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The automorphism group of Thompson’s group F :
subgroups and metric properties

José Burillo and Sean Cleary

Abstract. We describe some of the geometric properties of the auto-
morphism group Aut(F ) of Thompson’s group F . We give realizations
of Aut(F ) geometrically via periodic tree pair diagrams, which lead to
natural presentations and give effective methods for estimating the word
length of elements. We study some natural subgroups of Aut(F ) and their
metric properties. In particular, we show that the subgroup of inner au-
tomorphisms of F is at least quadratically distorted in Aut(F ), whereas
other subgroups of Aut(F ) isomorphic to F are undistorted.

Introduction

Thompson’s group F has a number of perplexing properties. These include a wide
range of unusual geometric properties, both on the large scale and the local scale.
These have been studied by a number of authors. Here, we develop a geometric
understanding of the automorphism group of F . The algebraic structure of Aut(F )
was described by Brin [1] via a short exact sequence involving the subgroup of
inner automorphisms of F together with the product of two copies of Thompson’s
group T . The geometric structure of Aut(F ) is related to the geometric description
of the commensurator of F , developed in Burillo, Cleary and Röver [5]. Here, we
describe Aut(F ) in terms of periodic infinite tree pair diagrams. These descriptions
lead to a natural presentation for Aut(F ) as well as some effective estimates for
word length in Aut(F ) in terms of the complexity of their eventually periodic tree
pair diagrams. We estimate the word length as a function of the size of the periodic
part of the diagrams, together with the size of a remaining non-periodic part.

There are several natural subgroups of Aut(F ) arising naturally via Brin’s al-
gebraic description as a short exact sequence. We consider several such subgroups,
giving geometric descriptions of them and their presentations. We estimate the
word length in these subgroups and compute the exact distortion to be quadratic
in Aut(F ) for the simplest of these subgroups. The construction shows that F

Mathematics Subject Classification (2010): Primary 20F65; Secondary 20E36.
Keywords: Thompson’s group.



810 J. Burillo and S. Cleary

itself is quadratically distorted in its most natural realization as a subgroup of
Aut(F ), as the subgroup of inner automorphisms. In contrast, there are many
other realizations of F as a subgroup in Aut(F ), and for some of them, we show
that it is undistorted.

1. Background on F and its automorphism group

Thompson’s group F is typically defined as a group of homeomorphisms of the
unit interval. Elements of F are maps

f : [0, 1] −→ [0, 1]

which satisfy

1. they are orientation-preserving homeomorphisms,

2. they are piecewise linear, with finitely many breakpoints (points where the
linear slope changes),

3. all breakpoints are dyadic integers (lying in [0, 1] ∩ Z[ 12 ]),

4. all slopes of the linear parts are powers of 2.

For an introduction to F , and proofs of its most important properties, see Cannon,
Floyd and Parry [8].

Thompson’s group T is defined in a manner completely analogous to F , but
the homeomorphisms are defined on the circle S1 instead of the unit interval. We
usually interpret elements of T also as maps of the interval but with the endpoints
identified, and then we can also think of them as piecewise linear, having dyadic
breakpoints, etc. Hence, F is a subgroup of T . Again, see [8] for details.

To study the group of automorphisms of F , it is convenient to introduce the
group PL2(R). This group is the group of piecewise linear homeomorphisms of the
real line which have also dyadic breakpoints and power-of-two slopes, but whose set
of breakpoints can be infinite, although discrete. Thompson’s group F can be seen
as a group of homeomorphisms of the real line, rather than [0, 1], by conjugating
elements with a suitable map (see Figure 1).

1 2 30−2−3 −1

0 11/2

Figure 1: The map used to transport F from [0, 1] to the real line.

Even though it seems that this conjugation could introduce an infinite number
of breakpoints, it is easy to see that it does not. The slope 2k near 0, for instance,
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results in translation by k near −∞ when conjugated into the real line. Hence, F
is seen as the subgroup of PL2(R) comprising those elements that satisfy the
following property: there exist a real number M > 0 and integers k and l such
that

1) for all x > M , we have f(x) = x+ k;

2) for all x < −M , we have f(x) = x+ l.

In particular, this implies that all breakpoints are within the interval [−M,M ] and
hence the set of breakpoints is finite.

The group PL2(R) is the group where all the action will be contained. Brin [1]
shows that the group PL2(R) acts as a natural setting for these studies, showing
that the automorphism groups of both Thompson’s group F and its commutator
subgroup are subgroups of PL2(R).

Theorem 1.1 (Brin [1]). For a subgroup G ⊂ PL2(R), let N(G) be its normalizer
in PL2(R), that is, all those elements in PL2(R) which conjugate G to itself. Then
we have:

1) AutF ∼= N(F ),

2) AutF ′ ∼= N(F ′) = PL2(R).

This theorem is what allows us to investigate the automorphism group of F as a
subgroup of PL2(R), where a piecewise linear map acts on F by conjugation. That
is, the group of automorphisms of F is isomorphic to those elements in PL2(R)
which conjugate F to itself.

We note that PL2(R) has an index two subgroup, which we will denote PL+
2 (R),

comprising those maps in PL2(R) which preserve the orientation. A natural rep-
resentative of the reversing coset is the map x �→ −x. In the same way, the group
of automorphisms of F has also a subgroup Aut+F , the automorphims preserv-
ing orientation. Since in both cases the subgroup has index two, we will restrict
our study to the orientation-preserving automorphisms, noting that F is actually
included in PL+

2 (R).
The key characteristic of the elements of F inside PL+

2 (R) is the fact that near
infinity, they are translations by integers. The two integers k and l which exist for
each element of F give precisely the abelianization map for F (see Cannon, Floyd
and Parry [8]). Then, the commutator F ′ is given by the elements which are the
identity near infinity. This shows that F ′ is exactly the subgroup of PL+

2 (R) of
those elements which have bounded support; that is, those which are the identity
outside a bounded interval. This gives an idea of why the automorphism group
of F ′ is the whole PL2(R). See Brin’s paper [1] for details.

To see which elements of PL+
2 (R) conjugate F to itself, we note that the condi-

tion that f(x) = x+k, for x > M , and the fact that all integers appear somewhere,
forces a conjugating element α to satisfy α(x+1) = α(x)+1 for sufficiently large x.
The corresponding behaviour at −∞ means that this same condition is satisfied
on the other side. Hence an element α ∈ Aut+F must satisfy α(x+ 1) = α(x) + 1
outside of some bounded interval.
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Finally, if we consider a map α on R which satisfies α(x + 1) = α(x) + 1, it
descends to S1, viewed as R/Z, so it corresponds to a map of S1. This means
that to an element of Aut+F we can assign two elements of T , one given by the
behavior near ∞ and another by the behavior near −∞ (which do not interact,
and hence, commute). This fact is summarized in the following structure theorem
for Aut+F , proved by Brin in [1].

Theorem 1.2 ([1]). 1) The group Aut+F is exactly the subgroup of PL+
2 (R) given

by those elements α for which there exists M > 0 such that α(x + 1) = α(x) + 1,
for all x /∈ [−M,M ].

2) We have a short exact sequence

1 −→ F −→ Aut+F −→ T × T −→ 1.

In this paper, we introduce an interpretation for Aut+F given by binary trees
analogous to the one for F , use it to construct a presentation for Aut+F , describe
some interesting subgroups of Aut+F , and study the large-scale metric properties
of some of these subgroups.

2. Binary trees

Elements of Thompson’s group F can be represented using pairs of binary trees to
encode in a standard way the subdivisions of the unit interval needed to construct
the piecewise linear maps. By the “caret” of a rooted binary tree, we mean an
internal node together with its two downward directed edges. Each caret represents
a subdivision of an appropriate subinterval into two halves, which are its children.
In this way, a binary tree represents a subdivision of the interval. Two trees
with the same number of leaves represent an element of F , by mapping the leaf
subintervals linearly in an order-preserving way. The carets are naturally ordered
from left to right, according to the order of the subintervals they represent in [0, 1].
See Figure 2 for an example.

Our goal is to extend this representation to elements of AutF , and even to
all of PL2(R). Since according to the previous section, elements of AutF are
represented by piecewise linear maps on the line instead of [0, 1], we need to clarify
how pairs of binary trees will correspond to maps of the real line. If we consider
the conjugation map which relates the interval to the line, we see how to construct
this representation. The carets located on the right and left branches of a tree
represent the main intervals which appear in the conjugating map, see Figure 1.
Hence, these carets will represent integer intervals of length one in the real line
representation, with the exception that the leftmost and rightmost carets represent
intervals extending to −∞ and +∞ respectively. See Figure 3.

So we are now considering infinite binary trees (with infinitely many leaves).
We need a mark on the two trees to signal a reference starting point. In this way,
each element of PL2(R) can be represented by a pair of (possibly infinite) binary
trees with a marking. Elements of F correspond to those for which only finitely
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many of the unit lenght intervals are subdivided, and hence the trees are finite
with the exception of the right and left “tails.” See Figure 4 for an example. The
choice of marking is arbitrary; there are many marked diagrams representing a
given element. We note that it is possible to represent all of AutF by indicating
orientations with the markings. However, here, for simplicity, we will restrict our
consideration to the index two orientation-preserving subgroup Aut+F .

1
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111 3 73
4 48 828
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7
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Figure 2: An example of a binary tree and the subdivision of the unit

interval it represents.

[1/8,1/4]

[1/16,1/8]

[1/32,1/16]

[7/8,15/16]

[15/16,31/32]

[−1,0]

[−2,−1]

[−3,−2]

[−4,−3]

[0,1]

[1,2]

[2,3]

[3,4]

[1/2,3/4][1/4,1/2]

[3/4,7/8]

Figure 3: The conjugation between the unit interval and the real line, seen

with trees representing elementary subdivisions.
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......
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... ...

...

... ...

Figure 4: An element of F seen as a pair of trees encoding a map of the real

line. Here we see: the element in [0, 1], then the same element in R, and in

the third picture dotted carets representing the tails that have been added.

In the particular case of AutF , the pairs of trees have to be periodic. The
condition α(x + 1) = α(x) + 1 means that, for k ∈ Z sufficiently large, whatever
subdivision we have of the interval [k, k + 1], it must repeat in the subsequent
intervals. Hence, the infinite trees representing elements of AutF can be coded in
a finite way, because from some point on, the trees are periodic. This leads to the
following definition.

Definition 2.1. An eventually periodic binary tree is a subtree of the infinite
binary tree, for which there exists an integer N > 0 such that, for k ≥ N , all
intervals [k, k + 1] have the same subdivision, and also for k ≥ N , all intervals
[−k,−k+1] have the same subdivision. The subdivision of the intervals near +∞,
although the same for all these intervals, is not necessarily the same as that used
for the intervals near −∞.

See Figure 5 for an example of an eventually periodic element. The trees are
infinite, but only at the two extremes, and that each integer interval is subdivided
only finitely many times. Hence the breakpoints form a discrete subset. The
fact that the trees are eventually periodic means that for each tree, the right and
left tails are periodic. Since now the trees are infinite, we need a marking to
indicate how the leaves are mapped to each other. The marking (unoriented in



The automorphism group of Thompson’s group F 815

the case of Aut+F ) is given by a little circle in a leaf of each tree. These two
leaves are mapped to each other, and the corresponding leaves are mapped in an
order-preserving way.

...

...

... ...

Figure 5: An example of an eventually periodic map represented by infinite,

also eventually periodic trees.

It is straightforward to verify that conjugating an element of F by an eventually
periodic tree pair results in another element of F . Both tails get cancelled because
they are identical and give redundant subdivisions, capable of being reduced, using
a process which is analogous to that for finite tree pairs.

Each orientation-preserving automorphism of F can be represented by an even-
tually periodic map of R, and hence by a pair of eventually periodic trees. The map
from Aut+F to T × T can be read off directly from the infinite tree. The map is
given by the trees which subdivide in both tails. See Figure 6 for the element of T
corresponding to the left tail of the element of Figure 5.

We note that we are restricting to the binary case; the generalizations F (p) of
Thompson’s group F have much more complicated automorphism groups; see Brin
and Guzmán [2].

.....
.....

*
*

Figure 6: The left tail of the element in Figure 5. The two trees enclosed

with a dotted line are the ones repeating indefinitely down the tail, and the

two leaves marked with an asterisk map to each other (they are both at

distance three from the marking). The resulting element of T is constructed

with these two trees, and is represented on the bottom.
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3. Presentation

The short exact sequence

1 −→ F −→ Aut+F −→ T × T −→ 1.

can be used to compute a presentation for Aut+F . We use the standard presenta-
tion for F given by

〈
x0, x1 | [x0x

−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]
〉
.

A standard finite presentation for T , given in Cannon, Floyd and Parry [8], sup-
plements the two generators x0 and x1 for F with a new generator c, which is an
element of order 3. In our case, we will choose a different torsion element, denoted
by t, which is diagrammatically smaller and easier to lift to Aut+F and is also used
in Burillo, Cleary, Stein and Taback [7]. The two elements c and t are depicted in
Figure 7, and note that they satisfy the relation c = tx0.

c
t

Figure 7: Two torsion elements of T . The element c is used as a generator

in [8], and the element t is used here.

Using this relation and the presentation for T given in [8], it is easy to see
that T is generated by x0, x1 and t, with the following relators, which are labelled
for future reference:

(f1) [x0x
−1
1 , x−1

0 x1x0]

(f2) [x0x
−1
1 , x−2

0 x1x
2
0]

(t1) x−1
1 tx2

0x
−1
1 x−1

0 t

(t2) x−1
1 tx2

0x
−1
1 tx0tx0

(t3) x−2
1 tx2

0x
−1
1 x−1

0 t

(t4) t2.

Since we are using x0 and x1 for the embedding of F in Aut+F , the two
lifts of T will be generated by {y0, y1, s} and {z0, z1, t}, respectively. These lifts
will be such that y0, y1 and s have support in (−∞, 0] whereas z0, z1 and t have
support in [0,∞). The lifts of y0, y1, z0 and z1 are straightforward, and amount to
attaching a [0, 1] version of the F generators into the corresponding box (from 0
to 1 in the case of those supported on the positive half-line, or from −1 to 0 in the
case of those supported on the negative half-line), and repeating it indefinitely in
the whole support. The lifts of s and t to Aut+F are trickier, and some choice is
involved. Our choices are shown in Figures 8 and 9, but these should by no means
be considered canonical.
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Figure 8: The first four generators of Aut+F , both as maps of R and as

pairs of periodic trees. For x0 and x1, only the finite trees are shown as if

they were in F , it is understood that for the periodic form, there are infinite

tails at both sides of each tree (see Figure 4).
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s

z

z

t

0

1

Figure 9: The last four generators of Aut+F .

Proposition 3.1. The group Aut+F is presented by the generators {x0, x1, y0, y1,
s, z0, z1, t}, with a set of 35 relators.

The relators for Aut+F can be worked out following the standard procedure
for short exact sequences. These relators can be classified in three types:

1) The two relators for the kernel F , namely, [x0x
−1
1 , x−1

0 x1x0] and [x0x
−1
1 ,

x−2
0 x1x

2
0] (2 relators).

2) The lifts of relators for T ×T . These are furthermore divided into two types:

(a) Commuting relations: the generators y0, y1, and s commute with z0, z1,
and t (9 relators in total).
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(b) Lifts of the relators of the two copies of T to Aut+F : lifting the relators
(f1) and (f2) is direct, as they lift to the same relators but spelled out
with y0, y1 and z0, z1. Lifting the relators (t1) to (t4) requires an extra
computation and it actually depends on the choice of lifts. For instance,
we will compute two examples, based on the lifts given in Figures 8
and 9. The relator s2 in the first copy of T lifts, with our choices, to
s2 = y21y

−1
0 y−1

1 y0; and the relator (t1), in its y0, y1, s version, lifts to

y−1
1 sy20y

−1
1 y−1

0 s = y41y
−3
0 y1y

2
0y1y0y

−1
1 .

There are a total of 12 relators in this class. Their tedious calculation
is left to the reader.

3) The third type of relators appearing in a short exact sequence is given by
the action relators: the lifts of the generators of T × T act on the kernel F ,
since this is a normal subgroup. This gives a total of 12 relators more, each
given by the conjugation action of one of the generators y0, y1, s, z0, z1 or t
on x0 or x1. Again, the computation of these actions is somewhat tedious,
and an example is

sx0s
−1 = x2

1x
−1
0 x−1

1 x0x
−1
1 .

Some of these relators will be written explicitly in the following section, when
we consider subgroups of Aut+F generated by some of the generators.

The presentation of Aut+F leads immediately to a presentation for the whole
group AutF , again using the corresponding short exact sequence. It is worth
noticing that the orientation-reversing automorphism given by φ(x) = −x helps
to reduce the number of generators and relators, since the generators z0, z1, t can
be easily obtained from y0, y1, t by conjugating by φ. For brevity, we leave these
computations to the reader as well. We have preferred to spell out the longer
presentation for Aut+F because it will be useful to understand the subgroups
studied in the next section.

4. Some interesting subgroups

The structure as a short exact sequence obtained for Aut+F shows that some
interesting subgroups of it can be studied. Let

π : Aut+F −→ T × T

be the quotient map in the short exact sequence. If we consider F as a sub-
group of T , we see that we have a subgroup F × F inside T × T . Clearly, these
two copies of F are generated by y0, y1 and z0, z1, respectively. Since we will use
them often, and to clarify to which we refer, we will rename them Fy and Fz. In
the same way the kernel copy of F will be denoted by Fx.

The first subgroup we will study is the group A = π−1(Fy ×Fz). We have now
a short exact sequence, similar to the previous one:

1 −→ Fx −→ A −→ Fy × Fz −→ 1.
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This short exact sequence is fundamentally different than the one for Aut+F .
Each element of Fy × Fz admits a canonical lifting into A, since elements in F ,
seen as maps of [0, 1], fix 0 and 1. The elements y0 and y1 are lifts of the main
generators of F to the first component, and z0 and z1 to the second component.
Since these elements fix the points (k, k) for any k ∈ Z, we see that these lifts define
homomorphisms. Any element of F can be lifted to the first or second component,
by introducing its graph (in [0,1]) in the corresponding one-by-one boxes of the
plane. Note that any element obtained as the lift of an element of Fy × Fz has its
graph included in the union of the boxes with sides [k, k + 1], for all integers k.

Hence, we have proved the following result:

Theorem 4.1. The short exact sequence

1 −→ Fx −→ A −→ Fy × Fz −→ 1

splits. This gives the group A the structure of A semidirect product Fx� (Fy ×Fz)
where the action of Fy × Fz on Fx is given by conjugation of the elements of Fx

by the elements y0, y1 and z0, z1.

The group A is the subgroup of Aut+F generated by {x0, x1, y0, y1, z0, z1}.
Its 18 relators can also be classified in three types, as before:

1) the F relators in Fx;

2) the F relators in Fy and in Fz , which lift unmodified to A due to the splitting,
and also the commuting relations: each of y0 and y1 commutes with z0 and z1;

3) the eight relators of the third type, which specify how the generators y0, y1
and z0, z1 act in the x0, x1. The first two examples are

y0x0y
−1
0 = x0x1x

−1
0 x1x0x

−2
1 , y0x1y

−1
0 = x3

1x
−1
0 x1x

−3
0 x1x0x1x

3
0x

−2
1 ,

and the rest are left to the reader. These eight relators also belong to the
presentation for Aut+F above. As an easy example, z0 and z1 commute
with x1 because of disjoint supports.

Inside this subgroup A we can obtain two versions of F �F by taking the first
component or the second component only, giving two subgroups B1 = Fx�Fy and
B2 = Fx � Fz, both isomorphic to F � F but with different actions, and whose
generators are {x0, x1, y0, y1} and {x0, x1, z0, z1}, respectively. For instance, many
relators of a presentation for B1 are already computed above, and we have the
actual presentation as

〈x0, x1, y0, y1 | [x0x
−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0],

[y0y
−1
1 , y−1

0 y1y0], [y0y
−1
1 , y−2

0 y1y
2
0 ],

y0x0y
−1
0 = x0x1x

−1
0 x1x0x

−2
1 ,

y0x1y
−1
0 = x3

1x
−1
0 x1x

−3
0 x1x0x1x

3
0x

−2
1

y1x0y
−1
1 = x0x1x

−1
0 x1x

−1
0 x1x0x

−2
1 x0x

−1
1

y1x1y
−1
1 = x2

1x
−1
0 x1x

−1
0 x1x

−2
0 x2

1x
−2
0 x1x0x

−2
1 x0x

−1
1 x3

0x
−2
1 x0x

−1
1 〉
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However, the most interesting subgroup of Aut+F is obtained by taking the
diagonal copy of F inside Fy × Fz . Let D be this diagonal:

D = {(g, g) ∈ Fy × Fz | g ∈ F},

and consider C = π−1(D) as a subgroup of A, and hence, of Aut+F . We intend
to study the group C extensively, since its properties are quite interesting.

The group D is isomorphic to F , and the isomorphism is easy to understand.
Regard an element of F as a map of [0, 1], and construct a map from R to R by
introducing the map in each one-by-one box of the form [k, k + 1]× [k, k + 1], for
each k ∈ Z. This map is the corresponding element in D. Notice too that these
elements act on Fx, seen now as maps of the real line. Hence, D acts on Fx by
conjugation, and the result is the group C, a copy of F � F .

Since D is isomorphic to F , it is generated by the images of the generators
for F . Hence, D is generated by the two elements w0 = y0z0 and w1 = y1z1. For
consistency, we will denote this copy of F by Fw as well. So the elements of Fw

are characterized by having the same maps in each box [k, k + 1]× [k, k + 1], and
when seen as a pair of eventually periodic trees, an element of Fw has actually
completely periodic trees: each one of the integral leaves (see Figure 3) has the
same tree attached. See Figure 10 for a picture of the generators of C, including
the two generators for D.

A presentation for C can be given as usual, by giving the action of w0 and w1

on x0 and x1. Since the maps in Fw are periodic, and x0 is just the map t �→ t+1
in R, then the elements of Fw commute with x0, something that can be seen easily
with the trees as well. Hence we only need to compute the two actions of w0 and w1

on x1. The presentation for C is:

〈x0, x1, w0, w1 | [x0x
−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0],

[w0w
−1
1 , w−1

0 w1w0], [w0w
−1
1 , w−2

0 w1w
2
0 ],

[x0, w0], [x0, w1]

w0x1w
−1
0 = x3

1x
−1
0 x1x

−3
0 x1x0x1x

3
0x

−2
1

w1x1w
−1
1 = x2

1x
−1
0 x1x

−1
0 x1x

−2
0 x2

1x
−2
0 x1x0x

−2
1 x0x

−1
1 x3

0x
−2
1 x0x

−1
1 〉

Note also that w0x1w
−1
0 = y0x1y

−1
0 , and w1x1w

−1
1 = y1x1y

−1
1 (compare the

presentations for B1 and C). This is because the support of x1 is [0,∞), and inside
this interval we have w0 = y0 and w1 = y1.

The reader is encouraged to verify these relators using periodic trees. The fact
that the conjugates of elements of Fx by elements of Fw stay in Fx remains quite
apparent with the trees, since in the final element, the two tails at both ends can
always be cancelled and the resulting trees represent an element of Fx.

These subgroups give new groups, all of them obtained as semidirect products of
copies of F , and interesting actions of F on itself, mixing the two interpretations
of F as maps of [0, 1] and maps of R. In the next section we will study the metric
properties of C, and the distortions of the two canonical embeddings of F in C.
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....... ... ....

x

x

0

0

1

1

w

w

.... ... .... ...

Figure 10: The generators for C.

5. Distortion of F in C

The two embeddings of F in C behave in different ways with respect to the metric
properties. Recall that in F , the norm of an element (the length of the shortest
word on x0, x1 representing it) is equivalent (up to a multiplicative constant) to
the number of carets of the minimal reduced diagram representing it. We will use
this fact to estimate the norm of an element of F , and to compare it with its norm
inside C. The result is the following:

Theorem 5.1. The subgroup Fx is quadratically distorted in C, whereas Fw is
undistorted.
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Recall that the distortion function of a subgroup is obtained when elements
shorten their length when embedded in the large group. If H < G, and both are
finitely generated, we have the distortion function

δ(n) = max{|x|H , for all x ∈ G, |x|G ≤ n}.

Theorem 5.1, stating that a copy of F inside C is quadratically distorted, rep-
resents an interesting change, since many of the standard subgroups of F are
undistorted (see Burillo [3], Burillo, Cleary and Stein [6], Cleary [9], Cleary and
Taback [10], and Guba and Sapir [12]), as well as the embeddings F ⊂ T ⊂ V
(Burillo, Cleary, Stein and Taback [7]). However, F does admit subgroups which
are at least polynomially distorted, see Guba and Sapir [12]. Recently, some ex-
ponentially distorted embeddings of generalizations of Thompson’s groups have
appeared (see Wladis [13], and Burillo and Cleary [4]) but they always involve
more complicated groups whose elements are represented by two different types of
carets. This is an example of a quadratically distorted embedding different from
previously studied phenomena.

The proof of Theorem 5.1 occupy the rest of the article. We start by proving
a lower bound for the quadratic distortion of Fx inside C with examples. We
consider the family of words rn = w−n

0 xn
1w

n
0 . Clearly these words have lengths

at most 3n in C. We will prove that each rn represents an element of Fx with a
number of carets of the order of n2. This is enough to prove the distortion is at
least quadratic.

For simplicity, we will draw pictures of a word of this type with n = 4, but the
pattern will be quite clear. As shown in Figure 11, that the trees for w−4

0 have a
repeated tree with 4 carets in each integral leaf. Multiplying by x4

1 has the effect
of shifting four of these trees further down the right-hand side of the tree, opening
up a sequence of 4 empty carets on the right arm of the tree, shown in Figure 12.
When bringing w4

0 back again, these formerly empty spots are filled with trees of
four carets each (see Figure 13), hence having at least 16 carets (actually 27). This
process will give for general n a quadratically distorted word, with more than n2

carets.
To prove that the distortion is no worse than quadratic, and also to find the

linear distortion of the subgroup 〈w0, w1〉, we will give a lower bound on the metric
for an element of C in terms of the different features of its eventually periodic tree
diagram, described in the next section.

... ... ......

Figure 11: The word w4
0 to start the construction of r4. Notice the four-

caret tree repeated throughout.
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...... ... ...

...

...

......

Figure 12: Multiplication of the word w4
0 with x4

1 to shift trees down the

right-hand side. Observe the empty area created, which will be filled by

quadratically many carets.

Figure 13: The element represented by the word r4 in F , obtained by

multiplication with w4
0, which fills the five empty spaces with four-caret trees.

6. Metric properties of C

In this section we will relate the metric of the group C with features of its elements,
as happens with F . Given an element of F , its norm with respect to the generating
set {x0, x1} is equivalent to the number of carets of its reduced tree diagram (see [6]
and Fordham [11]). Since C is a semidirect product of two copies of F , and the
elements also admit tree pair diagrams which are related to those of the copies of F ,
it makes sense to expect similar results for the elements of F . We have already seen
that the inclusion is distorted (at least quadratically), so a completely analogous
result is not possible, but we can find a bound for the metric which guarantees
that quadratic distortion is the worst possible.

We consider the short exact sequence defining C

1 −→ Fx −→ C
π−→ Fw −→ 1,

and let
σ : Fw −→ C

be the section of the map for π obtained by repeating the element of Fw thought
of as lying in [0, 1] indefinitely in both directions to lie in R, satisfying π ◦ σ = id.
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Given an element g ∈ C, its periodic tree diagram is periodic with the same
periodic map at both ends, and the single repeating tree gives an element of Fw,
which is exactly π(g). The number of carets of the trees of π(g) is the first feature
we will consider. It will be called a(g) in Definition 6.2. This number of carets
relates to the Fw part of g. To consider the Fx part of g, we need to see which part
of g is not related to the periodic parts. So we take π(g), which is the Fw part,
lift it back to C, and use it to cancel the periodic part. This leads to the following
definition.

Definition 6.1. Let g be an element of C. Then, the element of C given by
dg = (σ ◦ π(g))−1g is actually an element of Fx, which we will call the debris of g.

Clearly g and σ ◦ π(g) are both mapped into π(g) by π, so dg is in the kernel
of π, which is Fx. Related to this element we will consider two other quantities b
and c which estimate the complexity and help us to understand the metric in C.

Definition 6.2. Given an element g ∈ C, we will define the following three num-
bers associated to it:

1) The number a(g) is the number of carets of the reduced diagram of the
element π(g) in Fw.

2) The number b(g) is the same except for dg. That is, it is the number of carets
of the reduced diagram of dg ∈ Fx.

3) The number c(g) is also computed with the reduced diagram of the ele-
ment dg. It is given by the sum of the number of left and right carets (not
counting the root) in both trees of the reduced tree diagram for dg.

See Figure 14 to clarify these notions. We would like to see what is the effect on
these three quantities for g when it is multiplied by each one of the four generators.
Studying these effects carefully we will be able to see which is the worst possible
scenario for a, b, c in an element of length L, and use it to find a lower bound for
the metric.

1. Multiplication by x0. We see that π(g) and π(gx0) are equal, correspond-
ing to the periodic part of these elements, which is unaffected by x0. From
this we see that

dgx0 = (σ ◦ π(gx0))
−1gx0 = (σ ◦ π(g))−1gx0 = dgx0.

So the effect of multiplication by x0 is apparent only on dg, and we can
consider the multiplication dgx0 as if it took place inside Fx. The quantity a
itself will remain unchanged, whereas b and c may grow, but by at most two
carets. So we have:

a(gx0) = a(g), b(gx0) ≤ b(g) + 2, c(gx0) ≤ c(g) + 2.

2. Multiplication by x1. The situation is quite similar to the previous case.
Multiplying by x1 only affects the debris, so a stays the same, b and c can
grow by at most 3:

a(gx1) = a(g), b(gx1) ≤ b(g) + 3, c(gx1) ≤ c(g) + 3.
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dg

...... ...

...

g

a(g)=3 π(g)

g

...... ...

...

(g)πσ −1

... ... ... ...

b(g)=10

c(g)=4

Figure 14: An example of an element in C and its values for a, b

and c. From top to bottom, we see the element with a, the process of

computing dg and the values of b and c.

3. Multiplication by w0. When we multiply g by w0, we notice that a can
grow by two carets, in case that there is no periodic part in g. If there is
already a periodic part, it grows by at most one. We see that c is unchanged
from g to gw0. The integral leaves that will get canceled when multiplying
(σ ◦ π(g))−1 by g will get modified by w0, but they will still be the same
for the two elements (σ ◦ π(gw0))

−1 and gw0, and they will get canceled the
same way. So the left and right carets for dgw0 will be the same as those
for dg.

Another way of seeing that c is unchanged is by appealing to the maps
in R. If g is periodic outside of a box [p, q] × [r, s], for integers p, q, r, s,
then gw0 is also periodic outside this box. The element w0 sends the integer
interval [r, s] to itself.

Finally, if c is unchanged, we see that the worst that can happen to b is that
it increases by two carets in every integral leaf that survives in the debris.
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We note that when premultiplying by (σ ◦ π(gw0))
−1, in each integral leaf

there may be two more carets than before, and in the debris, there could be 2
carets more surviving in each integral leaf. Hence, b grows by at most 2c.
Summarizing:

a(gw0) ≤ a(g) + 2, b(gw0) ≤ b(g) + 2c(g), c(gw0) ≤ c(g).

4. Multiplication by w1. The situation is again similar to the one for w0.
The number a can grow by at most 3, c stays the same, and b can grow in
the worst case by 3 times c. So we have

a(gw1) ≤ a(g) + 3, b(gw1) ≤ b(g) + 3c(g), c(gw1) ≤ c(g).

We note that multiplying by the inverses of the generators will give the same
bounds for a, b, and c.

The inequalities for b(gw0) and b(gw1) where the number of additional carets
can grow by a multiple of c(g) is the reason for the quadratic distortion. In the
example shown in Section 5 each surviving integral leaf in rn (of which there are n),
gets n carets, giving n2 carets in the element.

Armed with these inequalities, we now consider any element g in C, and assume
it has length L = |g|C . Therefore it has been constructed by multiplication of L
generators, and hence in each one of the L multiplications, the quantities a, b and c
may have suffered the maximal increases detailed above. This gives the following
inequalities:

1) a(g) and c(g) may have grown by at most 3 in each step, so a(g) ≤ 3L and
c(g) ≤ 3L.

2) b(g) grows, in the worst case, by 3c. Since c is at most 3L at the end and
thus also in each step, clearly we have that b(g) ≤ 9L2, or, in a formulation
better for our purposes,

√
b(g) ≤ 3L.

The conclusion is the following: there exist a constant K > 0 such that

a(g) +
√
b(g) + c(g) ≤ K|g|C .

This inequality is all we need to finish the proof of Theorem 5.1. Let w be an
element of Fw with N(w) carets, and recall thatN(w) is equivalent to |w|Fw . When
lifted to C, the element σ(w) is everywhere periodic, so it has a(σ(w)) = N(w), and
dw = 1, so b(σ(w)) = 0 and c(σ(w)) = 0. Hence, N(w) is bounded above by |w|C
(up to a multiplicative constant), and so is |w|Fw . Thus the periodic subgroup Fw

is undistorted.
For the embedding of the nonperiodic subgroup Fx, we take a general element x

of Fx and consider it also as an element of C. When seen in Fx, it has some number
of carets N(x), equivalent to |x|Fx . However, naturally dx = x if x ∈ Fx, so we
have b(x) = N(x). Our inequalities above say that there exists a constant K such
that

|x|Fx ≤ K|x|2C ,
which proves that the distortion of Fx in C is at most quadratic. From the examples
explicitly constructed in Section 5, we see that the distortion is exactly quadratic.
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