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Monodromy zeta function formula

for embedded Q-resolutions

Jorge Mart́ın-Morales

Abstract. In previous work we have introduced the notion of an embed-
ded Q-resolution, which essentially consists in allowing the final ambient
space to contain abelian quotient singularities. Here we give a general-
ization to this setting of N. A’Campo’s formula for the monodromy zeta
function of a singularity. Some examples of its application are shown.

Introduction

In singularity theory, the resolution of singularities is one of the most important
tools. In the embedded case, the starting point is a singular hypersurface. After a
sequence of suitable blow-ups this hypersurface is replaced by a long list of smooth
hypersurfaces (the strict transform and the exceptional divisors) which intersect
in the simplest way (at any point one sees coordinate hyperplanes in suitable local
coordinates). This process can be very expensive from the computational point of
view and, moreover, only a bit of the obtained data is used for the understanding
of the singularity.

Experimental work shows that most of these data can be recovered if one allows
some mild singularities to survive in the process (the quotient singularities). These
partial resolutions, called embedded Q-resolutions, can be obtained as a sequence
of weighted blow-ups and their computational complexity is much lower than that
of the standard resolutions. Moreover, the process is optimal in the sense that no
useless data are obtained.

To do this, in [2] we explicitly present an isomorphism between Cartier and
Weil Q-divisors on V -manifolds. Note that this is a well-known result; see Propo-
sition 5.15 in [11]. This allows one to develop a rational intersection theory on
varieties with quotient singularities and study weighted blow-ups at points; see [3].
By using these tools we were able to obtain a lot of information about the singu-
larity, see [13].
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function.
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In this paper we continue our study ofQ-resolutions. In particular, the behavior
of the Lefschetz numbers and the zeta function of the monodromy with respect to
an embedded Q-resolution is investigated. These two invariants have already been
studied in different contexts by several authors. Hence before going into details,
let us recall some of their approaches.

Let f : (Cn+1, 0) → (C, 0) be a germ of a nonconstant analytic function and let
(H, 0) be the hypersurface singularity determined by f . Consider the Milnor fiber
F = {x ∈ Cn+1 : ||x|| ≤ ε, f(x) = η} (0 < η << ε, ε small enough), and let
h : F → F be the corresponding geometric monodromy. The induced automor-
phisms on the complex cohomology groups are denoted byHq(h) := h : Hq(F,C) →
Hq(F,C).

In [1], A’Campo gives a method for computing the Lefschetz numbers of the
iterates hk := h ◦ · · · ◦ h of the geometric monodromy, defined by

Λ(hk) :=
∑
q≥0

(−1)q trHq(hk),

in terms of an embedded resolution of the singularity (H, 0) ⊂ (Cn+1, 0). These
Lefschetz numbers are related to the monodromy zeta function

Z(f) :=
∏
q≥0

det(Id∗ −tHq(h))(−1)q

by the following well-known formula:

(0.1) Z(f) = exp
(
−
∑
k≥1

Λ(hk)
tk

k

)
.

Using this relationship he derives a new expression for Z(f). More precisely, let
π : X → (Cn+1, 0) be an embedded resolution of (H, 0). Consider

π∗(H) = Ĥ +

r∑
i=1

miEi,

the total transform of H , where Ĥ is the strict transform of H and E1, . . . , Er are
the irreducible components of the exceptional divisor π∗(0). Now, define

Ěi := Ei \
(
Ei ∩

(⋃
j �=i

Ej ∪ Ĥ
))
.

Then, the Lefschetz numbers and the complex monodromy zeta function are
given by

Λ(hk) =
r∑

i=1, mi|k
miχ(Ěi), Z(f) =

r∏
i=1

(1− tmi)χ(Ěi).

Thus the Euler characteristic of the Milnor fiber is

χ(F ) =

r∑
i=1

miχ(Ěi).
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When (H, 0) defines an isolated singularity, both the characteristic polynomial
of the monodromy Δ(t) and the Milnor number μ = dimHn(F,C) = degΔ(t) can
be obtained from the zeta function as

Δ(t) =
[ 1

t− 1

r∏
i=1

(tmi − 1)χ(Ěi)
](−1)n

, μ = (−1)n
[
− 1 +

r∑
i=1

mi χ(Ěi)
]
,

and, in particular, μ = (−1)n[−1 + χ(F )] holds.

Another contribution in the same direction can be found in [9], where the au-
thors give a generalization of A’Campo’s formula for the monodromy zeta function
via partial resolutions, that is, the map π : X → (Cn+1, 0) is assumed to be just
a modification (i.e., the condition on the normal crossing divisor in the embedded
resolution is removed). Also Dimca, using the machinery of constructible sheaves,
proved the same result, although allowing X to be an arbitrary analytic space; see
Theorem 6.1.14 in [6].

The aim of this paper is to generalize all the results above, giving the corre-
sponding A’Campo formula and the Lefschetz numbers in terms of an embedded
Q-resolution; see Theorem 2.8 below. Note that Veys has already considered this
problem for plane curve singularities [19].

Our plan is as follows. In Section 1 some well-known preliminaries about quo-
tient singularities and embedded Q-resolutions are presented. The main result,
i.e., the generalization of A’Campo formula in our setting, is stated and proved in
Section 2 after having computed the monodromy zeta function of a divisor with
Q-normal crossings. In Section 3 weighted blow-ups are used to compute embed-
ded Q-resolutions in several examples, including a Yomdin–Lê surface singularity,
so as to apply the formula obtained. As a further application, the monodromy
zeta function for not well-defined functions giving rise to a zero set is introduced
in Section 4. Finally, in Section 5 the different behavior of A’Campo formula using
nonabelian groups is illustrated, showing that “double points” in an embedded
resolution may contribute to the monodromy zeta function.

As for notation, from now on and depending on the context, we shall denote the
monodromy zeta function by Z(f), Z(f)(t), Z(f ; t), Zf (t) or Z(t), interchangeably.
The same applies for the Lefschetz numbers and the characteristic polynomial.
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1. Preliminaries

Let us sketch some definitions and properties related to V -manifolds, weighted
projective spaces, embedded Q-resolutions, and weighted blow-ups; see [3], [2]
and [13] for a more detailed exposition.

1.1. V -manifolds and quotient singularities

Definition 1.1. A V -manifold of dimension n is a complex analytic space which
admits an open covering {Ui} such that Ui is analytically isomorphic to Bi/Gi

where Bi ⊂ Cn is an open ball and Gi is a finite subgroup of GL(n,C).

The concept of V -manifolds was introduced in [15] and they have the same
homological properties over Q as manifolds. For instance, they admit Poincaré
duality if they are compact, and carry a pure Hodge structure if they are compact
and Kähler; see [5]. They have been classified locally by Prill [14]. It is enough to
consider the so-called small subgroups G ⊂ GL(n,C), that is, those containing no
rotations about hyperplanes other than the identity.

Theorem 1.2. ([14]). Let G1, G2 be small subgroups of GL(n,C). Then Cn/G1

is isomorphic to Cn/G2 if and only if G1 and G2 are conjugate subgroups.

For d := t(d1 . . . dr) we denote by μd := μd1 × · · · × μdr a finite abelian group
written as a product of finite cyclic groups, that is, μdi is the cyclic group of di-th
roots of unity in C. Consider a matrix of weight vectors

A := (aij)i,j = [a1 | · · · | an] ∈ Mat(r × n,Z),

aj :=
t(a1j . . . arj) ∈ Mat(r × 1,Z),

and the action

(μd1 × · · · × μdr)× Cn −→ Cn, ξd = (ξd1 , . . . , ξdr ),(
ξd,x

)
	→ (ξa11

d1
· · · ξar1

dr
x1, . . . , ξ

a1n

d1
· · · ξarn

dr
xn), x = (x1, . . . , xn).

Note that the i-th row of the matrix A can be considered modulo di. The set of
all orbits Cn/G is called (cyclic) quotient space of type (d;A) and it is denoted by

X(d;A) := X

⎛⎜⎝ d1 a11 · · · a1n
...

...
. . .

...
dr ar1 · · · arn

⎞⎟⎠ .

The orbit of an element x ∈ Cn under this action is denoted by [x](d;A) and
the subindex is omitted if no ambiguity seems likely to arise. Using multi-index
notation the action takes the simple form:

μd × Cn −→ Cn,

(ξd,x) 	→ ξd · x := (ξa1

d x1, . . . , ξ
an

d xn).
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The quotient of Cn by a finite abelian group is always isomorphic to a quotient
space of type (d;A), see [2] for a proof of this classical result. Different types
(d;A) can give rise to isomorphic quotient spaces.

Example 1.3. When n = 1, all the spaces X(d;A) are isomorphic to C. It is
clear that we can assume that gcd(di, ai) = 1. If r = 1, the map [x] 	→ xd1 gives
an isomorphism between X(d1; a1) and C.

Consider the case r = 2. Note that C/(μd1 × μd2) equals (C/μd1)/μd2 . Using
the previous isomorphism, it is isomorphic to X(d2, d1a2), which is again isomor-
phic to C. By induction, we obtain the result for any r.

If an action is not free on (C∗)n we can factor the group by the kernel of the
action and the isomorphism type does not change. This motivates the following
definition.

Definition 1.4. The type (d;A) is said to be normalized if the action is free
on (C∗)n and μd is small as a subgroup of GL(n,C). By abuse of language we
often say the space X(d;A) is written in a normalized form when we mean that
the type (d;A) is normalized.

Proposition 1.5. The space X(d;A) is written in a normalized form if and only
if the stabilizer of P is trivial for all P ∈ Cn with exactly n−1 coordinates different
from zero.

In the cyclic case the stabilizer of a point as above (with exactly n−1 coordinates
different from zero) has order gcd(d, a1, . . . , âi, . . . , an).

It is possible to convert general types (d;A) into their normalized form. Theo-
rem 1.2 allows one to decide whether two quotient spaces are isomorphic. In partic-
ular, one can use this result to compute the singular points of the space X(d;A).
In Example 1.3 we have explained this normalization process in dimension one.
The two and three-dimensional cases are treated in the following examples.

Example 1.6. All quotient spaces for n = 2 are cyclic. The type (d; a, b) is
normalized if and only if gcd(d, a) = gcd(d, b) = 1. If this is not the case, one uses
the isomorphism1 (assuming gcd(d, a, b) = 1) X(d; a, b) → X

(
d

(d,a)(d,b) ;
a

(d,a) ,
b

(d,b)

)
,

[(x, y)] 	→ [(x(d,b), y(d,a))] to convert the type into a normalized one.

Example 1.7. The quotient space X(d; a, b, c) is written in a normalized form if
and only if gcd(d, a, b) = gcd(d, a, c) = gcd(d, b, c) = 1. As above, isomorphisms of
the form [(x, y, z)] 	→ [(x, y, zk)] can be used to convert types (d; a, b, c) into their
normalized form.

In [8] the author computes resolutions of cyclic quotient singularities. In the
two-dimensional case, the resolution process is due to Jung and Hirzebruch, see [10].

1The notation (i1, . . . , ik) = gcd(i1, . . . , ik) is used in case of complicated or long formulas.
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1.2. Weighted projective spaces

The main reference that has been used in this section is [7]. Here we concentrate
on describing the analytic structure and singularities.

Let ω := (q0, . . . , qn) be a weight vector, that is, a finite set of coprime positive
integers. There is a natural action of the multiplicative group C∗ on Cn+1 \ {0}
given by

(x0, . . . , xn) 	−→ (tq0x0, . . . , t
qnxn).

The set of orbits (Cn+1 \ {0})/C∗ under this action is denoted by Pn
ω (or Pn(ω)

in the case of a complicated weight vector), and it is called the weighted projective
space of type ω. The class of a nonzero element (x0, . . . , xn) ∈ Cn+1 is denoted
by [x0 : . . . : xn]ω and the weight vector is omitted if no ambiguity seems likely to
arise. When (q0, . . . , qn) = (1, . . . , 1) one obtains the usual projective space and
the weight vector is always omitted. For x ∈ Cn+1\{0}, the closure of [x]ω in Cn+1

is obtained by adding the origin and it is an algebraic curve.
Consider the decomposition Pn

ω = U0 ∪ · · · ∪ Un, where Ui is the open set
consisting of all elements [x0 : . . . : xn]ω with xi 
= 0. The map

ψ̃0 : Cn −→ U0, ψ̃0(x1, . . . , xn) := [1 : x1 : . . . : xn]ω

defines an isomorphism ψ0 if we replace Cn by X(q0; q1, . . . , qn). Analogously,
X(qi; q0, . . . , q̂i, . . . , qn) ∼= Ui under the obvious analytic map.

Proposition 1.8 ([2]). Let di := gcd(q0, . . . , q̂i, . . . , qn), ei := d0 · · · d̂i · · · dn and
pi := qi/ei. The following map is an isomorphism:

Pn
(
q0, . . . , qn

)
−→ Pn(p0, . . . , pn),

[x0 : . . . : xn] 	→
[
xd0
0 : . . . : xdn

n

]
.

Remark 1.9. Note that, due to the preceding proposition, one can always assume
the weight vector satisfies gcd(q0, . . . , q̂i, . . . , qn) = 1, for i = 0, . . . , n. In particular,
P1(q0, q1) ∼= P1 and for n = 2 we can take (q0, q1, q2) pairwise relatively prime
numbers. In higher dimension the situation is a bit more complicated.

1.3. Embedded Q-resolutions

Classically an embedded resolution of {f=0} ⊂ Cn is a proper map π : X → (Cn, 0)
from a smooth variety X satisfying, among other conditions, that π−1({f = 0}) is
a normal crossing divisor. To weaken the condition on the preimage of the singu-
larity we allow the new ambient space X to contain abelian quotient singularities
and the divisor π−1({f = 0}) to have normal crossings over this kind of vari-
eties. This notion of normal crossing divisor on V -manifolds was first introduced
by Steenbrink in [17].

Definition 1.10. Let X be a V -manifold with abelian quotient singularities.
A hypersurface D in X is said to have Q-normal crossings if it is locally iso-
morphic to the quotient of a union of coordinate hyperplanes under a group ac-
tion of type (d;A). That is, given x ∈ X , there is an isomorphism of germs
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(X, x) � (X(d;A), [0]) such that (D, x) ⊂ (X, x) is identified under this morphism
with a germ of the form(

{[x] ∈ X(d;A) | xm1
1 · · ·xmk

k = 0}, [(0, . . . , 0)]
)
.

LetM = Cn+1/μd be an abelian quotient space not necessarily cyclic or written
in normalized form. Consider H ⊂M an analytic subvariety of codimension one.

Definition 1.11. An embedded Q-resolution of (H, 0) ⊂ (M, 0) is a proper analytic
map π : X → (M, 0) such that:

1) X is a V -manifold with abelian quotient singularities.

2) π is an isomorphism over X \ π−1(Sing(H)).

3) π−1(H) is a hypersurface in X with Q-normal crossings.

Remark 1.12. Let f : (M, 0) → (C, 0) be a nonconstant analytic function germ.
Consider the hypersurface (H, 0) defined by f on (M, 0). Let π : X → (M, 0) be
an embedded Q-resolution of (H, 0) ⊂ (M, 0). Then π−1(H) = (f ◦ π)−1(0) is
locally given by a function of the form xm1

1 · · ·xmk

k : X(d;A) → C.

1.4. Weighted blow-ups

Weighted blow-ups can be defined in any dimension, see [2] and [3]. In this section,
we restrict our attention to the case n = 2 and n = 3.

1.4.1. Classical blow-up of C2. We consider

Ĉ2 :=
{
((x, y), [u : v]) ∈ C2 × P1 | (x, y) ∈ [u : v]

}
.

Then π : Ĉ2 → C2 is an isomorphism over Ĉ2 \π−1(0). The exceptional divisor

E := π−1(0) is identified with P1. The space Ĉ2 = U0 ∪ U1 can be covered by 2
charts each of them isomorphic to C2. For instance, the following map defines an
isomorphism:

C2 −→ U0 = {u 
= 0} ⊂ Ĉ2,

(x, y) 	→
(
(x, xy), [1 : y]

)
.

1.4.2. Weighted (p, q)-blow-up of C2. Let ω = (p, q) be a weight vector with
coprime entries. As above, consider the space

Ĉ2
ω :=

{
((x, y), [u : v]ω) ∈ C2 × P1

ω | (x, y) ∈ [u : v]ω
}
.

It can be covered by Ĉ2
ω = U1 ∪ U2 = X(p;−1, q) ∪X(q; p,−1) and the charts

are given by:

First chart X(p;−1, q) −→ U1,

[(x, y)] 	→ ((xp, xqy), [1 : y]ω).

Second chart X(q; p,−1) −→ U2,

[(x, y)] 	→ ((xyp, yq), [x : 1]ω).
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The exceptional divisor E := π−1
ω (0) is isomorphic to P1

ω which is in turn iso-

morphic to P1 under the map [x : y]ω 	→ [xq : yp]. The singular points of Ĉ2
ω

are cyclic quotient singularities located at the exceptional divisor. They actually
coincide with the origins of the two charts and they are written in their normal-
ized form.

1.4.3. Weighted (p, q, r)-blow-up of C3. Let π := πω : Ĉ3
ω → C3 be the

weighted blow-up at the origin with respect to ω = (p, q, r), gcd(ω) = 1. The new
space is covered by three open sets

Ĉ3
ω = U1 ∪ U2 ∪ U3 = X(p;−1, q, r) ∪X(q; p,−1, r) ∪X(r; p, q,−1),

and the charts are given by:

X(p;−1, q, r) −→ U1 : [(x, y, z)] 	→ ((xp, xqy, xrz), [1 : y : z]ω),
X(q; p,−1, r) −→ U2 : [(x, y, z)] 	→ ((xyp, yq, yrz), [x : 1 : z]ω),
X(r; p, q,−1) −→ U3 : [(x, y, z)] 	→ ((xzp, yzq, zr), [x : y : 1]ω).

In general Ĉ3
ω has three lines of (cyclic quotient) singular points located at the

three axes of the exceptional divisor π−1
ω (0) � P2

ω. Namely, a generic point in
x = 0 is a cyclic point of type C × X(gcd(q, r); p,−1). Note that although the
quotient spaces are written in their normalized form, the exceptional divisor can
be simplified:

P2(p, q, r) −→ P2
( p

(p, r) · (p, q) ,
q

(q, p) · (q, r) ,
r

(r, p) · (r, q)

)
,

[x : y : z] 	→ [xgcd(q,r) : ygcd(p,r) : zgcd(p,q)].

Using just a weighted blow-up of this kind, one can find an embedded Q-resol-
ution for Brieskorn–Pham surfaces singularities xa + yb+ zc = 0, see Example 3.6.

2. Statement and proof of the main theorem

This section is devoted to the generalization of A’Campo’s formula for embed-
ded Q-resolutions. One way to proceed is to rebuild A’Campo’s paper [1], thus
giving a model of the Milnor fibration in our setting. This method is very natu-
ral but perhaps a bit long and tedious. In [9], the authors give a generalization of
A’Campo’s formula for the monodromy zeta function via partial resolution but the
ambient space considered there is still smooth and the proof cannot be generalized
to an arbitrary analytic variety.

This is why a very general result by Dimca is used instead, see Theorem 2.3
below. This leads us to talk about constructible complexes of sheaves with respect
to a stratification and also about the nearby cycles associated with an analytic
function. Using this theorem only the monodromy zeta function of a monomial
defining a function over a quotient space of type (d;A) is needed.
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2.1. A result by Dimca

To state the result we need some notions about sheaves and constructibility. For
further details, we refer for instance to [6] and the references listed there.

Consider the abelian category Sh(X,VectC) of sheaves of C-vector spaces on
a topological space X . To simplify notation its derived category is often denoted
by D∗(X). The constant sheaf corresponding to C is denoted by CX ; it is by
definition the sheaf associated with the constant presheaf that sends every open
subset of X to C. If U ⊂ X is connected and open then CX(U) = C.

Let f : X → Y be a continuous mapping between two topological spaces. The
direct image functor f∗ : Sh(X,VectC) → Sh(Y,VectC) is defined on objects by
(f∗F)(V ) = F(f−1(V )), for any sheaf F on X and any open set V ⊂ Y . This
functor is additive and left exact; its derived functor is denoted by Rf∗ : D∗(X) →
D∗(Y ). The inverse image functor f−1 : Sh(Y,VectC) → Sh(X,VectC) is defined
as f−1G, this being the sheaf associated with the presheaf

U 	−→ lim−→
f(U)⊂V

G(V ).

Here G is a sheaf on Y and U ⊂ X is open. This functor is exact and hence
the corresponding derived functor Rf−1 : D∗(Y ) → D∗(X) is usually denoted
again by f−1. If f(U) ⊂ Y is open then (f−1G)(U) = G(f(U)). In particular,
if iU : U ↪→ X denotes the inclusion of an open set, then i−1

U F = F|U . The
restriction to an arbitrary subspace Z ⊂ X is defined by F|Z := i−1

Z F , where
iZ : Z ↪→ X is the inclusion. Using this notation one has

CX |Z := i−1
Z CX = CZ .

Let X be a complex analytic space and S = {Xj}j∈J a locally finite partition
of X into nonempty, connected, locally closed subsets called strata of S. The
partition S is called a stratification if it satisfies the following conditions:

1) The boundary condition: each boundary ∂Xj = Xj \Xj is a union of strata
in S.

2) Constructibility: for all j ∈ J the spaces Xj and ∂Xj are closed complex
analytic subspaces in X .

3) Stratification: all the strata are smooth constructible subvarieties of X .

Definition 2.1. Let S = {Xj}j∈J be a stratification on X .

(i) A sheaf complex F• ∈ D∗(X) is called S-constructible if the restriction of
each cohomology sheaf Hq(F•)|Xj is a CXj

-local system of finite rank.

(ii) Given an automorphism u : F• → F• of CX -vector spaces, the complex F•

is called equivariantly S-constructible with respect to u, if it is S-constructible
and the induced automorphisms on the cohomology groups Hq(u)x : Hm(F•)x →
Hm(F•)x are conjugate for all x ∈ Xj .
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Let X be a complex analytic variety and g : X → C a nonconstant analytic
function. Consider the diagram,

g−1(0) �
� i �� X X \ g−1(0)

#f

��

� �
j

�� E

f̂
��

π̂��

C∗ C̃∗
exp

��

where i : g−1(0) ↪→ X and j : X \ g−1(0) ↪→ X are inclusions, C̃∗ is the universal
cover of C∗, and E denotes the pull-back.

Definition 2.2. Let F• ∈ D∗(X) be a complex. The sheaf complex of nearby
cycles of F• with respect to the function g : X → C is defined by

ψgF• := i−1R(j ◦ π̂)∗(j ◦ π̂)−1F• ∈ D∗(g−1(0)).

The previous functor is a local operation in the sense that if U ⊂ X is an open
set, then (ψgF•)|W = ψg|W F•|W holds. Also, note that ψgF• only depends on g
and F•|X\g−1(0).

There is an associated monodromy deck transformation h : E → E coming
from the action of the natural generator of π1(C∗) which satisfies π̂ ◦ h = π̂. This
homeomorphism induces an isomorphism of complexes

M : ψgF• −→ ψgF•.

For every point x ∈ g−1(0) there is a natural isomorphism from the stalk coho-
mology of ψgF• at x to the cohomology of the Milnor fiber at x with coefficients
in F•, that is, for all ε > 0 small enough and all t ∈ C∗ with |t| << ε, one has

(2.1) Hq(ψgF•)x � Hq(g−1(t) ∩Bε(x),F•
| ) � Hq(g−1(t) ∩Bε(x),F•

| ),

where the open ball Bε(x) is taken inside any local embedding of (X, x) in an affine
space.

The monodromy morphism Mx on the left-hand side corresponds to the mor-
phism on the right-hand side induced by the monodromy homeomorphism of the
local Milnor fibration associated with g : (X, x) → (C, 0).

Now we are ready to state Dimca’s theorem. To be precise he only considered
the case when the ambient space is smooth M = Cn+1, see below. Repeating
exactly the same arguments one obtains the result for any analytic variety.

Theorem 2.3 (Theorem 6.1.14 in [6]). Let f : (M,p) → (C, 0) be the germ of a
nonconstant analytic function which is defined on a small neighborhood U of p.
Let H be the hypersurface {x ∈ U | f(x) = 0}. Assume π : X → U is a proper
analytic map such that π induces an isomorphism between X \π−1(H) and U \H.

Let g = f ◦ π denote the composition and j : X \ π−1(H) ↪→ X the inclu-
sion. Let S be a finite stratification of the exceptional divisor π−1(p) such that
ψg

(
Rj∗CX\π−1(H)

)
is equivariantly S-constructible with respect to the semisimple

part of M .
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Then,

Λ(h) =
∑
S∈S

χ(S)Λ(g, xS) ; Z(f) =
∏
S∈S

Z(g, xS)
χ(S),

where xS is an arbitrary point in the stratum S and Z(g, xS), Λ(g, xs) are the zeta
function and the Lefschetz number of the germ g at xS.

Remark 2.4. Let F• = Rj∗CX\π−1(H). Using the notation of the previous the-
orem the isomorphism of (2.1) tells us that Hq(ψgF•)x = Hq(Fx,C) where Fx is
the Milnor fiber at x. This clarifies when the complex of sheaves ψgF• is equivari-
antly S-constructible with respect to the semisimple part of M . In particular, this
condition is satisfied for instance when the local equation of g along each stratum
is the same.

2.2. Monodromy zeta function of a normal crossing divisor

Let M = Cn/μd be a quotient space of type X(d;A), not necessarily cyclic or
written in a normalized form. Recall the multi-index notation.

X(d;A) = X

⎛⎜⎝ d1 a11 . . . a1n
...

...
. . .

...
dr ar1 . . . arn

⎞⎟⎠ ,
d = (d1, . . . , dr),

aj = (a1j , . . . , arj).

In Section 1, e.g. Example 1.3, we have seen that for each j = 1, . . . , n there is
an isomorphism

(2.2)
X(d; aj) −→ C

[xj ] 	→ x
�j
j ,

where

�j = lcm
( d1
gcd(d1, a1j)

, . . . ,
dr

gcd(dr , arj)

)
.

Given a homogeneous polynomial defined over M , the analogue in this setting
of the classical formula for the monodromy zeta function, which depends on the
degree of the polynomial and the Euler characteristic of the Milnor fiber, seems to
be more complicated. Using resolution of singularities, one can provide formulas at
least for plane curves and surfaces, but the trick of applying the fixed point theorem
does not work anymore. However, for our purpose, only the normal crossing case
is needed.

Note that the zeta function and the Lefschetz numbers also exist in case of
singular underlying spaces, such as X(d;A). Moreover, if the function f is defined
by a quasi-homogeneous polynomial, then f : X(d;A) \ f−1(0) → C∗ is a locally
trivial fibration and the global Minor fibration is equivalent to the local one.

We first compute the geometric monodromy of a homogeneous polynomial
f : M → C of degree N := deg(f). Let α : [0, 1] → C∗ be a generator of the funda-
mental group of C∗, for example, α(t) = exp(2πit) and consider [x] ∈ F = f−1(1).



950 J. Mart́ın-Morales

The path

α̃ : [0, 1] −→ M \ f−1(0)

t 	→
[
(e2πit/Nx1, . . . , e

2πit/Nxn)
]
,

defines a lifting of α with initial point [(x1, . . . , xn)]. Thus the geometric mon-
odromy h : F → F corresponds to the map

α̃(0) =
[
(x1, . . . , xn)

] h	−→
[
(e2πi/Nx1, . . . , e

2πi/Nxn)
]
= α̃(1).

As in the case M = Cn, this also works for quasi-homogeneous polynomials,
replacing the exponentials for suitable numbers according to the weights.

Let us study the monodromy zeta function in the simplest normal crossing case,
i.e., f = xm1

1 :M → C. The Milnor fiber

F := f−1(1) = {[x] ∈M | xm1
1 = 1}

has the same homotopy type as F ′ := {[(x1, 0, . . . , 0)] ∈M | xm1
1 = 1}, which can

be identified with
{[x1] ∈ X(d; a1) | xm1

1 = 1}.
In fact, r : F → F ′ : [x] 	→ [x1] is a strong deformation retraction. Since

h(F ′) ⊂ F ′, the geometric monodromy h : F → F is homotopic to its restriction
h′ := h|F ′ : F ′ → F ′. Using the isomorphism (2.2),

X(d; a1) � C : [x] 	→ x�1 ,

the claim is reduced to the calculation of the zeta function of the polynomial

x
m1/�1
1 : C → C. But this is known to be 1− tm1/�1 .

Assume now that f = xm1
1 · · ·xmk

k : M → C, k ≥ 2. The Milnor fiber F :=
f−1(1) has the same homotopy type as

F ′ :=
{[

(x1, . . . xk)
]
∈ S1×

(k)
· · · ×S1

μd

∣∣ xm1
1 · · ·xmk

k = 1
}
,

where μd defines an action of type (d; a1, . . . , ak) on the space (S1)k. As above,
there is a strong deformation retraction

r : F −→ F ′, [x] 	→
[( x1

|x1|
, . . . ,

xk
|xk|

, 0, . . . , 0
)]
,

that satisfies h(F ′) ⊂ F ′. Denote again by h′ the restriction of h to F ′. We shall
see that Λ((h′)j) = Λ(hj) = 0 for all j ≥ 1. This implies Zf (t) = 1 by virtue
of (0.1). Two cases arise.

• If (h′)j does not have fixed points, then by the fixed point theorem, one has
that Λ((h′)j) = 0.

• Otherwise (h′)j is the identity map and Λ((h′)j) = χ(F ′) = 0.



Monodromy zeta function formula for embedded Q-resolutions 951

Note that there is an unramified covering

(S1)k ⊃ F̃ ′ := {xm1
1 · · ·xmk

k = 1} π−→ F ′

with a finite number of sheets. The first of the preceding spaces F̃ ′ has e =
gcd(m1, . . . ,mk) disjoint components, each of them homotopically equivalent to a
real (k − 1)-dimensional torus Tk−1 = (S1)k−1. It follows that

χ(F ′) =
1

deg π
e χ(Tk−1) = 0.

Note that the condition k ≥ 2 has only been used at the end. In the case k = 1,
one has

deg π = �1, e = m1, χ(T0) = 1, χ(F ′) = m1/�1.

We summarize the previous discussion in the following lemma.

Lemma 2.5. The monodromy zeta function of a normal crossing divisor given by
xm1
1 · · ·xmk

k : X(d;A) → C, k ≥ 1, is

Z (xm1
1 · · ·xmk

k : X(d;A) → C; t) =

{
1− tm1/�1 k = 1;

1 k ≥ 2,

where �1 = lcm
(
d1/gcd(d1, a11), . . . , dr/gcd(dr , ar1)

)
.

2.3. A’Campo’s formula for embedded Q-resolutions

Let f : (M, 0) → (C, 0) be a nonconstant analytic function germ and let (H, 0) ⊂
(M, 0) be the hypersurface defined by f . Given an embedded Q-resolution of
(H, 0), π : X → (M, 0), consider, as in the classical case,

Ěi := Ei \
(
Ei

⋂( ⋃
k=1,...,s

k �=i

Ek ∪ Ĥ
))
,

where E1, . . . , Es are the irreducible components of the exceptional divisor of π,
and Ĥ is the strict transform of H .

Definition 2.6. Let X be a complex analytic space having only abelian quotient
singularities and consider a Q-divisor D in X with normal crossings. Let q ∈ D
be a point living in exactly one irreducible component of D. Then, the equation
of D at q is given by a function of the form xmj : X(d;A) → C, where xj is a local
coordinate of X at q.

The multiplicity of D at q, denoted by m(D, q), is defined by

m(D, q) :=
m

�j
, �j = lcm

( d1
gcd(d1, a1j)

, . . . ,
dr

gcd(dr , arj)

)
.

If there exists T contained in exactly one irreducible component of D and the
function q ∈ T 	→ m(D, q) is constant, then we use the notation m(T ) := m(D, q),
where q ∈ T is an arbitrary point.
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Remark 2.7. The integerm(D, q) does not depend on the type (d;A) representing
the quotient space. A more general definition, including the case when q ∈ D
belongs to more than one irreducible component, will be given in a future paper.

To simplify the notation one writes E0 = Ĥ and S = {0, 1, . . . , s} so that
the stratification of X associated with the Q-normal crossing divisor π−1(H) =⋃

i∈S Ei is defined by setting

(2.3) E◦
I :=

(⋂
i∈IEi

)
\
(⋃

i/∈IEi

)
,

for a given possibly empty set I ⊆ S. Note that, for i = 1, . . . , s, one has that
E◦

{i} = Ěi.

Let X =
⊔

j∈J Qj be a finite stratification on X given by its quotient singular-
ities so that the local equation of g = f ◦ π at q ∈ E◦

I ∩Qj is of the form

xm1

1 · · ·xmk

k : B/G −→ C,

where B is an open ball around q, and G is an abelian group acting diagonally as
in (d;A). The multiplicities mi and the action G are the same along each stratum
E◦

I ∩Qj , i.e., they do not depend on the chosen point q ∈ E◦
I ∩Qj. Let us denote

Ěi,j := Ěi ∩Qj, mi,j := m(Ěi,j).

The following result is nothing but a generalization of Theorem 3.1 written in
the language of divisors. We use the classical convention for indicesM = Cn+1/μd

(instead of Cn/μd) in the theorem below.

Theorem 2.8. Let f : (M, 0) → (C, 0) be a nonconstant analytic function germ
and let H = {f = 0}. Consider the Milnor fiber F and the geometric monodromy
h : F → F . Assume π : X → (M, 0) is an embedded Q-resolution of (H, 0). Then,
using the notation above, one has (i = 1, . . . , s, j ∈ J):

1. The Lefschetz number of hk = h ◦
(k)
· · · ◦ h : F → F , k ≥ 0, and the Euler

characteristic of F are

Λ(hk) =
∑

i,j, mi,j |k
mi,j · χ(Ěi,j) and χ(F ) =

∑
i,j

mi,j · χ(Ěi,j) = Λ(h0).

2. The local monodromy zeta function of f at 0 is

Z(t) =
∏
i,j

(1− tmi,j )
χ(Ěi,j) .

3. In the isolated case, the characteristic polynomial of the complex monodromy
of (H, 0) ⊂ (M, 0) is

Δ(t) =
[ 1

t− 1

∏
i,j

(tmi,j − 1)
χ(Ěi,j)

](−1)n

,

and the Milnor number is μ = (−1)n
[
− 1 +

∑
i,j mi,j · χ(Ěi,j)

]
.
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Proof. Only the proof of (2) is given; the other items follow from this one. Using

that E0 = Ĥ and S = {0, 1, . . . , s}, the support of the total transform can be
written as

π−1(H) = Ĥ ∪ π−1(0) =
⋃
i∈S

Ei.

Let X =
⊔

I⊆S E
◦
I be the stratification of X given in (2.3) associated with

this Q-normal crossing divisor. This partition gives rise to a stratification on
π−1(0) =

⊔
E◦

I , where the intersection is taken over

I ∈ P(S) \ {∅, {0}}.

However, the equivariance property is not satisfied in general, since the strata
may contain singular points ofX . Instead, let S be the following finer stratification:

S =
{
E◦

I ∩Qj

}
I⊂S, I �= ∅, {0}, j∈J

.

Now the family S is a finite stratification of the exceptional divisor of π such
that the complex ψf◦π(Rj∗CX\π−1(H)) is equivariantly S-constructible, where

j : X \ π−1(H) ↪−→ X

is the inclusion. Hence Theorem 2.3 applies. Moreover, given q ∈ π−1(0) there
exist I = {i1, . . . , ik} ⊂ S, k ≥ 1 (k = 1 ⇒ i1 
= 0), and j ∈ J such that the local
equation of g = f ◦ π at q is given by the function

x
mi1

i1
· · ·xmik

ik
: Bj/Gj −→ C.

The numbers mij and the action Gj are the same along each stratum of S.
By Lemma 2.5, the strata with k ≥ 2 do not contribute to the monodromy zeta
function.

Take an arbitrary point xT = xI,j in E
◦
I∩Qj . Then from the previous discussion

one has

Z(f) =
∏
T∈S

Z(g, xT ) =
∏

I⊂S, j∈J
I �= ∅, {0}

Z(g, xI,j)
χ(E◦

I∩Qj)

=
∏

i=1,...,s, j∈J

Z(g, x{i},j)
χ(E◦

{i}∩Qj) =
∏

i=1,...,s, j∈J

(1− tmi,j )χ(Ěi,j).

Above, Lemma 2.5 is again used for the computation of the monodromy zeta
function at x{i},j . Observe also that E◦

{i} ∩Qj = Ěi,j . The proof is complete. �

This theorem has already been proven by Veys in [19] for plane curve singu-
larities, that is, for n = 1. If all the d’s are equal to one, then π : X → (Cn+1, 0)
is an embedded resolution of (H, 0) in the classical sense and one obtains exactly
the formula by A’Campo [1].

Remark 2.9. Let X =
⊔

j∈J Q
′
j be another finite stratification of X such that

the function q ∈ Ěi ∩ Q′
j 	−→ m(Ei, q) is constant. Then, the previous theorem

still holds replacing Ěi,j = Ěi ∩Qj by Ěi ∩Q′
j.
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Remark 2.10. Let q be a point living in exactly one irreducible component of
π−1(H) and assume xm1 : X(d;A) → C is a local equation of the total transform
at q. If the quotient space is represented by a normalized type and gcd(di, ai1) 
= 1
for some i = 1, . . . , r, then X \ π−1(H) must contain singular points, see for
instance [8].

Therefore, when Sing(M) ⊂ H and thus M \H ∼= X \ π−1(H) is smooth, the
numbers mi,j ’s take the simple form

mi,j :=
m

lcm (d1/gcd(d1, a11), . . . , dr/gcd(dr, ar1))
=

m

lcm(d1, . . . , dr)
,

after having normalized the types involved in the corresponding embeddedQ-resol-
ution of the singularity, cf. Remark 3.2.

3. Applications and examples

The following result is nothing but a reformulation of Theorem 2.8, adapted to the
present setting.

Theorem 3.1. Let f : (Cn+1, 0) → (C, 0) be a nonconstant analytic function germ
defining an isolated singularity and let H = {f = 0}. Assume π : X → (Cn+1, 0)
is an embedded Q-resolution of (H, 0), having cyclic quotient singularities. Let
X0 = π−1(H) be the total transform and S = π−1(0) the exceptional divisor.
Consider Sm,d′ to be the set{

s ∈ S

∣∣∣∣ the local equation of X0 in s is given by the well-defined
function xmi : X(d; a0, . . . , an) → C, where xi is a local
coordinate of X in s, and d/ gcd(d, ai) = d′.

}
.

Then, the characteristic polynomial of the complex monodromy of the hyper-
surface (H, 0) is

(3.1) Δ(t) =
[ 1

t− 1

∏
m,d′

(tm/d′
− 1)χ(Sm,d′)

](−1)n

.

Remark 3.2. If all cyclic quotient singularities appearing in X are written in
their normalized forms and gcd(d, ai) 
= 1, then the space X \ X0 must contain
singular points. This, however, contradicts that π is an embedded Q-resolution.
Therefore after normalizing, one can always assume that d = d′, cf. Remark 2.10.

Example 3.3. Let f : C2 → C be the function given by f = xp + yq and assume
that e = gcd(p, q), p = p1e and q = q1e. Consider π : Ĉ2(q1, p1) → C2 the weighted

blow-up at the origin of type (q1, p1). Recall that Ĉ2(q1, p1) = U0 ∪ U1 has two
singular points corresponding to the origin of each chart.

In U0 = X(q1;−1, p1) the total transform of f is given by the function xp1q1e

(1+ yq). The equation yq = −1 has only q/q1 = e different solutions in U0 and the
local equation of the total transform at each of theses points is of the form xp1q1e y.
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Hence the proper map π is an embedded Q-resolution of C = {f = 0} where
all spaces are written in their normalized forms; see Figure 1.

m = p1q1e

(p1; q1,−1)(q1;−1, p1)

(e)
· · ·

U0 U1

Figure 1. Embedded Q-resolution of f = xp + yq.

The set Sm,d is not empty for (m, d) ∈ {(p1q1e, 1), (p1q1e, q1), (p1q1e, p1)}.
Their Euler characteristics are

χ(Sp1q1e,1) = 2− (e+ 2) = −e, χ(Sp1q1e,q1) = χ(Sp1q1e,p1) = 1.

Now, we apply Theorem 3.1 and obtain

Δ(t) =
(t− 1)(tpq/e − 1)e

(tp − 1)(tq − 1)
.

Another interesting way to calculate the characteristic polynomial could be the
following. Consider π : Ĉ2(q, p) → C, the blow-up at the origin of type (q, p). Now,
U0 = X(q;−1, p) and the equation of the total transform in this chart is xpq(1+yq).
As above, the map π is an embedded Q-resolution of C and our formula can be
applied. However, the exceptional divisor, outside the two singular points, is not
given by xpq as one might expect naively. The reason is that X(q;−1, p) is not
written in a normalized form.

The isomorphism X(q;−1, p) ∼= X(q1;−1, p1) sends xpq : X(q;−1, p) → C to
xpq/e : X(q1;−1, p1) → C, and thus the required equation is xpq/e : C2 → C. After
applying the formula one obtains the same characteristic polynomial, see Figure 2.

xpq

(q;−1, p)

pq
e

Figure 2. Non-normalized cyclic quotient singularity.

This example shows that although one can blow up using noncoprime weights,
if possible, it is better to do it with the corresponding coprime weights to simplify
calculations. However, the normalized condition is not necessary in the hypothesis
of the statement.

Example 3.4. Assume that p1/q1 < p2/q2 are two irreducible fractions and
gcd(q1, q2) = 1. Let C be the complex plane curve with Puiseux expansion

y = xp1/q1 + xp2/q2 .
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Consider π1 : Ĉ2(q1, p1) → C2, the weighted blow-up at the origin of type
(q1, p1). The exceptional divisor E0 has multiplicity p1q1q2 and contains two sin-

gular points of types (q1;−1, p1) and (p1; q1,−1). The strict transform Ĉ of the

curve and E0 intersect at one smooth point, say P . The Puiseux expansion of Ĉ
in a small neighborhood of this point is

y = x(p2q1−p1q2)/q2 ,

and thus π1 is not a Q-resolution.

E0
(p1)(q1)

Ĉ

π2←− E0
(p1)(q1)

Ĉ
(q2)

E1P

Figure 3. Embedded Q-resolution of C = {y = x
p1
q1 + x

p2
q2 }.

Now let π2 be the weighted blow-up at P of type (q2, p2q1 − p1q2). The multi-
plicity of the new exceptional divisor E1 is q2(p1q1q2+p2q1−p1q2). It intersects E0
transversally at a singular point of type (p2q1 − p1q2; q2,−1) and also contains
another singular point of type (q2;−1, p2q1). The strict transform of the curve is
a smooth variety and cuts E1 transversally at a smooth point.

Hence the composition π1 ◦ π2 defines an embedded Q-resolution of C ⊂ C2

where all cyclic quotient spaces are written in their normalized form. Figure 3
illustrates the whole process.

The Euler characteristics of the three singular points are χ(E0 \ {3 points}) =
χ(E1 \ {3 points}) = −1 and χ = 1. Note that the singular point of type (p2q1 −
p1q2) does not contribute to the monodromy zeta function, since it belongs to more
than one divisor. After applying formula (3.1), one obtains

Δ(t) =

(
t− 1

)(
tp1q1q2 − 1

)(
tq2(p1q1q2+p2q1−p1q2) − 1

)(
tp1q2 − 1

)(
tq1q2 − 1

)(
tp1q1q2+p2q1−p1q2 − 1

) , μ = degΔ(t).

In the case that q1 and q2 are not coprime, the same arguments apply and one
can find a formula for the characteristic polynomial of an irreducible plane curve
with two (and then with an arbitrary number of) Puiseux pairs. These formulas
are quite involved and we omit them.

Example 3.5. Let e1, e2, e3 be three positive integers; let e = gcd(e1, e2, e3).
Assume that ω = (e1/e, e2/e, e3/e) is a weight vector of pairwise relatively prime
numbers. Let C be the projective curve in P2

ω defined by the polynomial

F = xe2e3/e + ye1e3/e + ze1e2/e.

Note that this polynomial is quasi-homogeneous of degree e1e2e3/e
2. One is inter-

ested in computing the Euler characteristic of C.
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Consider π : Ĉ3
ω → C3 the weighted blow-up at the origin with respect to ω

and take the affine variety H = {F = 0} ⊂ C3. The space Ĉ3
ω = U0 ∪ U1 ∪ U2 has

just three singular points, corresponding to the origin of each chart, and located at
the exceptional divisor E = π∗(0) ∼= P2

ω. The order of the cyclic groups are e3/e,
e2/e and e1/e, respectively.

In the third chart U2 = X(e3/e; e1/e, e2/e,−1) the equation of the total trans-
form is

ze1e2e3/e
2

(xe2e3/e + ye1e3/e + 1).

One sees that the exceptional divisor and the strict transform are smooth varieties
intersecting transversally. Thus π is an embedded Q-resolution of H where all the
quotient spaces are written in a normalized form, see Figure 4.

P2( e1e ,
e2
e ,

e3
e ) (

e1
e

)

(
e2
e

)

(
e3
e

)
e1e2e3

e2

Ĥ

Figure 4. Embedded Q-resolution of F = xe2e3/e + ye1e3/e + ze1e2/e.

The set Sm,d is not empty for m = e1e2e3/e
2 and d ∈ {1, e1/e, e2/e, e3/e}.

Since the intersection E∩ Ĥ can be identified with C, the Euler characteristics are

χ(Sm,1) = −χ(C), χ(Sm,e1/e) = χ(Sm,e2/e) = χ(Sm,e3/e) = 1.

From Theorem 3.1, the characteristic polynomial of H is

Δ(t) =

(
te1e2/e − 1

)(
te1e3/e − 1

)(
te2e3/e − 1

)(
t− 1

)(
te1e2e3/e2 − 1

)χ(C)
.

On the other hand, the Milnor number is well-known to be

μ =
(e1e2

e
− 1
)(e1e3

e
− 1
)(e2e3

e
− 1
)
.

Using that μ = degΔ(t) one finally obtains

χ(C) = e1 + e2 + e3 −
e1e2e3
e

.

Example 3.6. Let p, q, r be three positive integers and consider f : C3 → C the
polynomial function given by

f = xp + yq + zr.

To simplify notation we set e1 = gcd(q, r), e2 = gcd(p, r), e3 = gcd(p, q),
e = gcd(p, q, r), and k = e1e2e3.
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The following information will be useful later.

gcd(qr, pr, pq) =
e1e2e3
e

=
k

e
,

d1 := gcd
(epr
k
,
epq

k

)
=

ep

e2e3
; a1 := lcm(d2, d3) =

e2qr

e1k
= d2d3 ,

d2 := gcd
(eqr
k
,
epq

k

)
=

eq

e1e3
; a2 := lcm(d1, d3) =

e2pr

e2k
,

d3 := gcd
(eqr
k
,
epr

k

)
=

er

e1e2
; a3 := lcm(d1, d2) =

e2pq

e3k
.

Take the weight vector ω = e
k (qr, pr, pq) and let π : Ĉ3

ω → C3 be the weighted

blow-up at the origin with respect to ω. The new space Ĉ3
ω = U0∪U1∪U2 has three

lines (each of them isomorphic to P1) of singular points located at the exceptional
divisor E = π−1(0) ∼= P2

ω. They actually coincide with the three lines L0, L1, L2

at infinity of P2
ω.

In the third chart U2 = X(epq/k; eqr/k, epr/k,−1), an equation of the total
transform is

zepqr/k (xp + yq + 1),

where z = 0 is the exceptional divisor and the other equation corresponds to the
strict transform.

The line L0 and Ĥ intersect at exactly e1 points. Indeed,

#(L0 ∩ Ĥ) = #
{
[x : y : z]ω ∈ P2

w | x = 0, xp + yq + zr = 0
}

= #
{
[y : z] ∈ P1

(
epr/k, epq/k

) ∣∣ yq + zr = 0
}

(∗)
= #

{
[y : z] ∈ P1

∣∣ ye1 + ze1 = 0
}
= e1,

as claimed. Note that Proposition 1.8 was used in (∗) for the identification
P1(epr/k, epq/k) ∼= P1(r/e1, q/e1) → P1 given by [y : z] 	→ [yq/e1 : yr/e1 ].

Analogously, L1 ∩ Ĥ (resp. L2 ∩ Ĥ) consists of e2 (resp. e3) points. Moreover,

one has that Ĥ and E are smooth varieties that intersect transversally. Hence the
map π is an embedded Q-resolution of {f = 0} ⊂ C3 where all the cyclic quotient
spaces are presented in normalized form, see Figure 5.

The Euler characteristics as well as the fractions m/d for the nonempty sets
Sm,d are recorded in the table below.

Sepqr/k,1 Sepqr/k,ep/(e2e3) Sepqr/k,eq/(e1e3) Sepqr/k,er/(e1e2)

m/d epqr/k qr/e1 pr/e2 pq/e3

χ e1 + e2 + e3 − χ(C) −e1 −e2 −e3
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Sepqr/k,eqr/k Sepqr/k,epr/k Sepqr/k,epq/k

m/d p q r

χ 1 1 1

Here we denote by C the variety in P2
ω defined by the ω-homogeneous polyno-

mial xp + yq + zr. Recall that the map P2
ω → P2(e1/e, e2/e, e3/e) given by

[x : y : z]ω 	−→ [xep/(e2e3) : yeq/(e1e3) : zer/(e1e2)](e1/e,e2/e,e3/e)

is an isomorphism and maps the hypersurfaceC to {xe2e3/e+ye1e3/e+ze1e2/e = 0}.
By the preceding example its Euler characteristic is

χ(C) = e1 + e2 + e3 −
e1e2e3
e

,

and finally, from Theorem 3.1, one obtains the characteristic polynomial of f ,

Δ(t) =

(
tepqr/(e1e2e3) − 1

)e1e2e3/e(
tp − 1

)(
tq − 1

)(
tr − 1

)(
t− 1

)(
t
qr
e1 − 1

)e1(
tpr/e2 − 1

)e2(
tpq/e3 − 1

)e3 .

L0

L1

L2

(
epr
k

)

(
epq
k

) (
eqr
k

)

(
er

e1e2

)(
ep

e2e3

)

(
eq

e1e3

)

Ĥ ∩ E E ∼= P2
ω

epqr

k
e2 points

e1 pts e3 pts

Figure 5. Embedded Q-resolution of f = xp + yq + zr.

Note that the Euler characteristic of C could also be obtained using that the
Milnor number is μ = (p− 1)(q− 1)(r− 1) = degΔ(t), as in the previous example.

Example 3.7. Let f : C3 → C be the polynomial function defined by f =
zm+k + hm(x, y, z). Assume that C = {hm = 0} ⊆ P2 has only one singular point
P = [0 : 0 : 1], which is locally isomorphic to the cusp xq + yp, gcd(p, q) = 1.
Define k1 = gcd(k, p) and k2 = gcd(k, q).

Consider the classical blow-up at the origin π1 : Ĉ3 → C3. In the third chart,
the local equation of the total transform is

zm(zk + xq + yp) = 0.
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The strict transform Ĥ and the exceptional divisor E0 intersect transversally at
every point except in P ∈ C ≡ E0 ∩ Ĥ . Also Ĥ \ P is smooth.

One is therefore interested in the blow-up at the point P with respect to
(kp, kq, pq). However, in order to obtain cyclic quotient spaces in normalized form,
it is more appropriate to choose ω = (kp/(k1k2), kq/(k1k2), pq/(k1k2)) instead.
Let π2 be the weighted blow-up at P with respect to the vector ω. The local
equation of the total transform in the second chart is given by{

y
pq

k1k2
(m+k)

zm(zk + xq + 1) = 0
}
⊂ X

(
kq

k1k2
;
kp

k1k2
,−1,

pq

k1k2

)
,

where y = 0 represents the new exceptional divisor E1.

The composition π = π1 ◦ π2 is an embedded Q-resolution. The final situation
is illustrated in Figure 6.

E1 ∩ E0

mE0
(

kp
k1k2

)
(

kq
k1k2

)
(

k
k1k2

)

P2

Ĥ ∩ E0

(
k

k1k2

)

(
pq

k1k2

)
(

kp
k1k2

)Ĥ ∩ E1

(
q
k2

) (
p
k1

)
(

kq
k1k2

) E0 ∩ E1

x = 0y = 0

z = 0

k1 pts k2 pts

P2
ωpq

k1k2
(m+ k)E1

Figure 6. Intersection of E0 (resp. E1) with the rest of components.

The sets for which the Euler characteristic has to be computed are

Sm,1, S�,1, S�,p/k1
, S�,q/k2

, S�,pq/(k1k2); � =
pq

k1k2
(m+ k).

Clearly χ(S�, pq/k1k2
) = 1, χ(S�, p/k1

) = −k2 and χ(S�, q/k2
) = −k1, since they are

homeomorphic to a point, P1\{k2+2 points}, and P1\{k1+2 points}, respectively.
The set Sm,1 is P2 \C. Finally, we use the additivity of the Euler characteristic to
compute χ(S�,1).

Indeed, let D ⊂ P2(k1, k2, 1) be the projective variety defined by the equation
zk1k2 + xk2 + yk1 = 0. Note that D is isomorphic to

Ĥ ∩ E1 = {zk + xq + yp = 0} ⊂ P2
ω

and, by Example 3.5 (using e1 = k1, e2 = k2, and e3 = 1), its Euler characteristic
is k1 + k2 + 1− k1k2. Then,

χ(S�,1) = 3− (2 + 2 + 2 + χ(D)) + k1 + k2 + 4 = k1k2.
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Every cyclic quotient singularity is written in a normalized form and thus the
generalized A’Campo formula can be applied with d′ = d,

Δ(t) =

(
tm − 1

)χ(P2\C)

t− 1
·
(
tm+k − 1

)(
t

pq
k1k2

(m+k) − 1
)k1k2(

t
p
k1

(m+k) − 1
)k1
(
t

q
k2

(m+k) − 1
)k2

=

(
tm − 1

)χ(P2\C)

t− 1
·Δk

P (t
m+k).

Let us explain the notation. The symbol ΔP (t) denotes the characteristic
polynomial of C at P = [0 : 0 : 1], where the curve is locally isomorphic to xq+yp,
and if Δ(t) =

∏
i(t

mi − 1)ai , then Δk(t) denotes

Δk(t) =
∏
i

(tmi/gcd(mi,k) − 1)gcd(mi,k)ai .

Remark 3.8. Using these techniques an embedded Q-resolution associated with
the family of examples zm+k+hm(x, y, z), where hm defines an arbitrary projective
curve in P2 such that Sing(hm)∩{z = 0} = ∅ in P2, can be computed. In particular,
the formulas of D. Siersma [16] and J. Stevens [18] for the characteristic polynomial
of the Yomdin–Lê surface singularities can be obtained in this way. They are not
presented explicitly because it not the purpose of this paper. Note that this family
of singularities has also been extensively studied by E. Artal [4] and I. Luengo [12].

We conclude this section by emphasizing that in the classical A’Campo formula
one has to take care to compute the Euler characteristic, while the multiplicities
remain trivial. Using our formula we also have to take care of computing the
multiplicities and the orders of the corresponding cyclic groups, especially when
the quotient singularity is not in normalized form.

4. Zeta function of not well-defined functions

In what follows the monodromy zeta function associated with not well-defined
functions over M = X(d;A) is studied. Assume f ∈ C[x1, . . . , xn] is a polynomial
such that, for P ∈ Cn, there holds

f(P ) = 0 =⇒ f(ξd · P ) = 0, ∀ξd ∈ μd.

Then the zero set {[x] ∈ M | f(x) = 0} =: {f = 0} ⊂ M is well defined,
although f may not induce a function over M .

Proposition 4.1. Let f ∈ C[x1, . . . , xn] be a reduced polynomial. The following
conditions are equivalent:

(1) ∀P ∈ Cn,
[
f(P ) = 0 =⇒ f(ξd · P ) = 0, ∀ξd ∈ μd

]
.

(2) ∃v ∈ Nr such that f(ξd · x) = ξvdf(x), ∀ξd ∈ μd.

(3) ∃k ≥ 1 such that fk := f
(k)
· · · f : M → C is a function.
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Proof. The only nontrivial part is (1) ⇒ (2). Define gi(x) for each i = 1, . . . , r to
be the polynomial gi(x) := f((1, . . . , ζi, . . . , 1) · x) = f(ζi · x), where ζi is a fixed
primitive di-th root of unity. By (1), since f is reduced, one has gi ∈ IV (f) =√
f = 〈f〉.
There exists hi ∈ C[x] such that gi = hif . Taking degrees shows the polyno-

mials hi must be constants. However,

f(x) = f(ζdi

i · x) = gi(ζ
di−1
i · x) = hi · f(ζdi−1

i · x) = · · · = hdi

i · f(x).

Hence hi = ζvii for some vi ∈ N. Now the vector v = (v1, . . . , vr) ∈ Nr

satisfies (2) and the claim follows. �

This example shows that the reducedness condition in the statement of the
previous result is necessary.

Example 4.2. Let f = (x2+y)(x2−y)3 ∈ C[x, y] and consider the cyclic quotient
space M = X(2; 1, 1). Then {f = 0} ⊂M defines a zero set but there is no k such
that fk is a function over M .

If f : X(d;A) → C is a well-defined function, using A’Campo’s formula, one
easily sees that Z(fk; t) = Z(f ; tk). Therefore, when f is not a function but fk is,
it is natural to define the monodromy zeta function of f by

Z(f ; t) := Z(fk; t1/k).

One can prove that this is well defined, that is, it does not depend on k. Indeed,
assume that f � also induces a function over M , for some � ≥ 1. Using Bézout’s
identity for k and l one has that fgcd(k,l) : M → C is a function too. Denote
e := gcd(k, l), k = k1e, and � = �1e. Then,

Z(fk; t1/k) = Z(fk1e; t1/(k1e)) = Z(fe; t1/e) = Z(f �1e; t1/(�1e)) = Z(f �; t1/�).

The zeta function defined is a rational function on C[t1/k], where k is the
minimum � ≥ 1 such that f � is a function over M . When f itself is a function,
that is k = 1, then it is a rational function on C[t] as usual.

The Euler characteristic of the Milnor fiber and the Milnor number are de-
fined by

χf := degZ(f ; t), μf := (−1)n[−1 + χf ],

where the degree of ti/k is i/k. They are in general rational numbers and they
satisfy

χf =
χfk

k
, μf =

(−1)n[1− k] + μfk

k
.

In this situation, our generalized A’Campo’s formula can be applied directly
to f , that is, without going through fk. Note that in this case, the numbers mi,j

of Theorem 2.8 are rational numbers.

Example 4.3. Let f = xayb(x2 + y3) ∈ C[x, y]. Consider M = X(d; p, q) not
necessarily written in a normalized form but assume gcd(d, p, q) = 1 and d|(2p−3q)
hold. Then, f defines a zero set but does not induce a function over M .
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Figure 7 represents an embedded Q-resolution of {f = 0} ⊂ M that has been
obtained using a blowing-up at the origin of type

(
3/gcd(d, p), 2/gcd(d, q)

)
. The

numbers in brackets are the order of the cyclic groups after normalization and the
others are the multiplicities of the corresponding divisors.

m = 3a+2b+6
gcd(d,p) gcd(d,q)(

3
gcd(d,p)

)(
2

gcd(d,q)

)
a

gcd(d,q)
b

gcd(d,p)1

Figure 7. Embedded Q-resolution of {xayb(x2 + y3) = 0} ⊂ X(d; p, q).

Hence the monodromy zeta function is Z(t) = (1 − tm)−1, χf = −m, and the
Milnor number is μf = m+1. Here a, b are assumed to be non-zero, since otherwise
the singular points of the final total space would also contribute to Z(f ; t). Some
special values for μf are shown. Observe that the first two values correspond to
the functions xy(x+ y) and xy(x2 + y3) defined over C2.

(d, p, q) (6, 3, 2) (1,−,−) (6, 3, 2)
(a, b) (2, 3) (1, 1) (1, 1)
μf 4 12 17/6

Remark 4.4. In the previous example the quotient spaceX(d; p, q) can be normal-
ized toX

(
d/(gcd(d, p) gcd(d, q)), p/gcd(d, p), q/gcd(d, q)

)
. Under this isomorphism

the polynomial f = xayb(x2 + y3) is sent to

xa/gcd(d,q) · yb/gcd(d,p)
(
x2/gcd(d,q) + y3/gcd(d,p)

)
,

which is not a polynomial in general. This seems to force one to work with non-
normalized spaces. However, since d|(2p−3q) and gcd(d, p, q) = 1, then gcd(d, q)|2
and gcd(d, p)|3. Thus the previous expression is a polynomial times a monomial
with rational exponents.

This fact is not a coincidence as the following result clarifies. Although it
can be stated in a more general setting, to simplify the ideas, we only consider
polynomials in two variables over cyclic quotient singularities.

Proposition 4.5. Let d, p and q be three integers with gcd(d, p, q) = 1. Let
f(x, y) ∈ C[x, y] such that f(ξpdx, ξ

q
dy) = ξvdf(x, y). If x � f(x, y) and y � f(x, y),

then f(x1/ gcd(d,q), y1/ gcd(d,p)) is again a polynomial.
In particular, an arbitrary polynomial g(x, y) satisfying g(ξpdx, ξ

q
dy) = ξvdg(x, y),

is converted after normalizing X(d; p, q) into a polynomial times a monomial with
rational exponents, that is, it can be written in the form

g
(
x1/gcd(d,q), y1/gcd(d,p)

)
= xaybh(x, y),

where h(x, y) ∈ C[x, y] and a, b ∈ Q≥0.
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Proof. Since y � f(x, y), there exists k′ ≥ 0 such that xk
′
is a monomial of f . The

action is diagonal and does not change the forms of the monomials. Hence xk
′

has the same behavior with respect to the action as f , that is, ξk
′p

d xk
′
= ξvdx

k′
.

This implies that d | (k′p − v). Take k ≥ 0 such that k ≡ −k′ modulo d so that
xkf(x, y) : X(d; p, q) → C is a function.

Since x � f(x, y), there exists l ≥ 0 such that yl is a monomial of f and thus
xkyl in μd-invariant. This means that

d | (pk + ql) =⇒ gcd(d, q) | pk =⇒ gcd(d, q) | k,

and hence f(x1/ gcd(d,q), y) is a polynomial. By symmetry f(x, y1/ gcd(d,p)) is a
polynomial too and now the proof is complete. �

As for the weighted projective plane, let F ∈ C[x, y, z] be a (p, q, r)-homogeneous
polynomial with gcd(p, q, r) = 1. The monodromy zeta function of F (x, y, z) at a
point of the form [a : b : 1] is defined by

Z
(
F (x, y, z), [a : b : 1]; t

)
:= Z

(
f(x, y, 1), (a, b); t

)
.

Note that f(ξprx, ξ
q
r , 1) = ξdeg f

r f(x, y, 1) and thus f(x, y, 1) satisfies the conditions
of Proposition 4.1 (2), where the quotient space is simplyM = X(r; p, q). Therefore
the previous expression equals

Z(f(x, y, 1)r, (a, b); t1/r).

Analogously one defines the zeta function at every point of P2(p, q, r) and one
sees that it is independent of the chosen chart. This can be generalized to spaces
like Pn

ω/μ, where μ is an abelian finite group acting diagonally as usual.

To define the monodromy zeta function for polynomials defining a zero set but
there is no k such that fk is a function over the quotient space, one could use
A’Campo’s formula and try to prove that the rational function obtained is inde-
pendent of the chosen embedded Q-resolution. We do not insist on the correction
of this definition because it is not the purpose of this work.

Example 4.6. We continue here with Example 4.2. Blowing up the origin of
X(2; 1, 1) with weights (1, 2), an embedded Q-resolution of {f = 0} ⊂ X(2; 1, 1) is
computed and it make sense to define the zeta function using this resolution, see
Figure 8.

8

(4; 1, 1)(2; 1, 1)
Z(t) =

(1− t4)(1− t2)

(1− t8)

Figure 8. Embedded Q-resolution of {(x2 + y)(x2 − y)3 = 0} ⊂ X(2; 1, 1).
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5. Why Abelian? D4 as a quotient singularity

Throughout the paper, the ambient space X is assumed to be Cn/G, where G
is an abelian finite subgroup of GL(n,C). In this final part, the behavior for
nonabelian groups is illustrated using D4 as a quotient singularity. As we shall see,
double points in an embedded Q-resolution of a well-defined function f : X → C
contribute in general to its monodromy zeta function. In this sense abelian groups
are the largest family for which Theorem 2.8 applies.

Let (x, y) be coordinates onC2 and consider the subgroup ofGL(2,C) generated
by the matrices

A =

(
i 0
0 −i

)
, B =

(
0 −1
1 0

)
.

Thus A2 = B2 = (AB)2 = −Id2. This group of order 8, often denoted by BD8, is
called the binary dihedral group. The quotient C2/BD8 is denoted by D4.

Let us compute the zeta function of f := (xy)m : D4 → C, where m is an even

positive integer so that the map is well defined. Consider π : Ĉ2 → C2 the usual
blow-up at the origin. The action BD8 on C2 extends naturally to an action on Ĉ2

such that the induced map π̄ : Ĉ2/BD8 → C2/BD8 =: D4 defines an embedded
Q-resolution of {f = 0} ⊂ D4.

More precisely, there are three quotient singular points, all of type (2; 1, 1),
located at the exceptional divisor. They correspond to the points [0 : 1], [1 : 1],
[i : 1] ∈ P1/BD8. The stabilizer of P := ((0, 0), [0 : 1]) is the cyclic group of four
elements (BD8)P = {Id, A,A2, A3} ∼= μ4 acting on C2 of type (4; 1,−1).

Denote by ̂X(4; 1,−1) the space arising after the (1, 1)-blow-up at a singular
point of type (4; 1, 1). Then, as germs,(

Ĉ2/BD8, [P ]
)
=
(
Ĉ2/(BD8)P , [P ]

)
=
( ̂X(4; 1,−1), [P ]

)
,

and the isomorphisms are given by the identity map. The charts of ̂X(4; 1,−1) =

Û1 ∪ Û2 are described in detail in Section 4.3 of [3] and, for instance, the first is
defined by

X(2; 1, 1) −→ Û1, [(x
2, y)] 	→ [((x, xy), [1 : y])].

Hence the strict transform of {f = 0} ⊂ D4 intersects the exceptional divisor at P
transversally because, in fact, the equation of the total transform at this point is
given by xmym : X(2; 1, 1) → C, see Figure 9.

(2; 1, 1)

m

m
(2; 1, 1)

(2; 1, 1)

P

Figure 9. Embedded Q-resolution of {(xy)m = 0} ⊂ D4.
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From Theorem 2.8, the monodromy zeta function of f and the Euler charac-
teristic of the Milnor fiber are

Z(t) =
(1− tm/2)2

1− tm
=

1− tm/2

1 + tm/2
, χ(F ) = degZ(t) = 0.

In particular, Z(t) is not trivial although f defines a “double point” on D4, as
claimed.

Conclusion and future work. The combinatorial and computational complex-
ity of embedded Q-resolutions is much simpler than that of the classical embedded
resolutions, but they retain as much information as is needed for understanding
the topology of the singularity. This will become clear in the author’s PhD the-
sis [13]. We will prove in a forthcoming paper other advantages of these embedded
Q-resolutions, e.g., in the computation of abstract resolutions of surfaces via Jung’s
method; see [2] and [3].
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AIBDE-2011-0986 Acción Integrada hispano-alemana.

mailto:jorge@unizar.es

	Preliminaries
	V-manifolds and quotient singularities
	Weighted projective spaces
	Embedded Q-resolutions
	Weighted blow-ups
	Classical blow-up of C2
	Weighted (p,q)-blow-up of C2
	Weighted (p,q,r)-blow-up of C3


	Statement and proof of the main theorem
	A result by Dimca
	Monodromy zeta function of a normal crossing divisor
	A'Campo's formula for embedded Q-resolutions

	Applications and examples
	Zeta function of not well-defined functions
	Why Abelian? D4 as a quotient singularity

