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Single annulus Lp estimates for Hilbert

transforms along vector fields

Michael Bateman

Abstract. We prove Lp estimates, p ∈ (1,∞), on the Hilbert transform
along a one variable vector field acting on functions with frequency support
in an annulus. Estimates when p > 2 were proved by Lacey and Li. This
paper also contains key technical ingredients for a companion paper with
Christoph Thiele in which Lp estimates are established for the full Hilbert
transform. The operators considered here are singular integral variants of
maximal operators arising in the study of planar differentiation problems.

1. Introduction

The subject of this paper is an operator related to two difficult and well-known
problems in harmonic analysis. The first is the conjecture of Zygmund on the
almost everywhere differentiation of Lipschitz vector fields. More generally, this
problem is connected to the family of Kakeya-type geometric problems in multi-
dimensional Euclidean space. The second problem is that of almost everywhere
convergence of Fourier integrals. The Carleson–Hunt theorem establishes this con-
vergence for Lp functions of a single real variable, p ∈ (1,∞). The two-dimen-
sional question is still unsettled: even in L2, where convergence in norm follows
from Plancherel’s theorem, almost everywhere convergence is unknown. Further,
Fefferman’s result on the unboundedness of the disc multiplier for p �= 2 leaves the
almost everywhere L2-convergence problem every bit in question.

1.1. More on the connection to Kakeya-type problems

The existence of the Besicovitch construction obstructs the Lp boundedness of
directional maximal operators of the form

MKf(x) = sup
1

|L|

∫
L

f,
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where the sup is over line segments containing x. An alternative point of view is
to define

MKf(x) = sup
|v|=1

sup
ε

1

2ε

∫ ε

−ε

f(x+ vt) dt,

where here the sup is over unit vectors v. By defining a vector field v(x) such
that v almost attains the supremum in the last equation, we can instead focus on
linearized operators

Mvf(x) = sup
ε

1

2ε

∫ ε

−ε

f(x+ v(x)t) dt

for a fixed vector field v, and ask for Lp estimates on Mv. Of course Lp estimates
are sufficient to establish almost everywhere convergence of appropriate averages
along the vector field, analogous to the implication of Lebesgue’s differentiation
theorem from Lp estimates on the Hardy–Littlewood maximal operator.

The Besicovitch construction shows no such estimate can hold independent of v.
Specifically, for every ε > 0 there exists a collection Rε such that |∪R∈RεR| ≤ ε but
| ∪R∈Rε 3R| ≥ 1. By taking fε = 1∪R∈RεR, we get Mvfε(x) � 1 for x ∈ ∪R∈Rε3R,
for an appropriate choice of v. This gives ‖Mvf‖pp � 1 >>> ε ≥ ‖f‖pp.

This led a number of authors to consider several subclasses of v for which one
might hope to obtain meaningful results. We consider several natural examples
below.

1) v with finite range. Here the goal was to obtain Lp estimates with optimal
dependence on the size of the range. Stromberg [12] first established that the L2

norm of a maximal operator over N directions is logarithmic in N ; the sharp
exponent on the logarithm was obtained by Katz in [5], following work of a number
of others.

2) v with infinite range. Here the result is essentially “If the range of v is
contained in a lacunary set (of finite order), then Mv is bounded on Lp, p > 1.
Otherwise, Mv is not bounded on Lp for any p < ∞.” This statement follows
directly from work of Nagel, Stein, and Wainger [9], who obtained boundedness
in the lacunary case; Sjolin and Sjogren [10], who extended this to the higher
order lacunary case; and the author [1], who established the converse. Further [1]
proves that if a set is not contained in a lacunary set of finite order, then it has a
Cantor-type structure, and that in such a case there exist Besicovitch type sets of
rectangles whose slopes are in the Cantor-type set.

3) v with some kind of smoothness. It is rather simple to use the Besicovitch
construction to show that no uniform bound onMv can exist if we only assume v is
Hölder continuous with index < 1. This is because the Hölder continuity condition
is not scale invariant. More concretely, given a Besicovitch set of size < ε as above,
one can find a continuous vector field v such that Mvf is large on ∪3R. We may
not know anything about the modulus of continuity of v, but we know it exists.
By shrinking our collection of rectangles, and dilating v as well, we can get v to be
Hölder continuous. It is essentially a conjecture of Zygmund that Mv is bounded
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as soon as v is Lipschitz (i.e., Hölder continuous with index = 1), with estimates
depending only on ‖v‖Lip. (One small note: we consider in this case only line
segments shorter than 1/(10‖v‖Lip), to rule out uninteresting radial counterexam-
ples with long line segments, which play no role in the differentiation question.)
Progress on this conjecture has been difficult to obtain. Bourgain showed that Mv

is bounded when v is real analytic, but no stronger result is known.

1.2. Relation of this paper to smoothness assumptions on v

It is in this third direction that this paper makes some contribution. In addition to
the maximal operatorMv, there is a natural singular integral variant Hv, given by

Hvf(x) = p.v.

∫
f(x− tv(x))

t
dt.

Results on the boundedness of Hv are equally scarce, with unboundedness for
Hölder v following the same lines as for the case of Mv. Stein and Street [10] have
recently established Lp-boundedness for Hv in the real analytic case.

In this paper we consider v that are constant in one variable, but arbitrary in
the other, i.e., v(x1, x2) = v(x1, 0), but v(x1, 0) is merely measurable. This paper
has a companion [4] in which there is proved

(1.1) ‖Hvf‖p � ‖f‖p, p ∈
(3
2
,∞

)
for such vector fields. This paper proves the same estimate for p ∈ (1,∞), un-
der the additional assumption that f have frequency support in an annulus. The
present paper is somewhat subservient to its companion because the primary inter-
est in establishing the single-annulus estimate is in establishing (1.1). (We actually
transport important subresults to [4] rather than the main theorem itself.) Nev-
ertheless, the tools developed in the present paper are likely to find application in
further two-dimensional problems requiring time-frequency analysis, not the least
interesting of which is the study of Fourier series as discussed above. It is worth
mentioning that this paper also uses heavily ideas of Lacey and Li, which are
two-dimensional adaptations of time-frequency methods of Lacey and Thiele.

1.3. More on Fourier series

It is also worth mentioning that the single-annulus version of (1.1) is already quite
substantial. The proof of its weak-L2 boundedness, given by Lacey and Li in [6],
is isomorphic to the Lacey–Thiele proof of Carleson’s theorem. In fact, the L2

estimate for Carleson’s operator follows from the L2 estimate for Hv (see [7]) and
vice versa (see [4]). The extra work required here for Lp-boundedness arises from
the need to appeal to maximal-type theorems when p < 2. We comment more on
this below.

Further, a serious study of two-dimensional Fourier series is likely to require
an understanding of one-dimensional Fourier series as well as an understanding of
the interplay between Fourier-analytic and geometric issues. This paper contains
some basic ingredients in this direction.
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2. The main theorem

Let v be a nonvanishing vector field that depends on one variable, i.e., v : R2 →
R2 \ {0} and v(x1, x2) = v(x1). In this paper we prove Lp estimates on the Hilbert
transform along v precomposed with frequency restriction to an almost annular
region. More specifically, define

Hvf(x) = p.v.

∫
f(x− tv(x))

t
dt.

Because of the structure of the Hilbert kernel, the magnitude of v is irrelevant,
provided it is nonzero. For this reason we may assume that v(x1, x2) = (1, u(x1)).
We will further assume that the slope of v is bounded by 1. This will be helpful
in this paper for some technical reasons, but our main interest is in the action
of Hv on arbitrary functions (i.e., those not necessarily having frequency support
in an annulus); in this more general case, the operator is invariant under dilations
in the vertical variable. See [4] for more on the symmetries of this problem. This
invariance allows us to assume, in that case, that the slope of v is bounded by 1.
(This is mostly a technical convenience, that allows us to think of rectangles and
parallelograms as being the same kinds of objects.) Since this general problem is
the primary motivation for this paper, we adopt the restriction on the slope here
as well. The general problem is addressed in a companion paper with Christoph
Thiele [4]. The present paper is logically prior to the other, and is therefore self-
contained. Fix w ≥ 0, and define τ to be the trapezoid with corners (−1/w, 1/w),
(1/w, 1/w), (−2/w, 2/w), and (2/w, 2/w). Also define

Π̂τf(ξ) = 1τ (ξ)f̂(ξ).

Here we prove the following:

Theorem 2.1. Let v be a vector field depending on one variable with slope bounded
by 1. Let p ∈ (1,∞). Then

‖(Hv ◦Πτ )f‖p � ‖Πτf‖p.
This is just a linearized version of the maximal inequality∥∥∥ sup

|v2|=1

‖H(1,v2) ◦Πτ‖Lp
x2

∥∥∥
Lp

x1

� ‖Πτf‖p.

We remark that the estimate in this theorem is independent of the parameter w in
the definition of τ , which comes as no surprise given the dilation invariance of the
problem. Further, the restriction to a trapezoid specifically is nothing to take seri-
ously. Using the assumption on the slope of the vector field we can already assume
supp f̂ lies in a two-ended cone near the vertical axis, because Hv acts trivially
on functions with support outside this cone. More precisely, if f̂ is supported in a
cone close to the horizontal axis, then we have, for the constant vector field (1, 0),

(2.1) Hvf(x, y) = H(1,0)f(x, y) ,

becauseH(1,0) is a multiplier corresponding to right and left half-planes. ButH(1,0)

is trivially bounded, justifying our claim. Finally, a trapezoid is the restriction of
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the cone to a horizontal frequency band. We could have equally well stated the
theorem for functions with support in the full band, and reduced it to the trape-
zoidal case. Alternatively, we could have worked with an annular region, or an
annular region intersected with a cone. Our methods work equally well in these
cases. We chose the horizontal band (rather than an annulus) because of the spe-
cial structure of one-variable vector fields, but for other vector fields an annular
region may be more appropriate.

Perhaps the biggest contribution of this paper (aside from its applicability
to [4]) is a more streamlined and mechanized collection of two-dimensional time-
frequency tools. Building heavily on important earlier work of Lacey–Li (see [6]
and [7]), we clarify the relationship between the density-related maximal operators
(see Lemma 6.2) and the more classical time-frequency tools. Specifically, a key
sublemma in [2], combined with this more efficient understanding, allows us to
obtain the full range of exponents p ∈ (1,∞) here. Further, although the results
are stated only for one-variable vector fields, it is clear how to combine a maximal
theorem for a different vector field with the methods of this paper. We should
remark that time-frequency analysis in two-dimensions is rather less well-developed
than in one-dimension, with work of Lacey–Li being the only natural precursor to
this paper. We therefore strove to make the paper self-contained and to include
proofs of a number of lemmas that are standard in one-dimension, but whose proofs
in the two-dimensional situation do not seem to appear in the literature.

2.1. More details on related work

Study of such problems is motivated by the obvious connection to the problem of
estimating the Hilbert transform on functions that have not been Fourier localized.
Stein, for example, conjectured that if v is Lipschitz, then Hv (or rather, a trun-
cated version of it) is a bounded operator on L2. We note that when v depends on
only one variable, the L2 boundedness of Hv is a rather immediate consequence of
Carleson’s theorem, as shown in [7]. Stein’s conjecture is the singular integral vari-
ant of Zygmund’s well-known conjecture on the differentiation of Lipschitz vector
fields. For a more complete history, see [7]. More recently, Thiele and the author
proved a range of Lp estimates on the full Hilbert transform along a one variable
vector field, using some key lemmas from the present paper. It is known that the
operator Hv is related to the return times theorem from ergodic theory; see [4] for
more on this connection.

We remark that the operator Hv is quite similar to Carleson’s operator (i.e.,
the maximal Fourier partial sum operator). The argument in [6] is also quite sim-
ilar to the Lacey–Thiele proof of Carleson’s theorem (see [8]). The argument here
draws on ingredients from [6], but obtaining Lp estimates for p < 2 in this situation
requires more effort, partly because the relevant maximal operators are more com-
plicated, but also because making use of the maximal theory is more complicated.
In the one-dimensional situation, exceptional sets are unions of intervals; nothing
so simple is the case here.

For p > 2, Theorem 2.1 was proved for arbitrary vector fields by Lacey and Li
in [6]. (In fact, they proved a weak L2 result.) The same authors, in [7], introduced
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a method for obtaining Lp, p < 2, estimates on Hv ◦ Πτ when a certain maximal
theorem is available for the vector field v in question. (The story is a bit technical:
they proved a theorem contingent on the existence of a certain maximal theorem
in the case of truncated Hilbert kernels. However the method had little to do with
the truncation of the kernel, allowing us to extend it here.) The author proved
such an Lp maximal theorem when v depends on one variable in [2]. Given this
result, it is not surprising that the method from [7] yields a result for some p < 2,
but the value of p obtained from the method in [7] seemed far from sharp. (At the
very least, the method seemed nonsharp. Of course, this was not important for the
authors there.) It was clear, for example that new ideas would be required to even
reach p close to 3/2. The author recently improved the estimates in this maximal
theorem to the (essentially) best possible in [3]. Because of this, the author decided
to investigate the precise range of p for which Theorem 2.1 holds.

2.2. New ideas

The novelties in this paper that allow us to obtain the full range of p claimed in
Theorem 2.1 are a simplification of the approach in [7], and a more efficient appeal
to the maximal theorems.

We elaborate a bit more on these points for readers already familiar with the
argument in [7].

Regarding the first point: in [7], tiles are sorted into trees via standard density
and orthogonality (size) lemmas. An important additional observation made in [7]
is that if T is a collection of trees such that for each T ∈ T the “size” of T is about
σ and the “density” of the top of T is about δ, then we can control

∑
T∈T |top(T )|

by using an appropriate maximal theorem. Their argument, however, requires an
additional twist to handle trees with large size whose tiles have density ∼ δ, but
whose tops have density much less than δ. Here we use an organization of the tiles
that admits a more straightforward argument. This organization is carried out in
Section 9, which contains more discussion as well.

Regarding the second point: A rather simple observation allows us to appeal
to a key ingredient in the proof of the maximal theorem, rather than the theorem
itself. This strengthens estimates on

∑
T∈T |top(T )| for trees as mentioned in the

last paragraph. This observation allows us to obtain the full range of p. This
observation uses the proof of [2], and hence does not even take advantage of the
sharp Lp estimates on the maximal operator obtained in [3]. See Lemma 6.2.

2.3. Organization of paper

Readers familiar with time-frequency analysis, having a bit of faith, and wanting
an executive summary should follow this outline: Skip to the definition of the
model operator in Section 3.4. Then (possibly after skimming Section 4 to review
essentially standard definitions,) read Sections 5, 6, and 9. Those wanting to check
the numerology should also read Section 7. A comprehensive outline is below.

In Section 3, we reduce the theorem to an analogous one for a model operator.
In Section 4, we present some key definitions needed for the organization of our

set of tiles. (Recall that the operators in question are model sums over tiles.)
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In Section 5, we make the main decomposition of the collection of tiles and
state several key estimates that follow from the decomposition.

In Section 6, we state the main lemmas needed to prove the estimates stated
in Section 5.

In Section 7, we balance these various estimates to prove the main theorem.
There is no serious content here.

In Section 8, we prove the density lemma, which estimates
∑

T∈T |top(T )| for
certain collections T by using elementary covering ideas.

In Section 9, we prove the maximal estimate, which controls
∑

T∈T |top(T )|
for certain collections T by using more sophisticated techniques in combination
with Lp and BMO-type estimates on a square function related to the “projection”
operator associated to trees.

In Section 10, we compare the size of a tree to its intersection with the function
in the definition of size.

In Section 11, we prove the tree lemma, which controls the contribution to
the model sum from one tree. The proof mirrors that of the (more) classical
one-dimensional tree lemma, with a small bit of extra work required to handle
two-dimensional tail terms.

In Section 12, we prove the size lemma, which estimates
∑

T∈T |top(T )| for
certain collections T by using orthogonality.

In Section 13, we prove a refined Bessel inequality that allows us to control tail
terms in the size and tree lemmas, as well as in the proof of localized Lp estimates
for the square function mentioned above.

In Section 14, we prove localized (to the top of a tree) Lp estimates for a square
function associated to a tree. Once again, we follow a relatively standard argu-
ment and appeal to the refined Bessel inequality to handle some two-dimensional
technicalities.

In Section 15, we prove that higher Lp norms of the square function are con-
trolled by lower Lp norms by using standard BMO techniques.

In the appendix, we recall the proof in [6] of the Lp, p > 2, case of our main
theorem.

Acknowledgments. The author thanks Ciprian Demeter and Christoph Thiele
for helpful discussions, and especially Christoph Thiele for making many comments
on an early version of this paper. The author also thanks Francesco Di Plinio for
pointing out an important typo. Thanks also to Shaoming Guo for catching a
typo. And lastly, thanks to the referee for helpful suggestions.

3. Reductions

In this section we reduce the Lp estimates in Theorem 2.1 to restricted weak-type
estimates on a model operator. The model operator should look familiar to readers
familiar with developments in time-frequency analysis from the last ten to fifteen
years: it is a sum over “tiles” of wave packets. The model operator arises from
decomposing
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1. the Hilbert kernel 1/t into (smoothly cutoff) dyadic intervals on the frequency
side; for technical reasons we make these annuli rather thin, resulting in two
summation indices for the Hilbert kernel. In fact, we actually decompose the
projection operator into positive frequencies, and write the Hilbert transform
as a linear combination of this operator and the identity operator.

2. Given any integer l ≥ 0, f̂ on τ into ∼ 2l pieces; again, the “∼” here comes
from another summation introduced to provide strict orthogonality between
the various pieces.

3.1. Discretizing the kernel

In this section we decompose the operator H ◦Πτ into a sum of model operators.

We begin by selecting a Schwartz function ψ
(0)
0 such that ψ

(0)
0 is supported on

[98/100, 102/100] and equal to 1 on [99/100, 101/100] . Let ψ
(0)
l (t) = ψ(0)(2lt).

Now define ψ(0) =
∑

l∈Z ψ
(0)
l . By appropriately defining ψ

(i)
0 with similarly sized

support, and defining ψ
(i)
l (t) = ψ

(i)
0 (2lt), we can construct a partition of unity

for R+; i.e.,

1(0,∞) =
99∑
i=0

ψ(i).

This gives us the Hilbert kernel as a linear combination of 100 model kernels and
the identity. More precisely, let

H
(i)
l g(x, y) =

∫
ψ̌
(i)
l (t) g(x− t, y − tu(x)) dt.

Then writing I for the identity operator,

c1H ◦Πτf(x, y) + I ◦Πτf(x, y) = c2
∑
l∈Z

99∑
i=0

H
(i)
l ◦Πτf(x, y).

By the triangle inequality, we have

‖H ◦Πτf‖p � ‖I ◦Πτf‖p +
99∑
i=0

‖H(i) ◦Πτf‖p,

where H(i) =
∑

lH
(i)
l . We note that Hl ◦ Πτf = 0 for l ≤ log(1/w) + c, because

of the Fourier support of the kernel of the operator Hl.

3.2. Discretizing the function

We next focus on discretizing the function f . For l ≥ 0, we write Dl to denote
the collection of dyadic intervals of length 2−l contained in [−2, 2]. Fix a smooth
positive function β : R → R such that β(x) = 1 for x ∈ [−1, 1] and such that
β(x) = 0 when |x| ≥ 2. Also assume that

√
β is a smooth function. This point



Single annulus Lp
estimates 1029

will become relevant for the definition of ϕ immediately before Lemma 3.1. Now
fix an integer c (whose exact value is unimportant) and for each ω ∈ Dl, define

βω(x) = β(2l+c(x− cω1)),

where ω1 is the right half of ω, and cω1 is the center of ω1. Define

βl(x) =
∑
ω∈Dl

βω(x).

Note that
βl(x + 2−l) = βl(x)

for x ∈ [−2, 2− 2−l]. Now define

γl(x) =
1

2

∫ 1

−1

βl(x+ t)dt.

Because of the local periodicity mentioned above, we have that γl(x) is constant
for x ∈ [−1, 1]; say γl(x) = δ, where δ is a constant independent of l. Hence

1

δ
γl(x)1[−1,1](x) = 1[−1,1](x).

Define yet another multiplier β̃ : R → R with support in [1/2, 5/2], and β̃(x) = 1
for x ∈ [1, 2]. Just as γl is an average over translates of βl, so each H(i) is an
average of model operators. We define the corresponding multipliers on R2:

m̂ω(ξ, η) = β̃(η)βω

( ξ
η

)
m̂l,t(ξ, η) = β̃(η)βl

(
t+

ξ

η

)
m̂l(ξ, η) = β̃(η) γl

( ξ
η

)
.

We know that for each l,

ml(ξ, η)1τ (ξ, η) = 1τ (ξ, η)

for (ξ, η) ∈ τ . Note that for each i,

‖H(i)(Πτ ◦ f)‖p =
∥∥∑

l

(H
(i)
l ◦Πτ ) (

1
δ ml ∗ f)

∥∥
p

=
∥∥1
2

∫ 1

−1

∑
l

(H
(i)
l ◦Πτ ) (

1
δ ml,t ∗ f)dt

∥∥
p

≤ 1

2

∫ 1

−1

∥∥∑
l

(H
(i)
l ◦Πτ ) (

1
δ ml,t ∗ f)

∥∥
p
dt,

so it is enough to consider the discretized projections ml,t. In what follows, we will
assume, without loss of generality, that t = 0 = i and omit the dependence on t
and i.
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3.3. Constructing the tiles

For each ω ∈ D with l ≥ 0, let Uω be a partition of R2 by parallelograms of
width w and length w/|ω| whose long side has slope θ, where tan θ = c(ω) and
where c(ω) is the center of the interval ω, and whose projection onto the x-axis is
a dyadic interval. We remark that l < 0 need not be considered. (See the remark
immediately prior to Section 3.2. Note that the index l plays a slightly different role
there.) Briefly, the parts of the Hilbert kernel whose frequency support is outside
the interval [−1/w, 1/w] ⊆ R ((i.e., ψl for l < log(1/w)) have no interaction with
our function f whose frequency support is contained in the annulus of radius 1/w.
Finally, let

U =
⋃
ω∈D

Uω.

If s ∈ Uω , we will write ωs := ω.

An element of U is called a “tile”. The following lemma, stated in essentially
this form in [6], allows us to further discretize our operator into a sum over tiles.
Let Rω denote an element of Uω containing the origin. Suppose ϕω is such that
|ϕ̂ω |2 = m̂ω. Note that ϕω is smooth, by our assumption on the function β
mentioned above. Further, each region{

(ξ, η) :
ξ

η
∈ ω, η ∈ [1, 2]

}
can be obtained by a linear transformation of the trapezoid with corners (−1, 1),
(1, 1), (−2, 2), and (2, 2), which ensures that the functions ϕω, with ω ∈ D :=
∪l≥0Dl, satisfy uniform decay conditions. To see this, consider the transformations

A =

(
M 0
0 M

)
, B =

(
ε 0
0 1

)
, and C =

(
1 λ
0 1

)
.

A composition of these three takes the trapezoid bounded by (−1, 1), (1, 1), (−2, 2),
(2, 2) to the trapezoid bounded by (M(ε+λ),M), (M(−ε+λ),M), (2M(ε+λ), 2M),
(2M(−ε+λ), 2M), which is precisely the area of support for ϕω when M , ε, and λ
are chosen appropriately. Define

ϕs(p) =
√
|s|ϕω(p− c(s)).

Note that the functions mω are L1 normalized, so the functions ϕs are L2 normal-
ized.

Lemma 3.1. Using notation above, we have

f ∗mω(x) = lim
N→∞

1

4N2

∫
[−N,N ]2

∑
s∈Uω

〈f, ϕs(p+ ·)〉ϕs(p+ x) dp.
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Proof. We compute directly:

f ∗mω(x) =

∫
z∈R2

f(z)

∫
p∈R2

ϕω(p)ϕω(p+ x− z) dp dz

=

∫
z∈R2

f(z)
∑
s∈Uω

∫
p∈s

ϕω(p+ z)ϕω(p+ x) dp dz

=
∑
s∈Uω

∫
p∈s

∫
z∈R2

f(z)ϕω(p+ z) dz ϕω(p+ x) dp

=
∑
s∈Uω

∫
p∈s

〈f, ϕω(p+ ·)〉ϕω(p+ x) dp

=
∑
s∈Uω

1

|Rω|

∫
p∈Rω

〈f, ϕs(p+ ·)〉ϕs(p+ x) dp

= lim
N→∞

1

4N2

∫
[−N,N ]2

∑
s∈Uω

〈f, ϕs(p+ ·)〉ϕs(p+ x) dp.

To see the last equality, note that the integrand is periodic in p, and the error
(which arises from the fact that [−N,N ]2 will not exactly agree with the boundaries
of the tiles s) goes to zero as N → ∞. �

This lemma allows us to conclude (using the dominated convergence theorem)
that

Hl(f ∗mω)(x) = lim
N→∞

1

4N2

∫
[−N,N ]2

Hl

( ∑
s∈Uω

〈f, ϕs(p+ ·)〉ϕs(p+ x)
)
dp.

This allows us to restrict attention to the model operator that we define shortly.
Define

ψs = ψlog(length(s))

and

φs(x1, x2) =

∫
ψ̌s(t)ϕs(x1 − t, x2 − tv(x)) dt.

We record the following fact for use in the proof of the tree lemma in Section 11.2.2.

Lemma 3.2. We have φs(x) = 0 unless v(x) ∈ ωs,2.

Proof. Use Plancherel’s theorem and the Fourier supports of ψs and ϕs. �

3.4. The model operator

We can finally define our model operator:

Cf =
∑
s∈U

〈f, ϕs〉φs.

For readers following the executive summary: ϕs is a standard wave packet adapted
to the tile s, and φs is the appropriate scale of the Hilbert transform acting on ϕs.
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A good mental shortcut is to imagine φs(x) = ϕs(x)1ωs,2(u(x)), an expression
quite similar to one appearing in the Lacey–Thiele proof of Carleson’s theorem.
By Lemma 3.1, each operator H(i) is an average of models of the form C. Hence
it is enough to prove the following theorem.

Theorem 3.3. With C defined as above, and p ∈ (1,∞), we have

(3.1) ‖Cf‖p � ‖f‖p.

By appealing to restricted weak-type interpolation, it suffices to prove

|〈C1F ,1E〉| � |E|1−1/p |F |1/p

for arbitrary E,F ⊆ R2 and p ∈ (1,∞). Of course by the triangle inequality it
suffices to prove the following inequality:∑

s∈S
|〈1F , ϕs〉〈1E , φs〉| � |E|1−1/p |F |1/p

for any p ∈ (1,∞), any E,F ⊆ R2, and any finite S ⊆ U . This is our task for the
rest of the paper. Lacey and Li have already proved this estimate for arbitrary
vector fields when p ≥ 2. We discuss this proof in the appendix. Note that for
p ≤ 2, we have

|E|1−1/p |F |1/p = |E|1/2 |F |1/2
( |F |
|E|

)1/p−1/2

� |E|1/2 |F |1/2

whenever |F | � |E| because 1/p− 1/2 > 0. Hence our estimate is already proved
when |F | � |E|, so we restrict attention to the case |F | ≤ c|E| for some small
constant c.

4. Key definitions

Definition 4.1. Given a parallelogram R, we write CR to denote the parallelo-
gram with the same center as R but dilated by a factor of C.

Definition 4.2. Given two parallelograms R1 and R2 in U , we will write R1 ≤ R2

whenever R1 ⊆ CR2 and ωR2 ⊆ ωR1 .

Recall that ωR is defined in Section 3.3. The exact value of C in the last
Definitions is not important: 10 is enough. We need that if R1 ∩ R2 �= ∅ and
ωR1 ⊆ ωR2 , then R2 ≤ R1.

Definition 4.3. A tree is a collection T of parallelograms with a top parallelogram,
denoted top(T ), with top(T ) ∈ U , such that for all s ∈ T , we have s ≤ top(T ).
A tree T is a j-tree if ωtop(T )∩ωs,j = ∅. Given a tree T , we will write Tj to denote
the maximal j-tree contained in T .
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Recall that ωs,1 is the right half of ωs and ωs,2 is the left half. The following
definitions will help us organize our collections of tiles. Recall that our vector field
v is defined on a set E; this set plays a role in the definitions of dense and dense
below. Similarly, the definition of size depends on our other set F .

For x ∈ R2, let

χ(x) =
1

1 + |x|100 .

For any parallelogram s, let χ
(p)
s be an Lp normalized version of χ adapted to the

parallelogram s.

Definition 4.4. For a parallelogram s and a collection of parallelograms S, define
the following:

Es = {(x, y) ∈ E : u(x) ∈ ωs}

dense(s) =

∫
Es

χ(1)
s

dense(s) = sup
s′≥s,s′∈U

dense(s′)

size(S) = sup
1-trees T⊆S

( 1

|top(T )|
∑
s∈T

|〈1F , ϕs〉|2
)1/2

.

We remark that the function χ is needed for density since the wave packets ϕs

have Schwartz tails. See the proofs of the tree and density lemmas. The extra
technicality involved in defining dense (as opposed to just dense) is needed for our
proof of the tree lemma (just as it is in the one-dimensional theory of [8]). The cost
is rather high: a density estimate (see Estimate 5.4 below) is still easily obtainable,
but the maximal estimate becomes much more difficult to prove. If dense(s) were
equal to dense(s) for every tile s, then the tops of the trees constructed in Section 5
are already prepared for an application of maximal technology. Unfortunately this
is not the case, and this difficulty prompts our consideration of the collections Rj

in Section 9. See also the delicate sorting algorithm in Lacey–Li [7], where the
authors wrestle with the same issue.

5. Organization

In this section we carry out the main decomposition of the collection of tiles.
We sort a given collection of tiles into subsets of tiles of approximately constant
density, and further into trees of approximately constant size. The relevance of
trees is shown in the following:

Lemma 5.1 (Tree lemma). Let T be a tree. Suppose dense(T ) ≤ δ. Suppose
size(T ) ≤ σ. Then ∑

s∈T

|〈1F , ϕs〉〈1E , φs〉| � δσ |top(T )|.
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This is the “Tree Lemma” from [6], which is the two-dimensional version of the
similar lemma in [8]. We prove it in Section 11. It reduces (3.4) to proving, for
each 0 < ε < 1, ∑

δ

∑
σ

∑
T∈Tδ,σ

δσ|top(T )| � |F |1−ε|E|ε.

We can already prove this with the Estimates 5.3, 5.4, and 5.5 (appearing in the
next lemma) and some bookkeeping – this is carried out in Section 7.

Lemma 5.2 (Organizational Lemma). Let S be a finite collection of tiles. Then
there exist a partition of S into trees Tδ,σ where δ and σ are dyadic with δ � 1, (i.e.,
S =

⋃
δ,σ

⋃
T∈Tδ,σ

T ) such that the following estimates hold:

Estimate 5.3. (Orthogonality)∑
T∈Tδ,σ

|top(T )| � |F |
σ2

.

Estimate 5.4. (Density) ∑
T∈Tδ,σ

|top(T )| � |E|
δ
.

Estimate 5.5. (Maximal) For any ε > 0,∑
T∈Tδ,σ

|top(T )| � |F |1−ε |E|ε
δσ1+ε

.

Remark 5.6. In fact we can take σ � 1, which we need (and prove) in the
appendix.

In the remainder of this section we construct the collections of trees Tδ,σ. In the
following sections we prove the estimates above. Estimate 5.3 follows from the
construction of the trees Tδ,σ, and the proof of the standard size lemma; we give a
proof in Section 12. We prove Estimates 5.4 and 5.5 in Section 9. We remark that
we make these claims about the same family of trees. This is in contrast to [8], [6],
and [7], in which the argument has the form “There exists a family Tsize such that
Sδ = ∪T∈TsizeT and such that the size estimate holds for the collection Tsize; further
there is a (potentially different!) family Tdensity such that Sδ = ∪T∈Tdensity

T and
such that the density estimate holds for the collection Tdensity.”

First, we sort the tiles by density: Let

Sδ = {s ∈ S : dense(s) ∈ (12δ, δ]}

for dyadic δ. By the definition of dense, we need only consider δ ≤ ‖χ‖1 � 1.
We next sort each collection Sδ into families of trees with comparable size. The

following algorithm is a slight variant of the sorting algorithm used in [8] and in [6].
We want to ensure that top(T ) ∈ T for each tree T in our construction. There are
some small technicalities that arise in the two-dimensional situation due to the
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nontransitivity of the relation “≤”. Without loss of generality, we may assume our
collection of tiles S is finite, so we know there exists σmax such that size(S) ≤ σmax

for every T ⊆ Sδ. This gives us a starting point for the following lemma.

Lemma 5.7. Let S be a collection of tiles satisfying size(S) < σ. Then there exists
a disjoint collection of trees Tσ such that for all T ∈ Tσ, we have top(T ) ∈ T , and

size
(
S \

⋃
T∈Tσ

T
)
<
σ

2
.

Finally, we have the estimate

(5.1)
∑
T∈Tσ

|top(T )| � |F |
σ2

,

where here F is the set used in the definition of size.

Remark 5.8. Having top(T ) ∈ T will be helpful in Section 9. See in particular
the construction of the rectangles RT and the collections TR.

Proof. Initialize

stock = S
Tσ = ∅.

In the following scheme we write C to denote the constant used in the definition
of a tree (see Definition 4.3), which we assume is somewhat large. While there is
a 1-tree T ⊆ stock with √

1

top(T )

∑
s∈T

|〈1f , ϕs〉|2 ≥ σ

C

and with top(T ) ∈ T , choose T with c(ωtop(T )) most clockwise, let T̃ be the
maximal tree with top equal to top(T ), and update

stock := stock \ T̃
Tσ := Tσ ∪ {T̃}.

(Again, we write c(ωtop(T )) to denote the center of ωtop(T ).)

Remark 5.9. We remark that our choice of c(ωtop(T )) as the most clockwise will
be used in the proof of Estimate 5.1 in Section 12. See specifically Claim 12.2.

When no such trees remain, we have the collection of trees Tσ described in
the statement of the lemma. By construction we see that top(T̃ ) ∈ T̃ and that
size(T̃ ) ≥ σ/C for each T̃ ∈ Tσ. The estimate (5.1) follows rather standard
arguments; we present the proof in Section 12. It remains to prove the following:

Claim 5.10.
size (stock) <

σ

2
.
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Consider a tree T ⊆ stock. Without loss of generality, T is a 1-tree (since the
definition of size only takes into consideration 1-tree subtrees of T anyway). We
will partition T into a collection TT of subtrees of T , each of which contains its
top, as follows: Initialize

pantry := T

Tmax := ∅.

While pantry is nonempty, choose a tile t of maximal length in pantry, let Tt be
the maximal subset of pantry such that s ≤ t for s ∈ Tt, and update

pantry := pantry \ Tt
Tmax := Tmax ∪ {t}.

It is clear that this construction exhausts all of T ; i.e., eventually pantry becomes
empty. Since the tiles t ∈ Tmax all satisfy ωtop(T ) ⊆ ωt, and since each is maximal
with respect to “≤”, we know these tiles are pairwise disjoint. On the other hand,
they are all contained in Ctop(T ), and t = top(Tt), so∑

t∈Tmax

|top(Tt)| ≤ C|top(T )|.

Further, since each tree Tt for t ∈ Tmax contains its top, we know√
1

top(T )

∑
s∈T

|〈1f , ϕs〉|2 ≤ σ

C
,

for otherwise Tt would have been selected and put into Tσ. Hence∑
s∈T

|〈f, ϕs〉|2 =
∑

t∈Tmax

∑
s∈Tt

|〈f, ϕs〉|2 ≤
∑

t∈Tmax

|top(Tt)|
σ2

C2
≤ σ2|top(T )|

C
.

This implies

size(T ) ≤ σ√
C
,

which proves the claim provided C ≥ 4. �

By applying the lemma iteratively to each collection Sδ, we obtain collections
Sδ,σ and Tδ,σ such that

Sδ,σ =
⋃

T∈Tδ,σ

T

where the union is disjoint, such that dense(s) ∼ δ for s ∈ Sδ,σ, and such that

size(T ) ∼ σ ∼
√

1

top(T )

∑
s∈T

|〈1f , ϕs〉|2

for T ∈ Tδ,σ. This proves Lemma 5.2, except for Estimates 5.4 and 5.5. Note that
Estimate 5.3 follows from (5.1).
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6. Main Lemmas

Here we present the main lemmas needed to prove Estimates 5.4 and 5.5.

Lemma 6.1. Suppose R is a collection of pairwise incomparable (under “≤”)
parallelograms of uniform width such that dense(R) ≥ δ for R ∈ R. Then∑

R∈R
|R| � |E|

δ
.

Lemma 6.1 is nothing more than the Density Lemma from [8] with straightfor-
ward modifications for the two-dimensional setting.

Lemma 6.2. Suppose R is a collection of pairwise incomparable (under “≤”)
parallelograms of uniform width such that for each R ∈ R, we have

(6.1)
|E ∩ u−1(ωR) ∩R|

|R| ≥ δ

and

(6.2)
1

|R|

∫
R

1F ≥ λ.

Then for each ε > 0, ∑
R∈R

|R| � |F |
δλ1+ε

.

The proof of Lemma 6.2 is contained in Section 3 of [2]. More specifically,
see estimate (3.10) on page 959, as well as the construction of the collection of
parallelograms called R1 there. Note that this last lemma requires an assumption
of the form

1

|R|

∫
R

1F > λ;

on the other hand, our assumption on T ∈ Tδ,σ is that size(T ) � σ and( 1

|top(T )|
∑
s∈T1

|〈1F , ϕs〉|2
)1/2

� σ,

where T1 is the maximal 1-tree in T . The following lemma shows that the second
kind of fact implies the first without much loss:

Lemma 6.3. Let F ⊆ R2. Suppose T is a tree with size(T ) � σ and( 1

|top(T )|
∑
s∈T1

|〈1F , ϕs〉|2
)1/2

� σ,

where T1 is the maximal 1-tree in T . Then for any ε > 0,

|σ−ε top(T ) ∩ F |
|σ−ε top(T )| � σ1+ε.

Lemma 6.3 is proved in Section 10; it follows from Lp and BMO-type estimates
on a square function related to the notion of size.
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Estimate 5.5 deserves more prominent mention. An estimate in this spirit was
proved in [7]. However here we have much better dependence on the parameter δ
due to a rather simple observation. The argument in [7] follows essentially the
argument of the density lemma, with an appeal to a maximal theorem to control
|{Mδ 1F > λ}|. In our case of a vector field depending on only one variable, the
relevant maximal operator was studied by the author in [2] and [3]. However this
approach is inefficient. Instead of combining the density argument with a maximal
function estimate (each of which costs in terms of 1/δ), we appeal to an argument
made in [2], which directly estimates∑

R∈R
|R| � |F |

δλ1+ε

for any ε > 0. In fact, this estimate was established en route to a covering lemma
which implies the maximal theorem. Interestingly, the improved L2 estimates
established in [3], which interpolate to give improved Lp estimates, are unhelpful
in this setting, precisely because they are estimates on the operator norm, rather
than on a sum like the one appearing immediately above.

7. Balancing the estimates

In this section we carry out some computations which allow us to prove (3.4), and
hence the main theorem. We now estimate∑

δ

∑
σ

∑
T∈Tδ,σ

δσ |top(T )|.

We have two cases. Recall that E and F are sets with |F | ≤ |E|.

7.1. Case 1: δ ≥ |F |/|E|
A quick computation shows that (up to additive O(ε) terms in the exponents)

• the maximal estimate is more efficient when σ ≥ |F |/|E|;
• the density lemma is more efficient when σ ≤ |F |/|E|.

Remark 7.1. The maximal estimate is more effective than the size estimate for
δ ≥ |F |/|E| and σ close to |F |/|E|. Without this, we would not be able to obtain Lp

estimates for any p < 2.

For the first range, with δ fixed, we have for any ε > 0∑
σ≥ |F |

|E|

∑
T∈Tδ,σ

δσ|top(T )| �
∑

σ≥ |F |
|E|

δσ
|F |1−ε|E|ε
δσ1+ε

= |F |1−ε|E|ε
∑

σ≥ |F |
|E|

1

σε
∼ |F |1−2ε|E|2ε.

Summing this over dyadic 1 � δ ≥ |F |/|E| gives us a total of � |F |1−3ε |E|3ε.



Single annulus Lp
estimates 1039

For the second range, with δ fixed, we have∑
|F |
|E|≥σ

∑
T∈Tδ,σ

δσ|top(T )| �
∑

|F |
|E|≥σ

δσ
|E|
δ

=
∑

|F |
|E|≥σ

σ|E| ∼ |F |.

Again, summing this over dyadic 1 � δ ≥ |F |/|E| gives us a total of � |F |1−ε|E|ε.

7.2. Case 2: δ ≤ |F |/|E|
In this case, the size and density estimates alone will be enough for us. A quick
computation shows that

• the size estimate is most efficient when σ ≥
√
δ|F |/|E|;

• the density estimate is most efficient when σ ≤
√
δ|F |/|E| .

We decompose our sum over σ into these two ranges. For the first range, we
have ∑

σ≥
√

δ|F |/|E|

δσ
|F |
σ2

= |F |δ
∑

σ≥
√

δ|F |/|E|

1

σ
�

√
|F‖E|δ.

Summing over δ ≤ |F |/|E| gives us a total of � |F | � |F |1−ε|E|ε, since |F | ≤ |E|.
For the second range, we have∑

σ≤
√

δ|F |/|E|

δσ
|E|
δ

∼ |E|
∑

σ≤
√

δ|F |/|E|

σ ∼
√

|F‖E|δ.

Once again, summing over δ ≤ |F |/|E| gives us a total of � |F | � |F |1−ε|E|ε, since
|F | ≤ |E|.

This completes the proof of the main estimate (3.4) modulo the proofs of the
lemmas, which are given in the following sections.

8. Density lemma

In this section we prove Lemma 6.1. Let R be as in the hypotheses of the lemma.
For k = 0, 1, 2, . . . , let Rk be the collection of R ∈ R such that

|u−1(ωR) ∩ 2kR ∩ E| ≥ 1

100
δ 220k |2kR|,

and such that k is the least integer with this property. Note R = ∪kRk, since if
R ∈ R but R �∈ ∪kRk, then

dense(R) ≤
∫
ER

χ
(1)
R ≤

∞∑
k=0

∣∣u−1(ωR) ∩ 2kR ∩ E
∣∣ 2−100k 1

|R|

≤ 1

100

δ

|R|

∞∑
k=0

225k |R| 2−100k ≤ δ

50
.
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We now run an iterative selection procedure to find a subset of Rk such that
the parallelograms 2kR are disjoint: Initialize

stock = Rk

R̃k = ∅.

While stock �= ∅, choose R with maximal length, let

AR = {R′ ∈ stock : 2kR′ ∩ 2kR �= ∅ and ωR′ ∩ ωR �= ∅},

and update

stock : = Rk \ AR

R̃k = R̃k ∪ {R}.

Note that the parallelograms in AR are pairwise disjoint by the pairwise incom-
parability of parallelograms in R, and because ωR′ ∩ ωR �= ∅ for R′ ∈ AR. Hence,
using the definition of Rk, we have∑

R∈Rk

|R| =
∑

R∈R̃k

∑
R′∈AR

|R′| � 22k
∑

R∈R̃k

|R|

� 22k 2−20k 1

δ

∑
R∈R̃k

|u−1(ωR) ∩ 2kR ∩ E| � 2−18k 1

δ
|E|,

where in the last inequality we have used the fact that the parallelograms 2kR are
pairwise incomparable, and that ωR = ω2kR, so that the sets {u−1(ωR)∩ 2kR} are
disjoint. Finally, we sum over k to obtain the result.

9. Proofs of maximal and density estimates

We now look more closely at the collections Tδ,σ. For the remainder of this section
we regard δ and σ as fixed. Notation in this section is understood to depend on
both δ and σ. (So, for example, T = Tδ,σ.) We begin by isolating a collection of
tiles with density δ. First, let

R̃ = {R ∈ U : dense(R) ∼ δ}.

We now find a maximal subset of R̃ whose elements are pairwise incomparable.
Initialize:

stock = R̃
R = ∅.

While stock �= ∅, choose R of maximal length in stock. Define

AR = {R′ ∈ stock : R′ ≤ R},
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and update

stock = stock \ AR

R = R∪ {R}.

When the loop terminates, elements of R are pairwise incomparable (under ≤),
and R is maximal with respect to this property.

Remark 9.1. Recall that for T ∈ T we have dense(top(T )) ∼ δ, but maybe
dense(top(T )) is much less than δ. This makes the maximal Lemma 6.2 unavail-
able to us. Note that several ingredients are required, and top(T ) may lack the
dense required. The work in this section is dedicated to organizing the trees in
such a way that we can legitimately appeal to Lemma 6.2.

Next we associate to each tree T ∈ T a parallelogram RT ∈ R. This requires a
few steps. Note that for each s ∈ ∪T∈T T , we have dense(s) ∼ δ. By Lemma 5.7,
we know that top(T ) ∈ T for each T ∈ T . Hence dense(top(T )) ∼ δ. This
means there exists a parallelogram R̃ ∈ R̃ such that dense(R) ∼ δ and such
that top(T ) ≤ R̃. (This is the reason why it is convenient to have top(T ) ∈ t).
Further, for each R̃ ∈ R̃, there is R ∈ R (again, possibly not unique) such that
R̃ ≤ R. Hence we may assign to each T ∈ T some R ∈ R, and there is R̃ such
that top(T ) ≤ R̃ ≤ R. (Of course there may be more than one R to choose from
for each T ; choose one!) Call this parallelogram RT . Now for each R ∈ R, define

TR = {T ∈ T : RT = R}.

By construction,
T = ∪R∈RTR.

Our goal now is to control ∑
R∈R

∑
T∈TR

|top(T )|.

First, we shall show that for all R ∈ R,∑
T∈TR

|top(T )| � |R|.

The collection {top(T ) : T ∈ TR} need not be pairwise disjoint, but we do have
the following satisfactory substitute.

Claim 9.2. There exists TR ⊆ TR such that {top(T ) : T ∈ TR } is pairwise disjoint
and such that ∑

T∈TR

|top(T )| �
∑
T∈TR

|top(T )|.

Proof. Initialize

stock = TR
TR = ∅.
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While stock �= ∅, choose T ∈ stock such that top(T ) is of maximal length.
Then define

AT = {T ′ ∈ stock : top(T ′) ∩ top(T ) �= ∅},

and update

stock := stock \ AT

TR := TR ∪ {T }.

We stop when stock is empty. By construction, the tops of the trees in TR are
pairwise disjoint. Now we show that∑

T ′∈AT

|top(T ′)| ≤ C′|top(T )|.

With this we will know that∑
T∈TR

|top(T )| =
∑
T∈TR

∑
T ′∈AT

|top(T ′)| ≤ C′
∑
T∈TR

|top(T )|.

Suppose not. Define S = ∪T ′∈AT T
′
1, where for a tree T , T1 is defined to be

the maximal 1-tree contained in T . We claim S can be partitioned into a small
number of trees Sj , j = 1, . . . , 10C2, with each a 1-tree. To see that they are 1-
trees, suppose s ∈ T ′ ∈ AT . Then ωs,2 ⊇ ωtop(T ′) ⊇ ωtop(T ), so ωs,1∩ωtop(T ) = ∅.
To see that we only need a few trees, just note that for each T ′ ∈ AT , top(T

′) ⊆
C(top(T )). Then since each s ∈ T ′ satisfies s ⊆ C(top(T ′)), we know that S can
be partitioned into ∼ C2 subtrees Sj by considering (possibly overlapping) tiles
in C2 top(T ) of height w and length the same as length of top(T ).

Hence,

10C2∑
j=1

∑
s∈Sj

|〈f, ϕs〉|2 ≥
∑

T ′∈AT

∑
s∈T ′

1

|〈f, ϕs〉|2 ≥ 1

4

∑
T ′∈AT

σ2|top(T ′)| ≥ σ2C
′

4
|top(T )|.

Provided C′ is taken large enough (with respect to a universal constant C men-
tioned in Section 4), one of the trees Sj satisfies size(Sj) ≥ 10σ, which is impossible
since the trees T ∈ TR were chosen from a collection with size less than σ. This
proves the second claim about TR. �

9.1. Proof of the density estimate

We are already in position to prove Estimate 5.4. Note that the collection R
constructed above is of pairwise incomparable parallelograms of uniform width
and dense ∼ δ. Hence the previous claim, together with Lemma 6.1, implies∑

R∈R

∑
T∈TR

|top(T )| �
∑
R∈R

|R| � |E|
δ
.
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9.2. Proof of the maximal estimate

The proof of Estimate 5.5 is a bit more involved. For the rest of this section,
fix ε > 0. The first key step is to sort the parallelograms in R by how heavily they
are covered by the trees in TR. Specifically, for integers j ≥ 0, define

Rj =
{
R ∈ R :

∑
T∈TR

|top(T )| ∼ 2−j |R|
}
.

Since our goal is to control∑
R∈R

∑
T∈TR

|top(T )| ∼
∑
j

∑
R∈Rj

∑
T∈TR

|top(T )| ∼
∑
j

2−j
∑

R∈Rj

|R|,

it is enough to estimate
∑

R∈Rj
|R| with suitable dependence on j.

In order to apply maximal technology (in the form of Lemma 6.2), we must find
parallelograms R that heavily intersect F , and that also contain a large subset on
which v points in the direction of R. Because of the Schwartz tails in the definition
of dense, we do not know that each R ∈ Rj satisfies

|u−1(ωR) ∩ E ∩R| � δ |R|.

Rather, we know that

(9.1) |u−1(ωR) ∩ E ∩ 2kR| � 220k δ |R|

for some integer k ≥ 0, as in Section 8. Define Rj,k to be the set of R ∈ Rj

such that condition (9.1) holds for R but such that it does not hold with any
smaller k. Similarly, we cannot conclude that R itself intersects F heavily. Re-
call that Lemma 6.3 guarantees that F intersects σ−εtop(T ) heavily, whenever
T ∈ Tδ,σ; we cannot however, conclude that F intersects top(T ) itself. This causes
some minor differences in the treatment of the cases 2k ≥ σ−ε and 2k ≤ σ−ε that
the reader should not take too seriously. It suffices then to control sums like∑

R∈Rj,k

|R|

with suitable dependence on k and j.

9.2.1. Case 1: 2k ≥ σ−ε. We want to apply Lemma 6.2 to the collection Rj,k.
The defining condition of Rj,k gives us the kind of information needed by the
hypothesis (6.1). The following claim gives us the kind of information needed by
the hypothesis (6.2).

Claim 9.3. For R ∈ Rj,k

|F ∩ 2kR|
|2kR| � 2−j σ1+3ε

(σ−ε

2k

)2

.

We postpone the proof of the claim until the end of this section. With the claim,
the only ingredient still needed to apply Lemma 6.2 is the pairwise incomparability
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of the parallelograms in question. We arrange this with the usual type of sorting
algorithm. Initialize

stock = Rj,k

R̃j,k = ∅.
While stock �= ∅, choose R with maximal length, let

AR = {R′ ∈ stock : 2kR′ ∩ 2kR �= ∅ and ωR′ ∩ ωR �= ∅},
and update

stock : = Rj,k \ AR

R̃j,k = R̃j,k ∪ {R}.
(Note ωR = ωCR for any C). Since the parallelograms R′ ∈ AR are pairwise
incomparable, we know they are in fact disjoint (see earlier in Section 9 for a
similar argument), so ∑

R′∈AR

|R′| � |2kR|.

Hence∑
j

∑
k

∑
R∈Rj,k

∑
T∈TR

|top(T )| �
∑
j

∑
k

∑
R∈Rj,k

2−j|R|

�
∑
j

∑
k

∑
R∈R̃j,k

∑
R′∈AR

2−j|R′| �
∑
j

∑
k

∑
R∈R̃j,k

2−j|2kR|.

We now focus our attention on ∑
R∈R̃j,k

2−j|2kR|.

Claim 9.3 together with the defining condition for parallelograms in Rj,k allows
us to apply Lemma 6.2, with “δ” in (6.1) being 220kδ and “λ” in (6.2) being
2−j 2−2k σ1+O(ε), as in Claim 9.3. The huge gain in k from (9.1) allows us to sum
the contributions from the various Rj,k. More specifically, Lemma 6.2 yields∑

R∈R̃j,k

|2kR| � 1

220k δ

|F |
(σ1+ε 2−2k 2−j)1+ε

This obviously sums in k to prove∑
R∈Rj

∑
T∈TR

|top(T )| �
∑

R∈Rj

2−j |R| � 1

δ

2εj|F |
(σ1+ε)1+ε

;

this estimate is effective for small j. Estimate 5.4 tells us that for any j,∑
R∈Rj

∑
T∈TR

|top(T )| �
∑

R∈Rj

2−j |R| � 2−j |E|
δ

;

this estimate is effective for large j.
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It remains to balance these two estimates:∑
j≥0

∑
R∈Rj

∑
T∈TR

|top(T )| =
∑

j≤log |E|σ
|F |

∑
R∈Rj

2−j|R|+
∑

j≥log |E|σ
|F |

∑
R∈Rj

2−j |R|

�
∑

j≤log |E|σ
|F |

2εj
|F |

δ σ(1+ε)2
+

∑
j≥log |E|σ

|F |

2−j |E|
δ

� |F |1−ε |E|ε
δ σ(1+ε)2

� |F |1−5ε |E|5ε
δ σ1+5ε

.

Remark 9.4. Of course the first sum above is empty when σ ≤ |F |/|E|; in this
case we recover the density estimate. Recalling Section 7, we see that for this range
of σ we have no need for the maximal estimate anyway.

This completes the proof of the maximal estimate, except for the proof of
Claim 9.3, to which we turn now.

Proof of Claim 9.3. For each T ∈ TR, Lemma 6.3 tells us that

|σ−ε top(T ) ∩ F |
|σ−ε top(T )| ≥ σ1+ε.

One minor technical problem is that the parallelograms σ−ε top(T ) might not be
disjoint. However, since all parallelograms {top(T ) : T ∈ TR} have (essentially) the
same orientation, we may use a standard covering argument to select a subset T̃R
of TR such that

{σ−ε top(T )}
T∈T̃R

is pairwise disjoint, and such that∣∣∣ ⋃
T∈T̃R

σ−ε top(T )
∣∣∣ � ∣∣∣ ⋃

T∈TR

σ−ε top(T )
∣∣∣.

Hence

|F ∩ Cσ−εR| � |
⋃

T∈T̃R

σ−ε top(T ) ∩ F | by disjointness
=

∑
T∈T̃R

|σ−ε top(T ) ∩ F |

by Lemma 6.3

� σ1+ε
∑
T∈T̃R

|σ−ε top(T )| � σ1+ε
∣∣∣ ⋃
T∈T̃R

σ−ε top(T )
∣∣∣

� σ1+ε
∣∣∣ ⋃
T∈TR

σ−ε top(T )
∣∣∣ � σ1+ε

∣∣∣ ⋃
T∈TR

top(T )
∣∣∣

by disjointness

� σ1+ε
∑
T∈TR

|top(T )|
by Claim 9.2

� σ1+ε
∑
T∈TR

|top(T )|

by definition of Rj

� σ1+ε 2−j |R|.

This finishes the proof of Claim 9.3. �
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9.2.2. Case 2: 2k ≤ σ−ε. This section is very similar to the previous section. As
in the last section, we verify the hypotheses of Lemma 6.2 for a suitable collection.

We consider all of these collections Rj,k together. Let

Rj,small =
⋃

0≤k≤log σ−ε

Rj,k.

Now we sort the tiles as before. Initialize

stock = Rj,small

R̃j,small = ∅.

While stock �= ∅, choose R with maximal length, let

AR = {R′ ∈ stock : σ−εR′ ∩ σ−εR �= ∅ and ωR′ ∩ ωR �= ∅},

and update

stock : = Rsmall \ AR

R̃j,small = R̃j,small ∪ {R}.

As before, we have∑
R∈Rj,small

|R| ≤
∑

R∈R̃j,small

∑
R′∈AR

|R′| ≤
∑

R∈R̃j,small

|σ−εR|.

We again note several properties of the parallelograms in R̃j,small. First, they are
pairwise incomparable. Second, they satisfy the estimate

|σ−εR ∩E ∩ u−1(ωσ−εR)|
|σ−εR| � σ2ε δ.

This gives us the density estimate

(9.2)
∑

R∈R̃j,small

|σ−εR| � |E|
σ2εδ

,

from a direct application of Lemma 6.1. Third, just as in Claim 9.3, they satisfy
the estimate

|σ−εR ∩ F |
|σ−εR| � 2−j σ1+ε.

So, by Lemma 6.2, we have

(9.3)
∑

R∈R̃j,small

|σ−εR| � |F |
δ (2−jσ1+ε )1+ε .
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As before, we split the sum into large and small j and use (9.2) and (9.3), respec-
tively, to obtain∑

j≥0

∑
R∈Rj,small

∑
T∈TR

|top(T )|

=
∑

j≤log |E|σ
|F |

∑
R∈Rj,small

2−j|R|+
∑

j≥log |E|σ
|F |

∑
R∈Rj,small

2−j |R|

�
∑

j≤log |E|σ
|F |

2εj
|F |

δ σ(1+ε)2
+

∑
j≥log |E|σ

|F |

2−j |E|
σ2ε δ

� |F |1−5ε |E|5ε
δ σ1+5ε

,

which is what we needed, since ε is arbitrary.

10. Large size implies large intersection with F

Remark 10.1. The title of the section is technically a bit misleading, since size(T )
is actually the supremum over all subtrees of T of an l2-type norm; nevertheless,
the trees obtained through the selection procedure in Section 5 all satisfy the
property that the full tree (essentially) achieves this supremum.

To prove Lemma 6.3, we need the following notation. For a fixed 1-tree T ,
define the operator

Δ(f) =
(∑

s∈T

|〈f, ϕs〉|2
1s

|s|

)1/2

.

We need the following facts about Δ.

Lemma 10.2. For any N > 0, we have

‖Δf‖p � ‖fβN,T‖p

for p ∈ (1,∞), where

βN (x1, x2) =
1

1 + |x1|N + |x2|N
,

and βN,T is an L∞-normalized version of βN adapted to top(T ). The implicit
constant depends on N but not on T .

We prove Lemma 10.2 in Section 14. Of course proving ‖Δf‖2 � ‖f‖2 is
straightforward; indeed, it is an easy special case of Lemma 13.1. The work is in
inserting the smooth cutoff βN , which is the point of Lemma 13.1, and moving
below L2. Second, we have:

Lemma 10.3.

‖Δf‖2 �
1

|top(T )|1/2
∫
Ctop(T )

Δf,



1048 M. Bateman

provided that T satisfies the following uniform size estimate:

sup
1-trees T ′⊆T

(
1

|top(T ′)|
∑
s∈T ′

|〈f, ϕs〉|2
)1/2

�
(

1

|top(T )|
∑
s∈T

|〈f, ϕs〉|2
)1/2

.

The condition in Lemma 10.3 is the one mentioned in Remark 10.1. We prove
Lemma 10.3 in Section 15. The point of these lemmas is that ‖Δf‖2 is closely
related to size(T ). Indeed,

‖Δf‖22 =
∑
s∈T

|〈f, ϕs〉|2.

On the other hand, we want information about |F ∩ top(T )| (or possibly |F ∩
Mtop(T )| for a dilate Mtop(T ) of top(T ), which is actually what we will obtain
below), which is much more closely related to ‖Δf‖p for p close to 1, as we see
below. Combining these two lemmas and Hölder’s inequality gives us( 1

|top(T )|
∑
s∈T

|〈f, ϕs〉|2
)1/2

=
1

|top(T )|1/2 ‖Δf‖2 �
1

|top(T )|

∫
Ctop(T )

Δf

�
( 1

|top(T )|

∫
(Δf)1+ε

) 1
1+ε �

( 1

|top(T )|

∫
(fβN,T )

1+ε
) 1

1+ε

.

Applying this with f = 1F and a tree T such that
(

1
|top(T )|

∑
s∈T |〈f, ϕs〉|2

)1/2 ∼ σ

gives us for any N ,

σ1+ε |top(T )| �
∫

1F (βN,T )
1+ε

� |σ−ε top(T ) ∩ F |+ σ(N−2)ε|σ−εtop(T )|

This proves Lemma 6.3 since N can be chosen arbitrarily large with respect to ε.

11. Proof of the tree lemma

In this section we present a proof of Lemma 5.1. Recall that we have a fixed tree T
in mind. For notational convenience we assume that the slope of the long side of
top(T ) is zero. We write π1(E) and π2(E) to denote the vertical and horizontal
(respectively) projections of a set E. Of course the width of every tile in T is
a fixed number w. Let J1 be a partition of R (the horizontal axis) into dyadic
intervals such that 3J × R does not contain any tile s ∈ T , and such that J is
maximal with respect to this property. Now let J2 be a partition of R (the vertical
axis) into intervals of width |π2(top(T ))|/3. Let

P =
⋃

J1∈J1

⋃
J2∈J2

J1 × J2.
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This is a partition of R2. The parallelograms P ∈ P are the smallest relevant
parallelograms for this tree. The parallelograms P ∈ P with π1(P ) far away from
top(T ) are defined so as to still be able to take advantage of the density estimate
for tiles in T . Now for each P ∈ P we split the operator L into two pieces, one
corresponding to tiles with x-projection larger than P , the other to tiles with
x-projection smaller than P . Let

T+
P = {s ∈ T : |π1(s)| > |π1(P )|} , T−

P = {s ∈ T : |π1(s)| ≤ |π1(P )|}

L+
P =

∑
s∈T+

P

〈f, ϕs〉φs 1E , L−
P =

∑
s∈T−

P

〈f, ϕs〉φs 1E .

Note that for appropriate εs with |εs| = 1, we have∑
s∈T

|〈f, ϕs〉〈φs1E〉| =
∑
s∈T

εs〈f, ϕs〉〈φs1E〉 =
∫ ∑

s∈T

εs〈f, ϕs〉φs1E

=
∑
P∈P

∫
P

∑
s∈T

εs〈f, ϕs〉φs1E =
∑
P∈P

∫
P

L−
P +

∑
P∈P

∫
P

L+
P .(11.1)

The main term will come from parallelograms P ∈ P close to top(T ); estimates
on parallelograms P away from top(T ) will come with a decay factor. To make
things more precise, define, for k ≥ 1,

P0 = {P ∈ P :
dist(π2(P ), π2(top(T )))

|π2(top(T ))|
≤ 1}

Pk = {P ∈ P :
dist(π2(P ), π2(top(T )))

|π2(top(T ))|
∈ (2k−1, 2k]|}.

We focus first on the first term in (11.1). To control it we need only spatial decay
in both the horizontal and vertical directions.

11.1. Small tiles

For notational convenience, we further consider for l ≥ 1,

Pk,0 = {P ∈ Pk :
dist(π1(P ), π1(top(T )))

|π1(top(T ))|
≤ 1},

Pk,l = {P ∈ Pk :
dist(π1(P ), π1(top(T )))

|π1(top(T ))|
∈ (2l−1, 2l]}.

We divide the sum in the definition of L−
P into pieces according to how large the

tiles are. Specifically, let

Tj = {s ∈ T−
P : |s| = 2−j |top(T )|}.

The reason for this is that since the tiles s ∈ T−
P are shorter than P , their

frequency intervals can be much larger than that of P , meaning we lose control
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of |P ∩ supp(L−
P )|. We use the extra decay from Schwartz tails to compensate for

this. The upper bound of size(T ) ≤ σ implies that for individual tiles s ∈ T we
have |〈f, ϕs〉| ≤ σ|s|1/2. Hence∣∣ ∑

s∈Tj

〈f, ϕs〉φs1E

∣∣ � ∑
s∈Tj

σ χ(∞)
s � σ 2−Nk

∑
m≥2j+l

m−N � σ 2−Nk 2−Nj/2 2−Nl/2.

But note that since dense(s) � δ, we have

δ �
∫
Es

χ(1)
s ≥ 2−100(k+j+l)

|P ∩ supp(
∑

s∈Tj
〈f, ϕs〉φs1E)|

|P | .

This last estimate follows from considering the distance between s and P relative
to the length of s. Hence for any P ∈ Pk,l, we have∫

P

|L−
P | ≤

∑
j≥0

∫
P

∣∣∣ ∑
s∈Tj

〈f, ϕs〉φs1E

∣∣∣
� σ

∑
j≥0

2−Nk 2−Nj/2 2−Nl/2
∣∣∣P ∩ supp

( ∑
s∈Tj

〈f, ϕs〉φs1E

)∣∣∣ � δ |P |σ 2−10(l+k).

Summing over k, l, and P gives us∑
P∈P

∫
P

|L−
P | �

∑
l≥0

∑
k≥0

∑
P∈Pk,l

∫
P

|L−
P |

�
∑
l≥0

∑
k≥0

∑
P∈Pk,l

σ δ |P | 2−10k 2−10l � σ δ |top(T )|,

with the primary contribution coming from P near top(T ) as usual.

11.2. Large tiles

We start by remarking that sorting with respect to the horizontal distance from T
(i.e., using the index l, as in the previous subsection) is unnecessary in this sub-
section. For if P ∈ Pk,l with l ≥ C, then T+

P is empty, because |Π1(P )| >
|Π1(top(T ))|. This fact will be used several times in what follows. Next, we show
that the term under consideration in this section has small support. Precisely:

Claim 11.1. For P ∈ Pk, L
+
P1E is supported on a set of size � δ|P | 2100k.

The factor 2100k arises from the tail in the definition of dense and the fact
that P is away from top(T ). Fortunately, the decay in the functions ϕs for s ∈ T
is even greater when P is away from top(T ).

Proof. It is convenient to proceed by contradiction. Assume L+
P1E has much larger

support than δ|P |2100k. By the construction of P , we know that there is some s ∈ T
such that s ⊆ C2kP . But this implies there is R of the same dimensions as P ,
though located spatially over T , with ωR ⊆ ωs and such that dense(R) ≥ 100δ, say.
Since this implies s ≤ R, we have contradicted the assumption that dense(s) ≤ δ.

�
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We now turn our attention to the second term in (11.1). Recall the definitions
of 1-trees and 2-trees. Clearly for every s ∈ T , either ωs,1 ∩ ωtop(T ) = ∅ or
ωs,2 ∩ ωtop(T ) = ∅, so our tree T can be partitioned as T = T1 ∪ T2, where Tj is a
j-tree. Let

(T+
P )j = T+

P ∩ Tj
for j = 1, 2. Of course (T+

P )j is still a j-tree. We treat the two cases separately.

11.2.1. The 2-tree case. This case is a bit easier to handle because of the
location of the support of the function φs. More to the point: Since T2 is a 2-
tree, if there exists x such that φs(x)φt(x) �= 0 for s, t ∈ T2, then |s| = |t|. This
follows from the fact that φs(x) = 0 unless v(x) ∈ ωs,2, together with the fact that
ωs,1 ⊇ ωtop(T ), and similarly for t. (This was mentioned near the definition of φs
in Section 3.) Further, we know that for any tile s ∈ T , we have |〈f, ϕs〉| ≤ σ|s|1/2
by the size estimate for T . Combining these observations with Claim 11.1 and the
rapid decay of φs in the vertical direction gives us that, for P ∈ Pk,∫

P

∑
s∈(T+

P )2

〈f, ϕs〉φs 1E � σ δ 2−10k |P |,

since the integrand is uniformly bounded by σ2−200k. As mentioned earlier, if
|π1(s)| ≥ |π1(P )|, then π1(P ) ⊆ Cπ1(top(T )). Hence∑

k

∑
P∈Pk

∫
P

∑
s∈(T+

P )2

〈f, ϕs〉φs 1E � δ σ |top(T )|.

This completes the estimate for T2.

11.2.2. The 1-tree case. In this case we appeal to orthogonality in the form
of the Bessel inequality in Lemma 13.1. For parallelograms P ∈ P whose vertical
component is large, we need the decay factor from Lemma 13.1. We first introduce
some extra functions associated to the tiles. Let

αs(x) =

∫
ψs(t)ϕs(x1 − t, x2) dt.

The difference between αs and φs is that the vector field v makes no explicit
appearance in the definition of αs; rather, the integral is taken over a horizontal
line for every x. In φs, however, the integral is taken over an almost horizontal
line, where the precise definition of almost depends on the length of s. (The line
is horizontal because we assumed that the slope of the long side of top(T ) is zero.
In the general case it is parallel to top(T ).) We have the obvious equality∫

P

∑
s∈(T+

P )1

εs〈f, ϕs〉φs 1E =

∫
P

∑
s∈(T+

P )1

εs〈f, ϕs〉αs 1E

+

∫
P

∑
s∈(T+

P )1

εs〈f, ϕs〉 (φs − αs)1E .
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This decomposition allows us to reduce our problem to proving the following two
claims:

Claim 11.2. For each P ∈ P,∫
P

∑
s∈(T+

P )1

εs〈f, ϕs〉αs1E � δ
∑
j≥0

2−Nj 1

|2jP |

∫
2jP

∣∣∣ ∑
s∈T1

〈f, ϕs〉αs

∣∣∣.
Claim 11.3. For P ∈ Pk,∑

s∈(T+
P )1

εs〈f, ϕs〉(φs − αs)1E � 2−200k σ.

Notice that supp α̂s ⊆ supp ϕ̂s, since

α̂s(ξ) =

∫
ψs(t) e

−2πitξ1 ϕ̂s(ξ) dt.

This will allow us to prove orthogonality statements about the αs later in the
proof. For example, from this we can conclude that

(11.2)
∥∥∥ ∑

s∈T1

εs〈f, ϕs〉αs

∥∥∥2
2
�

∑
s∈T1

|〈f, ϕs〉|2,

because the fact stated above about the Fourier support of the functions αs allows
us to prove this inequality in the same way we prove the Bessel inequality in
Section 13: expand the square, and notice that 〈αs, αt〉 = 0 unless |s| = |t|.

Again we remark that if T+
P is nonempty, then π1(P ) ⊆ Cπ1(topT ). Hence in

the summation below we can ignore dependence on the parameter l used in the
last section. Given these claims, together with Claim 11.1, we control the first
term in (11.1) by∑
P∈P

∫
P

L+
P �

∑
P∈P

∫
P

εs
∑

s∈(T+
P )1

〈f, ϕs〉αs1E +
∑
P∈P

∫
P

εs
∑

s∈(T+
P )1

〈f, ϕs〉(φs − αs)1E

�
∑
k

∑
P∈Pk

δ

∫
P

∑
j≥0

2−Nj 1

|2jP |

∫
2jP

∣∣ ∑
s∈T1

〈f, ϕs〉αs

∣∣
+
∑
k

∑
P∈Pk

2−200k σ |P ∩ supp(L+
P )|.

Note that the second term in the last display is controlled by Claim 11.1. For
P ∈ Pk, it is convenient to split the function

∑
s∈T1

〈f, ϕs〉αs into two pieces, using
the identity 1R2 = 1Dk−5

+ 1(Dk−5)c , where

Dk = {(x, y) : |y| � 2k |π2(top(T ))|}.

In other words, Dk is a horizontal strip of width ∼ 2k|π2(top(T ))|. (Obvious mod-
ifications can be made in the case k ≤ 5.) For the first piece – the one closer to
top(T ) – we can use the fact that the tile P is far from top(T ) together with the de-
cay in j to obtain good control. For the second piece – the one away from top(T ) –
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we can take advantage of the decay in the wave packets associated to tiles in T in
the form of the Bessel inequality in Lemma 13.1. We focus first on the term close
to top(T ):∑

k

∑
P∈Pk

δ

∫
P

∑
j≥0

2−Nj 1

|2jP |

∫
2jP

∣∣ ∑
s∈T1

〈f, ϕs〉αs1Dk−5

∣∣
=

∑
k

∑
P∈Pk

δ

∫
P

∑
j≥k

2−Nj 1

|2jP |

∫
2jP

∣∣ ∑
s∈T1

〈f, ϕs〉αs1Dk−5

∣∣
�

∑
k

∑
P∈Pk

δ2−Nk

∫
P

M
(∣∣ ∑

s∈T1

〈f, ϕs〉αs1Dk−5

∣∣)
= δ

∫
∪C

l=0∪P∈Pk,l
P

2−NkM
(∣∣ ∑

s∈T1

〈f, ϕs〉αs1Dk−5

∣∣)
� δ2−Nk

∣∣ ∪C
l=0 ∪P∈Pk,l

P
∣∣1/2 (∫ ∣∣ ∑

s∈T1

〈f, ϕs〉αs1Dk−5

∣∣2)1/2

.

This nearly finishes the proof for the first term, since we may estimate this L2

norm by using orthogonality in the x-variable just as in the proof of Lemma 13.1
below. (Readers uncomfortable with this should look to the proof of Lemma 13.1.)
Specifically, we have∫ ∣∣ ∑

s∈T1

〈f, ϕs〉αs1Dk−5

∣∣2 =
∑
s∈T1

∑
s′∈T1

〈f, ϕs〉〈f, ϕs′ 〉
∫
Dk

αsαs′

�
∑
s∈T1

|〈ϕs, f〉|2
∑

s′ : |s|=|s′|

∫
|αsαs′ | �

∑
s∈T1

|〈ϕs, f〉|2 � σ2|top(T )|.

We have used symmetry and the x-orthogonality in the first inequality above. This
finishes the proof for the first term. To control the second term (the one away from
top(T )), we can appeal directly to a Bessel-type inequality. Here we use such an
inequality for the functions αs rather than the functions ϕs, just as in the estimate
above, but we also obtain significant decay in k just as in Lemma 13.1. The proof
is identical to the proof of Lemma 13.1. Hence

∑
k

C∑
l=0

∑
P∈Pk,l

δ

∫
P

∑
j≥0

2−Nj 1

|2jP |

∫
2jP

∣∣ ∑
s∈T1

〈f, ϕs〉αs1(Dk−5)c
∣∣

� δ

∫
∪C

l=0∪P∈Pk,l
P

M
(∣∣ ∑

s∈T1

〈f, ϕs〉αs1(Dk−5)c
∣∣)

� δ
∣∣ ∪C

l=0 ∪P∈Pk,l
P
∣∣ 1/2(∫ ∣∣ ∑

s∈T1

〈f, ϕs〉αs1(Dk−5)c
∣∣2)1/2

� δ 2k |top(T )|1/2 (σ2 2−100k |top(T )|)1/2 � 2−10k δ σ |top(T )|,

which is what we want.
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Proof of Claim 11.2. Recall that we are considering a point x ∈ P for some paral-
lelogram P , and we consider the sum∑

s∈T1 : |π1(s)|>|π1(P )|
〈f, ϕs〉φs(x).

The restriction in the summation already implies that for any x, there ism(x) such
that all tiles s that make an appearance in the sum above satisfy |π1(s)| ≥ m(x).
Further, since we know that u(x) ∈ ωs,2, we also have M(x) such that all tiles s
that appear in the sum above satisfy |π1(s)| ≤ M(x). Both of these claims are
reversible, so

{s ∈ T1 : |π1(s)| > |π1(P )|} = {s ∈ T : m(x) ≤ L(s) ≤M(x)}.

Hence it is our goal to estimate ∑
s∈T : m(x)≤L(s)≤M(x)

〈f, ϕs〉αs.

Denote by k a Schwartz function such that supp k̂ ⊆ [−1 − 1/100, 1 + 1/100]2,

and such that k̂(ξ) = 1 for ξ ∈ [−1, 1]2. Further denote by kr the function ob-
tained by adapting k to the rectangle [−1/r, 1/r]× [−1/w, 1/w]; i.e., let kr(x, y) =
k(x/r, y/w). With this definition, we know for any N (which appears in the last
line of the computation below),∑
s∈T1 : m(x)≤L(s)≤M(x)

〈f, ϕs〉αs =
∑

s∈T1 : m(x)≤L(s)

〈f, ϕs〉αs −
∑

s∈T1 : L(s)>M(x)

〈f, ϕs〉αs

=
( ∑

s∈T1

〈f, ϕs〉αs

)
∗ km(x) −

( ∑
s∈T1

〈f, ϕs〉αs

)
∗ kM(x)

≤
∑
j≥0

2−Nj 1

|2jP |

∫
2jP

∣∣ ∑
s∈T1

〈f, ϕs〉αs

∣∣.
�

Proof of Claim 11.3. By the argument at the beginning of the proof of Claim 11.2,
it suffices to estimate ∑

s∈T : m(x)≤|π1(s)|≤M(x)

〈f, ϕs〉(φs(x)− αs(x))1ωs,2(u(x)).

To do this we first estimate |φs − αs|. By definition, we have

|φs(x)− αs(x)| ≤
∫

|ψs(t)| |ϕs(x1 − t, x2 − tu(x))− ϕ(x1 − t, x2)| dt.

To compute the difference in the integrand, estimating the following quantity will
be helpful:

� := sup
z∈[0,tu(x)]

∂

∂x2
ϕs(x1 − t, x2 − z).
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Fix an integer j ≥ 1 and consider |t| ∼ 2j|π1(s)|. If (x1, x2) �∈ 2j+10s, then

� � χ
(2)
s (x1, x2). If (x1, x2) ∈ 2j+10s, then � � 1. We also have that ψs(t) �

1/(2Nj|s|) for any N . Analogous facts hold when j = 0 and |t| ≤ |π1(s)|. Let
Ij = {t : |t| ∼ 2j|π1(s)|} for j ≥ 1 and I0 = {t : |t| ≤ |π1(s)|}. Combining these
observations gives us for (x1, x2) �∈ 2j+10s that

|φs(x)− αs(x)| �
∑
j≥0

∫
Ij

1

2Nj|s| 2
j |π1(s)|

|u(x)|
w

χ(2)
s (x1, x2) dt

� |π1(s)|
|u(x)|
w

χ(2)
s (x1, x2).

If (x1, x2) ∈ 2j+10s, then we have � � 2100jχ
(2)
s , so

|φs(x)− αs(x)| �
∑
j≥0

∫
Ij

1

2−Nj|s| 2
j |π1(s)|

|u(x)|
w

dt � |π1(s)|
|u(x)|
w

χ(2)
s (x1, x2).

Since u(x) ∈ ωs,2 for all s ∈ T1, we know u(x) ≤ w/|π1(s)|. Combining this with
the fact that |〈f, ϕs〉| � σ|s|1/2 and the estimate immediately above, we have∣∣∣ ∑
m(x)≤|π1(s)|≤M(x)

〈f, ϕs〉(φs − αs)
∣∣∣ ≤ ∑

|π1(s)|≤w/u(x)

σ |s|1/2 |u(x)| |π1(s)|
w

χ(2)
s (x1, x2)

� σ χ
(∞)
top(T )(x1, x2),

which is what we claimed. �

12. Proof of size estimate

In this section we write f = 1F ; note that we do not use the fact that f is
a characteristic function. As with the tree lemma, there are small modifications
required from the one-dimensional situation to handle Schwartz tails in the vertical
direction. We use the Bessel inequality from Lemma 13.1 to do this. First we note
that by assumption,

σ2
∑
T∈T

|top(T )| �
∑
T∈T

∑
s∈T

|〈f, ϕs〉|2

=

∫
f
∑
T

∑
s

〈f, ϕs〉ϕs ≤ ‖f‖2
∥∥∥∑

T

∑
s

〈f, ϕs〉ϕs

∥∥∥
2
.

It is enough to prove∥∥∥∑
T

∑
s

〈f, ϕs〉ϕs

∥∥∥
2
≤ σ

√∑
T∈T

|top(T )|.
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By expanding the square and using symmetry, we have∥∥∥ ∑
T∈T

∑
s∈T

〈f, ϕs〉ϕs

∥∥∥2
2
=

∑
T∈T

∑
T ′∈T

∑
s∈T ′

∑
s′∈T ′

〈f, ϕs〉〈f, ϕs′〉〈ϕs, ϕs′〉

�
∑
T∈T

∑
s∈T

∑
T ′∈T

∑
s′∈T ′ : |s′|=|s|

|〈f, ϕs〉〈f, ϕs′ 〉〈ϕs, ϕs′〉|

+
∣∣∣ ∑
T∈T

∑
s∈T

∑
T ′∈T

∑
s′∈T ′ : |s′|<|s|

〈f, ϕs〉〈f, ϕs′ 〉〈ϕs, ϕs′〉
∣∣∣

= B + C.

Note that
{s′ : |s′| = |s| and ωs ∩ ωs′ �= ∅}

partitions R2, so ∑
|s′|=|s|

|〈ϕs, ϕs′〉| ∼ 1.

Hence we can estimate the first term, using symmetry again, by

B �
∑
T∈T

∑
s∈T

∑
T ′∈T

∑
s′∈T : |s′|=|s|

|〈f, ϕs〉|2|〈ϕs, ϕs′〉|

�
∑
T∈T

∑
s∈T

|〈f, ϕs〉|2 ∼ σ2
∑
T∈T

|top(T )|.

Now we look at the second term C. By Cauchy–Schwarz, we have

C ≤
∑
T∈T

(∑
s∈T

|〈f, ϕs〉|2
)1/2(∑

s∈T

∣∣∣ ∑
T ′∈T ′

∑
s′∈T ′ : |s′|<|s|

〈ϕs, ϕs′〉〈f, ϕs′ 〉
∣∣∣2)1/2

�
∑
T∈T

σ |top(T )|1/2D(T )1/2,

where

D(T ) =
∑
s∈T

∣∣∣ ∑
T ′∈T ′

∑
s′∈T ′ : |s′|<|s|

〈ϕs, ϕs′〉〈f, ϕs′ 〉
∣∣∣2.

It remains to analyze D(T ) for a tree T ∈ T . We claim that the set of tiles over
which the inner sum ranges is actually independent of s. More specifically, define

A =
{
s′ ∈

⋃
T ′ 
=T,T ′∈T

T ′ : ωs,1 ∩ ωs′,1 �= ∅ and |s′| < |s| for some s ∈ T
}
.

Then we have:

Claim 12.1. For each s ∈ T ,∑
T ′∈T

∑
s′∈T ′ : |s′|<|s|

〈ϕs, ϕs′〉〈f, ϕs′ 〉 =
∑
s′∈A

〈ϕs, ϕs′〉〈f, ϕs′ 〉.
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Proof. It is clear from the definition of A that the summation on the left is over
a set of tiles that is contained in A. So suppose s′ ∈ A; by definition of A, this
gives us s̃ ∈ T such that |s′| < |s̃| and such that ωs̃,1 ∩ ωs′,1 �= ∅. This last
condition guarantees that ωs′,1 ⊇ ωT . If |s| ≥ |s̃|, then of course |s| > |s′| and
ωs,1∩ωs′,1 �= ∅, so that in fact the tile s′ appears in the summation on the left-hand
side of the claim. If |s| < |s̃| and |s| > |s′| then we are done as before. So assume
|s| ≤ |s′| < |s̃|. In this case ωs,1 ∩ ωs′,1 = ∅, which implies that 〈ϕs, ϕs′〉 = 0,
finishing the proof of the claim. �

Now for a collection of tiles C, define

F (C) =
∑
t∈C

〈f, ϕt〉ϕt.

With this notation, we have

D(T ) =
∑
s∈T

|〈ϕs, F (A)〉|2.

Before we proceed, we mention a key disjointness property of tiles in A.

Claim 12.2. Tiles in A are pairwise disjoint.

Proof. Suppose t, t′ ∈ A. Then there are s, s′ ∈ T such that ωt,2 ⊇ ωs ⊇ ωtop(T )

and such that ωt′,2 ⊇ ωs′ ⊇ ωtop(T ′). Since ωt,2 ∩ ωt′,2 �= ∅, we may assume
without loss of generality that ωt,2 ⊆ ωt′,2, i.e., that |t′| ≤ |t|. This means the
tree T ∗ containing t was selected before the tree containing t′. Finally, note that t
and t′ cannot belong to the same 1-tree, since ωt,2 ⊆ ωt′,2. If t∩ t′ �= ∅, then in fact

t′ ⊆ V (top(T ∗)), and hence t′ was included in the maximal tree T̃ ∗ containing the

1-tree T ∗; see the selection algorithm in Section 5 for construction of this tree T̃ ∗.
Hence the tiles in A are pairwise disjoint. �

We now introduce some more notation to sort the tiles in A according to how
far they are from top(T ). For k > 1, let Rk = 2ktop(T ). Let R0 = top(T ).
Then let

Ak = {s′ ∈ A : s′ ⊆ Rk but s′ �⊆ Rk−1}.
Now by the Minkowski inequality,(∑

s∈T

|〈ϕs, F (A)〉|2
)1/2

≤
∑
k

(∑
s∈T

|〈ϕs, F (Ak)〉|2
)1/2

.

It remains to show

(12.1)
∑
s∈T

|〈ϕs, F (Ak)〉|2 � 2−10k σ |top(T )|.

We will use the spatial localization of the tiles s ∈ T to top(T ) to obtain the
desired decay in k. We have∑
s∈T

|〈ϕs, F (Ak)〉|2 �
∑
s∈T

|〈ϕs,1Rk−3
F (Ak)〉|2 +

∑
s∈T

|〈ϕs,1Rc
k−3

F (Ak)〉|2 = Ik + IIk.
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First we estimate Ik. For x ∈ Rk−3 and s ∈ Ak, we have

ϕs(x)1Rk−3
(x) � 2−10k 1√

|s|
χ(∞)
s (x).

We now estimate ‖1Rk−3
F (Ak)‖2 by duality. We make one small observation as a

preliminary:

Claim 12.3. If M is the strong maximal operator, then∫
χ(∞)
s (x) g(x) dx �

∫
s

Mg(x) dx.

We remark that each s ∈ A essentially points in the direction of T , so the
strong maximal operator is appropriate here.

Proof.∫
χ(∞)
s (x)g(x)dx � |s|

∑
k≥0

2−3k 1

|2ks|

∫
|2ks|

|g| � |s| inf
x∈s

Mg(x) �
∫
s

Mg(x)dx. �

Consider a function g ∈ L2, and remember that |〈f, ϕs〉| � σ
√
|s|. Then using

the claim above about disjointness of tiles s ∈ Ak, we have∫
F (Ak)g1Rk−3

=

∫ ∑
s∈Ak

〈f, ϕs〉ϕs(x)1Rk−3
(x) g �

∫ ∑
s∈Ak

2−10k σ χ(∞)
s (x) g

� 2−10kσ
∑
s∈Ak

∫
s

Mg ≤ 2−10kσ

∫
⋃

s∈Ak
s

Mg

≤ 2−10kσ |Rk|1/2 ‖g‖2 ≤ 2−10k σ (22k |top(T )|)1/2 ‖g‖2,

which implies that

Ik � ‖1Rk−3
F (Ak)‖22 � σ2 2−4k |top(T )|.

This proves (12.1) for Ik.

To estimate IIk, we need only estimate ‖F (Ak)‖2 and apply Lemma 13.1. We
do this just as above. Let g be such that ‖g‖2 = 1. Then∫

F (Ak) g ≤
∫ ∣∣ ∑

s∈Ak

〈f, ϕs〉ϕs g
∣∣ � ∫ ∣∣ ∑

s∈Ak

σ χ(∞)
s g

∣∣ � σ

∫
∪s∈Ak

s

Mg � σ |Rk|1/2.

So
‖F (Ak)‖22 � σ2 | ∪ Ak| � σ2 22k |top(T )|.

Hence by Lemma 13.1,

IIk � 2−10k ‖F (Ak)‖22 � σ2 2−8k |top(T )|.

Summing in k proves D(T ) � σ2|top(T )|, which finishes the proof.
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13. Localized Bessel inequality

In this section we prove a Bessel inequality for 1-trees with functions supported
away from the top of the tree. Specifically:

Lemma 13.1. Let T be a 1-tree. For k ≥ 1, let Rk = 2ktop(T ). For k ≥ 1, let
Ωk = Rk \Rk−1. Define Ω0 = top(T ). Then for any N > 0,∑

s∈T

∣∣〈f 1Ωk
, ϕs〉

∣∣2 � 2−Nk ‖f 1Ωk
‖22.

Remark 13.2. For a classical one-dimensional tree, this can be proved by using
the extreme spatial decay of the wave packets ϕs, s ∈ T , away from top(T ). We
use this in conjunction with orthogonality in the x-variable to handle interactions
of the functions ϕs and ϕs′ horizontally close to the tree, where tail estimates do
not improve for shorter tiles in the tree. This is the reason for the decomposition
of Ωk into Bk and Ck in the proof below.

Proof. For notational convenience, we will assume that the parallelogram top(T )
is centered at the origin, has width 1, and has sides parallel to the coordinate axes.
First note that∑

s∈T

|〈f 1Ωk
, ϕs〉|2 =

∑
s∈T

|〈f 1Bk
, ϕs〉|2 +

∑
s∈T

|〈f 1Ck
, ϕs〉|2 =: B + C,

where
Bk = {(x, y) ∈ Ωk : |y| ≥ 2k} and Ck = Ωk \Bk.

To estimate B we will need to use orthogonality in the horizontal variable. To
estimate C we will need only spatial decay, as in the one-dimensional case.

Note that, by Cauchy–Schwarz,

B2 =

∫
Bk

f
∑
s∈T

〈f 1Bk
, ϕs〉ϕs

≤ ‖f 1Ωk
‖2
(∑

s∈T

∑
s∈T ′

∫
|y|≥2k

∫
x∈R

〈f1Bk
, ϕs〉〈f1Bk

, ϕs′〉ϕs(x, y)ϕs′ (x, y)dxdy
)1/2

.

Also note that if |s| �= |s′|, then for every y, we have∫
x

ϕs(x, y)ϕs′ (x, y) = 0.

This follows from the definition of the wave packets ϕs; specifically, note that
π1(supp(ϕ̂s)) ∩ π1(supp(ϕ̂s′ )) = ∅ whenever ωs,1 ∩ ωs,2 = ∅, which happens when-
ever s and s′ are in the same 1-tree and |s| �= |s′|. By symmetry we may estimate
|〈f 1Ωk

, ϕs〉〈f 1Ωk
, ϕs′〉| ≤ |〈f 1Ωk

, ϕs〉|2, which gives us∑
s∈T

∑
s′∈T

∫
|y|≥2k

∫
x

〈f 1Bk
, ϕs〉〈f 1Ωk

, ϕs′〉ϕs(x, y)ϕs′ (x, y)

≤
∑
s∈T

∑
s′∈T : |s|=|s′|

|〈f 1Bk
ϕs〉|2

∫
|y|≥2k

∫
x

|ϕs| |ϕs′ |.
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However, note that ∑
s′∈T : |s|=|s′|

∫
|y|≥2k

∫
x

|ϕs| |ϕs′ | ≤ 2−Nk,

because the prototype ϕ is Schwartz, s ∈ T , and Ωk is far away from top(T ).
Hence

B � 2−Nk/2 ‖f 1Ωk
‖2

(∑
s∈T

|〈f 1Ωk
ϕs〉|2

)1/2

.

We now estimate C. Define

T j = {s ∈ T : |s| = 2−j|top(T )|}.

Note that if s ∈ T j , then |〈f1Ck
, ϕs〉| � 2−Nk/2−50j ‖f1Ωk

‖2 by Cauchy–Schwarz
and the fact that ‖ϕs1ck‖2 � 2−Nk/2−50j . This last claim follows from the fact
that ϕs is highly localized on top(T ), and because Ck is far away from top(T )
horizontally. (Of course we could not make the same argument for B because we
can do no better than ‖ϕs1Bk

‖2 � 2−Nk for s ∈ T j; i.e., there is no decay in the
parameter j.) This is already enough:

C ≤
∑
j≥0

∑
s∈T j

|〈f 1Ωk
ϕs〉|2 � 2−Nk/2 ‖f 1Ωk

‖2,

which finishes the proof of the lemma. �

14. Square function estimates

In this section we prove Lemma 10.2. The proof is similar to the standard proof
of Lp boundedness for the analogous one-dimensional square function, with a
few tweaks to handle the two-dimensionality. For notational convenience we will
assume, without loss of generality, that the tree T has top that is axis paral-
lel and centered at the origin. Proving the lemma with the spatial localiza-
tion requires us to decompose Δ spatially as follows. For k ≥ 1, define the set
Ωk = 2ktop(T ) \ 2k−1top(T ). For k = 0, define Ωk = top(T ). Now define

Δk(f) =
( ∑

s∈T

|〈f,1Ωk
ϕs〉|2

1s

|s|

)1/2

.

By Minkowski’s inequality, we have

Δf(x) =
(∑

s∈T

∣∣〈f,∑k1Ωk
ϕs

〉∣∣2 1s

|s|

)1/2

≤
∑
k

Δk f(x)

pointwise, so again by Minkowski’s inequality we have

‖Δf‖p ≤
∑
k

‖Δkf‖p.
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We will prove that for any N ,

(14.1) ‖Δkf‖p � 2−Nk ‖1Ωk
f‖p.

With this, we can use Hölder’s inequality to see that for any N , we have

‖Δf‖p �
∑
k

2−Nk ‖1Ωk
f‖p �

(∑
k

2−Nk

∫
Ωk

|f |p
)1/p

�
(∫

|βN,Tf |p
)1/p

,

where βN,T is the function defined in the statement of Lemma 10.2, which finishes
the proof of Lemma 10.2. It remains to prove (14.1). Note that Lemma 13.1 is
exactly this when p = 2. By interpolation, it is enough to prove the following
weak-type estimate:

|{Δkf > λ}| � 22k
‖f‖1
λ1

.

By dividing the function f into � 22k pieces, we may assume the support of f is
contained in a translate of top(T ). With this assumption, it is enough to prove
for such f that

|{Δkf > λ}| � ‖f‖1
λ1

.

Our argument proceeds more or less by the usual path of Calderón–Zygmund
decomposition.

Denote by Rk the rectangle with the same center and length as R but 2k times
the height. Let B̃ be the collection of maximal rectangles of width w taken from
the collection such that

1

|Rk|

∫
Rk

|f | > 25k λ,

and for each R ∈ B̃, let R′ = π1(R) × π2(C top(T )). Then let B = {R′ : R ∈ B̃}.
We can see already that

∑
R∈B̃ |R| ≤

∑
R∈B |R| � ‖f‖1/λ. This follows from the

weak (1,1) inequality for the Hardy–Littlewood maximal function, which holds for
rectangles of fixed width: if we write, for k ≥ 0,

B̃k =
{
R ∈ B̃ :

1

|Rk|

∫
Rk

|f | > 25kλ
}
,

then we have ∑
R∈B̃

|R| �
∑
k≥0

2k
‖f‖1
25kλ

� ‖f‖1
λ

.

For each (x, y) ∈ R, let

b(x, y) = f(x, y)− 1

|π1(R)|

∫
π1(R)

f(z, y) dz.

Note that by definition we have that, for each y ∈ π2(top(T )),∫
π1(R)

b(x, y) dx = 0.

We also have the following helpful fact:
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Claim 14.1. For each y ∈ π2(C top(T )), we have

1

|π1(R)|

∫
π1(R)

f(z, y) dz ≤ C λ.

Proof of Claim. Note that f̂ is supported in the annulus of width 1/w. Let k be a

function such that k̂(ξ) = 1 for ξ ∈ [−4w, 4w]. Then

f(x, y) =

∫
f(x,w) k(y − w) dw,

so

1

|π1(R)|

∫
π1(R)

|f(z, y)| dz = 1

|π1(R)|

∫
π1(R)

∣∣∣ ∫ f(z, w)k(y − w) dw
∣∣∣ dz.

Because k rapidly decays away from a rectangle of height w, if we denote by Rj

the rectangle with same center and length as R but 2j times the height, then

1

|π1(R)|

∫
π1(R)

∣∣∣ ∫ f(z, w) k(y − w) dw
∣∣∣ dz

� 1

|π1(R)|

∫
π1(R)

∑
j≥1

1

2j

∫ 2j

2j−1

f(z, w) 2−10j dw dz ≤ λ,

where the last inequality is by assumption on R. �

With this claim, we define

g(x, y) = f(x, y) for (x, y) �∈
⋃
R∈B

R

and

g(x, y) =
1

|π1(R)|

∫
π1(R)

f(z, y) dz for (x, y) ∈ R ∈ B.

Note that by the claim we have g(x, y) � λ for (x, y) ∈ R. Further, for almost every
(x, y) �∈

⋃
R∈B R such that g(x, y) = f(x, y) � λ, there exists a horizontal line

segment L through (x, y) such that 1
|L|

∫
L
f � λ, which implies there is a rectangle

of width w containing (x, y) on which the average of f is larger than λ, contradicting
our assumption that (x, y) �∈

⋃
R∈B R. Hence g � λ almost everywhere.

To see the purpose of including the rectangles 5CR′ in the exceptional set
(rather than a small dilate of R itself), consider a rectangle R north of the tree T ,
and a mean zero function h supported on R. Analysis of

∫
(5CR)c

Δh is a bit

more complicated than in the one-dimensional case because the collection {ϕs}s∈T

has no orthogonality in the vertical direction. However by excluding R′, we need
only consider small tiles s supported away from the vertical translate of 5CR,
allowing us to take advantage of the spatial decay (in the horizontal variable) of
the functions ϕs.
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With this modification, the proof now proceeds as expected: use the fact that
|g| � λ, together with the L2 estimate on Δ, to see that

|{Δkg > λ}| �
∫
|g|2
λ2

� ‖f‖1
λ

.

Additionally, by the Chebyshev and triangle inequalities, together with the sub-
linearity of Δk, we have∣∣∣{x �∈ E : Δk

(∑
R

bR
)
> λ

}∣∣∣ ≤ 1

λ

∑
R

∫
(5CR′)c

|Δk(bR)|.

To finish the proof we show that for each R ∈ B, we have

(14.2)

∫
(5CR′)c

|Δk(bR)| �
∫

|bR|,

which will give us that∣∣∣{x �∈ E : Δ
(∑

R

bR
)
> λ

}∣∣∣ � 1

λ

∑
R

∫
|bR| �

∑
R

|R| � ‖f‖1
λ

.

Once again, to prove (14.2), we essentially follow the one-dimensional argu-
ment, dealing with a few extra nuisances along the way. A reader having trouble
seeing through the technicalities should note that all of the computations below
are essentially the same as in the one-dimensional case. The problem is under-
standing why the present situation is essentially the same as the one-dimensional
case. More specifically, to prove (14.2), it is convenient to make a few simplifying
(and valid) assumptions. For each parallelogram s ∈ T define

s̃ = π1(s)× Cπ2(top(T )).

Since s ⊆ s̃, it is clear that if we define

(14.3) Δ̃kf =
(∑

s∈T

|〈f 1Ωk
, ϕs〉|2

1s̃

|s|

)1/2

,

then Δkf ≤ Δ̃kf pointwise. For each s ∈ T , we know that π1(s̃) is contained
in the union of two dyadic intervals s̃L and s̃R each of size � π1(s̃). Further,
because the set of tiles of a given size and orientation partition R2 (i.e., for each
ω ∈ D, we have

⋃
R∈Uω

R = R2 ; see the definitions in Section 3), and because
|π1(s)| ≥ |π2(s)| we know that for any dyadic interval I, there are � 1 tiles s ∈ T
such that I = π1(s̃L) or I = π1(s̃R). All of this allows us to assume (possibly after
dividing T into ∼ 1 pieces) that the tiles s are parameterized by dyadic intervals,
and that for each x ∈ C top(T ), and each dyadic interval I, there is at most one
s ∈ T such that x ∈ s̃ and π1(s̃) = I.

To prove (14.2), we split the sum inside Δf into two pieces, one over tiles
whose vertical projection is smaller than the length of R, and the other over tiles
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whose vertical projection is larger than the length of R. We begin by controlling
the sum over smaller tiles. Note that the dominant term in both cases comes from
tiles such that |π1(s)| ∼ |π1(R)|. In the integral below, we need only consider
x ∈ Ctop(T ) such that π1(x) �∈ π1(5CR). This allows us to prove the desired
estimate using spatial decay alone. Further, since 1s̃(x) is constant on vertical
segments projecting to π2(Ctop(T )), we have∫

x∈Ktop(T )∩(5CR′)c

( ∑
|π1(s)|≤|π1(R)|

|〈bR, ϕs〉|2
1s

|s|

)1/2

�
∫
x∈Ktop(T )∩(5CR′)c

(‖bR‖21
|R|2

( |x− c(R)|
|π1(R)|

)−10)1/2

� ‖bR‖1
|π1(R)|

∫
t∈R : |t|≥5|π1(R)|

1

|t/|π1(R)||5
dt � ‖bR‖1.

We emphasize that the integral in the last line is one-dimensional. It remains to
control the sum over the tiles with vertical projection larger than |π1(R)|. This
requires using the mean-zero-along-horizontal-line-segments property of the func-
tion bR. Note that for any smooth function h, we have

〈bR, h〉 =
∫
y∈π2(R)

∫
x∈π1(R)

bR(x, y)h(x, y)dxdy

≤
∫
y∈π2(R)

∫
x∈π1(R)

|bR(x, y)||h(x, y) − h(cπ1(R), y)|dxdy.

Our goal is to apply this to the wave packets ϕs. Specifically, we will show

Claim 14.2.

|〈bR, ϕs〉| � ‖bR‖1
1

|s|1/2
|π1(R)|
|π1(s)|

min
(
1,
( |x− c(R)|

|π1(s)|

)−10)
Proof. We must deal with a small technicality here: the tiles s need not be precisely
axis parallel, but fortunately they are close. Precisely, we have that the vertical
component (when using the coordinate frame of s) of (x, y) − (cπ1(R), y) is less
than w|π1(R)|/|π1(s)|. Of course we have the horizontal component (when using
the coordinate frame of s) of (x, y) − (cR, y) is less than |π1(R)|. Further, we
know that

D1ϕs(x, y) ≤
1√
|s|

1

|π1(s)|
∂

∂x
ϕ
( x

|π1(s)|
,
y

w

)
D2ϕs(x, y) ≤

1√
|s|

1

w

∂

∂y
ϕ
( x

|π1(s)|
,
y

w

)
.

Hence

|ϕs(x, y)− ϕs(c(π1(R)), y)| �
w |π1(R)|
|π1(s)|

1√
|s|

1

w

∂

∂y
ϕ
( x

|π1(s)|
,
y

w

)
+ |π1(R)|

1√
|s|

1

|π1(s)|
∂

∂x
ϕ
( x

|π1(s)|
,
y

w

)
.�
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The claim yields, writing Γ = Ktop(T ) ∩ (5CR′)c,∫
Γ

( ∑
|π1(s)|>|π1(R)|

|〈bR, ϕs〉|2
1s̃(x)

|s|

)1/2

dx

�
∫
Γ

‖bR‖1 |π1(R)|
( ∑

|π1(s)|>|π1(R)|

(min
(
1,
(

|x−c(R)|
|π1(s)|

)−10 )
|π1(s)| |s|1/2

)2 1s̃(x)

|s|

)1/2

dx

� ‖bR‖1.

This completes the proof of (14.2) and thus the proof of Lemma 10.2.

15. BMO type estimates for the square function

In this section we prove Lemma 10.3. As in the previous section, we consider
the related operator Δ̃. See (14.3) for the definition, as well as the discussion
immediately following the definition for several simplifying assumptions that we
make. To prove the lemma, we prove the following key claim. Here, and in the
rest of the proof, we write σ = size(T ); note that we also have

σ ∼
( 1

|top(T )|
∑
s∈T

|〈f, ϕs〉|2
)1/2

.

As in the last section, we consider a slightly modified version of Δ: define

Δ̃f =
(∑

s∈T

|〈f, ϕs〉|2
1s̃

|s|

)1/2

where the rectangles s̃ are defined immediately above (14.3).

Claim 15.1. ∣∣{Δ̃f > σn}
∣∣ � 2−n2∣∣{Δ̃f > σ}

∣∣.
(Of course we do not need the full exponential-squared decay, but we do have it.)

With the claim, we are almost done:

‖Δ̃f‖22 �
∫
{Δ̃f≤σ}

(Δ̃f)2 +
∑
n

∞∑
n=1

(σn)2|{Δ̃f > nσ}|

�
∫
{Δ̃f≤σ}

(Δ̃f)2 +
∑
n

∞∑
n=1

(σn)2|2−n2

{Δ̃f > σ}|

�
∫
{Δ̃f≤σ}

(Δ̃f)2 + σ2|{Δ̃f > σ}|

� σ

∫
{Δ̃f≤σ}

Δ̃f + σ

∫
{Δ̃f>σ}

Δ̃f = σ

∫
Δ̃f.



1066 M. Bateman

With this, we see that

σ2|top(T )| ∼ ‖Δ̃f‖22 � σ

∫
Δ̃f,

which proves that

‖Δ̃f‖2 ∼ σ|top(T )|1/2 � 1

|top(T )|1/2
∫

Δ̃f,

which is what we need. It remains to prove the claim.

Proof of Claim 15.1. Of course to prove the claim it is enough to show that

|{Δ̃f >
√
nσ}| � 2−n |{Δ̃f > σ}|,

and this is equivalent to showing

|{(Δ̃f)2 > nσ2}| � 2−n|{(Δ̃f)2 > σ2}|,

which can be shown in a rather straightforward manner following the proof of the
John–Nirenberg inequality. Recall that for each dyadic I we have an associated tile
in T , which we call s(I). For notational convenience, define for intervals I and K

aI,K(x) =
∑

I⊆J⊆K

|〈f, ϕs(J)〉|2
1s(x)

|s(J)| .

We first note that for any K, if I is a maximal interval on which

aI,K > mσ2,

then we know
aI,K < (m+ 2)σ2,

since

|〈f, ϕs(I)〉|2
1

|s(I)| ≤ σ2.

We begin by defining a collection of intervals I0:

I0 = {maximal dyadic I : aI,π1(Ctop(T )) > 100σ2}.

Then having defined In−1, define for any K ∈ In−1,

In(K) = {maximal dyadic I : aI,K > 100σ2}

In =
⋃

K∈In−1

In(K).

We remark that for any K, ⋃
I∈In(K)

|I| ≤ 1

2
|K|.
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To see this we only need to use the Chebyshev inequality, and the estimate
on size(T ):∣∣∣∣ ⋃

I∈In(K)

I

∣∣∣∣ ≤ 1

10σ2

∫
aI,K ≤ 1

10σ2

∑
J⊆K

|〈f, ϕs(J)〉|2 ≤ 1

10
|K|,

where the last inequality is due to the estimate on size(T ). Similarly,∣∣∣ ⋃
I∈I0

I
∣∣∣ ≤ 1

2

∣∣π1(Ctop(T ))∣∣.
Putting together all K in In−1 gives us that⋃

I∈In

|I| ≤ 1

2

⋃
I∈In−1

|I|,

and iterating this gives us that⋃
I∈In

|I| ≤ 2−n
⋃
I∈I0

|I|,

which proves Claim 15.1 since

(Δ̃f)2(x) � nσ2

for x such that π1(x) �∈
⋃

I∈In
I. �

16. Appendix. The case p > 2

In this appendix we briefly discuss the proof of Theorem 2.1 for p > 2, which is
essentially the proof in [6].

Following the tree decomposition of Section 5 and the remarks in Section 6, we
need to show ∑

δ

∑
σ

∑
T∈Tδ,σ

δσ |top(T )| � |F |1/p |E|1−1/p.

This time we care most about p close to ∞. We may assume |E| ≤ |F | because
if |E| > |F | then we may apply the previous arguments for the case p ≤ 2. We
emphasize here that there is no circularity. Both the argument in this section (in
which we assume |E| ≤ |F | ) and the argument in the bulk of the paper (in which
we assume |E| ≥ |F |) work when p = 2. Hence the p = 2 case of the estimate
in (3.3) is established for arbitrary E and F . This allows us to assume |E| ≤ |F |
in this section, where p ≥ 2, and allows us to assume |E| ≥ |F | in the earlier part
of the paper, where p ≤ 2.

By Estimates 5.3 and 5.4 it suffices to prove

(16.1)
∑
δ

∑
σ

∑
T∈Tδ,σ

δσmin
( |E|
δ
,
|F |
σ2

)
� |F |1/p |E|1−1/p

for p ≥ 2. The following simple estimate will be helpful:
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Claim 16.1. For any δ, we have

∑
σ

δσmin
( |E|
δ
,
|F |
σ2

)
�

√
δ|E‖F |.

Proof. We need only observe that the two terms in the minimum are equal when
σ =

√
δ|F |/|E| and split the sum over σ accordingly. �

We split the sum (16.1) in δ into two pieces, with the dividing line being
δ = |E|/|F |. For smaller δ, we use Claim 16.1 above:

∑
δ≤|E|/|F |

∑
σ

δσmin
( |E|
δ
,
|F |
σ2

)
�

∑
δ≤|E|/|F |

√
δ|E‖F | � |E|.

For larger δ, we use the estimate size � 1:

Claim 16.2. If the function in the definition of size(T ) is called f , then

size(T ) � ‖f‖∞.

Of course we are using f = 1F , which proves that here size(T ) � 1.

Proof. For k ≥ 1, define

Ω0 = top(T )

Ωk = 2k top(T ) \ 2k−1 top(T ).

We need only note that for any 1-tree T , by Lemma 13.1,

(∑
s∈T

|〈f, ϕs〉|2
)1/2

≤
∑
k

(∑
s∈T

|〈1Ωk
f, ϕs〉|2

)1/2

�
∑
k

2−Nk ‖1Ωk
f‖22 � ‖f‖2∞ |top(T )|

since |Ωk| � 22k |top(T )|. This proves the claim. �

Hence ∑
δ≥|E|/|F |

∑
σ≤1

δσ
|E|
δ

� |E| log |F |
|E| .

Combining these two estimates proves (16.1) since |E| ≤ |F |.
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