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Infinitely many nonradial solutions for the

Hénon equation with critical growth

Juncheng Wei and Shusen Yan

Abstract. We consider the following Hénon equation with critical growth:

(∗)
{
−Δu = |y|α u

N+2
N−2 , u > 0 y ∈ B1(0),

u = 0, on ∂B1(0),

where α > 0 is a positive constant, B1(0) is the unit ball in R
N , and

N ≥ 4. Ni [9] proved the existence of a radial solution and Serra [12]
proved the existence of a nonradial solution for α large and N ≥ 4. In
this paper, we show the existence of a nonradial solution for any α > 0
and N ≥ 4. Furthermore, we prove that equation (*) has infinitely many
nonradial solutions, whose energy can be made arbitrarily large.

1. Introduction

Of concern is the following Hénon equation with critical growth:

(1.1)

{
−Δu = |y|α u

N+2
N−2 , u > 0, y ∈ B1(0),

u = 0, on ∂B1(0),

where α > 0 is a positive constant, B1(0) is the unit ball in R
N , and N ≥ 3.

Equation (1.1) arises in the study of astrophysics, see [7]. If the exponent
(N+2)/(N−2) is replaced by p, where p < (N+2)/(N−2), a solution can be ob-
tained easily by variational methods. When p = (N+2)/(N−2), the loss of com-

pactness from H1
0 (B1(0)) to L

2N
N−2 (B1(0)) makes the problem (1.1) very difficult

to study. Ni [9] first proved the existence of a radial solution for any α > 0. On
the other hand, it is easy to check that the mountain pass value c corresponding
to (1.1) is

c =
1

N
SN/2,
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where S is best Sobolev constant of the embedding from D1,2(RN ) to L
2N

N−2 (RN ),
from which we can deduce that c is not a critical value of the functional corre-
sponding to (1.1). When N = 2, Smets–Su–Willem [13] showed that the mountain
pass solution is nonradial when α is large. When N ≥ 3, for the Hénon equations
with nearly critical growth (replacing (N+2)/(N−2) in (1.1) by (N+2)/(N−2)−ε
with ε > 0 small), Cao–Peng [3] proved that the mountain pass solution is non-
radial and blows up as ε → 0. Thus, it is natural to ask whether (1.1) has a
nonradial solution. Using a variational method, Serra [12] proved that (1.1) has
a nonradial solution when N ≥ 4 and α is large. As far as we know, up to now,
there is no result showing the existence of nonradial solution of (1.1), nor is there
a multiplicity result, with arbitrary α > 0, for (1.1).

The aim of this paper is to prove that (1.1) has infinitely many nonradial
solutions if N ≥ 4. In fact, we will study a more general problem:

(1.2)

{
−Δu = K(|y|)uN+2

N−2 , u > 0, y ∈ B1(0),

u = 0, on ∂B1(0),

where K(r) is a bounded function defined in [0, 1]. It is easy to see that a necessary
condition for the existence of a solution of (1.2) is that K(r) is positive somewhere.
On the other hand, Pohozaev identity implies (1.2) has no solution if K ′(r) ≤ 0
in [0, 1]. Concerning the existence of solutions for (1.2), using the same method as
in [15], we can prove the following existence result:

Theorem A. Suppose that there is a r0 ∈ (0, 1), such that K(r0) > 0, and

(1.3) K(r) = K(r0)−K0|r − r0|m +O(|r − r0|m+θ), as r → r0,

where m ∈ [2, N − 2), K0 > 0, and θ > 0 are some constants. Then, for N ≥ 5,
the problem (1.2) has infinitely many nonradial solutions.

Note that for the Hénon equation, K(r) = rα, which has no critical point in
(0, 1). So, Theorem A does not apply to the Henon equation (1.1).

Condition (1.3) implies that r0 is a local maximum point of K(r), and thus a
critical point of K(r). The function rα attains its maximum on [0, 1] at r0 = 1,
but r0 = 1 is not a critical point of rα.

The aim of this paper is to show that if K(r) is increasing near r0 = 1 (so it
is a maximum point of K(r) on [1 − δ, 1] for some small δ > 0), the zero Dirich-
let boundary condition makes it possible to construct infinitely many solutions
of (1.2), although r0 = 1 is not a critical point of K(r). Our main result in this
paper can be stated as follows:

Theorem 1.1. Suppose that N ≥ 4. If K(r) satisfies K(1) > 0 and K ′(1) > 0,
then problem (1.2))has infinitely many nonradial solutions. In particular, the
Hénon equation (1.1) has infinitely many nonradial solutions.

Recall that a necessary condition for the existence of at least one solution
of (1.2) is that K ′(r) is positive somewhere on [0, 1]. If K(r) ≥ 0 and N ≥ 5,
Theorems A and 1.1 show that under a condition which is slightly stronger than
this necessary condition, (1.2) has infinitely many solutions.
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We think that the condition that N ≥ 4 is just technical. The reason is that
the reduced energy does have a critical point when N = 3. The problem lies in the
reduction part which should be only technical. (Some partial (negative) results are
obtained by O. Druet and Laurain [6].).

The reader can refer to [1], [2], [4], [8], [10], [11], and [14] for results on Hénon
equations involving subcritical and near critical exponents.

Before we close this introduction, let us outline the main idea in the proof of
Theorem 1.1.

Let us fix a positive integer k ≥ k0, where k0 is large, which is to be determined
later.

Set
μ = k

N−1
N−2 , N ≥ 4

to be the scaling parameter.
Let 2∗ = 2N/(N − 2). Using the transformation u(y) �→ μ−(N−2)/2u(y/μ), we

find that (1.2) becomes

(1.4)

{
−Δu = K

( |y|
μ

)
u2∗−1, u > 0, y ∈ Bμ(0),

u = 0, on ∂Bμ(0).

It is well known that the functions

Ux,Λ(y) =
(
N(N − 2)

)(N−2)/4
( Λ

1 + Λ2|y − x|2
)(N−2)/2

, μ > 0, x ∈ R
N

are the only solutions to the following problem

−Δu = u
N+2
N−2 , u > 0 in R

N .

As the scaling parameter Λ → +∞, Ux,Λ is called a single-bubble centered at
the point x. Since there is no small parameter in (1.1) (here μ is fixed), we use
the scaling parameter Λ as the blow-up parameter. Our main idea is to place a
large number of bubbles inside Ω. Then the scaling parameter will be determined
by the number of bubbles. We put many bubbles along a k−polygon inside the
domain B1(0) but near the boundary. See Figure 1. (The idea of using the number
of bubbles as parameter was first introduced in [15].)

Let us remark that the variational method of Serra [12] also uses the dihedral
symmetry of k−polygons. By using the Dk×O(N−2) symmetry, the problem (1.1)
can be reduced to the one in a sector. He then showed that under dihedral sym-
metry, the loss of compactness can be recovered if the critical value is below some
constant, which holds true when N ≥ 4. To show that the solution is nonradial, he
needed to compare with the energy level of a radial solution. There the condition
that α is large is needed. Our method of construction is direct and gives more
information.

We continue our construction. Since Ux,Λ is not zero on ∂Bμ(0), we define
PUx,Λ as the solution of the following problem:

(1.5) ΔPUx,Λ = ΔUx,Λ, in Bμ(0), ΔPUx,Λ = 0 on ∂Bμ(0).



1000 J. Wei and S. Yan

Figure 1. The location of the bubbles.

Let y = (y′, y′′), y′ ∈ R
2, y′′ ∈ R

N−2. Define

Hs =
{
u : u ∈ H1

0 (Bμ(0)), u is even in yh, h = 2, . . . , N,

u(r cos θ, r sin θ, y′′) = u(r cos(θ + 2πj
k ), r sin(θ + 2πj

k ), y′′)
}
.

Let
xj =

(
r cos 2(j−1)π

k , r sin 2(j−1)π
k , 0

)
, j = 1, . . . , k,

where 0 is the zero vector in R
N−2, and let

Wr,Λ(y) =

k∑
j=1

PUxj ,Λ.

In this paper, we always assume that

r ∈
[
μ
(
1− r0

k

)
, μ

(
1− r1

k

)]
, for some constants r1 > r0 > 0,

and
L0 ≤ Λ ≤ L1, for some constants L1 > L0 > 0.

Theorem 1.1 is a direct consequence of the following result:

Theorem 1.2. Suppose that N ≥ 4. If K(1) > 0 and K ′(1) > 0, then there is
an integer k0 > 0, such that for any integer k ≥ k0, (1.4) has a solution uk of the
form

uk = Wrk,Λk
(y) + ωk,

where ωk ∈ Hs, and as k → +∞, ‖ωk‖L∞ → 0, L0 ≤ Λk ≤ L1, and rk ∈(
μ (1− r0/k), μ (1− r1/k)

)
.

Unlike Theorem A, where the result was proved by constructing solutions with
many bubbles near the local maximum point r0 ∈ (0, 1), the solutions constructing
in Theorem 1.1 have many bubbles near the boundary of the unit ball B1(0). In
Theorem 1.1, r0 = 1 is not a critical point ofK(r) anymore. It is the zero boundary
condition that plays a very important role in the construction of solutions with
many bubbles near |y| = 1.
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2. Finite-dimensional reduction

In this section, we perform a finite-dimensional reduction. Let

(2.1) ‖u‖∗ = sup
y∈Bμ(0)

( k∑
j=1

1

(1 + |y − xj |)N−2
2 +τ

)−1

|u(y)|,

and

(2.2) ‖f‖∗∗ = sup
y∈Bμ(0)

( k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

)−1

|f(y)|,

where τ = (N − 2)/(N − 1) if N ≥ 4. For this choice of τ , we find that

k∑
j=2

1

|xj − x1|τ ≤ Ckτ

μτ

k∑
j=2

1

jτ
≤ Ck

μτ
≤ C′.

Let

Zi,1 =
∂PUxi,Λ

∂r
, Zi,2 =

∂PUxi,Λ

∂Λ
.

Consider

(2.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δφk − (2∗−1)K
( |y|

μ

)
W 2∗−2

r,Λ φk = h+

2∑
j=1

cj

k∑
i=1

U2∗−2
xi,Λ

Zi,j , in Bμ(0),

φk ∈ Hs,

< U2∗−2
xi,Λ

Zi,l, φk >= 0, i = 1, . . . , k, l = 1, 2

for some numbers ci, where < u, v >=
∫
Bμ(0)

uv.

Lemma 2.1. Assume that φk solves (2.3) for h = hk. If ‖hk‖∗∗ goes to zero as k
goes to infinity, so does ‖φk‖∗.

Proof. The proof of this lemma is similar to the proof of Lemma 2.1 in [15]. There-
fore, we only sketch it.

We argue by contradiction. Suppose that there are k → +∞, h = hk, Λk ∈
[L1, L2], rk ∈ [

μ(1− r0/k), μ(1− r1/k)
]
, and φk solving (2.3) for h = hk, Λ = Λk,

and r = rk, with ‖hk‖∗∗ → 0, and ‖φk‖∗ ≥ c′ > 0. We may assume that ‖φk‖∗ = 1.
For simplicity, we drop the subscript k.

We rewrite (2.3) as

φ(y) = (2∗ − 1)

∫
Bμ(0)

1

|z − y|N−2
K
( |z|

μ

)
W 2∗−2

r,Λ φ(z) dz

+

∫
Bμ(0)

1

|z − y|N−2

(
h(z) +

2∑
j=1

cj

k∑
i=1

Zi,j(z)U
2∗−2
xi,Λ

(z)
)
dz.

(2.4)
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Using Lemma B.3, we have

∣∣∣(2∗ − 1)

∫
Bμ(0)

1

|z − y|N−2
K
( |z|

μ

)
W 2∗−2

r,Λ φ(z) dz
∣∣∣

≤ C ‖φ‖∗
∫
Bμ(0)

1

|z − y|N−2
W 2∗−2

r,Λ

k∑
j=1

1

(1 + |z − xj |)N−2
2 +τ

dz

≤ C ‖φ‖∗
k∑

j=1

1

(1 + |y − xj |)N−2
2 +τ+θ

.

(2.5)

It follows from Lemma B.2 that

(2.6)
∣∣∣ ∫

Bμ(0)

1

|z − y|N−2
h(z) dz

∣∣∣ ≤ C ‖h‖∗∗
k∑

j=1

1

(1 + |y − xj |)N−2
2 +τ

.

and

(2.7)
∣∣∣ ∫

Bμ(0)

1

|z − y|N−2

k∑
i=1

Zi,l(z)U
2∗−2
xi,Λ

(z) dz
∣∣∣ ≤ C

k∑
i=1

1

(1 + |y − xi|)N−2
2 +τ

.

Next, we estimate cl, l = 1, 2. Multiplying (2.3) by Z1,l and integrating, we see
that ct satisfies

(2.8)

2∑
t=1

k∑
i=1

〈
U2∗−2
xi,Λ

Zi,t, Z1,l

〉
ct =

〈−Δφ−(2∗−1)K
( |y|

μ

)
W 2∗−2

r,Λ φ, Z1,l

〉−〈
h, Z1,l

〉
.

It follows from Lemma B.1 that

∣∣〈h, Z1,l

〉∣∣ ≤ C‖h‖∗∗
∫
RN

1

(1 + |z − x1|)N−2

k∑
j=1

1

(1 + |z − xj |)N+2
2 +τ

dz ≤ C‖h‖∗∗.

On the other hand, using Lemma B.3, we can prove

〈−Δφ− (2∗ − 1)K
( |z|

μ

)
W 2∗−2

r,Λ φ, Z1,l

〉
= (2∗ − 1)

〈(
1−K

( |z|
μ

)
W 2∗−2

r,Λ Z1,l, φ
〉
= o(‖φ‖∗).

(2.9)

However, there is a constant c̄ > 0,

k∑
i=1

〈
U2∗−2
xi,Λ

Zi,t , Z1,l

〉
= (c̄+ o(1)) δtl.

Thus we obtain from (2.8) that

(2.10) cl = o(‖φ‖∗) +O(‖h‖∗∗).
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So,

(2.11) ‖φ‖∗ ≤
(
o(1) + ‖hk‖∗∗ +

∑k
j=1 (1 + |y − xj |)−N−2

2 −τ−θ∑k
j=1 (1 + |y − xj |)−N−2

2 −τ

)
.

Since ‖φ‖∗ = 1, we obtain from (2.11) that there is R > 0, such that

(2.12) ‖φ(y)‖BR(xi) ≥ a > 0,

for some i. However, φ̄(y) = φ(y − xi) converges uniformly in any compact set to
a solution u of

(2.13) −Δu− (2∗ − 1)U2∗−2
0,Λ u = 0, in R

N ,

for some Λ ∈ [L1, L2], and u is perpendicular to the kernel of (2.13). Hence, u = 0.
This is a contradiction to (2.12). �

From Lemma 2.1, using the same argument as in the proof of Proposition 4.1
in [5], we can prove the following result :

Proposition 2.2. There exists k0 > 0 and a constant C > 0, independent of k,
such that for all k ≥ k0 and all h ∈ L∞(RN ), problem (2.3) has a unique solution
φ ≡ Lk(h). Moreover,

(2.14) ‖Lk(h)‖∗ ≤ C ‖h‖∗∗ , |cl| ≤ C ‖h‖∗∗.
Now, we consider

(2.15)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−Δ

(
Wr,Λ + φ

)
=K

(
y
μ

)(
Wr,Λ + φ

)2∗−1
+

2∑
t=1

ct

k∑
i=1

U2∗−2
xi,Λ

Zi,t, in Bμ(0),

φk ∈ Hs,

< U2∗−2
xi,Λ

Zi,l, φk >= 0, i = 1, . . . , k, l = 1, 2.

We have

Proposition 2.3. There is an integer k0 > 0, such that for each k ≥ k0, L0 ≤
Λ ≤ L1, r ∈ [

μ(1 − r0/k), μ(1 − r1/k)
]
, (2.15) has a unique solution φ = φ(r,Λ),

satisfying

‖φ‖∗ ≤ C
( 1

μ

)1/2+σ

, |ct| ≤ C
( 1

μ

)1/2+σ

,

if N ≥ 4, where σ > 0 is a small constant, and μ = k
N−1
N−2 .

Rewrite (2.15) as

(2.16)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−Δφ−(2∗−1)K

( |y|
μ

)
W 2∗−2

r,Λ φ =N(φ) + lk +

2∑
t=1

ci

k∑
i=1

U2∗−2
xi,Λ

Zi,t, in Bμ(0),

φ ∈ Hs,

< U2∗−2
xi,Λ

Zi,l, φ >= 0, i = 1, . . . , k, l = 1, 2,
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where

N(φ) = K
( |y|

μ

) (
(Wr,Λ + φ)2

∗−1 −W 2∗−1
r,Λ − (2∗ − 1)W 2∗−2

r φ
)
,

and

lk = K
( |y|

μ

)
W 2∗−1

r,Λ −
k∑

j=1

U2∗−1
xj,Λ

.

In order to use the contraction mapping theorem to prove that (2.16) is uniquely
solvable in the set where ‖φ‖∗ is small, we need to estimate N(φ) and lk.

Lemma 2.4. If N ≥ 4, then

‖N(φ)‖∗∗ ≤ C ‖φ‖min(2∗−1,2)
∗ .

Proof. We have

|N(φ)| ≤
{
C |φ|2∗−1, N ≥ 6;

C
(
W

6−N
N−2

r,Λ φ2 + |φ|2∗−1
)
, N = 4, 5.

First, we consider N ≥ 6. Using

k∑
j=1

ajbj ≤
( k∑
j=1

apj
)1/p ( k∑

j=1

bqj
)1/q

,
1

p
+

1

q
= 1, aj , bj ≥ 0,

we obtain

|N(φ)| ≤ C ‖φ‖2∗−1
∗

( k∑
j=1

1

(1 + |y − xj |)N−2
2 +τ

)2∗−1

≤ C ‖φ‖2∗−1
∗

k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

( k∑
j=1

1

(1 + |y − xj |)τ
) 4

N−2

≤ C ‖φ‖2∗−1
∗

k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

.(2.17)

Thus, the result follows.
Suppose that N = 4 or 5. Noting that N − 2 ≥ (N − 2)/2 + τ , we find

|N(φ)| ≤ C ‖φ‖2∗
( k∑

i=1

1

(1 + |y − xi|)N−2

) 6−N
N−2

( k∑
j=1

1

1 + |y − xj |)N−2
2 +τ

)2

+ C ‖φ‖2∗−1
∗

k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

≤ C ‖φ‖2∗
( k∑

j=1

1

1 + |y − xj |)N−2
2 +τ

)2∗−1

+ C ‖φ‖2∗−1
∗

k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

= C ‖φ‖2∗
k∑

j=1

1

(1 + |y − xj |)N+2
2 +τ

.
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So, we have proved that, for N ≥ 4,

‖N(φ)‖∗∗ ≤ C ‖φ‖min(2,2∗−1)
∗ . �

Next, we estimate lk.

Lemma 2.5. Assume that r ∈ [
μ(1− r0/k), μ(1− r1/k)

]
. If N ≥ 4, then

‖lk‖∗∗ ≤ C
( 1

μ

)1/2+σ

.

Proof. Define

Ωj =
{
y : y = (y′, y′′) ∈ Bμ(0),

〈 y′

|y′| ,
xj

|xj |
〉 ≥ cos

π

k

}
.

We have

lk = K
( |y|

μ

)(
W 2∗−1

r,Λ −
k∑

j=1

(
PUxj ,Λ

)2∗−1
)

+K
( |y|

μ

)( k∑
j=1

(
PUxj,Λ

)2∗−1 −
k∑

j=1

U2∗−1
xj ,Λ

)
+

k∑
j=1

U2∗−1
xj,Λ

(
K
( |y|

μ

)− 1
)

=: J0 + J1 + J2.

Using the assumed symmetry, we can suppose that y ∈ Ω1. Then,

|y − xj | ≥ |y − x1|, ∀ y ∈ Ω1.

First, we claim

(2.18)
1

1 + |y − xj | ≤
C

|xj − x1| , ∀ y ∈ Ω1, j �= 1.

In fact, if |y− x1| ≤ 1
2 |x1 − xj |, then |y− xj | ≥ 1

2 |x1 − xj |. If |y− x1| ≥ 1
2 |x1 − xj |,

then |y − xj | ≥ |y − x1| ≥ 1
2 |x1 − xj |, since y ∈ Ω1.

For the estimate of J0, we have

|J0| ≤ C
1

(1 + |y − x1|)4
k∑

j=2

1

(1 + |y − xj |)N−2

+ C
( k∑

j=2

1

(1 + |y − xj |)N−2

)2∗−1

.(2.19)

Using (2.18), and taking 1 < α ≤ N − 2, we obtain that, for any y ∈ Ω1,

1

(1 + |y − x1|)4
1

(1 + |y − xj |)N−2

≤ C
1

(1 + |y − x1|)N+2−α

1

|xj − x1|α , j > 1.(2.20)
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Take α > max((N − 1)/2, 1) satisfying N + 2− α ≥ (N + 2)/2 + τ . Then

1

(1 + |y − x1|)4
k∑

j=2

1

(1 + |y − xj |)N−2
≤ C

(1 + |y − x1|)N+2−α

(k
μ

)α

=
C

(1 + |y − x1|)N+2−α
μ−α/(N−1) ≤ C

1

(1 + |y − x1|)N+2
2 +τ

( 1

μ

)1/2+σ

.(2.21)

Using the Hölder inequality, we obtain

( k∑
j=2

1

(1 + |y − xj |)N−2

)2∗−1

≤
k∑

j=2

1

(1 + |y − xj |)N+2
2 +τ

( k∑
j=2

1

(1 + |y − xj |)
N+2

4 (N−2
2 −τ N−2

N+2 )

)4/(N−2)

.

Noting that N+2
4 (N−2

2 − τ N−2
N+2 ) > 1 if N ≥ 4, we obtain

( k∑
j=2

1

(1 + |y − xj |)N−2

)2∗−1

≤ C
( k∑

j=2

1

|x1 − xj |
N+2

4 (N−2
2 −τ N−2

N+2 )

)4/(N−2) k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

≤ C
(k
μ

)N+2
4 (N−2

2 −τ N−2
N+2 )

4
N−2

k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

= C
( 1

μ

)N+2
N−1 (

1
2− τ

N+2 )
k∑

j=1

1

(1 + |y − xj |)N+2
2 +τ

= C
( 1

μ

)1/2+σ k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

,

(2.22)

since N+2
N−1 (

1
2 − τ

N+2 ) >
1
2 . Thus, we have proved that if N ≥ 4,

‖J0‖∗∗ ≤ C
( 1

μ

)1/2+σ

.

Now, we estimate J1. Let H(y, x) be the regular part of the Green function
for −Δ in B1(0) with the zero boundary condition. Let x̄∗

j be the reflection point
of x̄j with respect to ∂B1(0). Then

H(ȳ, x̄j)

μN−2
=

C

μN−2|ȳ − x̄∗
j |N−2

≤ C

(1 + |y − xj |)N−2
.
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Take t = 1− θ with θ > 0 small. Then using (A.1), we find

|J1| ≤
k∑

j=1

C

(1 + |y − xj |)4
H(ȳ, x̄j)

μN−2

≤
k∑

j=1

C

(1 + |y − xj |)4+t(N−2)

(H(ȳ, x̄j)

μN−2

)t

≤ C
( 1

μd

)t(N−2) k∑
j=1

1

(1 + |y − xj |)4+t(N−2)

≤ C
( 1

μ

)tN−2
N−1

k∑
j=1

1

(1 + |y − xj |)4+t(N−2)

≤ C
( 1

μ

)1/2+σ k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

,

(2.23)

since tN−2
N−1 > 1/2 for N ≥ 4, 4 + t(N − 2) ≥ (N + 2)/2 + τ , and d ≥ r0/k.

Finally, we estimate J2. For y ∈ Ω1, and j > 1, using (2.18), we have

U2∗−1
xj,Λ

(y) ≤ C
1

(1 + |y − x1|)N+2
2 +τ

1

|x1 − xj |N+2
2 −τ

,

which implies

∣∣∣ k∑
j=2

(
K
( |y|
μ

)− 1
)
U2∗−1
xj ,Λ

∣∣∣ ≤ C
1

(1 + |y − x1|)N+2
2 +τ

k∑
j=2

1

|x1 − xj |N+2
2 −τ

≤ C
1

(1 + |y − x1|)N+2
2 +τ

(k
μ

)N+2
2 −τ

≤ C
1

(1 + |y − x1|)N+2
2 +τ

( 1

μ

)1/2+σ

.(2.24)

For y ∈ Ω1 and ||y| − μ| ≥ δμ, where δ > 0 is a fixed constant, then∣∣|y| − |x1|
∣∣ ≥ ∣∣|y| − μ

∣∣− ∣∣|x1| − μ
∣∣ ≥ 1

2
δμ.

As a result,

(2.25)
∣∣∣U2∗−1

x1,Λ

(
K
( |y|

μ

)− 1
)∣∣∣ ≤ C

1

(1 + |y − x1|)N+2
2 +τ

1

μ
N+2

2 −τ
.

If y ∈ Ω1 and ||y| − μ| ≤ δμ, then∣∣K( |y|
μ

)− 1
∣∣ ≤ C

∣∣ |y|
μ − 1

∣∣ ≤ C

μ

(
(||y| − |x1||) + ||x1| − μ|))

≤ C

μ

∣∣|y| − |x1|
∣∣+ C

k
=

C

μ

∣∣|y| − |x1|
∣∣+ C

μ
N−2
N−1

≤ C

μ

∣∣|y| − |x1|
∣∣+ C

μ1/2+σ
,

and ∣∣|y| − |x1|
∣∣ ≤ ∣∣|y| − μ

∣∣ + ∣∣μ− |x1|
∣∣ ≤ 2δμ.
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However,

||y| − |x1||
μ

1

(1 + |y − x1|)N+2
=

C

μ1/2+σ

||y| − |x1||1/2−σ

(1 + |y − x1|)N+2

≤ C

μ1/2+σ

1

(1 + |y − x1|)N+2−1/2+σ
≤ C

μ1/2+σ

1

(1 + |y − x1|)N+2
2 +τ

.

Thus, we obtain

(2.26)
∣∣∣U2∗−1

x1,Λ

(
K
( |y|

μ

)− 1
)∣∣∣ ≤ C

μ1/2+σ

1

(1 + |y − x1|)N+2
2 +τ

, ||y| − μ| ≤ δμ.

Combining (2.24), (2.25) and (2.26), we obtain

‖J2‖∗∗ ≤ C
( 1

μ

)1/2+σ

. �

Now, we are ready to prove Proposition 2.3.

Proof of Proposition 2.3. Let us recall that

μ = k
N−1
N−2 , N ≥ 4.

Let

E =
{
u : u ∈ C(Bμ(0)) ∩Hs, ‖u‖∗ ≤

(
1
k

)1/2
,∫

Bμ(0)

U2∗−2
xi,Λ

Zi,lφ = 0 , i = 1, . . . , k, l = 1, 2
}
.

Then, (2.16) is equivalent to

φ = A(φ) =: Lk(N(φ)) + Lk(lk),

where Lk is defined in Proposition 2.2. We will prove that A is a contraction map
from E to E.

We have

‖A(φ)‖∗ ≤ C‖N(φ)‖∗∗ + C‖lk‖∗∗
≤ C‖φ‖min(2∗−1,2)

∗ + C‖lk‖∗∗ ≤ C

k1/2+σ
≤ 1

k1/2
.

(2.27)

Thus, A maps E to E.

On the other hand,

‖A(φ1)−A(φ2)‖∗ = ‖Lk(N(φ1))− Lk(N(φ2))‖∗ ≤ C‖N(φ1)−N(φ2)‖∗∗.

If N ≥ 6, then
|N ′(t)| ≤ C |t|2∗−2.
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As a result,

|N(φ1)−N(φ2)| ≤ C
(|φ1|2∗−2 + |φ2|2∗−2

)|φ1 − φ2|

≤ C
(‖φ1‖2∗−2

∗ + ‖φ2‖2∗−2
∗

)‖φ1 − φ2‖∗
( k∑

j=1

1

(1 + |y − xj |)N−2
2 +τ

)2∗−1

.

As before, we have

( k∑
j=1

1

(1 + |y − xj |)N−2
2 +τ

)2∗−1

≤ C

k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

.

So,

‖A(φ1)−A(φ2)‖∗ ≤ C‖N(φ1)−N(φ2)‖∗∗
≤ C

(‖φ1‖2∗−2
∗ + ‖φ2‖2∗−2

∗
)‖φ1 − φ2‖∗ ≤ 1

2
‖φ1 − φ2‖∗.

Thus, A is a contraction map.

For N = 4 or 5,

|N ′(t)| ≤ CW
6−N
N−2

r,Λ |t|+ C |t|2∗−2.

So,

|N(φ1)−N(φ2)|
≤ C

(|φ1|2∗−2 + |φ2|2∗−2
)|φ1 − φ2|+ C

(|φ1|+ |φ2|
)
W

6−N
N−2

r,Λ |φ1 − φ2|

≤ C
(‖φ1‖2∗−2

∗ + ‖φ2‖2∗−2
∗

)‖φ1 − φ2‖∗
( k∑

j=1

1

(1 + |y − xj |)N−2
2 +τ

)2∗−1

+ C
(‖φ1‖∗ + ‖φ2‖∗

)‖φ1 − φ2‖∗W
6−N
N−2

r,Λ

( k∑
j=1

1

(1 + |y − xj |)N−2
2 +τ

)2

≤ C
(‖φ1‖∗ + ‖φ2‖∗

)‖φ1 − φ2‖∗
k∑

j=1

1

(1 + |y − xj |)N+2
2 +τ

.

(2.28)

Thus, A is a contraction map.

It follows from the contraction mapping theorem that there is a unique φ ∈ E,
such that

φ = A(φ).

Moreover, it follows from Proposition 2.2 that

‖φ‖∗ ≤ C ‖lk‖∗∗ + C ‖N(φ)‖∗∗ ≤ C ‖lk‖∗∗ + C ‖φ‖min(2∗−1,2)
∗ ,

which gives, if N ≥ 4,

‖φ‖∗ ≤ C
( 1

μ

)1/2+σ

,

Finally, the estimate of ct comes from (2.14). See also (2.10). �
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3. Proof of Theorem 1.2

Let

F (d,Λ) = I
(
Wr,Λ + φ

)
,

where r = |x1|, d = 1− r/μ, φ is the function obtained in Proposition 2.3, and

I(u) =
1

2

∫
Bμ(0)

|Du|2 − 1

2∗

∫
Bμ(0)

K
( |y|
μ

)
|u|2∗ .

Proposition 3.1. If N ≥ 4, then

F (d,Λ) = I(Wr,Λ) +O
( 1

μ1+σ

)

= k
(
A+

B1H(x̄1, x̄1)

ΛN−2μN−2
+B2K

′(1)d−
k∑

i=2

B1G(x̄i, x̄1)

ΛN−2μN−2
+O

( 1

μ1+σ

))
,

where A, B1 and B2 are positive constants, and σ > 0 is a small constant.

Proof. Since 〈
I ′
(
Wr,Λ + φ

)
, φ

〉
= 0, ∀ φ ∈ E,

there is t ∈ (0, 1) such that

F (d,Λ) = I(Wr,Λ)− 1

2
D2I

(
Wr,Λ + tφ

)
(φ, φ)

= I(Wr,Λ)− 1

2

∫
Bμ(0)

(|Dφ|2 − (2∗ − 1)K
( |y|
μ

)(
Wr,Λ + tφ

)2∗−2
φ2

)
= I(Wr,Λ) +

2∗ − 1

2

∫
Bμ(0)

K
( |y|
μ

)((
Wr,Λ + tφ

)2∗−2 −W 2∗−2
r,Λ

)
φ2

− 1

2

∫
Bμ(0)

(
N(φ) + lk

)
φ

= I(Wr,Λ) +O
( ∫

Bμ(0)

(|φ|2∗ + |N(φ)||φ| + |lk||φ|
))

.

However,

∫
Bμ(0)

(|N(φ)||φ| + |lk||φ|
) ≤ C

(‖N(φ)‖∗∗ + ‖lk‖∗∗
) ‖φ‖∗

×
∫
Bμ(0)

k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

k∑
i=1

1

(1 + |y − xi|)N−2
2 +τ

.
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Using Lemma B.1, for N ≥ 4,

k∑
j=1

1

(1 + |y − xj |)N+2
2 +τ

k∑
i=1

1

(1 + |y − xi|)N−2
2 +τ

=

k∑
j=1

1

(1 + |y − xj |)N+2τ
+

k∑
j=1

∑
i�=j

1

(1 + |y − xj |)N+2
2 +τ

1

(1 + |y − xi|)N−2
2 +τ

≤
k∑

j=1

1

(1 + |y − xj |)N+2τ
+ C

k∑
j=1

1

(1 + |y − xj |)N+τ

k∑
j=2

1

|xj − x1|τ

≤ C
k∑

j=1

1

(1 + |y − xj |)N+τ
.

Thus, we obtain∫
Bμ(0)

(|N(φ)||φ|+|lk||φ|
) ≤ C k

(‖N(φ)‖∗∗+‖lk‖∗∗
) ‖φ‖∗ ≤ C k

( 1

μ

)1+σ

, N ≥ 4.

On the other hand,

∫
Bμ(0)

|φ|2∗ ≤ C ‖φ‖2∗∗
∫
Bμ(0)

( k∑
j=1

1

(1 + |y − xj |)N−2
2 +τ

)2∗

.

However, using (2.18), if y ∈ Ω1, and N ≥ 4,

k∑
j=2

1

(1 + |y − xj |)N−2
2 +τ

≤ C
1

(1 + |y − x1|)N−2
2

k∑
j=2

1

|xj − x1|τ ≤ C
1

(1 + |y − x1|)N−2
2

,

Thus, ( k∑
j=1

1

(1 + |y − xj |)N−2
2 +τ

)2∗

≤ C

(1 + |y − x1|)N , y ∈ Ω1,

which gives ∫
Bμ(0)

( k∑
j=1

1

(1 + |y − xj |)N−2
2 +τ

)2∗

≤ Ck ln k.

So, we have proved∫
Bμ(0)

|φ|2∗ ≤ C k ln k ‖φ‖2∗∗ ≤ C k ln k
( 1

μ

)2∗(1/2+σ)

, N ≥ 4. �
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Proposition 3.2. We have

∂F (d,Λ)

∂Λ
= kB1(N − 2)

(
− H(x̄1, x̄1)

ΛN−1μN−2
+

k∑
i=2

G(x̄i, x̄1)

ΛN−1μN−2
+O

( 1

μ1+σ

))
,

and

∂F (d,Λ)

∂d
= k

(B1
∂H(x̄1,x̄1)

∂d

ΛN−2μN−2
+B2K

′(1)−
k∑

i=2

B1
∂G(x̄i,x̄1)

∂d

ΛN−1μN−2
+O

( 1

μσ

))
,

if N ≥ 4, where B1 and B2 are the same constants as in Proposition 3.1, and
σ > 0 is a small constant.

Proof. We estimate ∂F (d,Λ)/∂Λ first. We have

∂F (d,Λ)

∂Λ
=

〈
I ′(Wr,Λ + φ),

∂Wr,Λ

∂Λ
+

∂φ

∂Λ

〉
=

〈
I ′(Wr,Λ + φ),

∂Wr,Λ

∂Λ

〉
+

2∑
l=1

k∑
i=1

cl
〈
U2∗−2
xi,Λ

Zi,l,
∂φ

∂Λ

〉
.

However,

〈
U2∗−2
xi,Λ

Zi,l,
∂φ

∂Λ

〉
= −〈∂(U2∗−2

xi,Λ
Zi,l)

∂Λ
, φ

〉
Thus, using Proposition 2.3,

∣∣∣ k∑
i=1

cl
〈
U2∗−2
xi,Λ

Zi,l,
∂φ

∂Λ

〉∣∣∣
≤ C |cl| ‖φ‖∗

∫
RN

k∑
i=1

1

(1 + |y − xi|)N+2

k∑
j=1

1

(1 + |y − xj |)N−2
2 +τ

≤ C

μ1+σ
.

On the other hand,

∫
RN

D(Wr,Λ + φ)D
∂Wr,Λ

∂Λ
=

∫
RN

DWr,ΛD
∂Wr,Λ

∂Λ
,

and∫
RN

K
( |y|

μ

)
(Wr,Λ + φ)2

∗−1 ∂Wr,Λ

∂Λ

=

∫
RN

K
( |y|

μ

)
W 2∗−1

r,Λ

∂Wr,Λ

∂Λ
+ (2∗−1)

∫
RN

K
( |y|

μ

)
W 2∗−2

r,Λ

∂Wr,Λ

∂Λ
φ+O

( ∫
RN

|φ|2∗
)
.
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Moreover, from φ ∈ E,∫
RN

K
( |y|

μ

)
W 2∗−2

r,Λ

∂Wr,Λ

∂Λ
φ

=

∫
RN

K
( |y|

μ

)(
W 2∗−2

r,Λ

∂Wr,Λ

∂Λ
−

k∑
j=1

U2∗−2
xj ,Λ

∂Uxj,Λ

∂Λ

)
φ

+

k∑
j=1

∫
RN

(
K
( |y|

μ

)− 1
)
U2∗−2
xj,Λ

∂Uxj,Λ

∂Λ
φ

= k

∫
Ω1

K
( |y|

μ

) (
W 2∗−2

r,Λ

∂Wr,Λ

∂Λ
−

k∑
j=1

U2∗−2
xj,Λ

∂Uxj ,Λ

∂Λ

)
φ

+ k

∫
RN

(
K
( |y|

μ

)− 1
)
U2∗−2
x1,Λ

∂Ux1,Λ

∂Λ
φ,

∣∣∣ ∫
Ω1

K
( |y|

μ

) (
W 2∗−2

r,Λ

∂Wr,Λ

∂Λ
−

k∑
j=1

U2∗−2
xj,Λ

∂Uxj,Λ

∂Λ

)
φ
∣∣∣

≤ C

∫
Ω1

(
U2∗−2
x1,Λ

(
Ux1,Λ − PUx1,Λ

)
+ U2∗−2

x1,Λ

k∑
j=2

Uxj,Λ +

k∑
j=2

U2∗−1
xj ,Λ

)
|φ| ≤ C

μ1+σ
,

and

∣∣∣ ∫
RN

(
K
( |y|

μ

)− 1
)
U2∗−2
x1,Λ

∂Ux1,Λ

∂Λ
φ
∣∣∣ ≤ ∣∣∣ ∫

||y|−μ|≤√
μ

(
K
( |y|

μ

)− 1
)
U2∗−2
x1,Λ

∂Ux1,Λ

∂Λ
φ
∣∣∣

+
∣∣∣ ∫

||y|−μ|≥√
μ

(
K
( |y|

μ

)− 1
)
U2∗−2
x1,Λ

∂Ux1,Λ

∂Λ
φ
∣∣∣

≤ C

μ1+σ
.

Thus, we have proved

∂F (d,Λ)

∂Λ
=

∂I(Wr,Λ)

∂Λ
+O

( 1

μ1+σ

)
,

and the result follows from Proposition A.2.
Finally, noting that ∂/∂d = −μ∂/∂r, we can estimate ∂F (d,Λ)/∂d in a similar

way. �

Now, we estimate H(x̄1, x̄1) and G(x̄i, x̄1), i ≥ 2. Let x̄∗
1 = (1/(1− d), 0, . . . , 0)

be the reflection of x̄1 with respect to the unit sphere. Then

H(y, x̄1) =
1

|y − x̄∗
1|N−2

(
1 +O(d)

)
.
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So, we obtain

H(x̄1, x̄1) =
1

2N−2 dN−2

(
1 +O(d)

)
.

On the other hand,

|x̄i − x̄∗
1| =

√
|x̄i − x̄1|2 + 4d2 − 4d|x̄i − x̄1| cos θi,

where θi is the angle between x̄i− x̄1 and (1, 0, . . . , 0). Thus, θi = π/2+(i− 1)π/2.

G(x̄i, x̄1) =
1

|x̄i − x̄1|N−2
− 1

|x̄i − x̄∗
1|N−2

(
1 +O(d)

)
=

1

|x̄i − x̄1|N−2

(
1− 1 +O(d)(

1 + 4d2+4d|x̄i−x̄1| sin((i−1)π/2)
|x̄i−x̄1|2

)(N−2)/2

)
.

Since

|x̄i − x1| = 2 |x1| sin (i− 1)π

k
, i = 2, . . . , k,

using dk → c > 0 and

0 < c′ ≤ sin((j − 1)π/k)

(j − 1)π/k
≤ c′′, j = 2, . . . , [k/2],

we obtain
a0
j2

≤ 4 d2 + 4 d |x̄i − x̄1| sin((i − 1)π/2)

|x̄i − x̄1|2 ≤ a1
j2

for some constant a1 ≥ a0 > 0, which implies

a′0
jN

+O
( d

jN−2

) ≤ 1

kN−2
G(x̄j , x̄1) ≤ a′1

jN
+O

( d

jN−2

)
for some constant a′1 ≥ a′0 > 0. Hence, there is a constant B4 > 0, such that

k∑
j=2

G(x̄j , x̄1) = kN−2
( B4

|x̄1|N−2
+O

( 1

kN−1

)
+O(d)

)
= B4k

N−2 +O(kN−2d).

Thus, we obtain that there are positive constants A1, A2 and A3, such that

F (d,Λ) = k
(
A+

A1

ΛN−2μN−2dN−2
+A2d− A3k

N−2

ΛN−2μN−2
+O

( 1

μ1+σ

))
,(3.1)

∂F (d,Λ)

∂Λ
= k

(
− A1(N − 2)

ΛN−1μN−2dN−2
+

A3(N − 2)kN−2

ΛN−1μN−2
+O

( 1

μ1+σ

))
,(3.2)

∂F (d,Λ)

∂d
= k

(
− A1(N − 2)

ΛN−2μN−2dN−1
+A2 +O

( 1

μσ

))
,(3.3)

Note that d = 1 − r/μ, and μ = k
N−1
N−2 . Define D = d/k. Then, from (3.2)

and (3.3), ∂F (d,Λ)/∂Λ = 0 and ∂F (d,Λ)/∂d = 0 are equivalent to

− A1(N − 2)

ΛN−1DN−2
+

A3(N − 2)

ΛN−1
+ O

( 1

μσ

)
= 0,(3.4)
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and

− A1(N − 2)

ΛN−2DN−1
+A2 +O

( 1

μσ

)
= 0,(3.5)

respectively.

Proof of Theorem 1.2. Let

f1(D,Λ) = − A1(N − 2)

ΛN−1DN−2
+

A3(N − 2)

ΛN−1
and f2(D,Λ) = − A1(N − 2)

ΛN−2DN−1
+A2.

Then, f1 = 0 and f2 = 0 have a unique solution

D0 =
(A1

A3

)1/(N−2)

, Λ0 =
(A1(N − 2)

A2D
N−1
0

)1/(N−2)

.

On the other hand, it is easy to see that

∂f1(D0,Λ0)

∂Λ
= 0,

∂f2(D0,Λ0)

∂D
> 0, and

∂f1(D0,Λ0)

∂D
=

∂f2(D0,Λ0)

∂Λ
> 0.

Thus the linear operator of f1 = 0 and f2 = 0 at (D0,Λ0) is invertible. As a
result, (3.4) and (3.5) have a solution near (D0,Λ0). �

A. Energy expansion

In both appendices, we always assume that

xj =
(
r cos

2(j − 1)π

k
, r sin

2(j − 1)π

k
, 0
)
, j = 1, . . . , k,

where 0 is the zero vector in R
N−2, and r ∈ [

μ(1 − r0/k), μ(1− r1/k)
]
. Let

x̄j =
1

μ
xj .

Let G(y, z) be the Green function of −Δ in B1(0) with the Dirichlet boundary
condition. Let H(y, z) be the regular part of the Green function.

Recall that

μ = k
N−1
N−2 ,

I(u) =
1

2

∫
Bμ(0)

|Du|2 − 1

2∗

∫
Bμ(0)

K
( |y|

μ

) |u|2∗ ,
Uxj ,Λ(y) =

(
N(N − 2)

)(N−2)/4 Λ(N−2)/2

(1 + Λ2|y − xj |2)(N−2)/2
,

and

Wr,Λ(y) =
k∑

j=1

PUxj ,Λ(y),
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where PUx,Λ is the solution of (1.5). It is well known that

(A.1) Uxj ,Λ(y)− PUxj,Λ(y) =
H(ȳ, x̄)

μN−2
+O

( 1

dNμN

)
,

where d = 1− |x̄| = 1− |x|/μ.
In this section, we will calculate I(Wr,Λ).

Proposition A.1. We have

I(Wr,Λ) = k
(
A+

B1H(x̄1, x̄1)

ΛN−2μN−2
+B2K

′(1)d−
k∑

i=2

B1G(x̄i, x̄1)

ΛN−2μN−2
+O

( 1

μ1+σ

))
,

where A, B1 and B2 are positive constants.

Proof. By using the assumed symmetry, we have

∫
Bμ(0)

|DWr,Λ|2 =

k∑
j=1

k∑
i=1

∫
Bμ(0)

U2∗−1
xj,Λ

PUxi,Λ

= k
(∫

Bμ(0)

U2∗
0,1 −

∫
Bμ(0)

U2∗−1
x1,Λ

(
Ux1,Λ − PUx1,Λ

)
+

k∑
i=2

∫
Bμ(0)

U2∗−1
x1,Λ

PUxi,Λ

)

= k
(∫

RN

U2∗ − B̄1H(x̄1, x̄1)

ΛN−2μN−2
+

B̄1

∑k
i=2 G(x̄i, x̄1)

ΛN−2μN−2
+O

( 1

μN/(N−1)

))
,

where

B̄1 =

∫
RN

U2∗−1.

Let

Ωj =
{
y : y = (y′, y′′) ∈ Bμ(0),

〈 y′

|y′| ,
xj

|xj |
〉 ≥ cos

π

k

}
.

Then,∫
Bμ(0)

K
( |y|

μ

)|Wr,Λ|2∗ = k

∫
Ω1

K
( |y|

μ

)|Wr,Λ|2∗

= k
(∫

Ω1

K
( |y|

μ

)
(PUx1,Λ)

2∗ − 2∗
∫
Ω1

k∑
i=2

(PUx1,Λ)
2∗−1PUxi,Λ

+O
( ∫

Ω1

∣∣K( |y|
μ

)− 1
∣∣ k∑
i=2

U2∗−1
x1,Λ

Uxi,Λ +

∫
Ω1

U
2∗/2
x1,Λ

( k∑
i=2

Uxi,Λ

)2∗/2))
.

Note that for y ∈ Ω1, |y − xi| ≥ |y − x1|. Using (2.18), we find that for any
t ∈ (1, N − 2),

k∑
i=2

Uxi,Λ ≤ C

(1 + |y − x1|)N−2−t

k∑
i=2

1

|xi − x1|t .
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If we take the constant t close to N − 2, then

∫
Ω1

U
2∗/2
x1,Λ

( k∑
i=2

Uxi,Λ

)2∗/2
= O

((k
μ

)t N
N−2

)
= O

( 1

μ1+σ

)
.

On the other hand, it is easy to show that

∫
Ω1

k∑
i=2

(PUx1,Λ)
2∗−1PUxi,Λ =

B̄2 G(x̄i, x̄1)

ΛN−2 μN−2
+O

(kN
μN

)

=
B̄2 G(x̄i, x̄1)

ΛN−2 μN−2
+O

( 1

μ1+σ

)
,

and ∫
Ω1

∣∣K( |y|
μ

)− 1
∣∣ k∑

i=2

U2∗−1
x1,Λ

Uxi,Λ = O
( 1

μ1+σ

)
.

Moreover,∫
Ω1

K
( |y|

μ

)
(PUx1,Λ)

2∗

=

∫
Ω1

(PUx1,Λ)
2∗ +

∫
Ω1

(
K
( |y|

μ

)− 1
)
U2∗
x1,Λ +O

( ∫
Ω1

∣∣K( |y|μ )− 1
∣∣U2∗−1

x1,Λ

H(y, x1)

μN−2

)

=

∫
RN

U2∗ − 2∗
B̄1H(x̄1, x̄1)

ΛN−2μN−2
+

∫
Ω1

(
K
( |y|

μ

)− 1
)
U2∗
x1,Λ +O

( 1

μ1+σ

)
.

However,∫
Ω1

(
K
( |y|

μ

)− 1
)
U2∗
x1,Λ =

(
K(|x̄1|)− 1

) ∫
RN

U2∗ +O
( 1

μ2

)

= −K ′(1) d
∫
RN

U2∗ +O(d2) = −K ′(1) d
∫
RN

U2∗ +O
( 1

μ1+σ

)
.

Thus, we have proved∫
RN

K
( |y|

μ

)|Wr,Λ|2∗ = k
( ∫

RN

U2∗ −K ′(1)d
∫
RN

U2∗ − 2∗
B̄1H(x̄1, x̄1)

ΛN−2μN−2

+ 2∗
k∑

i=2

B̄1G(x̄i, x̄1)

ΛN−2μN−2
+O

( 1

μ1+σ

))
.

�

We also need to calculate

∂I(Wr,Λ)

∂Λ
and

∂I(Wr,Λ)

∂r
.
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Proposition A.2. We have

∂I(Wr,Λ)

∂Λ
= k(N − 2)B1

(
− H(x̄1, x̄1)

ΛN−1μN−2
+

k∑
i=2

G(x̄1, x̄i)

ΛN−1μN−2
+O

( 1

μ1+σ

))
,

and

∂I(Wr,Λ)

∂r
= k

(
B1

∂H(x̄1,x̄1)
∂r

ΛN−2μN−2
−B2K

′(1)
1

μ
−

k∑
i=2

B1
∂G(x̄1,x̄i)

∂r

ΛN−1μN−2
+O

( 1

μ1+σ

))
,

where B1 is the same positive constant as in Proposition A.1.

Proof. We use ∂ to denote either ∂/∂Λ or ∂/∂r. Using the symmetry, we have

∂I(Wr,Λ) = k
(
(2∗ − 1)

k∑
i=2

∫
RN

U2∗−2
x1,Λ

∂(Ux1,Λ)PUxi,Λ

−
∫
Ω1

K
( |y|

μ

)
W 2∗−1

r,Λ ∂Wr,Λ

)
.

Then the proof of this proposition is similar to the proof of Proposition A.1, so we
omit it. �

B. Basic estimates

In this section, we list some lemmas, whose proofs can be found in [15].
For each fixed i and j, i �= j, consider the function

(B.1) gij(y) =
1

(1 + |y − xj |)α
1

(1 + |y − xi|)β ,

where α ≥ 1 and β ≥ 1 are constants.

Lemma B.1. For any constant 0 < σ ≤ min(α, β), there is a constant C > 0 such
that

gij(y) ≤ C

|xi − xj |σ
( 1

(1 + |y − xi|)α+β−σ
+

1

(1 + |y − xj |)α+β−σ

)
.

Lemma B.2. For any constant 0 < σ < N − 2, there is a constant C > 0 such
that ∫

RN

1

|y − z|N−2

1

(1 + |z|)2+σ
dz ≤ C

(1 + |y|)σ .

Recall that

Wr,Λ(y) =

k∑
j=1

PUxj ,Λ.
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Lemma B.3. Suppose that N ≥ 4. Then there is a small θ > 0, such that

∫
RN

1

|y − z|N−2
W

4/(N−2)
r,Λ (z)

k∑
j=1

1

(1 + |z − xj |)N−2
2 +τ

dz

≤ C

k∑
j=1

1

(1 + |y − xj |)N−2
2 +τ+θ

.

Proof. The proof can be found in [15]. We only need to use

Wr,Λ(y) ≤ C

k∑
i=1

1

(1 + |y − xi|)N−2
.

�
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[7] Hénon, M.: Numerical experiments on the stability of spherical stellar systems.
Astronom. and Astrophys. 24 (1973), 229–238.

[8] Hirano, N.: Existence of positive solutions for the Hénon equation involving critical
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