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Bounds on the Walsh model for Mq,∗ Carleson

and related operators

Richard Oberlin

Abstract. We prove an extension of the Walsh-analog of the Carleson–
Hunt theorem, where the L∞ norm defining the Carleson maximal oper-
ator has been replaced by an Lq maximal-multiplier-norm. Additionally,
we consider certain associated variation-norm estimates.

1. Introduction

Given a real-valued function f on R+ consider the partial Walsh-sum operator,
defined for ξ, x ∈ R+ by

(1.1) S[f ](ξ, x) = (f̂ 1[0,ξ))̌ (x).

where ˆ and ˇ refer to the Walsh–Fourier transform (terminology and notation will
be explained in detail in Section 2 and in a paragraph at the end of this section).
The operator above can also be written using a wave-packet decomposition:

S[f ](ξ, x) =
∑
P

〈f, φPl
〉φPl

(x) 1ωPu
(ξ),

where we sum over all bitiles P and φPl
is the L2 normalized wave-packet corre-

sponding to the lower half of P . Additionally, we will need a truncated version
of S, defined for each integer k by

Sk[f ](ξ, x) =
∑

P :|IP |<2k

〈f, φPl
〉φPl

(x) 1ωPu
(ξ).

It is well known that the Walsh-analog of the Carleson–Hunt theorem holds,
namely that for 1 < p < ∞,

(1.2) ‖S[f ](ξ, x)‖Lp
x(L

∞
ξ

) ≤ Cp ‖f‖Lp.
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We are interested in versions of the bound above where L∞ is replaced by various
stronger norms.

Given a function m on R+ and an exponent 1 ≤ q ≤ ∞ consider the Walsh
Lq-multiplier norm of m

‖m‖Mq = sup
g:‖g‖Lq=1

‖(mĝ)̌ ‖Lq .

Replacing m by a sequence of functions {mk}k∈Z, one can also define a Walsh
Lq-maximal-multiplier norm

‖m‖Mq,∗ = sup
g:‖g‖Lq=1

‖(mkĝ)̌ (x)‖Lq
x(�

∞
k

).

The Walsh-M2,∗-Carleson theorem was proven by Demeter, Lacey, Tao and Thiele
(see [6]). Specifically, they showed that if 1 < p < ∞ then

(1.3) ‖Sk[f ](ξ, x)‖Lp
x(M

2,∗
ξ,k )

≤ Cp ‖f‖Lp.

The main result of this paper is to extend the theorem above to cover1 expo-
nents q < 2. Namely, we will prove:

Theorem 1.1. Suppose that 1 < p < ∞ and 1 < q < 2 satisfy 1
p + 1

q < 3
2 . Then

‖Sk[f ](ξ, x)‖Lp
x(M

q,∗
ξ,k )

≤ Cp,q ‖f‖Lp.

Since the M2 norm is equal to the L∞ norm, one sees that the difference
between (1.2) and (1.3) is that the M2 norm of the former bound is replaced
by an M2,∗ norm in the latter bound, where the ∗ refers to a maximum over
truncations. Thus, when approaching Theorem 1.1, one might first ask whether the
corresponding bound holds with theM q norm in place of theM q,∗ norm. As we will
now see, the affirmative answer to this question follows from combining work in [13],
which preceded a result for the Fourier-transform [12], with the Walsh-analog of [3].

Given an exponent r and a function m defined on a subset of R and taking
values in some normed linear space (in this paper, the subset of R will be R+ or Z,
and except for part of Section 9 the normed linear space will be R) consider the
r-variation norm

‖m‖V r = ‖m‖L∞ + sup
N,ξ0<···<ξN

( N∑
i=1

|m(ξi)−m(ξi−1)|r
)1/r

,

where the supremum is over all strictly increasing finite-length sequences in the
domain of m. It was proven in [13] (and we will give another proof here, see
Section 8) that if r > 2 and p > r′ then

(1.4) ‖S[f ](ξ, x)‖Lp
x(V r

ξ ) ≤ Cp,r ‖f‖Lp.

1It seems likely that the range q > 2 is also tractable, see comments in [5]. However that
case is not of particular interest for applications related to the return times theorem due to the
monotonicity of Lq norms in probability spaces.
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Applying the method of Coifman, Rubio de Francia, and Semmes [3] to Walsh
multipliers, one sees (as in Lemma 3.5 below) that if r ≥ 2 and |1/q− 1/2| < 1/r,
then for functions m on R+,

(1.5) ‖m‖Mq ≤ Cq,r ‖m‖V r .

Hence, it follows from (1.4) that when 1 < p < ∞ and 1 < q < ∞ satisfy
1/p+ 1/q < 3/2,

(1.6) ‖S[f ](ξ, x)‖Lp
x(M

q
ξ )

≤ Cp,q ‖f‖Lp.

It is thus clear that, as in [6], the task at hand is to replace the M q norm
in (1.6) with the M q,∗ norm. Roughly speaking, in [6] this advance was obtained by
incorporating the use of Lemma 3.1 below into a proof of (1.2) (this statement slurs
over many technical obstructions; in fact their method required the development
of a substantially new proof of (1.2)). We will follow the same approach, but with
some necessary refinements which we now detail.

First, we replace (1.5) and the natural Lq extension of Lemma 3.1 with a
common extension of the two bounds which is more efficient than their separate
applications. We develop a new proof of (1.4) which (as in the proof of (1.2)
from [6]) gives pointwise control for the sum over bitiles in a stack of trees in
terms of the restrictions of the sum to individual trees. Obtaining this pointwise
control for variation, rather than L∞, norms requires a more careful decomposition
into l-overlapping trees, in particular the use of a concept of “l-convexity”. This
decomposition allows us to obtain an explicit partitioning of R+ into intervals, on
which the sum over a stack of trees agrees with its restriction to an individual tree.
Finally, to control the variation-norm for an individual l-overlapping tree we use
phase-space projections, as in [5].

1.1. Motivation

A significant part of our interest in Theorem 1.1 is due to its role as a model
case for the corresponding Fourier-transform problem. Let Ψ be (say) a Schwartz
function on R and for f defined on R, ξ, x ∈ R, and k ∈ Z consider the truncated
partial Fourier sum operator

Sk[f ](ξ, x) = p.v.

∫
f(x− t) e2πiξt Ψ(2−kt)

1

t
dt.

It was proven in [7] that for 1 < p < ∞,

(1.7) ‖Sk[f ](ξ, x)‖Lp
x(M

2,∗
ξ,k )

≤ Cp ‖f‖Lp,

and it would be desirable to extend this result, as we have now done for the Walsh
model, to cover exponents q < 2. One reason for interest in bounds such as (1.7) is
their application to the return times problem for the truncated Hilbert transform.
It was shown in [7] that bounds similar to (1.7) can be used to deduce that given
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a measure preserving system (X,T ) and a function f ∈ Lp(X), p > 1, one can
obtain a set X ′ of full measure in X such that for every x ∈ X ′, every second
measure preserving system (Y, U), and every g ∈ Lq(Y ), q ≥ 2, the sums

(1.8)

N∑′

n=−N

1

n
f(T nx) g(Uny)

converge as N → ∞ for almost every y ∈ Y. An extension of the range of expo-
nents in (1.7) could be used to extend the range of exponents for the pointwise
convergence result.

Theorems similar to the convergence result above were originally considered [1]
in the context of averages2, where one is interested in sums

(1.9)
1

N

N∑
n=1

f(T nx) g(Uny).

Here, the relevant analog of Sk is

Ak[f ](ξ, x) =

∫
f(x− t) e2πiξt 2−k Ψ(2−kt) dt.

In [7] it was shown that (1.7) holds with Ak in place of Sk and this bound has
been extended ([4], [10]) to cover the range 1/p + 1/q < 3/2. The Walsh-analog
of Ak would be

Ak[f ](ξ, x) =
∑

p:|Ip|=2k

〈f, φp〉φp(x) 1ωp(ξ),

where above we sum over all tiles p. It seems likely that bounds for Ak could be
obtained using a Walsh-analog of the method [4].

1.2. Further results

Using a method from [10], see Section 9, one can obtain a variation-norm version
of Lemma 3.1. Substituting this lemma into the proof of Theorem 1.1 gives the
stronger

Theorem 1.2. Suppose that s > 2, 1 < p < ∞. and 1 < q < 2 satisfy 1/p+ 1/q
< 3/2. Then,

(1.10) ‖Sk[f ](ξ, x)‖Lp
x(M

q,s
ξ,k)

≤ Cp,q,s ‖f‖Lp

where, given an exponent s, we define the s-variation multiplier norm of a sequence
of functions {mk}k∈Z

‖m‖Mq,s = sup
g:‖g‖Lq=1

∥∥(mkĝ)̌ (x)|
∥∥
Lq

x(V s
k )
.

One reason for interest in bounds such as (1.10) is that the analogous bounds
for Sk and Ak would yield quantitative information about the convergence in (1.8)
and (1.9).

2Which, at least morally, is an easier setting: one manifestation of this is that the analog of
the Carleson–Hunt theorem for A := A0 is trivial.
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Through Corollaries 6.3 and 6.4, we obtain the following variants of (1.4):

Theorem 1.3. Suppose that r > 2 and p > r′. Then

‖Sk[f ](ξ, x)‖Lp
x(�∞k (V r

ξ )) ≤ Cp,r ‖f‖Lp.

Theorem 1.4. Suppose that r > 2 and 1 < p < ∞. Then

‖Sk[f ](ξ, x)‖Lp
x(L

∞
ξ (V r

k )) ≤ Cp,r ‖f‖Lp .

The Fourier analog

(1.11) ‖Sk[f ](ξ, x)‖Lp
x(�∞k (V r

ξ )) ≤ Cp,r ‖f‖Lp.

of Theorem 1.3 can be deduced from the Fourier analog of (1.4) by treating Sk as
a superpositioning of modulated versions of S. If (1.11) held for exponents r < 2
(it does not), then the method of [11] would allow one to deduce bounds of the
type (1.7) without using maximal-multiplier estimates such as Lemma 3.1.

The analog of Theorem 1.4 for Sk is related to the Wiener–Wintner theorem
for the Hilbert transform [8], and was obtained in [12] for the restricted range of
exponents r > 2 and p > r′ using the superposition argument.

The superposition argument does not seem to immediately apply to the Walsh-
operator Sk due to the different method of truncation.

Structure of the paper. We give background information on the Walsh–Fourier
transform in Section 2. Machinery is developed in Sections 3 through 7. The ma-
chinery is applied to finish the proofs in Section 8. Additional refinements needed
for Theorem 1.2 are given in Section 9.

Notational conventions. We use | · | for Lebesgue measure, cardinality, or an
understood norm depending on context. Given a rectangle P = I × ω we let IP
denote I and ωP denote ω. The indicator function of a set E is written 1E . Dyadic
intervals are half-open on the right, i.e., of the form [n2k, (n+1)2k) for integers n
and k.

2. Terminology of Walsh phase-plane analysis

Given a nonnegative real number x and an integer n, let dn(x) denote the digit
which sits in the (n+1)st position to the left of the point in the binary expansion
of x, i.e.,

x =
∑
n

dn(x) 2
n

(for points x on the dyadic grid, we choose the expansion with dn(x) = 0 for −n
sufficiently large). Define the bitwise addition operation ⊕:

dn(x⊕ y) = dn(x) + dn(y) mod 2, −∞ < n < ∞,
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and the corresponding multiplication operation ⊗:

dn(x⊗ y) =
∑
m

dn−m(x)dm(y) mod 2, −∞ < n < ∞.

Note that the Lebesgue measure on R+ is invariant under ⊕-translation.
Consider the character

e(x) = eiπd−1(x)

and given a function f on R+ and ξ ∈ R+ define the Walsh–Fourier transform

f̂(ξ) =

∫
R+

e(ξ ⊗ x)f(x) dx.

It is straightforward to verify that 1̂[0,1) = 1[0,1). Thus, after checking the identities

̂f(x⊕ ·) = e(x ⊗ ·)f̂ , êξ⊗·f = f̂(ξ ⊕ ·), and f̂(2k·) = 2−kf̂(2−k·), one sees that
(for linear combinations of characteristic functions of dyadic intervals and hence,
by density, for general functions f ∈ L2) ˆ is involutive; however, for metaphorical
purposes we will sometimes use the notation ˇ in place of .̂

Given a dyadic “time-interval” I ⊂ R+ and a dyadic “frequency interval”
ω ⊂ R+, we say that the rectangle I × ω is a tile if |I × ω| = 1 and we say that it
is a bitile if |I × ω| = 2. Each bitile P contains four tiles Pu, Pl, Ps, and Pd which
are the upper, lower, left, and right halves respectively. We impose the following
partial order on the set of tiles and on the set of bitiles:

I1 × ω1 ≤ I2 × ω2 ⇐⇒ ω2 ⊂ ω1 and I1 ⊂ I2.

A set of bitiles P is convex if for all bitiles P1 ≤ P2 ≤ P3 with P1, P3 ∈ P we
also have P2 ∈ P. Through the use of standard limiting arguments we can, and
will, assume that all bitiles belong to a finite convex set P0; all constants will be
independent of this set.

Associated to each tile is the L2-normalized Walsh wave-packet

(2.1) φI×ω(x) = |I|1/2 1̌ω(x⊕ inf I).

Since φI×ω is supported on I and φ̂I×ω is supported on ω, φp and φp′ are orthog-
onal unless the tiles p and p′ have nonempty intersection. Letting ∗ denote the
convolution operation,

f ∗ g(x) =
∫
R+

f(x⊕ y) g(y) dy ,

and letting Dk[f ](x) denote the average of f over the dyadic interval of length 2k

containing x, we have
Dk[f ](x) = f ∗ 2−k 1[0,2k)(x),

and, more generally, that for any dyadic interval ω

(f̂1ω )̌ (x) = 〈f, φIx×ω〉φIx×ω(x),

where Ix is the dyadic interval of length |ω|−1 containing x.
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For each bitile P we have the following relations between the wave-packets for
the enclosed tiles:

φPu =
1√
2
(φPs − φPd

)(2.2)

φPl
=

1√
2
(φPs + φPd

).(2.3)

The relations above can be used to check that our definition (2.1) agrees with
that in [6]. If a subset S of R+ × R+ can be written as the disjoint union of tiles
S =

⋃
p∈p p we define the phase-plane projection

ΠSf =
∑
p∈p

〈f, φp〉φp.

When S is a bitile, it follows immediately from (2.2) and (2.3) that the projection
is independent of the cover used in the definition. This is also true for general
sets S, as can be seen by repeatedly appealing to the special case of the bitile.
If S ⊂ S′ and ΠS ,ΠS′ are both defined then

(2.4) ΠSΠS′ = ΠS′ΠS = ΠS .

3. Some multiplier estimates

In this section we recall an extension of a maximal-multiplier lemma of Bourgain,
we recall a multiplier bound of Coifman, Rubio de Francia, and Semmes, and we
then prove an estimate which is a hybrid of the two results.

3.1. A maximal-multiplier lemma

Suppose that for every dyadic interval ω we have a coefficient aω ∈ R. Let Ξ ⊂ R+

be a finite collection of frequencies, and for each integer k, consider the Walsh
multiplier

Dk(ξ) =
∑

|ω|=2k

ω∩Ξ 	=∅

aω 1ω(ξ),

where, above, we sum over dyadic intervals ω. Building on work of Bourgain [2],
the following estimate was proven in [6]:

Lemma 3.1. Let r > 2, and Ξ ⊂ R+. Then

‖Dk‖M2,∗ ≤ Cr (1 + log |Ξ|) |Ξ|1/2−1/r sup
ξ∈Ξ

∥∥∥ ∑
|ω|=2k

aω1ω(ξ)
∥∥∥
V r
k

.

In [5] and [10] the Fourier-multiplier version of the estimate above was extended
to Lq for 1 < q < 2. Following the Walsh analog of the argument in [10] (which is
part of the proof of Lemma 3.7 below), one would obtain:
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Lemma 3.2. Let r > 2, 1 < q < 2, and Ξ ⊂ R+. Then

‖Dk‖Mq,∗ ≤ Cq,r (1 + log |Ξ|) |Ξ|1/q−1/r sup
ξ∈Ξ

∥∥∥ ∑
|ω|=2k

aω1ω(ξ)
∥∥∥
V r
k

.

We will need to use an estimate which encompasses both Lemma 3.2 and a
separate multiplier bound which we will now discuss.

3.2. Multipliers of bounded r-variation

It was shown in [3], see also [15], that if m is a function of bounded r-variation then
the associated Fourier multiplier operator is bounded on Lq when |1/q−1/2| < 1/r
and 1 < q < ∞. The Walsh multiplier analog of this result can be proven by the
same method, which we now outline.

The first step is to obtain an estimate for multipliers given by linear combina-
tions of characteristic functions of intervals.

Lemma 3.3. Let ε > 0, let Υ be a finite collection of pairwise disjoint subintervals
of R+, and let {bυ}υ∈Υ ⊂ R be a collection of coefficients. Then for 1 < q < ∞∥∥ ∑

υ∈Υ

bυ1υ
∥∥
Mq ≤ Cq,ε |Υ||1/q−1/2|+ε sup

υ∈Υ
|bυ|.

Proof. In [3], the Fourier multiplier version of this lemma was proven through the
use of the Rubio de Francia square function estimate. One could follow the same
route here by proving a Walsh analog of the square function estimate, or by instead
using (1.4) with r close to 2 as a substitute for the square function estimate. We
will instead appeal to an estimate below using a multiple frequency Calderón–
Zygmund decomposition (this bears some similarity to the approach in [15]). By
duality one may assume 1 < q < 2. Choosing r > 2 and ε′ > 0 sufficiently small
we have 1/q − 1/r + ε′ < 1/q − 1/2 + ε. Taking Ξ = {0} and aω = 1 for every ω
we then have ( ∑

υ∈Υ

bυ1υĝ
)̌
(x) = lim

k→∞
(Dk

∑
υ∈Υ

bυ1υ ĝ
)̌
(x)

almost everywhere and so the lemma follows immediately from Lemma 3.7. �

Next, we see (in a lemma directly from [3]) that functions of bounded r-variation
can be written efficiently as sums of functions of the type treated in Lemma 3.3.

Lemma 3.4. Let m be a compactly supported function on R+ of bounded r-varia-
tion for some 1 ≤ r < ∞. Then for each integer j ≥ 0, one can find a collec-
tion Υj of pairwise disjoint subintervals of R+ and coefficients {bυ}υ∈Υj ⊂ R so

that |Υj| ≤ 2j, |bυ| ≤ ‖m‖Vr2
−j/r, and

m =
∑
j≥0

∑
υ∈Υj

bυ 1υ ,

where the sum over j converges uniformly.
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Proof. The proof is exactly as in [3] (also see [9]) so we will be short with the
details. Choose B so that m is supported on [0, B]. Set V (0) = 0 and for each
x ∈ (0, B] let

V (x) = sup
N,0=ξ0<...<ξN=x

N∑
k=1

|m(ξk)−m(ξk−1)|r.

For j ≥ 0 and 1 ≤ l < 2j let

υj,l = V −1
(
[(l − 1) 2−j ‖m‖rV r , l 2−j ‖m‖rV r)

)
and

υj,2j = V −1
(
[(2j − 1) 2−j ‖m‖rV r , ‖m‖rV r ]

)
.

Set b̃υj,l
= 0 if υj,l = ∅, b̃υj,l

= m(υj,l) if υj,l is a singleton, and

b̃υj,l
=

1

|υj,l|
∫
υj,l

m(x) dx

if υj,l is an interval containing more than one element. Then letting Υj = {υj,l}2jl=1,

bυ0,l
= b̃υ0,l

, and bυj,l
= b̃υj,l

− b̃υj−1,l
for j > 0, one sees that the requirements of

the lemma are satisfied. �

Finally we combine Lemmas 3.3 and 3.4 to obtain the Walsh analog of a result3

from [3]:

Lemma 3.5. Let 1 < q < ∞, |1/q − 1/2| < 1/r, and ε > 0. Suppose Υ is a
collection of pairwise disjoint subintervals of R+ and that for each υ ∈ Υ, mυ is a
function supported on υ with ‖m‖V r < ∞. Then∥∥∥ ∑

υ∈Υ

mυ

∥∥∥
Mq

≤ Cq,r,ε |Υ||1/q−1/2|+ε sup
υ∈Υ

‖mυ‖V r .

Proof. After a limiting argument, one may assume that all intervals in Υ have
finite length. Applying Lemma 3.4 to each mυ we obtain for j ≥ 0 a collection Iυ,j
of at most 2j pairwise disjoint subintervals of υ and coefficients {bI}I∈Iυ,j so that

mυ =
∑
j≥0

∑
I∈Iυ,j

bI1I .

Then ∥∥ ∑
υ∈Υ

mυ

∥∥
Mq ≤

∑
j≥0

∥∥ ∑
υ∈Υ

∑
I∈Iυ,j

bI1I
∥∥
Mq .

3Strictly speaking, the authors of [3] considered the case where Υ was a collection of dyadic
shells and through an additional Littlewood–Paley argument were able to obtain a norm bound
which did not blow up with |Υ|. To match our application, we are more flexible with Υ and can
accept the resulting loss in the bound.
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Applying Lemma 3.3 with the collection of pairwise disjoint intervals
⋃

υ∈Υ Iυ,j
we see that each term on the right above is

≤ Cq,ε (2
j |Υ|)|1/q−1/2|+ε sup

υ∈Υ,I∈Iυ,j

|bI |

≤ Cq,ε (2
j |Υ|)|1/q−1/2|+ε 2−j/r sup

υ∈Υ
‖mυ‖V r .

The sum over j ≥ 0 converges after possibly shrinking ε to satisfy | 1q− 1
2 |+ε < 1

r . �

3.3. A hybrid estimate

Our aim here is to prove the following lemma which, except for a restriction on
the range of r and a difference in the dependence on |Υ|, is a common extension
of Lemmas 3.2 and 3.5.

Lemma 3.6. Let 1 < q ≤ 2, 2 < r < 2q, ε > 0, and Ξ ⊂ R+. Suppose that Υ is a
collection of pairwise disjoint subintervals of R+ and that {mυ}υ∈Υ is a collection
of functions of bounded r-variation such that each mυ is supported on υ. Then

∥∥Dk

∑
υ∈Υ

mυ

∥∥
Mq,∗ ≤ Cq,r,ε (|Ξ|+|Υ|)1/q−1/r+ε sup

ξ∈Ξ
‖

∑
|ω|=2k

aω1ω(ξ)‖V r
k
sup
υ∈Υ

‖mυ‖V r .

A version of the lemma above, but with (|Ξ|+ |Υ|)1/q−1/r+ε replaced by

|Ξ|1/q−1/r+ε |Υ|1/q−1/2+ε

would follow by combining Lemmas 3.2 and 3.5 and estimating the operator norm
of the composition by the product of the operator norms. In our application we
will take r arbitarily close to 2 and |Υ| = |Ξ|; thus, the norm bound obtained
above improves substantially on the combination of the two prior lemmas; this
improvement seems to be necessary to obtain the desired range of exponents in
Theorem 1.1.

The new ingredient needed in the proof of Lemma 3.6 is the following hybrid
of Lemmas 3.2 and 3.3.

Lemma 3.7. Let r > 2, 1 < q ≤ 2, and Ξ ⊂ R+. Suppose that Υ is a collection
of pairwise disjoint subintervals of R+ and that {bυ}υ∈Υ ⊂ R is a collection of
coefficients. Then

∥∥Dk

∑
υ∈Υ

bυ1υ
∥∥
Mq,∗

≤ Cq,r (1 + log(|Ξ|+ |Υ|)) (|Ξ|+ |Υ|)1/q−1/r sup
ξ∈Ξ

∥∥ ∑
|ω|=2k

aω1ω(ξ)
∥∥
V r
k

sup
υ∈Υ

|bυ|.

Proof. Through a limiting argument, one may assume that all intervals in Υ have
finite length.
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The desired bound at q = 2 follows immediately from Lemma 3.1, and so by
interpolation it suffices to prove a weak-type estimate at q = 1. Specifically, given
g ∈ L1 we need to show that for each λ > 0∣∣{x : sup

k
|(Dk

∑
υ∈Υ

bυ1υĝ)̌ (x)| > λ
}∣∣ ≤ CN1/2 B ‖g‖L1/λ,

where N = |Ξ|+ |Υ| and

B = (1 + log(N))N1/2−1/r sup
ξ∈Ξ

∥∥ ∑
|ω|=2k

aω1ω(ξ)
∥∥
V r
k

sup
υ∈Υ

|bυ|.

We start by performing a multiple-frequency Calderón–Zygmund decomposi-
tion. Let

E = {x : M [g](x) > λ/(N1/2B)},
where M is the dyadic version of the Hardy–Littlewood maximal operator. Let I
be the collection of maximal dyadic intervals contained in E and

Λ = Ξ ∪
⋃
υ∈Υ

{inf υ, sup υ}.

We now construct the “good function” g. Let

g0 =
∑
I∈I

∑
|ω|=|I|−1

ω∩Λ	=∅

〈g, φI×ω〉φI×ω,

where the second sum above is over dyadic intervals ω. Setting

g = g0 + 1R+\E g,

we obtain the “bad function”
b = g − g,

and write bI in place of 1Ib for each I ∈ I.
The contribution from the good function is controlled, as usual, by the previ-

ously known L2 bound. Indeed, by the maximality of the intervals I, we have

| 〈g, φI×ω〉 | ≤ 2 |I|1/2 λ/(N1/2B).

Using the orthogonality of the wavepackets and the fact that |Λ| ≤ 2N we have

‖1Ig0‖L2 ≤ C |I|1/2 λ/B.

This gives
‖g0‖2L2 ≤ C|E|λ2/B2 ≤ CN1/2 ‖g‖L1 λ/B.

Since g is bounded by λ/(N1/2B) away from E, we have

‖g− g0‖2L2 ≤ N−1/2 ‖g‖L1 λ/B.
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Thus,∣∣{x : sup
k

|(Dk

∑
υ∈Υ

bυ1υĝ)̌ (x)| > λ/2
}∣∣ ≤ 4

∥∥ sup
k

∣∣(Dk

∑
υ∈Υ

bυ1υ ĝ)̌
∣∣∥∥2

L2/λ
2

≤ C B2 ‖g‖2L2/λ2 ≤ C N1/2 B ‖g‖L1/λ,

as desired.
It remains to control the contribution from the bad function. The two impor-

tant properties of b are that it is supported on E and that for each I in I we have
〈b, φI×ω〉 = 0 for every dyadic interval ω with |ω| = |I|−1 and ω∩Λ �= ∅. We claim
that the function

h =
( ∑
υ∈Υ

bυ1υb̂
)̌

shares these two properties with b. We first consider the support property. Fix
I ∈ I, suppose υ ∈ Υ, and let ω be a maximal dyadic subinterval of υ. Then

(1ωb̂I )̌ (x) = 〈bI , φJ×ω〉φJ×ω(x),

where J is the dyadic interval of length |ω|−1 containing x. We clearly have
〈bI , φJ×ω〉 = 0 if J has empty intersection with I. If x /∈ I and J intersects I
then we have I � J and in particular |I| < |J |. By the maximality of ω, the
dyadic interval ω̃ of length |I|−1 containing ω intersects {supυ, inf υ} and hence
〈bI , φI×ω̃〉 = 0. Using the fact that the restriction of φJ×ω to I is a constant
multiple of φI×ω̃ we see that 〈bI , φJ×ω〉 = 0. Since each υ can be written as

the union of maximal dyadic subintervals, this implies that (
∑

υ∈Υ bυ1υb̂I )̌ is
supported on I and so h is supported on E. To verify the cancellation property of h,
we let I ∈ I and let ω be a dyadic interval of length |I|−1 such that ω∩Λ �= ∅. Then
〈h, φI×ω〉 is zero simultaneously with the restriction of (1ω1̂Ih)̌ to I. However,

1Ih = (
∑

υ∈Υ bυ1υb̂I )̌ and so 1ω1̂Ih =
∑

υ∈Υ bυ1υ1ωb̂I . From the cancellation

property of b, we know that 1ωb̂I is identically zero.
Arguing as in the previous paragraph, except with h in place of b, one sees that

each (Dkĥ)̌ is supported on E and thus∣∣{ sup
k

|(Dkh)̌ (x)| > λ/2
}∣∣ ≤ |E| ≤ N1/2 B ‖g‖L1/λ. �

Proof of Lemma 3.6. Following the argument in Lemma 3.5, but with Lemma 3.7
substituted for Lemma 3.3, we see that∥∥Dk

∑
υ∈Υ

mυ

∥∥
Mq,∗

≤
∑
j≥0

Cq,r,ε′(|Ξ|+2j|Υ|)1/q−1/r+ε′ sup
ξ∈Ξ

∥∥ ∑
|ω|=2k

aω1ω(ξ)
∥∥
V r
k

sup
υ∈Υ,I∈Iυ,j

|bI |

≤
∑
j≥0

Cq,r,ε′2
j( 1

q− 1
r+ε′)(|Ξ|+|Υ|) 1

q− 1
r+ε′ sup

ξ∈Ξ

∥∥ ∑
|ω|=2k

aω1ω(ξ)
∥∥
V r
k

2−j/r sup
υ∈Υ

‖mυ‖V r .

The sum over j ≥ 0 then converges provided that r < 2q and ε′ < ε is chosen
sufficiently small. �
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4. Tree decompositions

Given a collection of bitiles T , a “top frequency” ξT ∈ R+, and a dyadic “top
interval” IT ⊂ R+, we say that (T, ξT , IT ) form a tree if IP ⊂ IT and ξT ∈ ωP for
every P ∈ T. We say that a tree T is “td-maximal” among trees in a collection T
if it is maximal with respect to inclusion among trees in T with top data (ξT , IT ).
Given any convex tree T , we can rewrite ∪P∈TP as a disjoint union of tiles. For
such a tree, we abbreviate

ΠT = Π⋃
P :P∈T .

For a convex collection P of bitiles define

size(P, f) = sup
T

|IT |−1/2 ‖ΠT f‖L2,

where the sup is over all convex trees T ⊂ P. Note that (since the L∞ norm can be
controlled by projections to individual subtiles of elements of T ) for each convex
tree T and 1 ≤ p ≤ ∞ we have

‖ΠT f‖Lp ≤ C size(T, f) |IT |1/p.
The following lemma was proven in [14]:

Lemma 4.1 (Tree selection). Assume P is a finite convex collection of bitiles with
size(P, f) ≤ 2−k. Then we can write P as the disjoint union of a convex set of
bitiles P′ with the union of a collection T of convex trees such that∥∥ ∑

T∈T

1IT
∥∥
1
≤ C 22k ‖f‖22 ,(4.1)

∥∥ ∑
T∈T

1IT
∥∥
BMO

≤ C 22k ‖f‖2∞ ,(4.2)

and size(P′, f) ≤ 2−k−1.

Strictly speaking, the lemma above was proven with a different definition of
tree – in [14] a tree is a collection of bitiles with a unique maximal element, we
will call this an m-tree. It is easily seen that the lemma for m-trees implies the
lemma for trees since every m-tree is a tree and every finite convex tree T contains
a convex m-tree T ′ with size(T ′, f) = size(T, f).

We also note that we may assume that the trees T in the lemma above are td-
maximal among trees contained in

⋃
T∈T T ; this is accomplished by taking them

to be td-maximal among trees contained in P.
Finally, by following the proof of (4.2) one sees that for any T′ ⊂ T we also

have ∥∥ ∑
T∈T′

1IT
∥∥
BMO

≤ C 22k ‖f‖2∞ .

We say that a tree T is l-overlapping if ξT ∈ ωPl
for every P ∈ T and u-

overlapping if ξT ∈ ωPu for every P ∈ T. We call a set of bitiles P “l-convex”
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if P, P ′′ ∈ P and Pl < P ′
l < P ′′

l imply that P ′
l ∈ P. Finally, a collection of

l-overlapping trees T will be called “properly-sorted” if the following conditions
hold for each T ∈ T:

(3) T is l-convex;

(4) for every T ′ ∈ T \ {T } we have T ′ ∩ T = ∅;
(5) for every P ∈ T and T ′ ∈ T with IT ′ ∩ IP �= ∅ we have ξT ′ /∈ ωPu .

The importance of condition (3) is that when an l-overlapping tree T is l-convex,

(4.6)
⋃
P∈T
x∈IP

ωPu

is an interval for each x. Indeed, suppose that ξ1 < ξ2 < ξ3 with ξ1, ξ3 in the
set (4.6). Then, there are bitiles P i ∈ T with ξi ∈ ωP i

u
and x ∈ IP i for i = 1, 3;

clearly P 3
l ≤ P 1

l . Let ω be the smallest dyadic interval with ξT , ξ
2 ∈ ω, let I be

the dyadic interval of length 2|ω|−1 containing x, and let P 2 be the bitile I × ω.
Then P 3

l ≤ P 2
l ≤ P 1

l , so by l-convexity P 2 ∈ T and hence ξ2 is in the set (4.6).

The condition (5) is taken from [6]; one of its immediate consequences is that
the tiles Pu with P ∈ ⋃

T∈T are disjoint. Indeed, Pu < P ′
u would imply that the

tree containing P ′
u has top frequency contained in ωPu .

Wewill apply the lemma below to the collection of bitilesP\P′ from Lemma 4.1.

Lemma 4.2. Suppose that a finite collection of bitiles P can be written as the
union of convex trees P =

⋃
T∈T T. Assume that the trees are td-maximal among

trees contained in P. Then, we can write

P =
( ⋃

T∈Tu

T
)⋃( ⋃

T∈Tl

T
)
,

where

(7) For each T ∈ Tu, T is a u-overlapping tree which is td-maximal among
u-overlapping trees contained in

⋃
T∈Tu T .

(8) Tl is a properly-sorted collection of l-overlapping trees.

(9)
⋃

T∈Tu T ∩⋃
T∈Tl T = ∅.

(10) {(ξT , IT ) : T ∈ Tu} = {(ξT , IT ) : T ∈ Tl} ⊂ {(ξT , IT ) : T ∈ T}.
Proof. After throwing out some trees, we may assume that for each T ∈ T,

(4.11) T �⊂
⋃

T ′∈T\{T}
T ′.

We enumerate T = {T1, . . . , TN} so that for each i, ξTi ≤ ξTi+1 . Set PN+1 = P and
TN+1 = ∅ and for i = 1, . . . , N let T u

i be the maximal u-overlapping tree contained
in Pi+1 with top data (ξTi , ITi), let T

l
i be the maximal l-overlapping tree contained

in Pi+1 with top data (ξTi , ITi), and let Pi = Pi+1 \ (T u
i ∪ T l

i ).



The Walsh model for Mq,∗
Carleson 843

Set Tu = {T u
1 , . . . , T

u
N} and Tl = {T l

1, . . . , T
l
N}.

We now verify (3). Suppose that P, P ′′ ∈ T l
i and that Pl < P ′

l < P ′′
l . By

convexity and td-maximality of the trees, we have P, P ′, P ′′ ∈ Ti. It remains to
verify that P ′ ∈ Pi+1, but this follows immediately from the fact that P ′′ ∈ Pi+1.

To check (5) suppose that P ∈ T l
i , ξTj ∈ ωPu , and ITj ∩ IP �= ∅. Since T l

i

is l-overlapping, ξTj > ξTi and so we have j > i. Since P ∈ Pi+1 we know that
P ∈ Pj+1 \ T u

j ; combining this with the fact that ξTj ∈ ωPu implies that ITj � IP
contradicting (4.11).

Enlarging the trees in Tu to obtain td-maximality gives (7). Conditions (9),
(10), and (4) are clear by construction. �

5. Global variation for a single tree

The Lemma below will be used in Section 8 to give pointwise variation-norm esti-
mates which are compatible with Corollary 6.2 and Lemmas 3.2, 3.5, and 3.6.

Lemma 5.1. Suppose 1 < p < ∞ and r > 2. Then for every tree T which is
contained in a convex tree T and which is either l-overlapping and l-convex or
u-overlapping,

(5.1)
∥∥ ∑

P∈T

〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥
Lp

x(V r
ξ )

≤ Cp,r size(T ) |IT |1/p.

Proof. Note that, by (2.4), the left side of (5.1) is equal to

(5.2)
∥∥ ∑

P∈T

〈g, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥
Lp

x(V r
ξ )

,

where g = ΠT f.

First we consider the case when T is u-overlapping. Then for each ξ we have

(5.3)
∑
P∈T

〈g, φPl
〉φPl

(x)1ωPu
(ξ) =

∑
P∈T

|IT |≤2kξ

〈g, φPl
〉φPl

(x) ,

where kξ is the largest k such that the dyadic interval of length 2−k about ξT
contains ξ. Then kξ is monotonic in ξ on the intervals (ξT ,∞) and [0, ξT ) and
so (5.2) is

(5.4) ≤ C‖
∑
P∈T

|IT |≤2k

〈g, φPl
〉φPl

(x)‖Lp
x(V r

k ) .

One can check that∑
P∈T

|IT |≤2k

〈g, φPl
〉φPl

(x)

=
∑
P∈T

〈g, φPl
〉φPl

(x)− sgn(φpT )Dk

[
sgn(φpT )

∑
P∈T

〈g, φPl
〉φPl

]
(x),
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where pT is a tile satisfying |IpT | = |IT |, ξT ∈ ωpT , and Dk is the dyadic averaging
operator at scale 2k as defined in Section 2. Since r > 2 and 1 < p < ∞, we may
apply Lépingle’s bound for the variation of martingale averages to see that the
right side of (5.4) is

≤ Cp,r

∥∥ ∑
P∈T

〈g, φPl
〉φPl

∥∥
Lp ≤ Cp,r ‖g‖Lp ≤ Cp,r size(T ) |IT |1/p ,

as desired.
For l-overlapping l-convex T one can check that, for ξ > ξT , the left side of (5.3)

(5.5) =
∑
P∈T

|IT |=2kξ

〈g, φPl
〉φPl

(x) ,

where kξ is the largest k such that the dyadic interval of length 21−k about ξT
contains ξ. This sum is zero when ξ ≥ supωPmin

u (x) and when ξ < inf ωPmax
u (x) where

Pmin(x) and Pmax(x) are, respectively, the smallest and largest bitiles from T
which contain x in their time supports. For intermediate ξ it follows from l-con-
vexity that there is a P ∈ T with |IP | = 2kξ and x ∈ IP and hence the right side
of (5.5)

= sgn(φpT )Dkξ
[sgn(φpT )g] (x).

From the monotonicity of the kξ it thus follows that (5.2) is

≤ C ‖Dk [sgn(φpT )g] (x)‖Lp
x(V r

k ) ≤ Cp,r ‖g‖Lp ≤ Cp,r size(T ) |IT |1/p. �

6. Pointwise variation for stacks of trees

Given a collection of trees T satisfying certain assumptions, the following lemma
allows us to partition R+ into a collection of intervals {υT}T∈T such that the
restriction of a function of the form

(6.1)
∑

P∈⋃
T∈T T

cP 1ωPu
(·)

to the interval υT is
∑

P∈T cP 1ωPu
(·). This partitioning will be used in the current

section to obtain variation-norm estimates for functions of the form (6.1) and it will
be used in Section 7 to obtain estimates involving the Walsh multiplier operators
induced by functions of the form (6.1).

Lemma 6.1. Suppose that x ∈ R+ and that P is a finite collection of bitiles with
x ∈ IP for each P ∈ P and with P =

⋃
T∈T T where T satisfies one of the following

two conditions:

• T is a collection of u-overlapping trees which are td-maximal among u-over-
lapping trees contained in P.

• T is a collection of properly sorted l-overlapping trees.
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Then there is a collection {υT}T∈T of pairwise disjoint intervals covering R+

such that for each T ∈ T and ξ ∈ υT

(6.2) {P ∈ P : ξ ∈ ωPu} ⊂ T.

Proof. We start by proving the lemma under assumption of the first condition.
Without loss of generality assume that |T| ≥ 2, and that for every T ∈ T

T �⊂
⋃

T ′∈T\{T}
T ′.

By td-maximality we see that ξT �= ξT ′ for T �= T ′. Enumerate the trees T1, . . . , TN

so that ξTi < ξTi+1 for i = 1, . . . , N − 1.
For each i let P i be the minimal bitile in Ti \

⋃
i′<i Ti′ , and let ξ−i := inf(ωP i

u
).

We claim that ξ−i > ξ−i′ whenever i > i′. To see this, first note that we may
assume that ωP i

u
∩ ωP i′

u
�= ∅ or else the conclusion would follow from the fact that

ξTi > ξTi′ . Since x ∈ IP i′ ∩ IP i we then have P i′
u ∩ P i

u �= ∅. Thus, we must have

P i
u > P i′

u since P i
u ≤ P i′

u would imply that P i ∈ Ti′ contradicting the definition
of P i. Then ωP i � ωP i′

u
and so ξ−i > ξ−i′ as desired.

Set υT1 = [0, ξ−2 ), υTN = [ξ−N ,∞), and υTi = [ξ−i , ξ−i+1) for 1 < i < N. From the
previous paragraph, we see that υT1 , . . . , υTN are disjoint and cover R+.

It remains to check that if ξ ∈ υTi and P ∈ P with ξ ∈ ωPu then P ∈ Ti.
First assume 1 < i < N . Choose the minimal i′ such that P ∈ Ti′ . First suppose
i′ < i. Since ξ ∈ ωPu , ξ ≥ inf(ωP i

u
), and ξTi′ < ξTi , we must have ωPu ∩ ωP i

u
�= ∅.

The fact that P i /∈ Ti′ rules out the possibility that P i
u ≤ Pu and so we must

have P i
u > Pu. But then P ∈ Ti as desired. Now suppose i′ > i. By minimality

of i′ we have P ∈ Ti′ \
⋃

i′′<i′ Ti′′ . Then, by minimality of P i′ we have P ≥ P i′

and so inf(ωPu) ≥ ξ−i′ contradicting the fact that ξ ∈ ωPu . The appropriate halves
of this argument work when i = 1 or N .

Working instead under the second condition, for each T ∈ T we let

J̃T =
⋃
P∈T
x∈IP

ωPu .

By (3) each J̃T is an interval. From (5) we know that the tiles Pu with P ∈ ⋃
T∈T T

are disjoint, which gives (6.2) for ξ ∈ J̃T . Combining (5) with (4) one sees that
the intervals J̃T are pairwise disjoint. Finally, the left and right sides of (6.2) are
both zero for ξ outside of

⋃
T∈T J̃T ; thus by choosing {JT }T∈T to be any collection

of pairwise disjoint intervals which cover R+ and which satisfy J̃T ⊂ JT , we are
finished. �

The following corollary, which can be used to obtain (1.4), follows immediately
from the lemma above.
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Corollary 6.2. Suppose that P,T and x satisfy the hypotheses of Lemma 6.1.
Then, for any collection of coefficients {cP}P∈P ⊂ R,∥∥ ∑

P∈P

cP 1ωPu

∥∥
V r ≤ C |T|1/r sup

T∈T

∥∥ ∑
P∈T

cP 1ωPu

∥∥
V r .

To prove Theorem 1.3 we will need the estimate below.

Corollary 6.3. Suppose that P,T and x satisfy the hypotheses of Lemma 6.1.
Then, for any collection of coefficients {cP}P∈P ⊂ R,∥∥∥ ∑

P∈P
|IP |<2k

cP 1ωPu
(ξ)

∥∥∥
�∞k (V r

ξ )
≤ C |T|1/r sup

T∈T

∥∥ ∑
P∈T

cP 1ωPu

∥∥
V r .

Proof. Thanks to the covering in Lemma 6.1, it suffices to observe that, for each k,

(6.3)
∥∥∥ ∑

P∈T
|IP |<2k

cP 1ωPu
(ξ)

∥∥∥
V r
ξ

≤ C
∥∥ ∑

P∈T

cP 1ωPu
(ξ)

∥∥
V r
ξ

.

Let ωk denote the dyadic interval of length 2−k containing ξT . First treating the
case where T is u-overlapping, we note that for ξ /∈ ωk we have

(6.4)
∑
P∈T

|IP |<2k

cP 1ωPu
(ξ) =

∑
P∈T

cP 1ωPu
(ξ),

and for ξ ∈ ωk we have ∑
P∈T

|IP |<2k

cP 1ωPu
(ξ) =

∑
P∈T

cP 1ωPu
(ξ′),

where ξ′ is any point in ωk−1 \ ωk. Combining these two facts immediately im-
plies (6.3).

If T is instead l-overlapping then for ξ /∈ ωk−1 we have (6.4) and for ξ ∈ ωk−1

(6.5)
∑
P∈T

|IP |<2k

cP 1ωPu
(ξ) = 0,

and hence (6.3). �

Finally, Theorem 1.4 is obtained from the following bound:

Corollary 6.4. Suppose that P,T and x satisfy the hypotheses of Lemma 6.1.
Then for any collection of coefficients {cP }P∈P ⊂ R,∥∥∥ ∑

P∈P
|IP |<2k

cP 1ωPu
(ξ)

∥∥∥
L∞

ξ (V r
k )

≤ C sup
T∈T

∥∥ ∑
P∈T

cP 1ωPu

∥∥
V r .
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Proof. Again using the covering in Lemma 6.1, it suffices to observe that, for each ξ
and T ,

(6.6)
∥∥∥ ∑

P∈T
|IP |<2k

cP 1ωPu
(ξ)

∥∥∥
V r
k

≤ C
∥∥ ∑

P∈T

cP 1ωPu
(ξ′)

∥∥
V r
ξ′
.

First suppose that T is u-overlapping and let kξ = sup{k′ : ξ ∈ ωk′} (here ωk is as
defined in Corollary 6.3). Then for k ≤ kξ + 1,∑

P∈T
|IP |<2k

cP 1ωPu
(ξ) =

∑
P∈T

|IP |<2k

cP ,

and for k > kξ + 1, ∑
P∈T

|IP |<2k

cP 1ωPu
(ξ) =

∑
P∈T

|IP |≤2kξ

cP .

Thus ∥∥∥ ∑
P∈T

|IP |<2k

cP 1ωPu
(ξ)

∥∥∥
V r
k

≤
∥∥∥ ∑

P∈T
|IP |<2k

cP

∥∥∥
V r
k

.

For each integer k, let ξk be the left endpoint of the largest dyadic interval ω such
that ξT is in the right half of ω and |ω| ≤ 2−k+1 (if no such dyadic interval exists,
let ξk = ξT ). Then the points ξk are monotonic in k and∑

P∈T
|IP |<2k

cP =
∑
P∈T

cP 1ωPu
(ξk).

Thus

(6.7)
∥∥∥ ∑

P∈T
|IP |<2k

cP

∥∥∥
V r
k

≤ ∥∥ ∑
P∈T

cP 1ωPu
(ξ′)

∥∥
V r
ξ′
,

as desired.
For l-overlapping T we have (6.4) if k > max{k′ : ξ ∈ ωk′−1} and (6.5) other-

wise; hence we obtain (6.6). �

7. Pointwise maximal multiplier estimates for stacks of trees

Suppose that P,T, x, and {cP }P∈P are as in the hypotheses of Lemma 6.1. It fol-
lows from Lemmas 6.1 and 3.5 that if 1 < q < ∞ and |1/q − 1/2| < 1/r, then∥∥∥ ∑

P∈P

cP 1ωPu

∥∥∥
Mq

≤ Cq,r,ε|T||1/q−1/2|+ε sup
T∈T

∥∥∥ ∑
P∈T

cP 1ωPu

∥∥∥
V r

.

The aim of the present section is to extend this M q bound to an M q,∗ bound
through the use of Lemma 3.6.
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Lemma 7.1. Suppose that P,T, x, and {cP }P∈P are as above and that 1 < q ≤ 2,
2 < r < 2q, and ε > 0. Then∥∥∥ ∑

P∈P
|IP |<2k

cP 1ωPu

∥∥∥
Mq,∗

≤ Cq,r,ε |T|1/q−1/r+ε sup
T∈T

∥∥ ∑
P∈T

cP 1ωPu

∥∥
V r .

Proof. We start by assuming the first condition in Lemma 6.1, i.e., that P =⋃
T∈T T where T is a collection of u-overlapping trees which are td-maximal among

all trees contained in P. Without loss of generality we may also assume that x ∈ IT
for each T ∈ T. Let Ξ = {ξT : T ∈ T}.

If P ∈ T and |IP | ≥ 2k, then we have ωPu contained in the dyadic interval of
length 2−k about ξT . This implies that for

ξ ∈ R+ \
⋃

|ω|=2−k

ω∩Ξ 	=∅

ω

we have

(7.1)
∑
P∈P

|IP |<2k

cP 1ωPu
(ξ) =

∑
P∈P

cP 1ωPu
(ξ).

If ω is any dyadic interval of length 2−k and ξ ∈ ω then

(7.2)
∑
P∈P

|IP |<2k

cP 1ωPu
(ξ) =

∑
P∈P

ω�ωPu

cP .

Combining (7.1) and (7.2) we see that

(7.3)
∑
P∈P

|IP |<2k

cP 1ωPu
(ξ)

=
(
1−

∑
|ω|=2−k

ω∩Ξ 	=∅

1ω(ξ)
) ∑

P∈P

cP 1ωPu
(ξ) +

∑
|ω|=2−k

ω∩Ξ 	=∅

1ω(ξ)
∑
P∈P

ω�ωPu

cP .

The right side of (7.3) is the sum of three terms each of which we will bound
separately. For the first term, we argue as indicated in the discussion at the
beginning of this section. Specifically, applying Lemma 6.1, we obtain a collection
of intervals {υT }T∈T so that

(7.4)
∑
P∈P

cP 1ωPu
(ξ) =

∑
P∈T

cP 1ωPu
(ξ)

for ξ ∈ υT . We then apply Lemma 3.5 with the collection of intervals Υ = {υT}T∈T

to obtain ∥∥ ∑
P∈P

cP 1ωPu

∥∥
Mq ≤ Cq,r,ε |T|1/q−1/r+ε sup

T∈T

∥∥ ∑
P∈T

cP 1ωPu

∥∥
V r .
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For the second term, we note that when Ξ is as above and aω = 1 for each dyadic
interval ω,

(7.5)
∑

|ω|=2−k

ω∩Ξ 	=∅

1ω
∑
P∈P

cP 1ωPu
= Dk

∑
P∈P

cP 1ωPu
.

Combining (7.5) and (7.4), we see that Lemma 3.6 gives∥∥∥ ∑
|ω|=2−k

ω∩Ξ 	=∅

1ω
∑
P∈P

cP 1ωPu

∥∥∥
Mq,∗

≤ Cq,r,ε (|Ξ|+ |{υT }T∈T|)1/q−1/r+ε sup
T∈T

∥∥ ∑
P∈T

cP 1ωPu

∥∥
V r

≤ Cq,r,ε |T|1/q−1/r+ε sup
T∈T

∥∥ ∑
P∈T

cP 1ωPu

∥∥
V r .

Finally, for the last term we note that with Ξ as above and

(7.6) aω =
∑

P∈P , ω�ωPu

cP

we have ∑
|ω|=2−k

ω∩Ξ 	=∅

1ω
∑
P∈P

ω�ωPu

cP = Dk

and so, applying Lemma 3.2,∥∥∥ ∑
|ω|=2−k

ω∩Ξ 	=∅

1ω
∑
P∈P

ω�ωPu

cP

∥∥∥
Mq,∗

≤ Cq,r,ε |T|1/q−1/r+ε sup
T∈T

∥∥∥ ∑
|ω|=2k

1ω(ξT )
∑
P∈P

ω�ωPu

cP

∥∥∥
V r
k

.(7.7)

For each k, ∑
|ω|=2k

1ω(ξT )
∑
P∈P

ω�ωPu

cP =
∑
P∈P

|IP |<2k

cP 1ωPu
(ξT ) =

∑
P∈T ′

|IP |<2k

cP

where T ′ ∈ T is the tree containing the maximal element of P satisfying ξT ∈ ωPu ,
x ∈ IP , and the last identity follows from td-maximality of the tree T ′. Therefore,
the right side of (7.7) is

≤ Cq,r,ε |T|1/q−1/r+ε sup
T∈T

∥∥∥ ∑
P∈T

|IP |<2k

cP

∥∥∥
V r
k

≤ Cq,r,ε |T|1/q−1/r+ε sup
T∈T

∥∥∥ ∑
P∈T

cP 1ωPu
(ξ)

∥∥∥
V r
ξ

,
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where the second inequality follows from (6.7). Thus, we obtain the proof of the
lemma under the assumption of the first condition.

We now assume the second condition, i.e., that T is a properly sorted collection
of l-overlapping trees. Again, assume that x ∈ IT for each T ∈ T. Consider

∑
P∈P

|IP |>2k

cP 1ωPu
(ξ) .

If P ∈ T and IP > 2k then ωP is contained in the dyadic interval of length 2−k

containing ξT and so, letting Ξ = {ξT : T ∈ T} we have

1ωPu
(ξ) = 1ωPu

(ξ)
∑

|ω|=2−k

ω∩Ξ 	=∅

1ω(ξ) ,

where we sum over dyadic intervals ω. If P ∈ T with |IP | ≤ 2k then ωPu does not
intersect the dyadic interval of length 2−k about ξT and, furthermore, by (5) does
not intersect the dyadic interval of length 2−k about any ξT ′ > ξT for T ′ ∈ T. This
gives

1ωPu
(ξ)

∑
|ω|=2−k

ω∩Ξ 	=∅

1ω(ξ) = 0 ,

and hence ∑
P∈P

|IP |>2k

cP 1ωPu
(ξ) =

∑
|ω|=2−k

ω∩Ξ 	=∅

1ω(ξ)
∑
P∈P

cP 1ωPu
(ξ).

Thus, ∑
P∈P

|IP |≤2k

cP 1ωPu
(ξ) =

(
1−

∑
|ω|=2−k

ω∩Ξ 	=∅

1ω(ξ)
) ∑

P∈P

cP 1ωPu
(ξ) ,

and the remaining argument follows exactly that for the first two terms in (7.3). �

8. Proof of theorems

Theorem 1.1 is established by using Lemma 7.1 to apply the following proposition
with ‖ · ‖N = ‖ · ‖Mq,∗ , ηP,k = 1(−∞,2k)(|IP |), and r sufficiently close to 2. Using
Corollary 6.2 to apply the proposition with ‖ · ‖Nξ,k

= ‖ · ‖�∞k (V r
ξ ) and ηP,k = 1

establishes (1.4). Using Corollary 6.3 to apply the proposition with ‖ · ‖Nξ,k
=

‖ · ‖�∞k (V r
ξ ) and ηP,k = 1(−∞,2k)(|IP |) establishes Theorem 1.3. Using Corollary 6.4

to apply the proposition with ‖ · ‖Nξ,k
= ‖ · ‖L∞

ξ (V r
k ) and ηP,k = 1(−∞,2k)(|IP |)

establishes Theorem 1.4.
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Proposition 8.1. Let r > 2, 1 < p < ∞, and let {ηP,k}P∈P0,k∈Z ⊂ R be a collec-
tion of coefficients. Suppose that for all P,T, x, and {cP }P∈P as in the hypotheses
of Corollary 6.2, a norm ‖ · ‖N acting on functions defined on R+ × Z satisfies

(8.1)
∥∥ ∑

P∈P

ηP,kcP 1ωPu

∥∥
N ≤ C |T|α sup

T∈T

∥∥ ∑
P∈T

cP 1ωPu

∥∥
V r

for some α < min(1 − 1/p, 1/2). Then,

∥∥ ∑
P∈P0

ηP,k 〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥
Lp

x(Nξ,k)
≤ Cp,r ‖f‖Lp

Proof. We will prove a restricted weak-type estimate; the full result follows by
interpolation. Specifically, we suppose that |f | ≤ 1F and λ > 0 and want to show∣∣∣{x :

∥∥ ∑
P∈P0

ηP,k 〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥
Nξ,k

> λ
}∣∣∣ ≤ Cp,r |F |/λp.

The inequality above will be demonstrated by covering the set on the left side by
“exceptional sets” E1, E

u
2 , E

l
2, E3 of acceptably small measure.

We begin by treating the case λ < 1. There we set

E1 := {M [1F ] ≥ cλp},

where M is the dyadic Hardy–Littlewood maximal operator. By the weak-type
(1, 1) estimate for M we have |E1| ≤ C|F |/λp. Since we only need to bound the
N -norm for x /∈ E1, we can assume that for every P ∈ P0 we have I �⊂ E1 and
hence, since the L∞ norm of the phase-space projection onto any convex T can be
controlled by the L∞ norm of the projection onto a subtile of an element of T ,4

size(P0, f) ≤ C λp.

For each n ≥ 0 we apply Lemma 4.1 with P = Pn and set Pn+1 := P′ so that

size(Pn+1, f) ≤ C 2−(n+1) λp .

For each n, we apply Lemma 4.2 to the collection of bitiles Pn \Pn+1 and obtain
collections of u-overlapping trees Tu

n and l-overlapping trees Tl
n.

Fix s > 0 large and ε > 0 small with magnitudes to be determined later and let

γn = c 2−n λp (22nλ−p)1/s 2εn.

4If T was allowed to be, say, an arbitrary u-overlapping tree, then the phase-plane projection
onto T could exhibit singular-integral type behavior. In that situation, in order to obtain the
analogous size estimate, it would be necessary to consider a Calderón–Zygmund decomposition
of f , or perhaps even use a John–Nirenberg type estimate, depending on context. Here, since
we are assuming that T is convex, there is cancellation between scales and so the phase-plane
projection is better behaved, and is in particular pointwise dominated by a maximal average over
appropriate scales.
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Each T ∈ Tu
n is contained, by construction, in a convex tree T with size(T , f) ≤

C2−nλp and IT = IT . Also, we have

(8.2)
∥∥ ∑

T∈Tu
n

1IT
∥∥
L1 ≤ C 22n λ−2p |F |.

Thus, letting

Eu
2 :=

⋃
n≥0

⋃
T∈Tu

n

{
x :

∥∥ ∑
P∈T

〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥
V r
ξ

> γn
}
,

we apply Lemma 5.1 to obtain

|Eu
2 | ≤

∑
n≥0

∑
T∈Tu

n

γ−s
n

∥∥ ∑
P∈T

〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥s

Ls
x(V

r
ξ )

≤ C
∑
n≥0

∑
T∈Tu

n

γ−s
n (2−nλp)s |IT | ≤ C

∑
n≥0

γ−s
n (2−nλp)s 22n λ−2p |F |

≤ C
∑
n≥0

2−sεn |F |/λp ≤ C|F |/λp.

Defining El
2 analogously, we obtain the same bound.

Let
βn = c 22n λ−p 2εn

and
E3 :=

⋃
n≥0

{
x :

∑
T∈Tu

n

1IT (x) > βn

}
.

Applying (8.2), we have

|E3| ≤ C
∑
n≥0

β−1
n 22n λ−2p |F | ≤ C

∑
n≥0

2−εn |F |/λp ≤ C |F |/λp.

Recall that the trees in Tu
n and Tl

n have shared top data and so E3 also gives
control over T ∈ Tl

n.
Fix x /∈ E1 ∪ Eu

2 ∪ El
2 ∪ E3; we need to show that∥∥∥ ∑

P∈P0

ηP,k 〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥∥
Nξ,k

≤ λ.

Since every P ∈ P0 with 〈f, φPl
〉 �= 0 is in Pn \ Pn+1 for some n, the left side

above is

(8.3) ≤
∑
n≥0

∥∥∥ ∑
P∈Pn\Pn+1

ηP,k 〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥∥
Nξ,k

.

For each n, we have

Pn \Pn+1 =
( ⋃

T∈Tu
n

T
) ⋃ ( ⋃

T∈Tl
n

T
)
,
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and so by (9) we see that the nth term in (8.3) is

(8.4) ≤
∥∥∥ ∑

P∈⋃
T∈Tu

n
T

ηP,k 〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥∥
Nξ,k

+
∥∥∥ ∑

P∈⋃
T∈Tl

n
T

ηP,k 〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥∥
Nξ,k

.

Letting T̃u
n = {(T ∩ {P ∈ P0 : x ∈ IP }, ξT , IT ) : T ∈ T u

n , x ∈ IT } and similarly
for T̃l

n, the expression above is clearly

(8.5) =
∥∥∥ ∑

P∈⋃
T∈T̃u

n
T

ηP,k 〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥∥
Nξ,k

+
∥∥∥ ∑

P∈⋃
T∈T̃l

n
T

ηP,k 〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥∥
Nξ,k

.

Noting that Tl
n is still properly sorted, and that the Tu

n are still td-maximal
among u-overlapping trees contained in

⋃
T∈T̃u

n
T , we may apply (8.1) with cP =

〈f, φPl
〉φPl

(x) to see that the display above is

≤ C (|T̃l
n|+ |T̃u

n|)α sup
T∈T̃u

n∪T̃l
n

∥∥ ∑
P∈T

〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥
V r
ξ

≤ C βα
n γn ≤ c 2−n(1−2α) 2n(2/s+(α+1)ε) λp(1−α) λ−p/s .

Since α < min(1/2, 1− 1/p), we may choose ε sufficiently small and s sufficiently
large so that the right side above is ≤ c 2−ε̃nλ for some ε̃ > 0, and hence, summing
over n and choosing c sufficiently small, we obtain the desired bound for λ < 1.

In the case that λ ≥ 1 we set E1 = ∅ and use the bound size(P0, f) ≤ C. We
decompose P0 as in the case λ < 1 so that size(Pn, f) ≤ C2−n. Letting

γn = c 2−n (22nλp)1/s 2εn,

we define Eu
2 and El

2 as above and obtain |Eu
2 |, |El

2| ≤ C |F |/λp.
Interpolating the bounds∥∥ ∑

T∈Tu
n

1IT
∥∥
L1 ≤ C 22n |F | and

∥∥ ∑
T∈Tu

n

1IT
∥∥
BMO

≤ C 22n,

we see that ∥∥ ∑
T∈Tu

n

1IT
∥∥
Lt ≤ C 22n |F |1/t,

where t < ∞ is some fixed exponent which will be chosen sufficiently large in a
manner to be determined. Then, for each β,∣∣∣{ ∑

T∈Tu
n

1IT > β
}∣∣∣ ≤ C β−t 22tn |F |,



854 R. Oberlin

so, letting
βn = c 22n λp/t 2εn,

we define E3 as above and have |E3| ≤ C|F |/λp.

For x /∈ Eu
2 ∪ El

2 ∪ E3 we thus have∥∥∥ ∑
P∈Pn\Pn+1

ηP,k 〈f, φPl
〉φPl

(x)1ωPu
(ξ)

∥∥∥
Nξ,k

≤ C βα
n γn ≤ c 2−n(1−2α) 2n(2/s+(α+1)ε) λp(α/t+1/s).

Summing over n, this is less than or equal to λ provided that s and t are chosen
sufficiently large, and ε and c are chosen sufficiently small. �

9. Variation-norm estimates for multipliers

The following is an s-variation-norm analog of Lemma 7.1. By taking r sufficiently
close (depending on p q and s) to 2, it implies Theorem 1.2 through the use of
Proposition 8.1.

Lemma 9.1. Suppose that P,T, x, and {cP }P∈P are as in Lemma 7.1 and that
1 < q ≤ 2, 2 < r < 2q, ε > 0 and r < s. Then∥∥∥ ∑

P∈P
|IP |<2k

cP 1ωPu

∥∥∥
Mq,s

≤ Cq,r,s,ε|T|(1/2−1/r) s
s−2+1/q−1/2+ε sup

T∈T

∥∥∥ ∑
P∈T

cP 1ωPu

∥∥∥
V r

.

Except for Lemma 3.1 (which is a key element in the proof of Lemma 3.7), each
step in the proof of Lemma 7.1 is insensitive to the difference between the M q,s and
the M q,∗ norms. Thus, to establish Lemma 9.1 it suffices to prove the following
variation-norm extension of Lemma 3.1.

Lemma 9.2. Let r > 2, ε > 0, and Ξ ⊂ R+. Then

‖Dk‖M2,s ≤ Cr,s,ε |Ξ|(1/2−1/r) s
s−2+ε sup

ξ∈Ξ

∥∥ ∑
|ω|=2k

aω1ω(ξ)
∥∥
V r
k

.

To prove Lemma 9.2, one follows the method used to prove Lemma 3.1 in [6]
with some refinements which we will now elaborate. The main advance needed is
the following variation-norm version of Proposition 4.2 from [6].

Proposition 9.3. Let H be a Hilbert space, let A be a finite measure space, and
let 2 < r < s and δ > 0. Suppose that we are given a function g from A to H such
that for each a ∈ A, |g(a)| ≤ δ, and such that for each h ∈ H,

(9.1) ‖ 〈g(a), h〉 ‖L2(A) ≤ |h|.
Then, for each sequence {ck}k∈Z of points in H,

(9.2) ‖ 〈g(a), ck〉 ‖L2
a(V

s
k
) ≤ Cr,s (δ

2|A|)(1/2−1/r) s
s−2 ‖ck‖V r .
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The proof of Proposition 9.3 uses the same method as that of Lemma 3.2 in [10].
However, since the statement is more general here, we will repeat the argument.

Proof. Let
‖ · ‖Ṽs

= ‖ · ‖Vs − ‖ · ‖L∞ .

By Proposition 4.2 of [6], it suffices to prove (9.2) with the Ṽ s norm in place of
the V s norm. By a limiting argument, we may also assume that our sequence
{ck}Mk=1 has finite length, provided that Cr,s is independent of M .

For each λ > 0 we cover {ck}Mk=1 with respect to λ-jumps as follows. Set
l(λ, 1) = 1. Suppose that l(λ, 1) < · · · < l(λ, L) have been chosen, and let
B(cl(λ,L), λ) denote the ball of radius λ centered at cl(λ,L). If {ck : k > l(λ, L)} ⊂
B(cl(λ,L), λ) then stop and set Lλ = L and l(λ, L+1) = ∞.Otherwise, let l(λ, L+1)
be chosen minimally with l(λ, L + 1) > l(λ, L) and cl(λ,L+1) /∈ B(cl(λ,L), λ). This
process will stop, yielding some Lλ ≤ M . It is clear that

(9.3) λ(Lλ − 1)1/r ≤ ‖ck‖V r .

We now define a recursive “parent” function based on the covering above. Fix
some λ0 < min{|c − c′| : c, c′ ∈ {ck}Mk=1 and c �= c′}. For k = 1, . . . ,M define
ρ(−1, k) = k. Once ρ(n, k) has been defined for n = −1, . . . , L set ρ(L + 1, k) =
l(2L+1λ0,m), where m is the unique integer satisfying

l(2L+1λ0,m) ≤ ρ(L, k) < l(2L+1λ0,m+ 1).

Notice that we have
|cρ(n,k) − cρ(n+1,k)| < 2n+1λ0,

and in particular cρ(0,k) = ck. Also note that ρ(n, k) = 1 whenever 2nλ0 ≥
diameter({ck}Mk=1). Thus

ck = c1 +
∞∑
n=0

cρ(n,k) − cρ(n+1,k) .

Finally, by induction, one sees that ρ(n, k) is nondecreasing in k for each fixed n.
We have

‖ 〈g(a), ck〉 ‖L2
a(Ṽ

s
k ) ≤

∞∑
n=0

∥∥ 〈g(a), (cρ(n,k) − cρ(n+1,k))
〉 ∥∥

L2
a(Ṽ

s
k )

.

Observe that the right-hand side above

=
∑

n:L2nλ0
>1

∥∥ 〈g(a), cρ(n,k) − cρ(n+1,k))
〉 ∥∥

L2
a(Ṽ

s
k )

.

Using the monotonicity of the ρ(n, ·) and the fact that the range of ρ(n, ·) is
contained in {l(2nλ0,m) : m = 1, . . . , L2nλ0} we see that the expression above is

≤ 2
∑

n:L2nλ0
>1

∥∥∥(L2nλ0∑
m=1

| 〈g(a), (cl(2nλ0,m) − cρ̃(n+1,l(2nλ0,m)))
〉 |s)1/s∥∥∥

L2
a

,
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where we let ρ̃(n+1, l(2nλ0,m)) denote l(2n+1λ0, i), where i is the unique integer
satisfying

l(2n+1λ0, i) ≤ l(2nλ0,m) < l(2n+1λ0, i+ 1).

Estimating �s by �2, switching the order of integration, and using (9.1), we see
that the nth term in the outer sum above is

≤ C 2n λ0 L
1/2
2nλ0

≤ C (2nλ0)
1−r/2 ‖ck‖r/2V r .

We can also estimate the nth term by

∥∥∥(L2nλ0∑
m=1

(δ|cl(2nλ0,m) − cρ̃(n+1,(2nλ0,m))|)s
)1/s∥∥∥

L2
a

≤ δ |A|1/2
(L2nλ0∑

m=1

|cl(2nλ0,m) − cρ̃(n+1,l(2nλ0,m))|s
)1/s

≤ δ |A|1/2 (2nλ0)
1−r/s ‖ck‖r/sV r .

Choosing whichever of the two bounds is favorable for each n and summing gives
the desired result. �

Through the averaging argument in the proof of Corollary 4.3 from [6], one sees
that Proposition 9.3 implies the following two corollaries.

Corollary 9.4. Let r > 2, 1 < q ≤ 2, and Ξ ⊂ R+. If no two elements of Ξ are
contained in the same dyadic interval of length 1 then

‖1(−∞,0](k)Dk‖M2,s ≤ Cr,s |Ξ|(1/2−1/r) s
s−2 sup

ξ∈Ξ

∥∥ ∑
|ω|=2k

aω1ω(ξ)
∥∥
V r
k

.

Corollary 9.5. Let r > 2, 1 < q ≤ 2, and Ξ ⊂ R+. Suppose that for each dyadic
interval ω of length 1 and each k ∈ Z we have a coefficient aω,k ∈ R. Then∥∥ ∑

|ω|=1
ω∩Ξ 	=∅

aω,k1ω
∥∥
M2,s ≤ Cr,s |Ξ|(1/2−1/r) s

s−2 sup
ξ∈Ξ

∥∥ ∑
|ω|=1

aω,k1ω(ξ)
∥∥
V r
k

.

Finally, to see that Corollaries 9.4 and 9.5 imply Lemma 9.2, one argues almost
exactly as in the proof of Theorem 4.3 of [10] (the substitution of the Walsh–Paley
transform for the Fourier transform allows minor technical simplifications).
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