K1 and K2 of X and components U1

and U2 of X\K1 and X\K2 respectively, and given an end

E ∈ E(K1, U1) ∩ E(K2, U2),

there is a compact set K and a component U of X\K such that

(3.1) E ∈ E(K,U) ⊆ (E(K1, U1) ∩ E(K2, U2)) .

Let {xi} ∈ U(X) represent the end E. By definition of U(X), there is a
component U of X\K, where K = K1 ∪ K2, such that {xi}i≥N ⊆ U for some
N ∈ N. This implies that E ∈ E(K,U). By assumption, there is a number M ∈ N
such that {xi}i≥M is contained in U1∩U2. Since U is a connected subset of X\K1

and X\K2, it follows that U ⊆ U1 ∩ U2. This implies (3.1). �

We set the topology on E(X) to be that given by Proposition 3.2. It follows
quickly from the definitions that E(X) is a Hausdorff space.

Remark 3.3. As ends are defined in purely topological terms, a homeomor-
phism h : X → Y to some other topological space Y induces a homeomorphism
φ : E(X) → E(Y ). This homeomorphism is natural in the sense that a sequence
{xi} ∈ U(X) represents the end E ∈ E(X) if and only {h(xi)} ∈ U(Y ) represents
the end φ(E) ∈ E(Y ).

To relate the ends of a metric space to the components of its metric boundary,
we need an elementary result regarding connectivity. Let ε > 0 and let x and y be
points in a metric space Z. An ε-chain connecting x to y in Z is a sequence x =
z0, z1, . . . , zn = y of points in Z such that d(zj , zj+1) ≤ ε for each j = 0, . . . , n− 1.
In compact spaces, the existence of arbitrarily fine chains can detect connectedness.
We leave the proof of the following statement to that effect to the reader.

Lemma 3.4. Let x and y be points in a metric space Z. If x and y lie in the same
component of Z, then for every ε > 0 there is an ε-chain in Z connecting x to y.
The converse statement holds if Z is compact.
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An end always defines a unique boundary component.

Proposition 3.5. If {xi} and {yi} are Cauchy sequences representing the same
end of X, then they represent points in the same component of ∂X.

Proof. Denote by x and y the points in ∂X defined by {xi} and {yi}, respectively.
By Lemma 3.4, in order to show that x and y are contained in a single component
of ∂X , it suffices to find an ε-chain in ∂X connecting x to y for every ε > 0. To this
end, fix ε > 0. Let K be the compact subset of X defined by

(3.2) K = X\NX (∂X, ε/3) .

By assumption, we may find N ∈ N so large that xN and yN lie in a connected sub-
set of X\K, and that d(x, xN ) and d(y, yN ) are both less than ε/3. By Lemma 3.4,
we may find an ε/3-chain xN = z0, . . . , zn = yN in X\K. By (3.2), for each
j = 1, . . . , n − 1 we may find a point z′j ∈ ∂X such that d(zj , z

′
j) < ε/3. The

triangle inequality now implies that x, z′1, . . . , z
′
n−1, y is an ε-chain in ∂X , as re-

quired. �

Remark 3.6. Proposition 3.5 allows us to define a map Φ: E(X) → C(X) as
follows. Let E ∈ E(X) and let {xi}i∈N ∈ U(X) be a sequence representing E.
As X is compact, we may find a Cauchy subsequence {xij} of {xi} that represents
a point in some boundary component E′ ∈ C(X). Set Φ(E) = E′. This is well
defined by Proposition 3.5.

We now consider when a boundary component E ∈ C(X) corresponds to an end.
For subspaces of S2, this is always the case. The key tool in the proof of this is the
following purely topological fact, which is mentioned in the proof of Lemma 2.5
in [5].

Proposition 3.7. Each domain Ω in S2 may be written as a union of open and
connected subsets Ω1 ⊆ Ω2 ⊆ · · · of Ω such that for each i ∈ N, the closure of Ωi

is a compact subset of Ω and ∂Ωi is a finite collection of pairwise disjoint Jordan
curves.

Proposition 3.8. Let Ω be a domain in S2. If x and y are points in the same
component of ∂Ω, then any Cauchy sequences representing x and y are in U(Ω)
and represent the same end of Ω.

Proof. The metric boundary ∂Ω coincides with the usual topological boundary
of Ω in S2. Let {Ωi} denote the exhaustion of Ω provided by Proposition 3.7.
Since x and y are in the same component of ∂Ω, for each i ∈ N they belong to
a single simply connected component Ui of S2\Ωi. Let {xi} and {yi} be Cauchy
sequences representing x and y respectively.

Suppose that K is a compact subset of Ω. We may find i0 ∈ N so large that
Ωi0 ⊇ K. Then Ui0 ∩Ω does not intersect K. Moreover, there is a number N ∈ N
such that

({xi}i≥N ∪ {yi}i≥N ) ⊆ Ui0 ∩ Ω.
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It now suffices to show that Ui0 ∩Ω is connected. Let a and b be points in Ui0 ∩Ω.
We may find j ≥ i0 so large that a and b are contained in Ωj. The set Ui0 ∩ Ωj

is a simply connected domain with finitely many disjoint closed topological disks
removed from its interior, and is therefore path-connected. Thus a and b may be
connected by a path inside Ui0 ∩Ωj , and hence inside Ui0 ∩ Ω. �

The proof given above does not even pass to metric spaces that are merely
homeomorphic to a domain in S2, as it need not be the case that the completion
of such a space embeds topologically in S2 (recall Remark 3.1). However, under
an additional assumption controlling the geometry of X , we can give a different
proof.

Proposition 3.9. Suppose that X satisfies the LLC1 condition. If x and y are
points in the same component of ∂X, then any Cauchy sequences representing x
and y are in U(X) and represent the same end of X.

Lemma 3.10. Suppose that X satisfies the λ-LLC1 condition for some λ ≥ 1.
Let E be a connected subset of ∂X and let ε > 0. Then NX(E, ε)∩X is contained
in a connected subset of NX(E, 3λε) ∩X.

Proof. It suffices to show that if x and y are points in NX(E, ε)∩X , then there is
a continuum containing x to y inside of NX(E, 3λε) ∩X . Let x′ and y′ be points
in E such that d(x, x′) < ε and d(y, y′) < ε. By Lemma 3.4, there is an ε-chain
x′ = z′0, . . . , z

′
n = y′ in E. For each j = 1, . . . , n− 1, find a point zj ∈ X such that

d(zj , z
′
j) < ε. The triangle inequality implies that for j = 0, . . . , n− 1,

zj+1 ∈ BX(zj , 3ε).

Repeatedly applying the λ-LLC1 condition and concatenating now yields the de-
sired result. �

Proof of Proposition 3.9. Let x and y be points in a connected subset E of ∂X , and
let {xi} and {yi} be Cauchy sequences in X corresponding to x and y, respectively.
Let K be a compact subset of X . As X is compact, we may find ε > 0 such that
dist(E,K) > 3λε. Let N ∈ N be so large that

{xi}i≥N ∪ {yi}i≥N ⊆ NX(E, ε) ∩X.

Lemma 3.10 now implies the desired results. �

The following statement is the main result of this section. In the case that X is
a domain in S2, the statement is mentioned in [13]. We recall that X is assumed to
be a connected and locally compact metric space with the additional assumption
that X is compact.

Theorem 3.11. Suppose that X is either a domain in S2 or satisfies the LLC1

condition. Then the map Φ: E(X) → C(X) defined in Remark 3.6 is a homeomor-
phism that is natural in the sense that a Cauchy sequence {xi} ∈ U(X) represents
the end E ∈ E(X) if and only if it represents a point on the boundary component
φ(E) ∈ C(X).
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In the proof of the following lemma, we consider only the case that X satisfies
the LLC1 condition. If X is a domain in S2, a proof is easily constructed using
Proposition 3.7.

Lemma 3.12. Suppose that X is a domain in S2 or satisfies the LLC1 condition.
Let K be a compact subset of X and let U be a component of X\K. Then the
following statements hold:

(i) for each x ∈ U ∩ ∂X, there is a number δ > 0 such that BX(x, δ) ∩X ⊆ U ;

(ii) if E ∈ C(X) intersects ∂U ∩ ∂X, then E ∈ C(K,U);

(iii) the set C(K,U) is open in C(X).

Proof. We assume that X satisfies the λ-LLC1 condition for some λ ≥ 1.
Suppose that statement (i) is not true. Then for all sufficiently small δ > 0

we may find points a, b ∈ BX(x, δ) ∩ X such that a ∈ U and b is in some other
component of X\K. Using the λ-LLC1 condition to connect a to b inside of
BX(a, 2λδ) produces a point of K in the ball BX(x, 3λδ). Letting δ tend to 0
produces a contradiction with the assumption that K is a compact subset of X .

Statement (i) implies that the collection

{E ∩ ∂V ∩ ∂X : V is a component of X\K}

consists of pairwise disjoint open subsets of E. Hence the connectedness of E
proves statement (ii).

Now, recall that C(X) is endowed with the quotient topology. Hence, by state-
ment (ii), in order to show that C(K,U) is open in C(X), it suffices to show that
∪E∈C(K,U)E is open in ∂X . This follows from statements (i) and (ii). �

Proof of Theorem 3.11. Proposition 3.8 or 3.9 shows that Φ is injective. Given
E′ ∈ C(X) and a Cauchy sequence {xi}i∈N representing a point in E′, Proposi-
tion 3.8 or 3.9 also state that {xi}i∈N is in U(X) and hence represents an end
E ∈ E(X). By definition, this implies that Φ(E) = E′, and so Φ is surjective.

We now check that the bijection Φ is a homeomorphism. Since C(X) is compact
and E(X) is Hausdorff, this is true if Φ−1 is continuous. Hence, by Lemma 3.12 (iii)
and the definition of the topology on E(X), it suffices to show that for any compact
set K ⊆ X and any component U of X\K,

Φ(E(K,U)) = C(K,U).

Let E be an end in E(K,U). By definition, the limit of any Cauchy sequence repre-
senting E lies in ∂U∩∂X . Hence, Φ(E) intersects ∂U∩∂X , and so Lemma 3.12 (ii)
shows that Φ(E) ∈ C(K,U). Now, let E′ ∈ C(K,U) and choose a Cauchy sequence
{xi}i∈N representing a point in E′. Lemma 3.12 (i) implies that there is N ∈ N
such that {xi}i≥N is contained in U . Again, Proposition 3.8 or 3.9 states that
{xi} is in U(X) and hence represents an end E. Thus, by definition, E ∈ E(K,U)
and Φ(E) = E′. �
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3.2. Rank

We briefly recall the notion of rank as discussed in [13]. Let T be a countable,
compact, and Hausdorff topological space. Set T 0 = T , and for each n ≥ 1,
set T n, to be the set of non-isolated points of T n−1, and endow T n with the
subspace topology. This process can be continued using transfinite induction to
define T α for each ordinal α, though we will not need this. For each ordinal α,
the space T α is again countable, compact, and Hausdorff. By the Baire category
theorem, there is a unique ordinal α such that T α is finite and nonempty; this
ordinal is defined to be the rank of T .

Let (X, d) be a metric space that is either a domain in S2 or satisfies the
LLC1- condition. By Theorem 3.11, the space of boundary components C(X) is
homeomorphic to the space of ends E(X). As mentioned above, the former is clearly
compact and the latter clearly Hausdorff, hence both are compact Hausdorff spaces.
Hence, if S is a closed and countable subset of C(X), the rank of S is defined.

4. Domains with totally disconnected complement

The simplest possible structure of a boundary component is that it consists of a
single point. The aim of this section is to show that if we are only concerned with
the topological properties, we may always assume this is the case.

Proposition 4.1. Every domain in S2 is homeomorphic to a domain in S2 that
has totally disconnected complement.

To prove Proposition 4.1, we employ the theory of decomposition spaces [8].
A decomposition of a topological space S is simply a partition G of S. The non-
degenerate elements of a decomposition are those elements of the partition that
contain at least two points. The decomposition space S/G associated to a decom-
position G of a topological space S is the topological quotient of S obtained by,
for each g ∈ G, identifying the points of g. A decomposition G is an upper semi-
continuous decomposition if each element is compact, and given any g ∈ G and
any open set U ⊆ S containing g, there is another open set V containing g with
the property that if g′ ∈ G intersects V , then g′ ⊆ U . If G is an upper semicon-
tinuous decomposition of a separable metric space S, then S/G is a separable and
metrizable space (see Proposition I.2.2 in [8]).

We will use one powerful theorem from classical decomposition space theory.
It identifies decompositions of S2 that are homeomorphic to S2 itself [23].

Theorem 4.2 (Moore). Suppose that G is an upper semicontinuous decomposition
of S2 that has at least two elements and has the property that for each g ∈ G, both g
and S2\g are connected. Then S/G is homeomorphic to S2.

We also employ a powerful theorem, due to Grötzsch [11], of classical complex
analysis. It states that any domain in S2 can be mapped conformally (and hence
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homeomorphically) to a slit domain, i.e., to a domain in S2 that is either com-
plete, or whose complementary components are points or compact horizontal line
segments in R2. See [10], V.2.

Theorem 4.3. Any domain in S2 is conformally equivalent to a slit domain.

Lemma 4.4. If Ω ⊆ S2 is a slit domain, then the components of R2\Ω containing
at least two points form the non-degenerate elements of an upper semicontinuous
decomposition of S2.

Proof. Let G denote the decomposition of S2 whose non-degenerate elements are
those components of R2\Ω that contain at least two points. Let g ∈ G, and let
U ⊆ S2 be an open set containing g. Without loss of generality we may assume
that g = [0, 1]×{0} and that U is an open and bounded subset of R2 containing g.

Set

l = max{x : (x, 0) ∈ R2\U and x < 0} and r = min{x : (x, 0) ∈ R2\U and x > 1}.

Since Ω ∩ U is open and g is a compact and connected subset of U , there are
closed, non-degenerate intervals L,R ⊆ R such that

(L × {0}) ⊆ ((l, 0)× {0}) ∩Ω ∩ U and (R × {0}) ⊆ ((1, r) × {0}) ∩ Ω ∩ U.

IfG is not upper semicontinuous, then for every n ∈ N, we may find some horizontal
line segment gn ∈ G and points (xn, yn), (x

′
n, yn) ∈ R2 such that

(xn, yn) ∈ gn ∩ N (g, 1/n) and(x′
n, yn) ∈ gn ∩ (S2\U).

After passing to a subsequence, we may assume that (xn, yn) tends to a point of g.
Moreover, passing to another subsequence if needed, we may assume that either

lim sup
n→∞

x′
n ≤ l or lim inf

n→∞
x′
n ≥ r.

We consider the latter case; a similar argument applies in the former. For suffi-
ciently large n, the point x′

n is greater than any point in R, while xn is less than
any point in R. By the connectedness of gn, we conclude that there is a point
(zn, yn) ∈ gn with zn ∈ R. After passing to yet another subsequence, we may
assume that (zn, yn) converges to a point in R× {0}. This is a contradiction as Ω
is open. See Figure 1. �

Proof of Proposition 4.1. Let Ω be a domain in S2. By Theorem 4.3, there is
a homeomorpism h0 : Ω → Ω0, where Ω0 is a slit domain. By Lemma 4.4, the
components of S2\Ω0 with at least two points form the non-degenerate elements of
an upper semicontinuous decomposition G of S2. As each element of G is either a
point or a compact line segment in R2, the hypotheses of Theorem 4.2 are satisfied.
Thus there is a homeomorphism h1 : S2/G → S2. Let π : S2 → S2/G denote the
standard projection map. By definition π|Ω0 is a homeomorphism and π(S2\Ω0)
is totally disconnected. Thus h1 ◦ π ◦ h0 : Ω → S2 is a homeomorphism, and the
image of Ω under this map has totally disconnected complement. �
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Figure 1. If upper semi-continuity fails.

The ends of a domain in S2 with totally disconnected complement are particu-
larly easy to understand: they are in bijection with the points of the complement,
which are precisely the boundary components.

Proposition 4.5. Suppose Ω is a domain in S2 with totally disconnected com-
plement. Then there is a homeomorphism φ : E(Ω) → ∂Ω with the property that
a sequence {xn} ∈ U(Ω) represents the end E ∈ E(Ω) if and only if it converges
to φ(E).

Proof. Since a totally disconnected subset of S2 cannot have interior, we see that
S2\Ω = ∂Ω. Moreover, it is clear that C(Ω) and ∂Ω are naturally homeomorphic.
Hence Theorem 3.11 provides the desired homeomorphism. �

The following statement transfers the work of this section to the general setting.
For the remainder of this section, we assume that (X, d) is a metric space that has
compact completion and is homeomorphic to a domain in S2.

Corollary 4.6. Suppose that X satisfies the LLC1 condition or is a domain in S2.
Then there is a continuous surjection h : X → S2 such that h|X is a homeomor-
phism onto a domain Ω with totally disconnected complement. Moreover, the map h
is constant on each boundary component E ∈ C(X), and for any ε > 0, there
is ε′ > 0 such that

(4.1) h−1(BS2(h(E), ε′)) ⊆ NX(E, ε).

Finally, h induces a homeomorphism from C(X) to ∂Ω.

Proof. We address only the case that X satisfies the LLC1 condition. We have
assumed that X is homeomorphic to a domain in S2. Hence by Proposition 4.1,
there is a homeomorphism h : X → Ω, where Ω ⊆ S2 is a domain with totally
disconnected complement.

By Theorem 3.11 and Remark 3.3, there is a homeomorphism φ0 : C(X) → E(Ω)
with the property that a Cauchy sequence {xi} ∈ U(X) converges to a point of the
boundary component E ∈ C(X) if and only if {h(xi)} represents the end φ0(E).
Moreover, Proposition 4.5 provides a homeomorphism φ1 : E(Ω) → ∂Ω with the
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property that a sequence {yi} ∈ U(X) represents the end E ∈ E(Ω) if and only if
it converges to the boundary point φ1(E) ∈ ∂Ω. We define the extension of h to
∂X by setting h(x) = φ1 ◦ φ0(E), where E ∈ C(X) is the boundary component
containing x ∈ ∂X . The naturality properties of φ0 and φ1 ensure that h : X → S2

so defined is continuous. As h|X is a homeomorphism onto Ω and ∂Ω = S2\Ω, the
definitions show that the extended map is a surjection.

Now, let E ∈ C(X) and ε > 0. By construction (or from the fact that h|X is
a homeomorphism and S2\Ω is totally disconnected), the set h(E) consists of a
single point in ∂Ω. Suppose that there is no ε′ > 0 such that (4.1) holds. Then
there is a sequence of points

xn ∈ X\NX(E, ε)

such that {h(xn)} converges to h(E) ∈ ∂Ω. By compactness and the fact that h|X
is a homeomorphism onto Ω, the sequence {xn} has a limit point x ∈ ∂X\NX(E, ε).
This means that x lies in some boundary component F 
= E. However, the conti-
nuity of h implies that h(F ) = h(x) = h(E), which contradicts the fact that φ1 ◦φ0

is injective.
Corollary 3.11 implies that C(X) is naturally homeomorphic to E(X), and Re-

mark 3.3 shows that E(X) is naturally homeomoprhic to E(Ω). Proposition 4.5
now yields the final statement of the theorem. �

As an application of Proposition 4.1, we prove Proposition 2.7, which relates
the ALLC condition and the relative separation of boundary components, and
Proposition 2.8, which improves the LLC condition to the ALLC condition.

Proof of Proposition 2.7. Let Ω be a circle domain, and suppose that there is a
number c > 0 such that the components {Ei}i∈I of ∂Ω satisfy

(4.2) � (Ei, Ej) ≥ c

whenever i 
= j ∈ I. Fix Λ ≥ 1 so large that 2c−1 < 2Λ2 − 1. We will show that Ω
is Λ-ALLC. Let p ∈ Ω and r > 0. It suffices to show that

AΩ(p, r/Λ, 2Λr)

is connected.
Let h : Ω → S2 be the continuous surjection provided by Corollary 4.6. The

complement of h(Ω) is a compact and totally disconnected set, and hence has topo-
logical dimension 0 (see Section II.4 in [17]). The definition of Λ and (4.2) guarantee
that there is at most one index i ∈ I such that Ei intersects both BS2(p, r/Λ) and
S2\B(p, 2Λr). This implies that h(AΩ(p, r/Λ, 2Λr)) is the complement, in the do-
main bounded by two Jordan curves that touch at no more than one point, of a
set of topological dimension 0. It is therefore connected (Theorem IV.4 in [17]).
See Figure 2.

We leave the converse statement as an exercise for the reader, as it is not needed
in this paper. �
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Figure 2. The ALLC property of circle domains.

In the proof of Proposition 2.8, we will use the following separation theorem of
point-set topology (see Section V.9 in [17]).

Theorem 4.7 (Janiszewski). Suppose that A and B are closed subsets of S2 such
that card(A ∩ B) ≤ 1. If y and z are points of S2 that lie in the same compo-
nent of S2\A and in the same component of S2\B, then y and z lie in the same
component of S2\(A ∪B).

Lemma 4.8. Let (X, d) be a metric space homeomorphic to a domain in S2 that
satisfies the LLC1-condition, and let A and B be disjoint closed subsets of X. Let C
be the collection of components that intersect A ∩B, and assume that cardC ≤ 1.
If u, v ∈ X are in the same component of X\A and in the same component of X\B,
then they are in the same component of X\(A ∪B).

Proof. Let h : X → S2 be the continuous surjection provided by Corollary 4.6. In
particular h|X is a homeomorphism onto a domain Ω = S2\T , where T is a closed
totally disconnected set. Moreover, h maps each component of ∂X to a distinct
point of T . Hence, our assumptions imply that h(A) and h(B) are closed subsets
of S2 such that h(A) ∩ h(B) is either empty or a single point of T . Janiszewski’s
theorem now implies that h(u) and h(v) are in the same component C of

S2\(h(A) ∪ h(B)).

Since T ∩ C is totally disconnected and a subset of the compact and totally dis-
connected set T , it has topological dimension 0 (see Section II.4 in [17]). This
implies that T ∩C does not disconnect C (Theorem IV.4 in [17]), and hence h(u)
and h(v) are contained in the same component of Ω\(h(A) ∪ h(B)). Since h|X is
a homeomorphism onto Ω, this yields the desired result. �

Proof of Proposition 2.8. By Lemma 2.4, it suffices to consider a point x ∈ X and
radius r > 0, and suppose that y and z are points ofA(x, r, 2r). Denote by δ > 0 the
minimum distance between components of ∂X , and set s = diamX/δ. By Propo-

sition 2.3 we may assume that X satisfies the λ-L̃LC condition for some λ ≥ 1.
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We first assume that r < δ/(4λ). Set

A = SX(x, 2λr) and B = BX(x, r/(2λ)).

The λ-L̃LC-condition implies that y and z lie in the same component of X\A
(namely, the component containing x) and in the same component of X\B. The
restriction on r implies that there is at most one component E of ∂X that satisfies
E ∩ (A ∪ B) 
= ∅. Hence, by Lemma 4.8, the points y and z are in the same
component of X\(A∪B). Since (X, d) is locally path-connected, this implies that
they are contained in a continuum in A(x, r/(2λ), 2λr).

Since A(x, r, 2r) is empty if r > diamX , we may now assume that δ/(4λ) ≤
r ≤ diamX. The L̃LC1 condition provides an embedding γ : [0, 1] → X such that
γ(0) = y, γ(1) = z, and im γ ⊆ B(x, 2λr). If there is no t ∈ [0, 1] such that
γ(t) ∈ B(x, r/(16λs)), then the proof is complete. Otherwise, let

t1 = min{t ∈ [0, 1] : γ(t) ∈ S(x, r/(8λs))},
t2 = max{t ∈ [0, 1] : γ(t) ∈ S(x, r/(8λs))}.

Since γ is an embedding, X is connected, and y, z ∈ A(x, r, 2r), we see that t1 < t2.
As r/(8λs) < δ/(4λ), we may apply the first case considered above to the points
γ(t1) and γ(t2), producing a continuum Γ ⊆ A(x, r/(16λ2s), r/(4s)) that con-
tains γ(t1) and γ(t2). Now, the continuum

γ([0, t1]) ∪ Γ ∪ γ([t2, 1]) ⊆ A(x, r/(16λ2s), 2λr)

contains y and z. �

5. Crosscuts

In this section, we assume that X is a metric space that has compact completion, is
homeomorphic to a domain in S2, and satisfies the λ-LLC1 condition for some λ≥1.

A crosscut is an embedding γ : [0, 1] → X such that

γ([0, 1]) ∩ ∂X = γ(0) ∪ γ(1).

Note that if γ is a crosscut, then γ|(0,1) is a proper embedding. If γ(0) and γ(1) are
distinct points that belong to the same component E of ∂X , then we say that γ
is an E-crosscut.

The following proposition shows that under the assumption of the LLC1 con-
dition, E-crosscuts behave as they do in the case of a circle domain in S2.

Proposition 5.1. Let E be a component of ∂X, and let γ be an E-crosscut. Then
X\ imγ has precisely two components. Denoting these components by U and V,
there hold:

(i) for every ε > 0, there is a closed set K ⊆ X with dist(E,K) > 0 such that
U\K is a connected subset of NX(E, ε)∩U , and the same statement is valid
for V ;
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(ii) the sets U\ imγ and V \ imγ are the components of X\ im γ, and U∩V =im γ;

(iii) the sets U ∩ E and V ∩ E are connected.

Proof. By Proposition 2.3, we may assume that X in fact satisfies the λ-L̃LC1

condition.
Let h : X → S2 be the continuous surjection provided by Corollary 4.6, and let

Ω = h(X). Since h|X is a homeomorphism, the map h ◦ γ : (0, 1) ↪→ Ω is a proper
embedding. As h(E) is a single point and h is continuous,

(5.1) lim
t→0

h ◦ γ(t) = h(E) = lim
t→1

h ◦ γ(t).

This implies that the continuous map h ◦ γ : [0, 1] → Ω ∪ {h(E)} defines a
Jordan curve. The Jordan curve theorem states that S2\ im(h ◦ γ) consists of two
disjoint domains Ũ and Ṽ , each homeomorphic to R2, that have common boundary
im(h ◦ γ). Then U := h−1(Ũ ∩ Ω) and V := h−1(Ũ ∩ Ω) are disjoint nonempty
open sets satisfying U ∪ V = X\ imγ. As h|X is a homeomorphism, in order to

show that U and V are the components of X\ imγ, we need only show Ũ ∩ Ω

and Ṽ ∩ Ω are connected. Since S2\Ω is compact and totally disconnected, it has

topological dimension 0 (see Section II.4 in [17]). Thus Ũ ∩Ω is homeomorphic to
the complement in R2 of a set of topological dimension 0, and hence is connected
(Theorem IV.4 in [17]). The same proof applies to Ṽ ∩Ω.

We proceed to the proof of (i). Let ε > 0. By Corollary 4.6, we may find ε′ > 0
such that

(5.2) h−1(BS2(h(E), ε′)) ⊆ NX(E, ε).

As im(h ◦ γ) is a Jordan curve, by Schoenflies’ theorem there is a homeomorphism

H : S2 → S2 such that H(Ũ) is a standard ball in S2 whose boundary contains the
point H ◦ h(E). By the continuity of H−1 and (5.2) we may find ε′′ > 0 so small
that

(5.3) h−1 ◦H−1(BS2(H ◦ h(E), ε′′)) ⊆ NX(E, ε).

The set
BS2(H ◦ h(E), ε′′) ∩H(Ũ)

is the nonempty intersection of two standard balls in S2 and hence is itself home-
omorphic to R2. As before, Section II.4 and Theorem IV.4 in [17] imply that

BS2(H ◦ h(E), ε′′) ∩H(Ũ) ∩H(Ω)

is connected. It now follows from (5.3), the fact that h|X is a homeomorphism
onto Ω, and the definition of U that

h−1 ◦H−1(BS2(H ◦ h(E), ε′′)) ∩ U

is a connected subset of NX(E, ε). We set

K = X\(h−1 ◦H−1(BS2(H ◦ h(E), ε′′))).

The continuity ofH ◦h now shows that dist(E,K) > 0. An analogous proof applies
to V .
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We next address (ii). It follows from the definitions that U\ im γ and V \ imγ
are nonempty, closed in X\ im γ, and satisfy

(U\ imγ) ∪ (V \ imγ) = X\ imγ.

Moreover, as U\ imγ is the topological closure in X\ im γ of the connected set U ,
it is connected. Similarly, V \ imγ is connected. Hence U\ im γ and V \ im γ are
the components of X\ imγ.

As the common boundary of Ũ and Ṽ is imh ◦ γ, we see that U ∩ V ⊇ im γ.
Suppose there is a point z ∈ X\ imγ that is an accumulation point of both U
and V . Let 0 < ε < dist(z, im γ)/λ. By assumption we may find points u ∈
U ∩ BX(z, ε) and v ∈ V ∩ BX(z, ε). The λ-L̃LC1 condition now implies that u
and v can be connected in X\ imγ, a contradiction. Hence U ∩ V = im γ.

To prove (iii), we show that U ∩ E is connected; the corresponding statement
for V is proven in the same way. If U ∩ E is not connected, then we may find
disjoint, nonempty, and compact sets A and B such that A ∪ B = U ∩ E. Fix
0 < ε < dist(A,B)/2. We first claim that there is a number δ > 0 such that

NX(E, δ) ∩ U ⊆ NX(A ∪B, ε) ∩ U.

If this claim is false, then for every n ∈ N there are points un ∈ U and xn ∈ E
such that d(xn, un) < 1/n and dist(un, A ∪ B) ≥ ε. Since E is compact, there
is a subsequence of {xn} that converges to a point x ∈ E. It follows that the
corresponding subsequence of {un} converges to x as well. Hence x ∈ U ∩ E but
dist(x,A ∪B) ≥ ε, a contradiction. This proves the claim.

By (i), there is a closed set K ⊆ X such that dist(E,K) > 0 and U\K is a
connected subset of NX(E, δ) ∩ U, and hence, by the claim, of NX(A ∪ B, ε) ∩ U.
However, since dist(E,K) > 0, we may find points

a ∈ NX(A, ε) ∩ (U\K) and b ∈ NX(B, ε) ∩ (U\K).

This is a contradiction since dist(A,B) > 2ε. �

6. Uniformization of the boundary components

In this section, we assume that X is a metric space that has compact completion,
is homeomorphic to a domain in S2, and satisfies the full λ-L̃LC condition for
some λ ≥ 1.

We prove that each boundary component E ∈ C(X) with at least two points is
homeomorphic to S1 and satisfies the λ′-LLC condition, for some λ′ ≥ 1 depending
only on λ. To do so, we employ a recognition theorem of point-set topology: a
metric space is homeomorphic to S1 if and only if it is a locally connected continuum
such that removal of any one point results in a connected space, while the removal
of any two points results in a space that is not connected [26]. This section adapts
Section 4 of [27] to our setting; we omit certain proofs that need little or no
translation.
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Proposition 6.1. Let E be a component of ∂X, and let p ∈ E. Then E\{p} is
connected.

Proof. As a single point set and the empty set are connected, we may assume
that E has at least three points. Let x and y be arbitrary distinct points of E\{p}.
It suffices to show that there is a connected subset of E\{p} that contains x and y.

By the L̃LC1-condition, there is an E-crosscut γ with γ(0) = x and γ(1) = y.
By Proposition 5.1 (ii), there is a unique component U of X\ imγ such that U ∩E
does not contain the point p. Then x and y are contained U ∩ E, which by
Proposition 5.1 (iii) is a connected subset of E\{p}. �

Proposition 6.2. Let E be a component of ∂X with at least two points. If p, q ∈ E
are distinct points, then E\{p, q} is not connected.

Proof. See Prop. 4.11 in [27]. Here, Proposition 5.1 plays the role of Lemma 4.10
in [27]. �

We now consider the local connectivity of boundary components of X . We will
need a few technical lemmas.

Lemma 6.3. Let E be a component of ∂X, and suppose that γ and γ′ are E-
crosscuts with the property that there is a compact interval I ⊆ (0, 1) such that
γ(t) = γ′(t) for all t /∈ I. Then there is a closed subset K ⊆ X with dist(E,K) > 0
such that if points p and q in X\K are in a single component of X\ im γ, then
they are in a single component of X\ im γ′.

Proof. See Lemma 4.12 in [27]. �

We will briefly need a notion of transversality. Let Y be a topological space
homeomorphic to a domain in S2, and let α, β : (0, 1) → Y be embeddings. Given
x ∈ imα∩ im β, we say that α and β intersect transversally at x if there is an open
neighborhood U of x and a homeomorphism h : U → R2 such that h(U ∩ imα) is
the x-axis and h(U ∩ imβ) is the y-axis.

Lemma 6.4. Let a, b, p, and q be distinct points on a Jordan curve α ⊆ S2, and
let U ⊆ S2 be a simply connected domain with boundary α. If V is any open subset
of U containing α, then there are embeddings αab : [0, 1] → V and αpq : [0, 1] → V
connecting a to b and p to q respectively, such that either imαab ∩ imαpq = ∅,
or αab and αpq have a single intersection, and that intersection is in U and is
transverse.

Proof. By the Schönflies theorem, there is a homeomorphism H : S2 → S2 such
that H(α) is a round circle. Then H(V ) is open in H(U) and it contains a round
annulus that has H(α) as a boundary component. Clearly H(a), H(b), H(p),
and H(q) may be connected as desired inside this annulus. Taking inverse images
under H now yields the desired result. �
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Lemma 6.5. Let a, b, p, and q be distinct points of a component E of ∂X, and
let γab and γpq be E-crosscuts connecting a to b and p to q, respectively. If p and q
are contained in a single component of X\γab, then a and b are contained in a
single component of X\γpq.

Proof. The fact that the points a, b, p, and q are all distinct implies that K =
im γab ∩ im γpq is a compact subset of X . If K is empty, then γab connects a to b
without intersecting γpq, as desired. Hence we may assume that K 
= ∅.

By Corollary 4.6, there is a continuous surjection h : X → S2 where h|X is a
homeomorphism onto a domain Ω in S2 with totally disconnected complement.

Let Ω1 ⊆ Ω2 ⊆ · · · be the exhaustion of Ω guaranteed to exist by Proposi-
tion 3.7. Since a, b, p, and q are all elements of the same boundary component E,
for each i ∈ N there is a single simply connected component Ui of S2\Ωi containing
h({a, b, p, q}). Fix i ∈ N so large that h(K) ⊆ Ωi. Then we may find parameters
t1, t2, s1, s2 ∈ (0, 1) such that

t1 = min{t ∈ [0, 1] : h ◦ γab(t) ∈ ∂Ui},
t2 = max{t ∈ [0, 1] : h ◦ γab(t) ∈ ∂Ui},
s1 = min{s ∈ [0, 1] : h ◦ γpq(t) ∈ ∂Ui},
s2 = max{s ∈ [0, 1] : h ◦ γpq(t) ∈ ∂Ui}.

Since Ωi has only finitely many boundary components and h(K) is a compact
subset of Ωi, we may find a relatively open neighborhood V of ∂Ui in S2\Ui such
that V ⊆ Ωi\h(K). By Lemma 6.4, there are embeddings αab : [0, 1] → V and
αpq : [0, 1] → V connecting h ◦ γab(t1) to h ◦ γab(t2) and h ◦ γpq(s1) to h ◦ γpq(s2)
respectively, such that either imαab ∩ imαpq = ∅, or αab and αpq have a single
transversal intersection.

Let γ̃ab be the path defined by concatenating γab|[0,t1], h−1 ◦αab, and γab|[t2,1].
Similarly define γ̃pq. Then either im γ̃ab and im γ̃pq are disjoint, or they have a single
intersection, and that intersection is transversal and located in X . In the former
case, a and b are in a single component of X\γ̃pq, and so Lemma 6.3 provides the
desired result. In the latter case, the transversality and Proposition 5.1 (ii) imply
that p and q are not contained in a connected subset of X\γ̃ab. Lemma 6.3 shows
that this is a contradiction. �

Proposition 6.6. Let E be a component of ∂X. Then E satisfies the 4λ4-LLC1

condition. In particular, E is locally connected.

Proof. We may assume that E has at least two points. Let p ∈ E, and r > 0.
It suffices to find a continuum F such that

BX(p, r) ∩ E ⊆ F ⊆ BX(p, 4λ4r) ∩ E.

As E itself is connected, we may assume that there is some point

q ∈ E\BX(p, 4λ4r).
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The L̃LC1 condition provides an E-crosscut γpq connecting p to q. Let U and V
be the components of X\ imγpq, and set A = U ∩ E and B = V ∩ E. By Propo-
sition 5.1 (iii), A and B are connected. As {p, q} = A ∩ B and d(p, q) > 4λ4r,
we may find distinct points a ∈ A and b ∈ B such that d(p, a) = 2λ2r and

d(p, b) = 2λ2r. The λ-L̃LC1 condition provides a crosscut γab connecting a to b
with im γab ⊆ BX(p, 3λ3r). By Proposition 5.1 (ii), there is a unique component W
of X\ imγab with p ∈ W ∩ E. Set F := W ∩ E. Applying Proposition 5.1 (iii)
again, we see that the set F is connected.

We first show that F ⊆ BX(p, 4λ4r) ∩ E. Suppose that there is a point x ∈
F\BX(p, 4λ4r). By the λ-L̃LC2 condition, there is a path connecting x to q without
intersecting BX(p, 4λ3r). This implies that p and q are in the same component
of X\γab. However, by Proposition 5.1 (ii), the points a and b lie in different
components of X\ imγpq. This contradicts Lemma 6.5.

We now show that BX(p, r) ∩ E ⊆ F. Since γab is continuous, we may find
parameters 0 < ta < 1 and 0 < tb < 1 such that

diam(γab([0, ta])) ≤ λ2r and diam(γab([tb, 1])) ≤ λ2r.

Set a′ = γab(ta) and b′ = γab(tb). Then a′, b′ ∈X\BX(p, λ2r), and so the λ-L̃LC2

condition provides an embedding γa′b′ : [0, 1] → X such that γa′b′(0) = a′, γa′b′(1)
= b′, and im γa′b′ ⊆ X\BX(p, λr). The set

S = γab([0, ta]) ∪ im γa′b′ ∪ γab([tb, 1])

does not intersect BX(p, λr), and is the image of a path in X. Since the image of
a path in X is arc-connected, we may find a crosscut γ′ connecting a to b with
im γ′ ⊆ S. Furthermore, we may find a compact interval I ⊆ (0, 1) such that
γ′(t) = γab(t) for all t ∈ [0, 1]\I. Suppose that there is a point x ∈ BX(p, r)∩E that
is not contained in F . Then x and p are in different components of X\ im γab.
By Lemma 6.3, this implies that x and p are in different components X\ imγ′.

However, the λ-L̃LC1 condition shows that x and p may be connected by an arc
contained in BX(p, λr). This is a contradiction. �

Proof of Theorem 1.6. We suppose that X is a metric space homeomorphic to a
domain in S2, has compact completion, and satisfies the λ-LLC condition, λ ≥ 1.
By Proposition 2.3, X in fact satisfies the λ′-L̃LC condition for some λ′ depending
only on λ. Let E be a component of ∂X with at least two points. As X is compact,
E is a continuum. Hence, Propositions 6.1, 6.2, and 6.6 along with the recognition
theorem of [26] show that E is a topological circle. Proposition 6.6 shows that E
is 4λ′4-LLC1. The desired statement now follows from Proposition 4.15 in [27] and
the characterization of quasicircles given in [25]. �

Remark 6.7. Let E be a component of ∂X , let γ be an E-crosscut, and let U
and V be the components ofX\ imγ. By Proposition 5.1 (ii) and (iii), the sets U∩E
and V ∩ E are connected and have intersection {γ(0), γ(1)}. Since Theorem 1.6
implies that E is a topological circle, we may conclude that (U ∩ E)\ im γ and
(U ∩E)\ im γ are the components of E\ imγ.
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7. Topological uniformization of the completion

In this section, in which the notation and assumptions are as in the previous
section, we give the following topological uniformization for the completion of X ,
at least in the case of finitely many boundary components.

Theorem 7.1. Let N ∈ N, and assume that ∂X has N components, all of which
are nontrivial. Then the completion X is homeomorphic to the closure of a circle
domain that has N boundary components, all of which are nontrivial.

Remark 7.2. The homeomorphism type of a metric space X and the homeomor-
phism type of the boundary ∂X do not, in general, determine the homeomorphism
type of the completion X . The following example demonstrates this. The real pro-
jective plane RP 2, formed by identifying antipodal points of S2, can be metrized
as a subset of R4 endowed with the standard metric. Let X ⊆ RP 2 ⊆ R4 be the
image of the sphere minus the equator under the identification of antipodal points.
Then X is homeomorphic to the disk, and ∂X is homeomorphic to the image of
the equator under the identification of antipodal points, i.e., it is homeomorphic
to the circle. However, the completion X is homeomorphic to all of RP 2, and not
the closed disk. The LLC condition prevents this phenomena from occurring in
the setting we are most interested in.

The proof of Theorem 7.1 relies on the following topological characterization
of the closed disk, due to Zippin [29]. Here, given a topological space Y , an
embedding α : [0, 1] → Y is said to span a subset J of Y if imα∩J = {α(0), α(1)}
and α(0) 
= α(1). Note that an embedding spans a component E of the boundary
∂X if and only if it is an E-crosscut.

Theorem 7.3 (Zippin). A locally connected and metrizable continuum Y is home-
omorphic to the closed disk D2 if and only if Y contains a topological circle J with
the following properties:

• there is an embedding α : [0, 1] → Y that spans J ,

• for every embedding α : [0, 1] → Y spanning J , the set Y \ imα is not con-
nected,

• for every embedding α : [0, 1] → Y spanning J and every closed subset I �
[0, 1], the set Y \α(I) is connected.

Remark 7.4. The homeomorphism constructed in the proof of Theorem 7.3 maps
the Jordan curve J onto the unit circle.

The key point of the proof of Theorem 7.1 is given in the following statement,
which the reader may wish to compare to Remark 7.2.

Lemma 7.5. Let E ∈ C(X) be an isolated and nontrivial component of ∂X, and
let h : X → S2 be the continuous surjection provided by Corollary 4.6. Then for
all sufficiently small ε > 0, the set U = h−1(BS2(h(E), ε)) is homeomorphic to a
closed annulus.
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Proof. Corollary 4.6 states that h induces a homeomorphism from C(X) to ∂(h(X)).
Since E is isolated, it follows that U ∩ ∂X = E when ε is sufficiently small.

Fix such an ε, and set p = h(E) ∈ S2 and α0 = h−1(SS2(p, ε)). Then α0 is a
Jordan curve in X . Equip

U
∐

(S2\BS2(p, ε))

with the disjoint union topology, and consider the quotient topological space

Y =
(
U
∐

(S2\BS2(p, ε))
)
/x ∼ h(x), x ∈ α0.

The result will follow once it is shown that Y is homeomorphic to the closed disk,
with π(E) corresponding to the unit circle. To do so, we employ Theorem 7.3.

Let π denote the usual projection map onto Y , and note that

π|U and π|S2\B
S2 (p,ε)

are embeddings, and π|α0 is a two-to-one map. After some effort, it can be seen

that Y is compact, second-countable, and regular. The L̃LC-condition on X also
implies that Y is connected and locally path-connected. By Urysohn’s metrization
theorem, it is also metrizable. Moreover, as h|X is a homeomorphism, the set U\E
is homeomorphic to BS2(p, ε)\{p}. Thus, elementary point-set topology shows that
Y \π(E) is homeomorphic to S2\{p}, i.e., to the plane.

By Theorem 1.6, the set π(E) is a topological circle in Y . The existence of an

embedding α : [0, 1] → Y that spans π(E) follows from the L̃LC condition on X .
We next check that any embedding α : [0, 1] → Y that spans π(E) disconnects Y .
Towards a contradiction, suppose that Y \α is connected. Since Y is locally path-
connected and Hausdorff, it follows that Y \α is arc-connected.

We assume that the image of α intersects the circle π(α0); the argument in the
case that this does not occur is a simpler version of what follows. Set

t0 = min{t ∈ [0, 1] : α(t) ∈ π(α0)} and t1 = max{t ∈ [0, 1] : α(t) ∈ π(α0)}.

Then 0 < t0 ≤ t1 < 1. Denote

p = α(0) ∈ π(E),

q = α(1) ∈ π(E),

p′ = α(t0) ∈ π(α0),

q′ = α(t1) ∈ π(α0),

and let A be an arc of the topological circle π(α0) with endpoints p′ and q′. It is
possible that A is a single point. Let α′ : [0, 1] → Y be an embedding such that
α′(t) = α(t) when t ∈ [0, t0]∪ [t1, 1], and such that α′ : [t0, t1] → Y is an embedding
parametrizing A. Then im(α′) ⊆ π(U), and hence α′ defines an E-crosscut α̃ in X.
By Remark 6.7, we may find points x and y in E that are in different components
of X\α̃. Since

imα ∩ π(E) = π(im α̃ ∩ E),

the points π(x) and π(x) are in Y \α.
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Our assumption now provides an embedding γ : [0, 1] → Y \α such that γ(0) =
π(x) and γ(1) = π(y). Since Y \π(E) is homeomorphic to the plane R2, the
Schoenflies theorem implies there is a homeomorphism Φ: Y \π(E) → R2 that
sends α|(0,1) to the real line. Since π(x) and π(y) are in π(E), the embedding
Φ ◦ γ|(0,1) is proper. Moreover, its image does not intersect the real line. Let B be
a ball in R2 that contains the compact set Φ(π(α0)). As Φ ◦ γ|(0,1) is proper, we
may find points s0, s1 ∈ (0, 1) such that if t /∈ (s0, s1), then Φ ◦ γ(t) /∈ B. From
the geometry of R2, we see that there is a path

β : [s0, s1] → R2\(B ∪R× {0}).

Then imβ does not intersect im(Φ◦α′). Let γ′ denote the concatenation of γ|[0,s0],
Φ−1◦β, and γ|[s1,1]. Then im γ′ contains π(x) and π(y) and is contained in π(U)\α′.

It follows that im(π−1(γ′)) connects x to y inside of X\α̃, contradicting the defi-
nition of x and y. See Figure 3.

p
q

p′

q′

π(x)

π(y)

α

π(α0)

π(E)

γ

A

B

β

Φ

Φ(γ)

Φ(α) Φ(A)

Φ(p′) Φ(q′)

Figure 3. The proof of Lemma 7.5.

Finally, we check that if I � [0, 1] is closed, then α(I) does not separate the Y .
Since Y is locally path-connected, it suffices to show that any pair of points x, y ∈
Y \π(E) can be connected without intersecting α(I). This follows easily from the
Schönflies theorem. �

We will also need the following well-known topological statement, the proof of
which is left to the reader.

Lemma 7.6. Let ε > 0 and p ∈ S2. Given any homeomorphism φ : SS2(p, ε) →
SS2(p, ε), there is a homeomorphism Φ: AS2(p, ε, 2ε) → AS2(p, ε, 2ε) such that
Φ|S

S2(p,ε)
= φ and Φ|S

S2 (p,2ε)
is the identity mapping.

Given a metric space Y homeomorphic to a domain in S2, we denote byN (Y ) ⊆
C(Y ) the collection of nontrivial components of ∂Y , and by I(Y ) ⊆ N (Y ) the
collection of nontrivial components of ∂Y that are isolated as points in C(Y ).

Theorem 7.1 is a special case of the following result.



Quasisymmetric Koebe uniformization 887

Theorem 7.7. Set
X̃ = X ∪

( ⋃
E∈I(X)

E
)
.

Then there are a circle domain Ω′ ⊆ S2 and a homeomorphism

h̃ : X̃ → Ω′ ∪
( ⋃

F∈N (Ω′)

F
)
.

Moreover, Ω′ and h̃ may be chosen so that h̃ induces a homeomorphism from C(X)
to C(Ω′).

Proof. Let h : X → S2 denote the continuous surjection provided by Corollary 4.6.
Let E ∈ I(X). By Lemma 7.5, there are a number εE > 0 and a homeomorphism

hE : h−1(BS2(h(E), εE/2)) → AS2(h(E), εE/4, εE/2).

Denote the domain of hE by UE, and set VE = h−1(BS2(h(E), εE)). We may as-
sume that the Jordan curve βE := h−1(SS2(h(E), εE)) is mapped onto SS2(h(E), εE).
Moreover, we may choose the number εE so small that VE ∩∂X = E, and that the
resulting collection {VE}E∈I(X) is pairwise disjoint.

According to Lemma 7.6, for each E ∈ I(X), there is a homeomorphism ΦE of
AS2(h(E), εE/2, εE) to itself that agrees with hE ◦ h−1 on SS2(h(E), εE/2) and is
the identity on SS2(h(E), εE).

Define
Ω′ = h(X)\

( ⋃
E∈I(X)

BS2(h(E), εE/4)
)
.

Then the collection of nontrivial boundary components of Ω′ is given by N (Ω′) =

{SS2(h(E), εE/4)}E∈I(X). The map h̃ : X̃ → Ω′ ∪
(⋃

F∈N (Ω′) F
)
defined by

h̃(x) =

⎧⎪⎨⎪⎩
h(x) x /∈

⋃
E∈I(X) VE ,

ΦE ◦ h(x) x ∈ VE\UE,

hE(x) x ∈ UE

now yields the desired homeomorphism. See Figure 4.
The final assertion follows from the construction and the fact that there is a

natural homeomorphism from C(h(X)) to C(Ω′). �

8. ALLC and porous quasicircles

A subset Z of a metric space (X, d) is C-porous, C ≥ 1, if for every z ∈ Z and
0 < r ≤ diamX , there is a point x ∈ X such that

B
(
x,

r

C

)
⊆ B(z, r)\Z.

Porous subsets are small compared to the ambient space in a quantitative sense.
See Section 5.8 in [9] and Lemma 3.12 in [3] for a proof of the following well-known
theorem.
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Figure 4. Topological uniformization of the completion.

Theorem 8.1. Let (X, d) be an Ahlfors Q-regular metric space, Q > 0, and let Γ
be a subset of X. Then Γ is C-porous for some C ≥ 1 if and only Γ is (α,C′)-
homogeneous for some α < Q and C′ ≥ 1, quantitatively.

We recall that a quasicircle is any metric space that is quasisymmetrically
equivalent to S1.

Theorem 8.2. Let (X, d) be an ALLC metric space, and let Γ ⊆ X be a quasicir-
cle. Then Γ is porous in X, quantitatively.

Proof. We suppose that (X, d) is Λ-ALLC, Λ ≥ 1, and that Γ ⊆ X is a Jordan
curve satisfying the following condition: there is λ ≥ 1 such that for each pair of
distinct points x and y on Γ

diam(I) ≤ λd(x, y),

where I is a component of Γ\{x, y} of minimal diameter. When Γ is doubling, this
condition is quantitatively equivalent to the assumption that Γ is a quasicircle;
see [25].

Let z ∈ Γ and 0 < r ≤ diamX . We consider three cases.

Case 1: 0 < r < (diamΓ)/(4Λ). We may find a point w ∈ Γ such that d(z, w) ≥
2Λr. We may also find points u, v ∈ Γ such that {z, v, w, u} is cyclically ordered
on Γ, d(z, u) = r/(4Λ) = d(z, v), and if J(z) is the component of Γ\{u, v} that
contains z, then J(z) ⊆ B(z, r/(4Λ)).

The Λ-ALLC condition on the space X implies the existence of a continuum
α ⊆ A(z, r/(8Λ2), r/2) that contains u and v. Let J(u) be the component of
Γ\{z, w} containing u, and let I(u) = J(u)∪{z, w}. Define J(v) and I(v) similarly.



Quasisymmetric Koebe uniformization 889

We claim that dist(v, I(u)) ≥ r/(8λΛ). If not, then the λ-three point condition
implies that either z or w is within a distance of r/(8Λ) of v, which is not the case.
Now, the connectedness of α implies that there is a point x ∈ α such that

dist(x, I(u)) =
r

s
, where s = 8(2λ+ 1)Λ2.

Suppose that there is a point y ∈ I(v) such that d(x, y) < r/s. Then dist(y, I(u)) <
2r/s, and hence the λ-three point condition implies that either z or w is within a
distance 2λr/s of y, and hence

dist(x, {w, z}) < 2λr

s
+

r

s
=

r

8Λ2
.

Combined with the facts that x ∈ α ⊆ A(z, r/(8Λ2), r/2) and d(z, w) ≥ 2Λr, this
yields a contradiction. Hence dist(x,Γ) ≥ r/s, and so the fact that d(x, z) < r/2
implies

B
(
x,

r

s

)
⊆ B(z, r)\Γ.

Case 2: 8 diamΓ ≤ r ≤ diamX. We may find a point x ∈ X such that d(x, z) =
r/4. Since diamΓ ≤ r/8 and z ∈ Γ, we see that

dist(x,Γ) ≥ d(x, z)− diamΓ ≥ r/8.

Hence B(x, r/8) ⊆ B(z, r)\Γ.
Case 3: diamΓ/(4Λ) ≤ r < 8 diamΓ. In this case,

r

32Λ
<

diamΓ

4Λ
.

Thus, Case 1 implies that there is a point x ∈ X such that

B
(
x,

r

32Λs

)
⊆ B

(
z,

r

32Λ

)
\Γ ⊆ B(z, r)\Γ. �

Remark 8.3. Theorem 8.2 is also true for weak-quasicircles ; see [22].

We combine the results of this section with those of the previous sections in
the following statement:

Corollary 8.4. Let (X, d) be a doubling metric space that is homeomorphic to a
domain in S2, has compact completion, and satisfies the ALLC condition. Then
each component of the boundary ∂X is a porous subset of X, quantitatively.

Proof. By Lemma 2.5, the space X is also LLC, quantitatively. Theorem 1.6 now
implies that each component of the boundary ∂X is a quasicircle, quantitatively.
Thus Theorem 8.2 yields the desired result. �

The following theorem states that, up to bi-Lipschitz equivalence, having As-
souad dimension strictly less than 2 characterizes quasicircles in S2 among the class
of all quasicircles [16].
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Theorem 8.5 (Herron–Meyer). Let (Γ, dΓ) be a metric circle. The following state-
ments are equivalent, quantitatively:

• Γ is a quasicircle that is (α,C)-homogeneous for some 1 ≤ α < 2 and C ≥ 1.

• Γ is bi-Lipschitz equivalent to a quasicircle in S2.

Remark 8.6. Combined with the classical theory of planar quasiconformal map-
pings, Theorem 8.5 has the following consequence, which we will use in the proof
of our main result. Let Γ be a quasicircle that is (α,C)-homogeneous for some
1 ≤ α < 2 and C ≥ 1. Then there is a domain DΓ ⊆ S2 such that

(i) DΓ is Ahlfors 2-regular,

(ii) DΓ is quasisymmetrically equivalent to D2,

(iii) the boundary ∂DΓ is bi-Lipschitz equivalent to Γ.

9. Gluing

We now describe a process for gluing together metric spaces along bi-Lipschitz
equivalent subsets. Parts of the basic construction may be found in [7], and related
deeper results are included in [12].

For the remainder of this section, we let I be a possibly uncountable index
set, which we extend by a symbol 0 to create the index set I0 = I ∪ {0}. We
consider a collection {(Xi, di)}i∈I0 of compact metric spaces and a pairwise disjoint
collection {Ei}i∈I of continua inX0 such that there is a number L ≥ 1 such that for
each i ∈ I, there exists an L-bi-Lipschitz homeomorphism fi : Ei → fi(Ei) ⊆ Xi.

9.1. The basic gluing construction

We first consider the disjoint union

Z̃ =
∐
i∈I0

Xi.

We then consider the set Z obtained by gluing each space Xi to X0 via fi, i.e., Z
is the quotient of Z̃ by the equivalence relation ∼ generated by the condition that
for all i ∈ I, if x ∈ Ei, then x ∼ fi(x). The usual quotient map sending a point

of Z̃ to its equivalence class is denoted by π.
We wish to define a natural metric on Z. To do so, we define an auxiliary

distance function for points z, w ∈ Z̃ by

d̃(z, w) =

{
di(z, w) z, w ∈ Xi,

∞ otherwise.

We now define a distance function d on Z by setting, for all equivalence classes
a, b ∈ Z,

d(a, b) = inf

n∑
k=1

d̃(zk, z
′
k),
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where the infimum is taken over all sequences z = z1, z
′
1, . . . , zn, z

′
n in Z̃ such that

z1 ∈ a, z′n ∈ b, and if n > 1, then π(z′k) = π(zk+1) for all i = 1, . . . , n− 1. We say

that such a sequence z is an admissible sequence from a to b if the d̃-length of z,

l
˜d(z) =

n∑
k=1

d̃(zk, z
′
k),

is finite, and if for any k = 1, . . . , n− 1,

(9.1) z′k 
= zk+1.

The triangle inequality implies that the infimum in the definition of d(a, b) may be
taken over all admissible sequences.

Proposition 9.1. The distance function d is a metric on the set Z, and if points
a and b of Z have representatives za and zb satisfying d̃(za, zb) < ∞, then

(9.2)
d̃(za, zb)

L
≤ d(a, b) ≤ d̃(za, zb).

Proof. Let a, b ∈ Z. The definitions quickly imply that d(a, b) = d(b, a), that
d(a, a) = 0, and that d satisfies the triangle inequality.

Before showing that d(a, b) = 0 implies that a = b, we prove (9.2). Let za
and zb be representatives of a and b respectively, such that d̃(za, zb) < ∞. The
second inequality in (9.2) follows from the fact that za, zb is an admissible sequence
connecting a to b. Towards a proof of the first inequality, let z = z1, z

′
1, . . . , zn, z

′
n

be an admissible sequence connecting a to b. We consider only the case that za
and zb are in X0; the other cases are handled similarly. It suffices to assume that
z1 = za and z′n = zb and to show that l

˜d(z) ≥ d̃(za, zb)/L. For each k = 1, . . . , n,
let ik ∈ I0 be the index such that zk, z

′
k ∈ Xik . Since z is admissible, we may

assume that if ik 
= 0, then zk, z
′
k ∈ fik(Eik). Since each fik is an L-bi-Lipschitz

mapping, the triangle inequality implies that

l
˜d(z) =

n∑
k=1

dik(zk, z
′
k) ≥

∑
{k:ik=0}

d0(zk, z
′
k) +

∑
{k:ik �=0}

d0(f
−1
ik

(zk), f
−1
ik

(z′k))

L

≥ d0(za, zb)

L
=

d̃(za, zb)

L
,

as desired.
Now, suppose that d(a, b) = 0. If there are representatives za and zb of a

and b respectively that satisfy d̃(za, zb) < ∞, then (9.2) shows that za = zb, and
hence a = b. Suppose no such representatives exist. Then we may assume without
loss of generality that a has a representative za ∈ Xi\fi(Ei) for some i ∈ I, and
that b has no representative in Xi. Then any admissible sequence from a to b
has d̃-length at least distdi(za, fi(Ei)). Since fi(Ei) is compact, we conclude that
d(a, b) is positive, a contradiction. �
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Remark 9.2. The metric d defines a topology on Z, which we will refer to as the
metric topology on Z. There is another natural topology on Z, which we will refer
to as the quotient topology on Z. It is obtained as follows. First, we equip Z̃ with
the disjoint union topology, i.e., a set A ⊆ Z̃ is open if and only for each i ∈ I0,
the set A∩Xi is open in Xi. Note that a d̃-ball in Z̃ of finite radius is open. Then
we consider the quotient topology on Z arising from the equivalence relation ∼,
i.e., the maximal topology on Z in which the standard projection map π : Z̃ → Z
continuous. It is not hard to check that every open set in the metric topology
on Z is open in the quotient topology on Z. Moreover, if card I < ∞, then the
topologies coincide. Simple examples show that the topologies may differ if this is
not the case.

The following proposition states that away from the gluing sets, the space Z is
locally isometric to Z̃.

Proposition 9.3. Let r > 0, and suppose that a ∈ Z satisfies

(9.3) distd

(
a, π

(⋃
i∈IEi

))
≥ 3r.

Then there is unique representative zb of each b ∈ Bd(a, r), and π−1 : Bd(a, r) →
B

˜d(za, r) is a well-defined bijective isometry.

Proof. Let b and c be points of Bd(a, r). Then Proposition 9.1 and (9.3) imply
that if zb and zc are representatives of b and c respectively, then

(9.4) dist
˜d

(
{zb, zc},

⋃
i∈I(fi(Ei) ∪ Ei)

)
≥ 2r.

This immediately implies that b and c have unique representatives zb and zc, re-
spectively. Since d(b, c) < 2r, there is admissible sequence z from b to c that has

d̃-length less than 2r. The conditions (9.1) and (9.4) now imply that z = zb, zc,

and hence that d(b, c) = d̃(zb, zc). A similar argument shows that zb and zc are in
B

˜d(za, r). These facts together imply the desired statement. �

9.2. Preservation of the ALLC condition

In this and the following subsection, we make the following assumption on the
spaces in the collection {Xi}i∈I :

(A) there is a constant C ≥ 1 such that diamdi(Xi) ≤ C diamdi fi(Ei) for all i∈I.

Heuristically, this assumption means that the spaces (Xi, di) are “flat”.
We now show that if each space in the collection {Xi}i∈I0 satisfies the ALLC

condition with a uniform constant, then the glued space (Z, d) also satisfies the
ALLC condition, quantitatively.

Lemma 9.4. Suppose that there is a constant λ ≥ 1 such that for each i ∈ I0, the
space (Xi, di) is λ-ALLC. Then there is a quantity Λ ≥ 1, depending only on the
data, with the following property. Let i ∈ I, a ∈ Z, and r > 0. Then at least one
of the following two statements holds:
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(i) the annulus Ad(a, r, 2r) is contained in π(Xi),

(ii) there is a point b′ ∈ Ad(a, r/Λ, 2Λr) ∩ π(Ei) such that for each point b ∈
Ad(a, r, 2r) ∩ π(Xi), there is a continuum E containing b and b′ satisfying

E ⊆ Ad(a, r/Λ, 2Λr) ∩ π(Xi).

Proof. We first assume that a /∈ π(Xi), and will show that the second statement
above holds. We consider two subcases.

Case 1: r > 32LCλdistd(a, π(Ei)). Let a
′ be a point of π(Ei) such that

d(a, a′) <
r

32LCλ
.

The triangle inequality implies that

(9.5) Ad(a, r, 2r) ⊆ Ad

(
a′,

r

2
, 3r

)
.

If diamdi fi(Ei) < r/(2C), then Proposition 9.1 and condition (A) show that
π(Xi) ⊆ Bd

(
a′, r

2

)
. By (9.5), this now implies that Ad(a, r, 2r) ∩ π(Xi) is empty

and hence the claim is vacuously true. Thus we may assume that

(9.6) diamdi fi(Ei) ≥
r

2C
.

Let za′ be the representative of a′ in fi(Ei). The connectedness of fi(Ei) and (9.6)
imply that there is a point zb′ ∈ fi(Ei) such that

di(za′ , zb′) =
r

8C
.

Set b′ = π(zb′). Let b ∈ Ad(a, r, 2r), and denote by zb the representative of b ∈ Xi.
Proposition 9.1, the above equality, and (9.5) show that

zb, zb′ ∈ Adi

(
za′ ,

r

16C
, 3Lr

)
.

The λ-ALLC condition in Xi now provides a continuum E′ containing zb and z′b
such that

E′ ⊆ Adi

(
za′ ,

r

16Cλ
, 3Lλr

)
.

Proposition 9.1 shows that

π(E′) ⊆ Ad

(
a′,

r

16CLλ
, 3Lλr

)
.

The triangle inequality now shows that

π(E′) ⊆ Ad

(
a,

r

32CLλ
, (3Lλ+ 1) r

)
.

Clearly π(E′) is a continuum containing b and b′.
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Case 2: r ≤ 32LCλdistd(a, π(Ei)). We may assume that there is a point b0 ∈
Ad(a, r, 2r)∩π(Xi), for otherwise statement (ii) above is vacuously true. The defin-
ition of an admissible chain shows that this implies the existence of a point b′∈π(Ei)
satisfying d(a, b′) < 2r and d(b, b′) < 2r. Given a point b ∈ Ad(a, r, 2r) ∩ π(Xi),
Proposition 9.1 shows that we may find representatives zb and zb′ in Xi of b and b′

respectively such that di(zb, zb′) < 2Lr. By Lemma 2.5, the λ-ALLC condition
in Xi provides a continuum E′ ⊆ Bdi(zb, 4Lλr) that connects b and b′. Proposi-
tion 9.1 implies that

π(E′) ⊆ Bd(b, 4Lλr) ⊆ Bd(a, (4Lλ+ 2)r).

The restriction that r ≤ 32LCλdistd(a, π(Ei)) implies that Bd(a, r/(32LCλ) does
not intersect π(Ei). The definition of an admissible sequence now shows that
Bd(a, r/(32LCλ) does not intersect π(Xi). Thus π(E

′) is a continuum containing b
and b′ and satisfying

π(E′) ⊆ Ad

(
a,

r

32LCλ
, (4Lλ+ 2)r

)
.

Now, we assume that a ∈ π(Xi), that the first statement above does not hold,
and that the second statement above is not trivially true. That is, we assume that
Ad(a, r, 2r) intersects both π(Xi) and Z\π(Xi).

We claim that Ad(a, r/(4LC), 2r) intersects π(Ei). Since π(Ei) is connected, if
this is not the case, then either π(Ei) ⊆ Bd(a, r/(4LC)) or π(Ei) ⊆ Z\Bd(a, 2r).
If the first possibility occurs, then condition (A) yields a contradiction with the
assumptions that Ad(a, r, 2r) meets π(Xi) and that a ∈ π(Xi). If the second
possibility occurs, then the assumption that Ad(a, r, 2r) meets Z\π(Xi) and the
definition of admissible chain yield a contradiction.

Thus we may find a point b′ ∈ Ad(a, r/(4LC), 2r) ∩ π(Ei). That this point
satisfies the requirements of the second statement of the lemma is left to the
reader. �

Lemma 9.5. Suppose that there is a constant λ ≥ 1 such that for each i ∈ I0,
the space (Xi, di) is λ-ALLC. There is a quantity Λ ≥ 1, depending only on the
data, with the following property. Let a ∈ Z and r > 0. If u and v are points in
Ad(a, r, 2r) ∩ π(X0), then there is a continuum E containing u and v satisfying

E ⊆ Ad

(
a,

r

Λ
, 2Λr

)
.

Proof. We claim that Λ = 4Lλ + 2 fulfils the requirements of the lemma. If
a ∈ π(X0), this follows from Proposition 9.1 and the λ-ALLC condition on X0;
the details are left to the reader. Hence we assume that a /∈ π(X0), and set

s =
Lλ+ 1

2
.

First, we consider the case that r ≤ s distd(a, π(X0)). Then Bd(a, r/s) does not
intersect π(X0), and so the existence of the desired continuum follows from Propo-
sition 9.1 and Lemma 2.5; again, the details are left to the reader.
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Now suppose that r > s distd(a, π(X0)). Then there is a point a′ ∈ π(X0) such
that d(a, a′) = distd(a, π(X0)). The triangle inequality yields

Ad(a, r, 2r) ⊆ Ad

(
a′,

(s− 1)r

s
,
(2s+ 1)r

s

)
.

Let zu, zv, and za′ be representatives of u, v, a′, respectively, that are contained
in X0. Proposition 9.1 and the λ-ALLC condition in X0 imply that there is a
continuum E′ ⊆ X0 containing zu and zv satisfying

E′ ⊆ Ad0

(
za′ ,

(s− 1)r

λs
,
(2s+ 1)Lλr

s

)
.

Proposition 9.1, the triangle inequality, and the definition of s now show that

π(E′) ⊆ Ad

(
a′,

(s− 1)r

Lλs
,
(2s+ 1)Lλr

s

)
⊆ Ad

(
a,

r

2Lλ
, (2Lλ+ 2)r

)
,

proving the claim in this case as well. �

Theorem 9.6. Suppose that there is a constant λ ≥ 1 such that for each i ∈ I0,
the space (Xi, di) is λ-ALLC. Then (Z, d) is Λ-ALLC, where Λ ≥ 1 depends only
on the data.

Proof. Let a ∈ Z and r > 0. We show that each pair of points u, v ∈ Ad(a, r, 2r)
is contained in a continuum E ⊆ Z satisfying

E ⊆ Ad

(
a,

r

Λ
, 2Λr

)
,

where Λ ≥ 1 is now defined to be the maximum of the quantities provided by
Lemmas 9.4 and 9.5.

Choose representatives zu ∈ Xiu and zv ∈ Xiv of u and v, respectively.
If iu = iv ∈ I, then Lemma 9.4 provides the desired continuum. If iu = iv = 0,
then Lemma 9.5 provides the desired continuum. If iu 
= iv and neither are 0, we
employ Lemma 9.4. If the first possibility in Lemma 9.4 holds, the desired contin-
uum is easily constructed using Proposition 9.1. If the second possibility holds, we
are provided with continua Eu and Ev that connect u and v to points u′ ∈ π(X0)
and v′ ∈ π(X0) respectively, where

Eu ∪ Ev ⊆ Ad(a, r/Λ, 2Λr).

If iu = 0, then we instead set u′ = u, and similarly define v′ = v if iv = 0.
Applying Lemma 9.5 to u′ and v′ and concatenating now produces the desired
continuum. �

9.3. Preservation of Ahlfors regularity

In this subsection only, we add to condition (A) two assumptions on the geometry
of the base space X0. First, we assume the uniform relative separation of the
gluing sets:

(B) there is a constant c > 0 such that �(Ei, Ej) ≥ c for all i 
= j ∈ I.

We also assume, without loss of generality, that c ≤ 1.
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Our final assumption corresponds to condition (2) in the statement of Theo-
rem 1.4. Namely, for each integer k ≥ 0, set

nk := sup card
{
i ∈ I : Ei ∩Bd0(z, r) 
= ∅ and 2−k <

diamd0(Ei)

r
≤ 2−k+1

}
,

where the supremum is taken over all z ∈ X0 and 0 < r ≤ 2 diamd0 X0. We assume
that there are numbers Q > 0 and 1 ≤ M ≤ ∞ such that

(C)
∑

k∈N
nk(2

−k)Q ≤ M.

Theorem 9.7. Suppose that there is a constant K ≥ 1 such that for each i ∈ I0,
the space (Xi, di) is Ahlfors Q-regular with constant K. Then (Z, d) is Ahlfors
Q-regular, quantitatively.

Proof. As noted in the definition of Ahlfors regularity, it suffices to show that for
a ∈ Z and 0 < r ≤ 2 diamd Z,

(9.7) HQ
(Z,d)(Bd(a, r)) 
 rQ.

First suppose that a satisfies

distd

(
a, π

( ⋃
i∈I

Ei

))
≥ 3r.

Then Proposition 9.3 implies that

HQ
(Z,d)(Bd(a, r)) = HQ

( ˜Z,˜d)
(B

˜d(za, r)) = HQ
(Xi,di)

(Bdi(za, r)),

where za ∈ Xi is the unique representative of a. It also follows that r can be no
larger than twice the diameter of (Xi, di). Since (Xi, di) is Ahlfors Q-regular, the
desired estimate follows.

Next we suppose that a ∈ π(Ei) for some i ∈ I. Let z0a ∈ Ei and za = fi(z
0
a) ∈

fi(Ei) ⊆ Xi be the representatives of a. Set B0 = Bd(a, r)∩π(X0). Proposition 9.1
implies that π|X0 is an L-bi-Lipschitz mapping, and that

π
(
B

˜d(z
0
a, r)

)
⊆ B0 ⊆ π

(
B

˜d(z
0
a, Lr)

)
.

Note that by the triangle inequality, Proposition 9.1, and condition (A),

diamd Z 
 diamd0 X0.

Hence, we may apply the Ahlfors Q-regularity of (X0, d0) to see that

(9.8) HQ
(Z,d)(B0) 
 HQ

(X0,d0)
(Bd0(z

0
a, r)) 
 rQ.

Thus

HQ
(Z,d)(Bd(a, r)) � rQ.
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We now work towards an upper bound for HQ
(Z,d)(Bd(a, r)). For j ∈ I set

Bj = Bd(a, r) ∩ π(Xj), and let J ⊆ I be the set of indices such that Bj 
= ∅.
Furthermore, for k ∈ Z, define

Jk =
{
j ∈ J : 2−k <

diamd0(Ej)

Lc−1r
≤ 2−k+1

}
.

Now, we may write

Bd(a, r) = B0

⋃ ⋃
k∈Z

⋃
j∈Jk

Bj .

By definition, Bj ⊆ π(Xj) for any j ∈ J . As before, by Proposition 9.1,
π|Xj is an L-bi-Lipschitz mapping. Thus the Ahlfors Q-regularity of each Xj and
condition (A) imply that

(9.9) HQ
(Z,d)(Bj) ≤ HQ

(Z,d)(π(Xj)) 
 HQ
(Xj ,dj)

(Xj) 
 (diamd0 Ej)
Q.

Fix j ∈ J . We claim that Ej ∩ Bd0(z
0
a, Lr) 
= ∅. By definition, we may find a

point b ∈ π(Xj) and an admissible chain z from a to b of d̃-length less than r. It
follows from the definitions that there is an admissible subchain z′ connecting a
to a point b′ ∈ π(Ej), and the d̃-length of z′ is also less than r. Let z0b′ be the
representative of b′ in Ej . By Proposition 9.1, it holds that

d0(z
0
a, z

0
b′) < Lr,

proving the claim. Since we have assumed that c ≤ 1, the claim implies that
cardJk ≤ nk for each integer k ≥ 0.

It now follows from condition (B) that there is at most one index j ∈ J with
the property that diamd0 Ej > 2Lc−1r, and hence

card
( ⋃

k≤−1

Jk
)
≤ 1.

Suppose j0 ∈ J is an index with the above property, and let aj0 be a point of Bj0 .
Then by the triangle inequality,

Bj0 ⊆ Bd(aj0 , 2r) ∩ π(Xj0).

Proposition 9.1 implies that π|Xj0
is an L-bi-Lipschitz mapping onto π(Xj0). Hence

the Ahlfors Q-regularity of Xj0 implies that

(9.10) HQ
(Z,d)(Bj0) ≤ HQ

(Z,d) (Bd(aj0 , 2r) ∩ π(Xj0)) � rQ.

Thus, inequalities (9.8), (9.9), and (9.10), along with condition (C), imply that

HQ
(Z,d)(Bd(a, r)) ≤ HQ

(Z,d)(B0) +
∑
k∈Z

∑
j∈Jk

HQ(Bj)

� rQ +

∞∑
k=0

∑
j∈Jk

diamd0(Ej)
Q � rQ + rQ

( ∞∑
k=0

card(Jk)(2−k)Q
)
� rQ,

as desired. Note that this upper bound is also valid when r > 2 diamd Z.
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Finally, we consider the full case that

distd

(
a, π

( ⋃
i∈I

Ei

))
< 3r.

We may find an index i0 ∈ I and a point b ∈ π(Ei0 ) such that d(a, b) < 3r. Thus
the triangle inequality and the previous case show that

HQ
(Z,d)(Bd(a, r)) ≤ HQ

(Z,d)(Bd(b, 4r)) � rQ.

To get the desired lower bound, we consider two subcases. If

(9.11) distd

(
a, π

( ⋃
i∈I

Ei

))
< r/2,

then, as above, we may find an index i0 ∈ I and a point b ∈ π(Ei0 ) such that
d(a, b) < r/2. The triangle inequality and the previous case now show that

HQ
(Z,d)(Bd(a, r)) ≥ HQ

(Z,d)(Bd(b, r/2)) � rQ.

If (9.11) does not hold, then setting r′ = r/6, we see that

distd

(
a, π

( ⋃
i∈I

Ei

))
≥ 3r′,

and we may apply the first case considered in the proof to conclude that

HQ
(Z,d)(Bd(a, r)) ≥ HQ

(Z,d)(Bd(a, r
′)) � (r′)Q 
 rQ,

as desired. �

10. Putting it together

In this section, we synthesize the results of the previous sections to produce a proof
of our main result. We begin by setting up an induction.

Let Y be a metric space. Given a subset S of C(Y ), denote by clS the topo-
logical closure of S in C(Y ). Let N (Y ) ⊆ C(Y ) denote the collection of nontrivial
components of ∂X , and let I(Y ) denote the points ofN (Y ) that are isolated points
of C(Y ).

Lemma 10.1. Let (X, d) be a metric space, homeomorphic to a domain in S2,
such that conditions (1)–(5) of Theorem 1.4 hold. Then (X, d) bi-Lipschitzly em-
beds into a metric space (Z, dZ) that is homeomorphic to a domain in S2, satisfies
conditions (1)–(5) of Theorem 1.4 quantitatively, and such that C(Z) is homeo-
morphic to C(X)\I(X).

Proof. We leave the verification of the quantitativeness of the statement to the
reader, as it follows easily from the quantitativeness of the results proven thus far.

Denote I(X) = {Ei}i∈I . Since (X, d) has compact completion, the index set I
has cardinality no larger than countably infinite.
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Fix i ∈ I. Since X is Ahlfors 2-regular, it is doubling. Lemma 2.5 implies
that X is LLC. Hence, Theorem 1.6 and Corollary 8.4 imply that Ei is a quasicircle
that is porous in X. Remark 8.6 provides an Ahlfors 2-regular quasidisk Di ⊆ S2

with the property that there is a bi-Lipschitz map fi : Ei → ∂Di. It is easily
seen by using Proposition 10.10 in [14] that the ALLC property is preserved by
quasisymmetric mappings. Hence, Di is ALLC. Note that none of the data of the
conditions discussed in this paragraph depend on i.

We now apply the results of Section 9. Let X0 be the completion X , and for
each i ∈ I set Xi = Di. We employ the bi-Lipschitz maps fi defined above as
the gluing maps fi : Ei → fi(Ei) ⊆ Xi. The conditions stated at the beginning of
Section 9 are met by construction, and hence we may consider the resulting glued
metric space (Z, dZ).

We first show that Z is homeomorphic to a domain in S2. The proof is similar
in spirit to that of Theorem 7.7. Denote

X̃ = X ∪
( ⋃

i∈I

Ei

)
.

By Theorem 7.7, there is a circle domain Ω′ ⊆ S2 and a homeomorphism

h̃ : X̃ → Ω′ ∪
( ⋃
F∈N (Ω′)

F
)
.

Denote the image of h̃ by Ω̃′. Since Ω′ is a circle domain, for each i ∈ I, we
may write h̃(Ei) = SS2(pi, ri), where pi ∈ S2 and ri > 0. Since h̃ induces a

homeomorphism from C(X) to C(Ω̃′), for each i ∈ I there is a number εi > 0 such
that

BS2(pi, ri + εi) ∩ ∂Ω′ = SS2(pi, ri)

and such that the resulting collection {BS2(pi, ri + εi)}i∈I is pairwise disjoint.
Moreover, the set

Ψ = Ω′ ∪
( ⋃

i∈I

BS2(pi, ri)
)

is a domain in S2.
Proposition 9.1 implies that for each i ∈ I0, there is a bi-Lipschitz homeomor-

phism ιi : Xi → π(Xi). Fix i ∈ I. There is a homeomorphism gi : Xi → BS2(pi, ri).
By Lemma 7.6, there is a homeomorphism Φi of AS2(pi, ri, ri+εi) to itself such that

Φi coincides with the identity on SS2(pi, ri+εi) and coincides with gi ◦ ι−1
i ◦ ι0◦ h̃−1

on SS2(pi, ri). Now, the map H : Z → Ψ defined by

H(a) =

⎧⎪⎨⎪⎩
h̃ ◦ ι−1

0 (a) a ∈ π(X0)\
(⋃

i∈I ι0 ◦ h̃−1(BS2(pi, ri + εi))
)
,

Φi ◦ h̃ ◦ ι−1
0 (a) a ∈ ι0 ◦ h̃−1(AS2(pi, ri, ri + εi)),

gi ◦ ι−1
i (a) a ∈ π(Xi),

is the desired homeomorphism. See Figure 5.
We now verify that Z satisfies conditions (1)–(5) of Theorem 1.4. Condi-

tion (A), which was imposed at the beginning of Subsection 9.2, is equivalent
to the assertion that diamDi � diam ∂Di, which follows from the fact that Di is a
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pi pi

εi + ri ri
ri

Φi

X0 Xi

π(X0) π(Xi)

ι0 ιi

gi

Ei

h̃

Figure 5. Filling in holes.

quasidisk or from the fact that Di is planar. Conditions (B) and (C), which were
imposed at the beginning of Subsection 9.3, follow from the assumptions (5) and (2)
in the statement of Theorem 1.4.

Hence, Theorems 9.6 and 9.7 imply that (Z, dZ) is ALLC and Ahlfors 2-regular.
That Z satisfies the remaining conditions (2), (3), (5) of Theorem 1.4 and that C(Z)
is homeomorphic to C(X)\I(X) follow from the construction and Proposition 9.1;
we leave the details to the reader. �

Proof of Theorem 1.4. The necessity of conditions (3)–(5) follows easily from the
basic properties of quasisymmetric mappings and Proposition 2.7.

Now, let (X, d) be a metric space, homeomorphic to a domain in S2, such that
the closure of the non-isolated components of C(X) is countable and has finite
rank, and such that conditions (1)–(5) hold. We will show that (X, d) is quasisym-
metrically equivalent to a circle domain whose collection of boundary components
are uniformly relatively separated. Again, we leave the issue of quantitativeness
to the reader.

We first reduce to the case that clN (X) = C(X). Let T = C(X)\ clN (X).

Consider the subspace X̃ of X defined by

X̃ = X ∪
( ⋃

E∈T
E
)
.

Let h : X → S2 be the continuous surjection provided by Corollary 4.6. Since each
E ∈ T is trivial, Corollary 4.6 implies that the map h|

˜X is a homeomorphism.
Moreover, h induces a homeomorphism of C(X) onto the totally disconnected set
S2\h(X). Hence, the set {h(E)}E∈T is open in S2\h(X). It follows that the

image h(X̃) is a domain in S2. Remark 2.2 and Proposition 2.6 imply that X̃

is Ahlfors 2-regular and ALLC, quantitatively. Moreover, the space X̃ clearly
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satisfies the remaining assumptions of Theorem 1.4, since C(X̃) = C(X)\T and

hence clN (X̃) = clN (X) = C(X̃).

Thus, if Theorem 1.4 is valid for spaces such that the nontrivial boundary
components are dense in the space of all boundary components, then applying the
theorem to X̃ and restricting the resulting quasisymmetric mapping to X proves
the theorem for X .

We now assume without loss of generality that clN (X) = C(X). Our assump-
tions now imply that C(X) is countable and has finite rank, and we proceed by
induction on the rank. If the rank of C(X) is 0, then every boundary compo-
nent is isolated. By Lemma 10.1, there is a bi-Lipschitz embedding ι : X ↪→ Z
where (Z, dZ) is complete, homeomorphic to a domain in S2, and satisfies condi-
tions (1)–(5). Condition (3) implies that Z is compact, and hence homeomorphic
to S2. Lemma 2.5 implies that Z is LLC. Bonk and Kleiner’s uniformization re-
sult, Theorem 1.1, now provides a quasisymmetric homeomorphism f : Z → S2.
By Proposition 9.1, there is a bi-Lipschitz embedding ι : X ↪→ Z. The compo-
sition f ◦ ι is a quasisymmetric homeomorphism onto its image Ω := f ◦ ι(X).
This mapping extends to a quasisymmetric homeomorphism of X onto Ω (Propo-
sition 10.10 in [14]). As discussed in the proof of Lemma 10.1, each of the com-
ponents Γ1, . . . ,ΓN of ∂X is a quasicircle. Hence ∂Ω consists of finitely many
quasicircles {f ◦ ι(Γ1), . . . , f ◦ ι(ΓN )}, and, by Remark 2.1,

min
i�=j∈{1,...,N}

�(f ◦ ι(Γi), f ◦ ι(Γj)) 
 min
i�=j∈{1,...,N}

�(Γi,Γj).

Thus Bonk’s uniformization result in S2, Theorem 1.7, provides a quasisymmetric
homeomorphism g : S2 → S2 with the property that g ◦ f ◦ ι(X) is a circle domain.
Again, the relative separation of the boundary components of this domain is con-
trolled by Remark 2.1. This completes the proof in the case that the rank of C(X)
is 0.

We now assume that the desired statement is true in the case that the rank
of C(X) is an integer k ≥ 1, and suppose that the rank of C(X) is k + 1. Theo-
rem 10.1 now states that X bi-Lipschitzly embeds into a metric space (Z, dZ) that
is homeomorphic to a domain in the sphere, satisfies conditions (1)–(5), and such
that C(Z) has rank k. By induction, Z is quasisymmetrically equivalent to a circle
domain. The remainder of the proof proceeds as in the base case. �

Proof of Theorem 1.3. This follows from Proposition 2.8 and Theorem 1.4, after
noting that the minimal relative separation of components of the boundary is con-
trolled by the ratio of the minimal distance between components of the boundary
to the diameter of the space. �

Remark 10.2. We have defined a circle domain to be a subset of S2; one may
also consider circle domains in R2, which need not have compact completion. An
analogous version of Theorem 1.4 for such domains can easily be derived from
Theorem 1.4 and the techniques of Section 6 in [27].
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11. An example

In this section, we prove Theorem 1.5.
The desired space (X, d) is obtained as follows. First we define a sequence of

multiply connected domains (Qn). LetQ0 denote the open unit square (0, 1)×(0, 1)
in the plane. Let Q1 be the domain obtained by removing the vertical line segment
{1/2}× [1/4, 3/4] from Q0. We define Qn+1 by subdividing Qn into 2n×2n dyadic
subsquares of equal size in the obvious way, and replacing each square in the sub-
division by a copy of Q1 that has been scaled by 1/2n. See Figure 6 for Q1, Q2,
and Q3.

Figure 6. The domains Q1, Q2 and Q3.

We denote by Qn the completion ofQn in the path metric dQn induced from the
plane. The induced metric on the completion is denoted by dQn

. The boundary

components of Qn give rise to the metric boundary components of (Qn, dQn). The
components of the metric boundary of (Qn, dQn) that correspond to the boundary
components of Qn other than the outer boundary will be called the slits of Qn.

Next we define a planar domain Q inductively as follows. We start with Q1

and replace the left-lower subsquare (0, 1/2) × (0, 1/2) by a copy of Q2 that has
been scaled by a factor of 1/2. The resulting domain is denoted by R1. Then we
replace R1 ∩ ((0, 1/4)× (0, 1/4)) by a copy of Q3 that has been scaled by a factor
of 1/4. The resulting domain is denoted by R2. We continue in this fashion and
at the n-th step we replace Rn−1 ∩ ((0, 1/2n)× (0, 1/2n)) by a copy of Qn+1 that
has been scaled by a factor of 1/2n. The resulting domain is denoted by Rn. The
countably connected domain that results after infinitely many such replacements
is denoted by Q, see Figure 7.

The desired metric space (X, d) is the domain Q endowed with the path met-
ric dQ induced from the plane. We denote by πX the projection of X onto Q0,
i.e., the map that identifies the points in X that correspond to the same point
of Q0. The map πX is clearly 1-Lipschitz since the path metric on Q dominates
the Euclidean metric.

Alternatively, the space X can be defined as an inverse limit of the sequence
of metric spaces (Rn, pmn), m ≤ n. Here Rn is the completion of Rn in the path
metric induced from the plane and pmn is the projection of Rn onto Rm that
identifies the points of Rn that correspond to the same point of Rm. The map πX
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Figure 7. The domain Q.

is then the natural projection of X onto Q0. The extended metric d on X now
satisfies the equation

d(p, q) = lim dRn
(pn, qn),

where {pn ∈ Rn} and {qn ∈ Rn} are sequences corresponding to p and q in the
inverse limit system.

To establish the desired properties of the spaceX , we consider the slit carpet S2

that has been studied in [21]. The space S2 is the inverse limit of the system
(Qn, πmn), m ≤ n, where πmn is the projection of Qn onto Qm that identifies the
points on the slits of Qn that correspond to the same point of Qm. See Figure 8.

Figure 8. The slit carpet S2.

We make S2 into a metric space by endowing it with the metric

dS2(p, q) = lim dQn
(pn, qn),

where {pn ∈ Qn} and {qn ∈ Qn} are sequences corresponding to p and q in the
inverse limit system. The space S2 is a geodesic metric space which is a metric
Sierpiński carpet, i.e., a metric space homeomorphic to the well-known standard
Sierpiński carpet, see Lemma 2.1 in [21]. The inverse limits of slits of Qn form
the family of peripheral circles of S2, i.e., embedded simple closed curves whose
removal does not separate S2. The natural projection πS2 of S2 onto Q0 factors
through the projection πS2→X of S2 onto X, i.e.,

πS2 = πX ◦ πS2→X .

The projection πS2→X is clearly 1-Lipschitz.
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Lemma 11.1. There exists a constant c > 0 such that for every p ∈ X and every
0 ≤ r < 2 diam(X), there exists q ∈ Q0 with

BQ0
(q, c · r) ⊆ πX(BX(p, r)) ⊆ BQ0

(πX(p), r).

Proof. Fix p ∈ X and 0 < r < 2 diam(X). The second inclusion follows since πX

is 1-Lipschitz. To show the first inclusion, we use the corresponding property of
S2 proved in [21]. Since πS2→X is 1-Lipschitz, for any p′ ∈ π−1

S2→X
(p) we have

πS2→X(BS2(p
′, r)) ⊆ BX(p, r).

By Lemma 2.2 in [21], there exists c > 0 such that for any p′ as above, there is
q ∈ Q0 with

BQ0
(q, c · r) ⊆ πS2(BS2(p

′, r)).

Combining these inclusions with the factorization of πS2 yields the desired inclu-
sion. �

The following lemma implies that the Lipschitz map πX is David–Semmes
regular, see Definition 12.1 in [9].

Lemma 11.2. There exists C ≥ 1 such that for every q ∈ Q0 and r > 0, the
preimage π−1

X
(B(q, r)) can be covered by at most C balls in X of radii at most C ·r.

Proof. By Lemma 2.3 in [21], there exists C ≥ 1 such that π−1
S2

(B(q, r)) can be
covered by at most C balls with radii at most C · r. If (B(p′i, ri)) is a family of
such balls in S2, then (B(πS2→X(p′i), ri)) is the desired family in X. �

Lemma 11.3. The metric space X is homeomorphic to the planar domain Q
and satisfies conditions (1) and (3)–(5) of Theorem 1.4. Moreover, the rank of ∂X
is 1.

Proof. The first assertion of the lemma follows from the fact that Q is locally
geodesic. We leave it to the reader to verify that each nontrivial component of ∂X is
a scaled copy of S1, that the collection of components of ∂X is uniformly relatively
separated, and that C(X) has a single limit point, which implies that the rank of ∂X
is 1. The completion X is compact since S2 is compact and πS2→X is continuous.

We now establish the Alhfors 2-regularity of X . Since the boundary of X has
zero 2-measure, it is enough to show Ahlfors 2-regularity of the completion X. Let
BX(p, r) be any ball with 0 < r < 2 diam(X). Then, since πX is 1-Lipschitz,

H2(BX(p, r)) ≥ H2(πX(BX(p, r))),

and by the first inclusion in Lemma 11.1, the right-hand side is at least r2/C for
some C ≥ 1.

For the other inequality, we observe that, by Lemma 11.2, every cover of
πX(BX(p, r)) by open balls B̃i of radii r̃i at most some δ > 0 induces a cover
of BX(p, r) by balls Bj of radii rj at most C · δ with∑

j

r2j ≤ C3
∑
i

r̃2i .
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Since πX(BX(p, r)) is contained in the Euclidean ball of radius r, the Ahlfors
regularity now follows.

We will check the ALLC condition in several steps. We first check the LLC1

condition. Let BX(p, r) be an arbitrary ball and let x, y ∈ BX(p, r). Since X is
endowed with the path metric induced from the plane and d(x, y) < 2r, there is a
curve γ in X that connects x and y and such that its length is at most 2r. Thus
E = γ is the desired continuum contained in B(p, 3r), i.e., X satisfies the 3-LLC1

condition.

Now we show that X satisfies the LLC2 condition. Let B(p, r) be any ball
in X and let x, y ∈ X \ B(p, r). We may assume that r ≤ 1. Let vx denote
a continuum in X that contains x and projects by πX one-to-one onto a closed
vertical interval Ix that satisfies the following properties. The end points of Ix are
πX(x) and πX(x′) for some x′ ∈ vx with πX(x′) contained in the boundary of Q0,
so that the length of Ix is not larger than the Euclidean distance from πX(p) to the
horizontal side of the boundary of Q0 that contains πX(x′). We define vy and y′

similarly. It follows from the choice of vx and vy that the distance from p to vx,
respectively vy, is at least r/2. Indeed, suppose the distance from p to, say, vx is
less than r/2. Then there exists x′′ ∈ vx so that dX(p, x′′) < r/2. Since dX is the
induced metric on the completion of (Q, dQ) and dQ is the path metric induced from
the plane, dX(x, x′′) equals the Euclidean distance between πX(x) and piX(x′′),
and dX(p, x′′) is at least the Euclidean distance between πX(p) and πX(x′′). From
the choice of vx we conclude that dX(x, x′′) ≤ dX(p, x′′). The triangle inequality
yields a contradiction.

The points x′ and y′ are contained in some closed horizontal intervals hx and hy

respectively, on the outer boundary of X (i.e., the metric boundary component
of (Q, dQ) that corresponds to the boundary of Q0) whose lengths are r/4. The
distances from hx and hy to p are then at least r/4. If vx∪vy∪hx∪hy is connected,
we are done. Otherwise, let l and l′ denote the two complementary components
of hx ∪ hy in the outer boundary of X . We claim that at least one of l or l′ is
at a distance at least r/8 from p. Indeed, the sum of the distances from p to l
and l′ must be at least r/4 because the length of every curve in Q0 separating
πX(vx∪hx) from πX(vy ∪hy) must be at least r/4. Thus either vx∪vy ∪hx∪hy∪ l
or vx ∪ vy ∪ hx ∪ hy ∪ l′ is the desired continuum E in X in the LLC2 condition
with λ = 8.

The next step is to establish the ALLC property for X . Let AX(p, r) denote
BX(p, 2r) \ BX(p, r) and let x, y ∈ A(p, r). We may assume that r ≤ 1. If 1/2 ≤
r ≤ 1, then the continuum E found in the proof of the LLC2 condition works to
conclude ALLC in this case, because the diameter of E is at most 2 and thus it
is at most 4r. If 0 < r < 1/2, the proof of the existence of a desired continuum
follows the lines similar to those in the proof of LLC2, but we first need to localize
that argument. Indeed, first we can find a unique n ∈ N such that 1/2 ≤ 2nr < 1.
Without loss of generality we may assume that n is at least three. We consider the
dyadic subdivision D of Q0 into squares of side length 4/2n. Let s be the interior
of a square in this subdivision. We denote by sX the preimage of s under πX . Let
also ∂sX denote the metric boundary of sX , i.e., the closure of sX in X less sX .
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Note that from the definitions of X and πX it follows that ∂sX is the union of four
closed arcs, each isometric via πX to a side of the boundary of s.

From the choice of n and the fact that πX is 1-Lipschitz, it follows that the
projection πX(BX(p, 2r)) can be covered by four squares from D. Moreover, they
can be chosen to be the first generation dyadic subsquares of a single, not neces-
sarily dyadic, square of side length 8/2n. Let F be the family of the interiors of
these four squares s ∈ F . and let K denote the closure in X of

∪s∈F (sX).

The set K is compact and it contains BX(p, 2r). The contour of K, denoted c(K),
is the closure in X of the set of all points q such that q belongs to ∂sX for a unique
s ∈ F . The contour c(K) is thus a union of closed arcs each of which is isometric
to a horizontal or vertical side of the boundary of s for some s ∈ F . Since elements
of F are interiors of the first generation dyadic subsquares of a single square, it
is easy to see that c(K) is connected, and thus it is a continuum. Considering
various combinatorial possibilities for c(K) one can easily conclude that c(K) does
not have global cut points. The rest of the proof of the ALLC property forX follows
essentially the same lines as the proof of the LLC2 condition where the boundary
of Q0 should be replaced by c(K). The diameter of the resulting continuum E is
at most 16/2n ≤ 32r.

Finally, given a point p ∈ X , a radius r > 0, and points x, y ∈ AX(p, r, 2r),
we modify the above continuum E to obtain one in X as follows. If E does not
pass through the point p0 in X that projects to (0, 0), then it has a neighborhood
that intersects only finitely many boundary components of X , and thus E can
be modified slightly so that these boundary components are avoided. If E does
pass though p0, then p 
= p0, and we can first modify E in an arbitrarily small
neighborhood of p0 to avoid this point and then apply the above. �

If (X, d) is a metric space and λ > 0, we denote by λX the metric space
(X,λ · dX). The following lemma and its corollary show that the space X has a
weak tangent space that contains S2, see Chapters 7-8 of [7], and Chapter 9 of [9],
for background on Gromov–Hausdorff convergence and weak tangent spaces.

Lemma 11.4. The slit carpet S2 is the Gromov–Hausdorff limit of the sequence
(Xn = 2n π−1

X
([0, 1/2n]× [0, 1/2n])).

Proof. We use Theorem 7.4.12 from [7]. Let ε > 0 and N ∈ N be chosen so
that 1/2N+1 < ε. The 1-skeleton graph of the dyadic subdivision D̃N of Q0 into
2N+1 × 2N+1 subsquares pulls back to a graph DN in S2 via πS2 and graphs DN,n

in each Xn via πX ◦2−n. This means that DN is a graph embedded in S2 and DN,n

is a graph embedded in Xn such that the sets of vertices are the sets of preimages
of the vertices of D̃N by πS2 and πX ◦2−n respectively. Two vertices are connected

by an edge in DN or DN,n if and only if they are connected by an edge in D̃N .
Note that there are pairs of distinct vertices of DN , respectively DN,n, that get

mapped to the same vertex of D̃N . We do not connected such pairs of vertices by
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an edge. If n ≥ N , the graphs DN and DN,n are identical. Since the vertices of
these graphs form epsilon-nets, the lemma follows. �

The following corollary is immediate:

Corollary 11.5. The completion of X in the path metric has a weak tangent space
that contains S2.

A metric Sierpiński carpet S is called porous if there exists C ≥ 1 such that
for every p ∈ S and 0 < r ≤ diam(S), there exists a peripheral circle J in S with
J ∩B(p, r) 
= ∅ and

r

C
≤ diam(J) ≤ C · r.

Lemma 11.6. The slit carpet S2 cannot be quasisymmetrically embedded into the
standard plane R2.

Proof. The metric Sierpiński carpet S2 is porous, see Proposition 2.4 in [21], and
its peripheral circles are uniform quasicircles, in fact they are isometric to circles.
Assume that there is a quasisymmetric embedding f : S2 ↪→ R2. An easy appli-
cation of Proposition 10.8 in [14] implies that the image f(S2) is a porous metric
Sierpiński carpet in the restriction of the Euclidean metric. The peripheral circles
of S2, and hence the boundaries of the complementary components of f(S2), are
uniform quasicircles. Applying Theorem 8.2 to each complementary component
of f(S2) now shows that f(S2) is porous as a subset of R2. Theorem 8.1 now
states that the Assouad dimension, and hence the Hausdorff dimension, of f(S2)
is strictly less than two. On the other hand, according Proposition 2.4 in [21],
S2 is Ahlfors 2-regular, and it contains a curve family of positive 2-modulus (see
Lemma 4.2 in [21]). This contradicts Theorem 15.10 of [14]. �

Proof of Theorem 1.5. By Lemma 11.3, it suffices to show that X cannot be qua-
sisymmetrically embedded into the standard 2-sphere S2. Suppose such a qua-
sisymmetric embedding f : X → S2 can be found. It extends to a quasisymmetric
embedding f of the completion X into S2 (Proposition 10.10 in [14]). The map f
then induces a quasisymmetric embedding of every weak tangent space of X into
the standard plane. Corollary 11.5 provides a weak tangent space of X that con-
tains S2. This contradicts Lemma 11.6. �

12. Open questions

Question 12.1. In Theorem 1.4, can the assumption that ∂X have finite rank be
removed? It seems likely that this is the case. An affirmative answer is implied
by an affirmative answer to the following question. Let (X, d) be a metric space,
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homeomorphic to a domain in S2, that satisfies conditions (1)–(5) of Theorem 1.4,
and has no isolated trivial boundary components. Consider the glued space (Z, dZ)
formed from X and a collection of quasidisks {Di} corresponding to (all) the
nontrivial components of ∂X , as in the proof of Theorem 1.4. Is it true that (Z, dZ)
is homeomorphic to S2?

Question 12.2. Suppose that (X, d) is a metric space, homeomorphic to a domain
in S2, that satisfies the ALLC condition. Are the components of ∂X uniformly
relatively separated, quantitatively? Using the techniques of Section 4, it can be
shown that the answer is “yes” in the case that (X, d) is a domain in S2.

Question 12.3. Is there a quantitative statement, analogous to Theorem 1.4,
that uniformizes onto the class of all circle domains? Given a particular circle do-
main Ω that does not have uniformly relatively separated boundary components,
can one give sufficient intrinsic conditions for a metric space to be quasisymmetri-
cally equivalent to Ω?
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