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Hardy spaces associated with different
homogeneities and boundedness of
composition operators

Yongsheng Han, Chincheng Lin, Guozhen Lu,
Zhuoping Ruan*and Eric T. Sawyer

Abstract. It is well known that standard Calderén—Zygmund singu-
lar integral operators with isotropic and nonisotropic homogeneities are
bounded on the classical H?(R™) and nonisotropic H} (R™), respectively.
In this paper, we develop a new Hardy space theory and prove that the
composition of two Calderén-Zygmund singular integral operators with
different homogeneities is bounded on this new Hardy space. Such a Hardy
space has a multiparameter structure associated with the underlying mixed
homogeneities arising from the two singular integral operators under con-
sideration. The Calderén—Zygmund decomposition and an interpolation
theorem hold on these new Hardy spaces.

1. Introduction and statement of results

The purpose of this paper is to develop a new Hardy space theory and prove that
the composition of two Calderén—Zygmund singular integrals associated with differ-
ent homogeneities is bounded on these new Hardy spaces. Indeed, the composition
of operators was considered by Calderén and Zygmund when introducing the first
generation of Calderén—Zygmund convolution operators. Calderén and Zygmund
discovered that to compose two convolution operators, T and T5, it is enough to
employ the product of the corresponding multipliers m4(§) and mso(&). However,
the symbol ms (&) = mq(&)ma(§) does not necessarily have zero integral on the unit
sphere, so they considered the algebra of operators cI+T, where ¢ is a constant, I is
the identity operator, and 7' is the operator introduced by them. In 1965, Calderén
considered again the problem of the symbolic calculus of the second generation of
Calderén—Zygmund singular integral operators, with kernels Ly (z,y) and La(x,y)
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having minimal regularity with respect to x, and corresponding to operators T
and T5. This problem reduced to the study of the commutator, which was the first
nonconvolution operator considered in harmonic analysis.

In the present paper, we consider the composition of two operators associ-
ated with different homogeneities. To be more precise, let e(£) be a function
on R™ homogeneous of degree 0 in the isotropic sense and smooth away from
the origin. Similarly, suppose that h(§) is a function on R™ homogeneous of de-
gree 0 in the nonisotropic sense related to the heat equation, and also smooth
away from the origin. Then it is well known that the Fourier multipliers T} defined

— — ~

by Ti(f)(€) = e(€)f(€) and Ty given by To(f)(€) = h(€)f(€) are both bounded

on LP for 1 < p < oo, and satisfy various other regularity properties such as being
of weak-type (1,1). It was well known that 77 and T% are bounded on the classical
isotropic and nonisotropic Hardy spaces, respectively. Rivieré in [20] asked the
question: is the composition T; o Ty still of weak-type (1,1)?7 Phong and Stein
in [19] answered this question and gave a necessary and sufficient condition for
T) o Ty to be of weak-type (1,1). The operators Phong and Stein studied are in
fact compositions with different kinds of homogeneities which arise naturally in
the O-Neumann problem. This motivates the work in the present paper.

In order to describe more precisely the questions studied and the results in this
paper, we begin by considering all functions and operators to be defined on R™.
We write R™ = R™~1 x R with x = (2/,x,,) where 2/ € R™~! and z,, € R. We
consider two kinds of homogeneities

§: (2 xm) = (62, 020), & >0,

and
§: (2! xm) — (02, 8%2,,), &> 0.

The first are the classical isotropic dilations occurring in the classical Calderén—
Zygmund singular integrals, while the second are nonisotropic and are related to
heat equations (also Heisenberg groups).

For z = (2/,2,,) € R™ ! x R we write |z, = (|2/|> + |2,,]?)"/? and |2|;, =
(|2 |+ |zm|)/2. We also use the notations j Ak = min{j, k} and jVk = max{j, k}.
The singular integrals considered in this paper are defined by:

Definition 1.1. A locally integrable function K; on R™/{0} is said to be a
Calderén—Zygmund kernel associated with the isotropic homogeneity if

a()é
(1.1) =K (m)‘ < Alz[7m71ol for all |a| > 0,
(1.2) / Ki(xz)de =0 forall)<r; <ry<oo.
r1<|z]|e<r2

We say that an operator T3 is a Calderén—Zygmund singular integral operator
associated with the isotropic homogeneity if T1(f)(x) = p.v.(Ky * f)(x), where Ky
satisfies conditions (1.1) and (1.2).
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Definition 1.2. Suppose K2 € LL (R™\ {0}). Ky is said to be a Calderén—Zyg-

loc
mund kernel associated with the nonisotropic homogeneity if

o or

(13) ‘WW ICQ(JT/,JTm) S B |J)|;m717‘a|72ﬂ for all |Oé| Z 0, ﬁ Z 0,

(1.4) / Kao(x) de =0 forall0<r <ry<oo.
r1<|z|p <r2

We say that an operator Tb is a Calderén—Zygmund singular integral opera-
tor associated with the nonisotropic homogeneity if Tu(f)(z) = p.v.(Kq * f)(z),
where g satisfies the conditions (1.3) and (1.4).

It is well known that any Calderén—Zygmund singular integral operator associ-
ated with the isotropic homogeneity is bounded on LP(R™) for 1 < p < co and is
also bounded on the classical Hardy space HP(R™) with 0 < p < 1. Here the clas-
sical Hardy space HP(R™) is that introduced by Fefferman and Stein in [5]. This
space is associated with the isotropic homogeneity. To see this, let 1) € S(R™)
with

(15)  supp 90 C {(¢,&,) eR™ xR : § < ¢l <2},

(1L6) Y [PW(279¢,279,)P =1 forall (¢,&,) € R™ x R/{(0,0)}.

JEZL

The Littlewood—Paley—Stein square function of f € S'(R™) is then defined by

9@ = {0+ s}

JEZ

where wj(-l)(x', Tp) = 27N (202’ 29 ,,). Note that the isotropic homogeneity is
involved in g(f). The classical Hardy space H?(R™) can then be characterized by

HP(R™) = {f € S'/PR™): g(f) € LP(R™)},

where &’ /P denotes the space of distributions modulo polynomials. If f € HP(R™),
the HP norm of f is defined by || f|lze = [[g(f)||Le-

As we mentioned above, a Calderén—Zygmund singular integral operator asso-
ciated with the nonisotropic homogeneity is bounded on LP;1 < p < oco. It is not
bounded on the classical Hardy space but is bounded on the nonisotropic Hardy
space. The nonisotropic Hardy space can also be characterized by the nonisotropic
Littlewood-Paley-Stein square function. To be more precise, let (2 € S(R™)
with

(L7)  supp @ C {(¢,6n) ER™ xR 1 <gh <2},

(1.8) S [@ @R, 276, )P =1 forall (¢,&m) € R™1 xR\ {(0,0)}.

kEZ



1130 Y. Han, C. LiN, G. Lu, Z. RUAN AND E. SAWYER

We then define g5, (f), the nonisotropic Littlewood—Paley—Stein square function
of f € §(R™), by

(D@ = { 1w« sy},

kEZ

where w,(f) (2!, 2,,) = 2R+ (2 (2R 92kg ). Note again that the nonisotropic
homogeneity is involved in g5 (f). The nonisotropic Hardy space H} (R™) then can
be characterized by

HE(R™) ={f € S'/PR™) : gn(f) € L"(R™)},

and if f € HP(R™), the Hy norm of f is defined by || f||zr = [|gn(f)llzs-

If Ty and Ty are Calderén—Zygmund singular integrals with isotropic and non-
isotropic homogeneities, respectively, the composition T} o Ty is always bounded
on P, 1 < p < oo, but, in general, bounded neither on the classical Hardy space
HP(R™) nor on the nonisotropic Hardy space Hj (R™). Our goal in this paper
is to develop a new Hardy space theory associated with different homogeneities
such that the composition 717 o T is bounded on this new Hardy space. A new
idea for how to achieve this is to establish the Littlewood—Paley—Stein theory as-
sociated with different homogeneities. More precisely, suppose that 1)) and (2
are functions satisfying conditions in (1.5)—(1.6) and (1.7)—(1.8), respectively. Let

Vie(z) = ¢§1) * 1/;,(3) (z). Define a new Littlewood—Paley—Stein square function by

Geon(1)@) = { 3 sns @)}

J,kEZ

We remark that a significant feature is that the multiparameter structure is in-
volved in the above Littlewood—Paley—Stein square function. As in the classical
case, it is not difficult to check that for 1 < p < oo,

(1.9) [Geom (F)lle = || fll e

The estimates above suggest us to define the H? norm of f in terms of the
L? norm of Geom(f) when 0 < p < 1. However, this continuous version of the
Littlewood—Paley—Stein square function Geom(f) is convenient to deal with the
case for 1 < p < oo but not for the case when 0 < p < 1. See further remark about
this below. The crucial idea is to replace the continuous version Geom(f) by the
discrete version G (f) as follows.

To define the discrete version sz( f), the key tool is the discrete Calderén
identity. To be more precise, we first recall the classical continuous Calderén
identity on L2(R™). Let ¢/(!) be a function satisfying the conditions (1.5) and (1.6).
By taking the Fourier transform, we have the classical continuous Calderén identity

Fla) =" vl «pV s f(2),

JEZ
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where the series converges in L?(R™) and in

So(R™) := {f e S(R™): f(@)z%dx = 0 for any |a| > 0} .

Rm

Note that the Fourier transforms of both z/};l) and 1/);1) % [ are compactly sup-
ported. Using a similar idea as in the Shannon sampling theorem, one can decom-

pose w§1) * w;l) x f(x) as
ST @ —2770) (i« f)(270).
tezm

Then the classical discrete Calderén identity is given by

(1.10) J@) =33 v 2770w « )0,

JET beT™

where the series converges in L?(R™), So(R™) and S{(R™). See [10] and [11] for
more details.

Now by considering 1, = wél) * 1/;](5) and taking the Fourier transform, we
obtain the continuous Calderdn identity

(1.11) f@) =D i ip s [(@),
J,k€EZ
where the series converges in L2(R™), So(R™) and S)(R™). Furthermore, we will

prove the following discrete Calderén identity.

Theorem 1.3. Suppose that V) and 3 are functions satisfying conditions in

(1.5)~(1.6) and (1.7)-(1.8), respectively. Let 1;(x) = 1/)](,) ,(f)(:c). Then

x T Z Z 9—(m=1)(§Ak)9—(iN2k) (.1 * f)(2_(j/\k)€’)2_(j/\2k)gm)
5 REL (0,0,,) EZM—1 XZ,
(1.12) X b (' — 270N g 2= N2R) gy
where the series converges in L*(R™), So(R™) and Sy(R™).

This discrete Calderéon identity leads to the following discrete Littlewood—
Paley—Stein square function.

Definition 1.4. For f € Sj(R™), sz( f), the discrete Littlewood—Paley—Stein
square function of f, is defined by

GiNE o) ={ 3 3 IWaax HETIE27 R 2

I KEL (U L) EL™ XL
, 1/2
X Xl(x )XJ(xm)} )

where the I are dyadic cubes in R™~! and the J are dyadic intervals in R with
side lengths £(I) = 27U and ¢(J) = 270”2k and the lower left corners of I
and the left endpoints of J are 2= R ¢ and 2-0UA2K) ¢ respectively.
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Now we formally define the Hardy spaces associated with two different homo-
geneities:

Definition 1.5. Let 0 <p < 1. HZ,,(R™) = {f € S§(R™) : G} (f) € LP(R™)}. If

com

f € HE _(R™), the norm of f is defined by HfHHé’m,.(Rm) = ng(f)HLp(Rm).

Note that, as mentioned above for the Littlewood—Paley—Stein square function,
the multiparameter structures are involved again in the discrete Calderdn identity
and the Hardy spaces HE (R™). To see that these Hardy spaces are well defined,
we need to show that HE _(R™) is independent of the choice of the functions 1)
and ¢(?). This will follow directly from the following theorem:

Theorem 1.6. If ¢ satisfies the same conditions as v, then for 0 < p <1 and
f c S(l) (Rm))
Hgi(f)HLp(Rm) ~ ||g$(f)”Lv(Rm)-

We would like to point out that one can define the Hardy space HE  (R™) in
terms of Geom(f), the Littlewood—Paley—Stein square function. Then one has to
show Theorem 1.6, that is, the norm of H? (R™) defined by Geom(f) must be
independent of the choice of the function ¥ in Geom(f). However, such a proof
of Theorem 1.6 with G(f) replaced by Geom(f) is more complicated. This is
why, instead of using Geom(f), we decide to use sz (f) to define the Hardy space
H? (R™). Indeed, by applying an argument similar to that in [10], one can also

show that for all 0 < p < oo,

Geom (H)llp = 1G5 (f)llp-

We omit the proof and refer the reader to [10] for the details.
We now state the main results of this paper.

Theorem 1.7. Let Ty and T be Calderén—Zygmund singular integral operators
with the isotropic and nonisotropic homogeneity, respectively. Then for 0 < p <1,

the composition operator T =Ty o Ty is bounded on HP  (R™).

It is well known that the atomic decomposition of the classical Hardy spaces is
the main tool for studying the HP-LP boundedness of classical Calderén—Zygmund
operators. See [4], [6], [9] and [12]. However, to get an atomic decomposition
for the Hardy space HE  (R™) with multiparameter structures, as in the classical
case, one needs first to establish Journé’s covering lemma in this setting. See [1],
[2], 13], [17], [7], [8], and [18] for more details. Our approach is quite different from
this scheme. Indeed, we will prove the following theorem:

Theorem 1.8. Let 0 < p < 1. If f € L2A(R™)NHP,  (R™), then there is a constant
C = C(p) such that

1oy < Ol 2 emy.
where the constant C is independent of f.

We remark that the proof of the above theorem does not use an atomic decom-
position and hence Journé’s covering lemma is not required.
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As a consequence, we obtain:

Theorem 1.9. Let 0 < p < 1. Suppose that T is a composition of T1 and Ty
as given in Theorem 1.7. Then T extends to a bounded operator from HE  (R™)
to LP(R™).

Next we provide the Calderon—Zygmund decomposition and prove an interpo-
lation theorem on H?  (R™). We note that H? (R™) = LP(R™) for 1 < p < oo.

com com

Theorem 1.10 (Calderén-Zygmund decomposition for HE ). Let 0 < ps < 1,
P2 < p < p1 <oo, and let « > 0 and f € HE . be given. Then we may write
f=g+b, where g € HE\, and b € HEZ, are such that ||g| < CaP 7P| |5,

com com HEL,

and ||b]|P2%, < CaP2=P|| f|| , where C' is an absolute constant.

p
P P
H(:02m Heom

Theorem 1.11 (Interpolation theorem on HE ). Let 0 < py < p1 < oo and let T

com

be a linear operator which is bounded from HE2  to LP?> and bounded from HEL,

to LP'. Then T is bounded from HY to LP for all po < p < py. Similarly, if T is
bounded on HE? and HEL . then T is bounded on HE  for all ps <p < p;.

Before we end this section, several remarks are in order. First, as mentioned be-
fore, the continuous version of the Littlewood—Paley—Stein square function Geom (f)
is convenient for dealing with the case 1 < p < oo, but not for the case 0 < p < 1.
However, we can still use this continuous version Geom(f) to define the Hardy
spaces HP. (R™) for 0 < p < 1. More precisely, suppose that ¢(!) € Sy satisfies

com

/OO |J<T>(tg’,tgm)|2 % =1 forall (¢,&,) € R™ x R/{(0,0)}

0
and ¢(?) € Sy satisfies

|1 2P E =1 forall (¢,6,) € R™ X RA0,0))
0

Set s = ,fl) wé”, where w,fl)(m’, L) =t~ ™D (2 /t, 2, /t) and ng) (@, xm) =
s~ (2 /s, x,,/5%). Then, using the ideas in this paper, one can argue that
the H?  (R™) norm of the f defined in Definition 1.5 is equivalent to

e 32)”

Second, in this paper we restrict our attention to the above two very spe-
cific dilations. However, all the results in this paper can be carried over to the
composition with more singular integral operators associated with more general
nonisotropic homogeneities. To see this, let T;(f)(z) = pv. K; = f(z),1 < i < n,
be singular integral operators associated with nonisotropic dilations given by

e’

Aiym
5

8 (1, @, @m) = (0, 21,0, e, 0L Xy)

7 (e

for ; >0, X >0,1<i<mnand 1<l <m.
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For x € R™ we write

|-r|'i — (|.Z‘1|2//\i’1 + |.Z‘2|2//\i’2 et |mm|2/)\i’m)1/2_

Let v € S(R™) with

supp 90 C {(£1,&, ..., &m) €ER™ 1 L < |e]; < 23,

and

Z |w(i)(2—jw\7¢,1§1’ 2_ji/\j'2§2> RN 2_jj)\i’m£7rb)|2 =1

JiE€EL

for all (€1,62,...,&m) € R™/{0}. Set v, 4., (x) = ¥« 9P s x gl (@),
where

w](:) (z) = 9Jdi(Ai 1+ 24+ Aim) w(i)(jSAi,lx1) 2]&:/\7‘,,2.1.2) o 2ji)\i,mx7n)

Define a Littlewood—Paley—Stein square function by

GeonN@ ={ Y Wi @1}

J1,J25,0n €L

Applying the same strategy as in this paper, one can develop the Hardy space
theory associated with these more general nonisotropic dilations. The details of
the proofs seem to be rather lengthy to be written out. Therefore, we shall not
discuss these in more detail in this paper.

Third, the regularity conditions on kernels can be weakened if one considers
the H?  (R™) boundedness only for a certain range of p.

Finally, we would like to remark that the method of discrete Littlewood—Paley—
Stein analysis in the multiparameter settings employed in this paper has been used
previously in a number of other cases. It first appeared in [13], where the theory
of the multiparameter Hardy spaces associated with the flag singular integrals
was developed, and in [14], where the discrete Littlewood—Paley—Stein theory was
established in the multiparameter structure associated with the Zygmund dilation
(see also the expository article [15]). Recently, the implicit multiparameter Hardy
space and the Marcinkiewicz multiplier theory on the Heisenberg group have been
developed in [16]. This method allows us to avoid using the deep Journé covering
lemma to prove the boundedness of multiparameter singular integrals from the
Hardy spaces.

Section 1 deals with Theorem 1.3. The proof of Theorem 1.6 is given in Sec-
tion 3. The method of the proof will be applied to the proof of Theorem 1.8 and
Theorem 1.10. To show Theorem 1.7, we provide a discrete Calderén-type identity,
Theorem 4.1, which has its own interest. These will be given in Section 4. The-
orem 1.8 and Theorem 1.9 are proved in Section 5. In the last section, we prove
the Calderén-Zygmund decomposition and the interpolation theorems.

Acknowledgements. The authors wish to express their sincere thanks to the
referee for his/her valuable comments and suggestions.



HARDY SPACES ASSOCIATED WITH DIFFERENT HOMOGENEITIES 1135

2. Proof of Theorem 1.3

As mentioned in the previous section, by taking the Fourier transform, we obtain
the continuous Calderén identity

(2.1) F@) =" ks = f(x),

J,kEZ

where the convergence of series in L?(R™), Sp(R™) and S;(R™) follows from the
results in the classical case. See [10] and [11] for more details.

To get a discrete version of Calderdn’s identity, we need to decompose ;1 *
Yk * f in (2.1). Using a method similar to that in [11], set g = 9;, * f and
h = ;1. The Fourier transforms of g and h are given by

~

GE &m) = B (277E,2776,) YO (275, 2724,.) €', 6m)
and R - A _ -
(€' &) = MW (2779¢,2776m) Y@ (275, 272¢,0).
Note that the Fourier transforms of g and h are both compactly supported. More
precisely,

supp g, supp h C {(¢/,&n) € R x R : €] < 277 ¢, | < 20727}

We first expand ¢ in a Fourier series on the rectangle R, = {{' € R™1 ¢, eR:
€] < 29, |g| < 2972}

GG = Y 2Ny gy
0l )ELZ™ =X
« fR. ) 6(77/, nm) ei(Q—(J'Ak)e/_n/+2—(j/\2k)emnm) dnldnm
75

x eI 42T O )

and then replace R;; by R™ since g is supported in R; ;. Finally, we obtain

G(& &) = Z 9—(m—=1)(jAk) 2*(j/\2k)g(2*(j/\k)g’, 2*(jA2k)£m)
(€ ) ELM=1XT,

w i@ UNIE42m 0N e )

Multiplying both sides by (¢’ &y, vields

A€ &nh(E 6n) = Y 27D 9T om (AR =GRy, )
(0 ) EL™ L XTZ
X R(E &) €70 E R ),

Note that

~ (2= GAR) pr ¢l 4 o= (iA2K) : ~ s (s
h(é’,fm) e 12TV 27 Cm&m) h(-—2 (JNC)@’). ) (J/\2k)€'yn)(§/,£'yn)-
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Therefore, applying the identity g x h = (g ﬁ)v implies that

(grh) @ am) = 3 27U 9= (g =GAR 9=y, )
(£ ) EZM—1XT,

(2.2) X h(x! — 270N g — 2= (A2 gy

Substituting ¢ by ¥, * f and h by ¢, in Calderdén’s identity (2.1) gives the
discrete Calderén identity (1.12), and the convergence of the series in L2(R™).

It remains to prove that the series in (1.12) converges in Sp(R™). To do this,
it suffices to show that

Z Z 9—(m=1)(FAk) 9—(in2k) (1hj.1 * F) (270K 9=(A2k)g
|§|>Nyor|k|>No (¢ ,0,,)EZ™ 1 X7

(2.3) % wj,k(l'/ _ 2_(j/\k)€/,$m . 2—(j/\2k)€m)

tend to zero in Sp(R™) as N7 and N» tend to infinity.

For the sake of convenience, we write x; = 2-UMN)Y and z; = 2-0A2k)g
Let I be dyadic cubes in R™~! and let J be dyadic intervals in R with side lengths
((I) = 270N and £(J) = 27U"2%) and let the lower left corners of I and the left
endpoints of J be x; and z;, respectively. Then the above limit will follow from
the following estimates: for any fixed j, k and any given integer M > 0,|a| > 0,
there exists a constant C' = C'(M,«) > 0 which is independent of j and k such
that

’Z )T (g6 % )@, 20) (DY ) (3" = 21, 2m — 27)

IxJ
(2.4) < 27027kl (1 |2 | + |, |) M.

To show (2.4), we apply the classical almost orthogonality argument. To be more
precise, for any given positive integers L; and Lo, there exists a constant C' =
C(Lq,L2) > 0 such that

9—1i—=3'|L1 9(ins")m

(1) L)/
2.5 ) (@ )| < C
(2.5) W57y mm)l < C G 4 20A D a5
and
2= [k=K'|L1 g(kAK")(m+1)
(2.6) |qp](€2) *w,(j) (@, 2m)| < C

- (1 + 2(kAk’)|m/| + 22(kAk’)|xm|)L2 :
Applying (2.6) with )\”) = f, L1 = L+2M +m+ 1 and Ly = M, where L and M
are any fixed positive integers, we obtain
9—(kA0)(m+1)
(1 + 2<kA0)|m’| + 2(2k/\0)|$m|)M

(W7 f)(@' 20| < € 27 IMIEF20Emt 1)

1

< ¢ 27 IkIE ,
- (L + ]2/ + |zm[)M
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where the last inequality is obvious if £ > 0, and when k < 0,

27k(m+1)

< olkl(2M+m+1) 1 '
(1 + 25|z + 22|z, )M (L+ 2] + |zm )M

Note that w,(f) x f € Sp(R™). Similarly, we have that

1
(1 [/ + Jum )M

(27) |(,¢)J(1) * (,(/}](f) ” f))(u/aum” § C 2—|k|L2—\j\L

From the size conditions of the functions ¥(*) and 4?), we have that for any fixed
large M,
[e% o 1 2
D )| = 1D (857 52 ()|
j(m—1
< o olillal+2lkllal / oy
- (14 27| — V| + 27|ty — v | )M
2k:(m+1)
X
(1 + 2k | + 2%k |0, )M
9(iAk) (m—1)9(iA2k)
(1 + 2070k ! | 4 2072k |y, [)M
1
(1 [u'] + [um )M

dv' dv,

< ¢ 2lillel+2[kl|a]

(28) < CQ\j\(I\/I—i-m—i-\aD 2|k|(21\/1+2+2|o¢\)

The estimates in (2.7) and (2.8) yield

| ST (D)@ = 21,0 = ) W )
IxJ
< ¢ 9 IkI(L=2M=2]a|-2) o= |j|(L-M-m~—|a])

1

X 1l |J
sz;z| W (L+ 2| + [z DM (L + |27 — 2] + |2 — 2)M

— ¢ 9-IKI(L-2M~2|a|-2) 9—|j|(L~M—m—]a])

dy' dym

oy |
29 sz;] rxg (L |+ |zg DM 1+ |2/ — 2] + |om — 2s)M

Note that if ' € T and y,,, € J, then £(I) + |2’ — x| ~ €(I)+|2' —¢'|, €(I) + x| ~
I+ ', €T) + |am — 25| ~ L) + |2m — yml, and £(J) + |25] ~ £(]) + [ym]-
Then simple calculation gives

1 2|j|2]\/[ Q\k\SM

<
(]2’ —zr| + fwm — 2 DM = (L) + () + |2 — 21 + |2m — 25 )M
2|j|41\/1 Q‘k‘GM

< :
T+ =y = ym)Y
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Similarly,
1 9lil4M o|k|6M
A+ | + 2z DM = A+ 1y + lym)M
This implies that the last term in (2.9) is dominated by

, 1
CQ—\k\(L—QOI\/I—Q\od—Q) 2—\3\(L—201\/I—m—\a|) )
(1 + |2/ + |zm )M

Choosing L = 20M + 2|a| +m+ 3, we derive the estimates in (2.4) and hence that
the series in (2.3) converges to zero as N1 and N> tend to infinity. Therefore, the
series in (1.12) converges in Sp(R™). By a duality argument, we obtain that the
series in (1.12) converges in S)(R™). The proof of Theorem 1.3 is concluded.

3. Proof of Theorem 1.6

In this section, we first derive almost orthogonality estimates in Lemma 3.1 and
a discrete version of the maximal estimate in Lemma 3.2. Lemmas 3.1 and 3.2
together with Theorem 1.3 yield Theorem 1.6.

Lemma 3.1 (Almost orthogonality estimates). Suppose that v, and @i 1 satisfy
the conditions (1.5)—=(1.8). Then for any given integers L and M, there exists a
constant C' = C(L, M) > 0 such that

(NG NEAK') (m—1)

_ (! —1j=3'|L o—|k—k'|L
[V * i (@ 2m)| < C'2 2 (1 207 NEAK |/ [y (M +m—1)

2j/\j'/\2(k/\k’)

x (1 + 2973 A2(RAK) |, [)(MHD)

Proof. We first write

(g4 1) (@ Trm) = / @MDY (@~ Ty (O 500 (0 Y ) Ay Ay
R™—1xR

By almost orthogonality estimates, as in (2.4) and (2.5), we have

90inG" )m 9—lj—j'|L
(1 4 207 |/ [Y(MAm=1) (1 4 2077 )|, [) M+

B.1) [l (' u)| < €

and
2(k:/\k')(m+1) 27\k7k'|L

2, @ <
(3:2) by * e (W ym)| < C (1 + 20AR) g/ Y(MAm—=1) (1 4 22(-AK) |y, [)(M+1)*

The estimates (3.1) and (3.2) imply that

(3.3) (o % 00 1) (@ )| < C 271979 1L 9= Ib=HIL AR
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where
90iNg") 92(kAK')
N /]R (1+ 2(jAjf)|ym|)(M+1) (1+ 22(k/\k’)|xm _ yml)(M-i-l) dym
9(FNF AEAK') (m—1)
< (1 4 29AF NRAR | g/ [y M +m—T1)
and
9(ing")(m—1) 9(kAK')(m—1)
B = dy/
Rm—1 (1 + 2(jAj/)|y/|)(M+m—1) (1 + Q(k/\k/)|x/ — y/|)(1\/1+7n—1)
2j/\j’/\2(k/\k/)
<C — .
T (14 200 N2RAR) g, ) (M D)
This implies the conclusion of Lemma 3.1. O

Now we prove the following estimate of the discrete version of the maximal
function.

Lemma 3.2. Let I and I’ be dyadic cubes in R™~ Y, and let J and J' be dyadic in-
tervals in R with side lengths £(I) = 270N ¢(I') = 2= G and 0(.J) = 27012,
0(J) = 27U'N2K) and let the lower left corners of I and I' and the left end-
points of J and J' be 2= o= N g 9=(n2k)g - and 2N regpec-
tiwvely. Then, for any u',v" € I, Uy, vy € J and any #;11_1 <5<,

D

(@//J;”)Ezm—l X7

Q(m—l)(j/\j//\k/\k/) 2j/\j//\2k/\2k’ 2—(m—1)(j//\k/) 2—(j//\2k’)

(1 + 2jAj’/\chlc’|u/ _ 27(j’/\k:’)£//|)(]\/1+m71)

(97 o+ )2 U N 9= G'A2KD g1 |
(1 + 20N N2RAK [y, — 9 =(i"A2K) g1 Y (M+1)

<O {M[( X lerarrn@ O 27000 P ) 0 o)

(€ ) €2m =1 X

£
-

where
Ccy = 2= 1/6=1)(G'AK' =jAk) ¢ o(1/6=1)(5' A2 —jA2k) 4

Here (a — b)+ = max{a — b,0}, and M, is the strong mazimal function.

Before proving Lemma 3.2, we would like to point out that this lemma is the
key tool in showing Theorems 1.6 and 1.7. The discrete version plays a crucial role
for this maximal function estimate. This is why we choose the discrete Littlewood—
Paley—Stein square function and use it to define the Hardy space.

Proof of Lemma 3.2. For the sake of convenience, we denote by z; = 2= %) ¢/ and
zp = 27U M the lower left corners of I and I’, and by z; = 276 2k ¢, and
xy =27 UKD the left endpoints of J and .J’, respectively. Set

_ /. |u/ - .Z‘[/l . /. |um - l‘J’|
Ao ={I" iy <11 Bo={J": Ghmariamy < 1)
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and for r > 1 and s > 1,

A, = {I’; or=1 < L‘m) < 2’“}, B, = {J’; gs-1 o _tm =Tyl 28}.

2—(GNG' NENK! 92— (GNF' N2kN2K") —
For any fixed r,s > 0, let
Jo {(w/’wm) ER™ I xR : |w/ - ull < 2r—(j/\j//\k/\k’) + 2—(j/\k)’
|U)m . Um| < 2r7(j/\j'/\2k:/\2k:') + 27(j/\2k)}-

Then A, x By C E, and for any (v, v,,) € I x J, (v, v,) € E. Obviously,

|E| < € 20m=Dlr=(nd nkAk] gls—(iAS AZkA2K)],

Thus for #;171 <d<1,

D

(e//x;n)ezm—l X7

2(m71)(jAj'/\k/\k') 2jAj'/\2lc/\2lc' 27(m71)(j'/\k:') 27(j'A2k’)

(1 + 2j/\j’/\k/\k’|u/ _ 2—(j’/\k')g//|)(M+m—1)

|(pyra * F)27G MR, 270N g )|
(1 + 2j/\j’/\2k/\2k’|um _ 2—(j'/\2k’)€;n|)(M+1)

<C 22 r(M+m—1) o—s(M+1) 2(m71)(j/\j'/\k/\k:') 27(m71)(j'/\k') 2j/\j'/\2k/\2k'
r,s>0
— (5’ n2K") ) 1/6
x 2 (X ey Daman)l)
I'xJ' €A, xBg
- C ZQ—T(M—i-m—l) 9—s(M+1) 2(m—1)(j/\j’/\k/\k/) 2j/\j’/\2k/\2k/ |I/| |J/| |E|1/6
r,s>0
71—1 /1—1 é 1/8
| 11T e+ £ @) X X da )
EI’XJ’EA X B
<C Z 27T(M+m71)27s(M+1)2(m71)(j/\j'/\k/\k:') 2jAj'/\2k/\2k' |I/|171/6 |J’|1*1/5
r,s>0

/
BV MY e D)) @)}

I'xXJ' €A, XBg

<O MY 1m0 om) )

I'xJ’

Ch {MS [( Z |(80j’,k’ * f)(xl’,mJ/)|2XI/XJ/>6/2} (Ulavm)}l/é

I'xJ’

s

(0", )EL™=1XT

m

O M X g = HETII 27 ) P ) 0 o) }

S

O
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Now we return to:

Proof of Theorem 1.6. Let f € S{(R™). We write z; = 2= AR g1 gy = 2= (AR
xp o= 270N and xy = 276N The discrete Calderén identity on
m . . . -1
S'/P(R™) and the almost orthogonality estimates yield that for 77— < ¢ <

p <1andany v € I and v, € J,

| (s * f)(zr,20)|

‘Z Z 9—(m=1)(' AK') 9= (5’ A2K')

/ N ([// A

X (Vj* i) (@ —xp,xy —x5) (@ * f)(@r,20)

<C Z 9—li—=3'|Lg—|k—FK'|L
3’k
—1) (A5 NEAE") 2jAj'/\2k/\2k' 27(m71)(j'/\k:') 27(j'A2k’)

m
X ([; : (1 + 2j/\j’/\k/\k/|l-1 _ $1,|)(M+m—1)

m

[CT I ICIA2D)
(1 + 20N N2EAK | — g 5, [)(M+1)

<C Z 9—li=3'ILg—|k—K|L
J’ k'

X Cl{Ms[( Z |(<Pj’,k’ *f)(xl’,mJ’)|2XI'XJ’)6/2} (Ulavm)}l/(j

(Z// 0! )

m

where the last inequality follows from Lemma 3.2. Squaring both sides, then
multiplying by x; and Y, summing over all j,k € Z and (¢',¢,,) € Z™ ! x Z,
and finally applying Holder’s inequality we obtain that for any 2’ € I, z,, € J, and
max{%,#g@ll} <d<p<l,
1G5 () (@', 2n) [

< CZ{ 3 g lind g lkk Lgim— 1)(%4)@’%’7;‘%»2<%fl><j'A2k’fjA2k>+}

I k/
« ZQ li—i'|Lo—lk—k'|Lo(m=1)(3 —1)(i' Ak'=jAk) 1 o (5 —1)(i' A2K"—jA2Kk) 1
J' kK

S Ny 5/2 2/6
< AM| (D Ipypr  HETINE 270N ) @ a)
(e,8,)€Lm—1 X,

co{SM](F e e TR 2 0mg )2

j/,k’ (Z//l;n)ezm—lxz
8/21 2/5
XXI’XJ’) :|(.Z‘,.Z‘m)} }a

where in the last inequality we use the facts that (5 Ak — j A k)y < |7 — ']
+k =K, (G N2k — G AN2k). < |j— 7|+ 2]k — K|, and that if L is chosen so
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that L > (m + 1)(1/6 — 1), then
Z 9=1i=3"|L 9=[k=k'|L o(m=1)(1/6=1)(5' A" =jAk)+ o(1/6=1)(G'A2K'=jN2k)+ « (¥
J' K
and
Z 9= 1i=J'IL 9=lk=K'|L 9(m=1)(1/6=1) (' AK' =jAk)+ 9(1/0-1)(i' A2k =jA2k)+ < O,
Ji.k
Applying Fefferman-Stein’s vector-valued strong maximal inequality on LP/%(¢2/9)
yields
1G5 () Le@my < CNGE) Lo @m)-
The conclusion of Theorem 1.6 follows. O

As a consequence of Theorem 1.6, L2(R™) N HZ, (R™) is dense in HZ,  (R™).

Indeed we have the following result:
Corollary 3.3. So(R™) is dense in HE  (R™).
Proof. Let f € HE (R™). For any fixed N > 0, let

E={(,k V' L) : |7l <N,|k| <N, |l'| <N, |l <N},
and

fN($/>$m) — Z 2—(m—1)(j/\k) 2_(j/\2k)(wj,k " f)(Q_(j/\k)f/, 2—(j/\2k)€m)
G,k L) EE
X wj,k(xl - 27(j/\k)€/7 Tm — 27(j/\2k)€771)7
where 1) . is the same as in Theorem 1.3.
Since ¢, € So(R™), we obviously have fy € So(R™). Repeating the proof of

Theorem 1.6, we can conclude that || fx | gz, @&m) < C|lfllaz,,, @) To see that fy
tends to f in H. by the discrete Calderdn identity in S} (Rm) from Theorem 1.3,

Soms
(f*fN)(iC/,ﬂCm _ Z 92— (m—1)(jAk) 92— (§N2E) (,(/} X *f)(2 (31k) €’ j/\2k))£m)
Gkl b ) EEE

> wj,k(m/ _ 2_(j/\k)€/,$m _ 2—(j/\2k)€m))

where the series converges in Sj(R™). Therefore,

1/2
Gull = )= {32 S0 Wy + (F = )@ U 0GR )2 )

g’ k! (e// em)

= { Z Z '%‘/,k/ * Z 9—(m—=1)(FAk) 9—(jN2k)

30k (07 ) 4,k ) EES
X (Py0 % f) (270N 2= 0A2K) gy

1/2
X g (27U — 2 ORI 9m UK 9= (AR )‘ XI’XJ/} .
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Repeating the proof of Theorem 1.6 yields
G (f — )l ey

iy iy 9 1/2
< CH{ Z Wj,k*f(Q GAR) g7 o (JAzk)gm)| XIXJ} ’
(G5, bm ) EEC

Lr(Rm)

where the last term tends to 0 as IV tends to infinity. This implies that fxn tends
to f in the H? _(R™) norm as N tend to infinity. O

COIl'l (

4. Proof of Theorem 1.7

To show Theorem 1.7, we need a discrete Calderén-type identity on L2(R™) N
HP _(R™), which has interest on its own. To do this, let ¢(*) € S(R™) with supp

com

o) C B(0,1),

(4.1) S e(2E)P =1 forall £eR™\ {0},
JEL

and

(4.2) / oW (z)z%dx =0 for all |a| < 10M,

where M is a fixed large positive integer depending on p. We also let ¢(2) € S(R™)
with supp ¢ C B(0,1),

(4.3) Z |(;(-2\)(27k£/> 272k§m)|2 =1 forall (§/>£m) eR™ ! x R\ {(0,0)},

kEZ

and

(4.4) ¢ (z)xPdx =0 for all |5 < 10M.
R?n

Set ¢j 1 = ¢§,1) * qS,(f), where
o) (@) = 2" (Pz) and ¢ (@' wm) = 280V (25 2%y,
The discrete Calderén-type identity is given by the following:

Theorem 4.1. Let ¢ and ¢ satisfy conditions (4.1)~(4.4). Then for any

f e LAR™) N HP, (R™), there exists h € L*(R™) N HE _(R™) such that for a
sufficiently large N € N,
f(@ om) Z Z || pjp(a — 27 GNDI=N gl e 0= (N2 =N g

G KEL (U L) ELM—1XT,
(45) X (g B)(2TUNITN P G20 -N )
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where the series converges in L2, the I are dyadic cubes in R™™1, and the J are
dyadic intervals in R with side lengths £(I) = 27UMNI=N qnd ¢(J) = 2= 020N
and the lower left corners of I and the left endpoints of J are 2=UMNI=N¢' and
2-UA2K)=Ny  respectively. Moreover,

(46) HfHLZ(R'nL) ~ ||h||L2(Rm),
and
(4.7) If ”Hé’o,,,(R’”) ~ ||h||Hé’o,,,(R7”)~

We point out that the main difference between the discrete Calderén-type iden-
tity above and the discrete Calderén identity given in Theorem 1.3 is that for any
fixed j, k € Z, the ¢; (2, x,n) in (4.5) have compact supports but the ¥, ,(2', )
in (1.12) do not. Being of compact support allows to use the orthogonality argu-
ment in the proof of Theorem 1.7.

Proof of Theorem 4.1. By taking the Fourier transform, we have that for any f €
L2(R™),
f(l‘/,l‘m) = Z (bj,k: * (bj,k: * f(‘rlamm) .

Jik
Applying Coifman’s decomposition of the identity operator, we obtain

F@ mm) =" 3" || ¢jula’ — 270N g — 9= GR2=N gy

ik (€ )
X (% [)(27UNITNE 27NN ) 4 Ry () (2, 2m)
=Tn ()@ 2m) + Ry ()@ 2m),

[¢j,k(=’f' — ' Zm — ym) (D % )Y Ym)

_ ¢] k(m/ _ 2—(j/\k)—N€/ Ton — 2—(j/\2k)—N€ )
((;Sjk) *f)( (GNk)— Ng/ 92— (GN2k)— Ng )} dy’dym

22 [ et =i
Jk (8 Lo IxJ
— inl(a — 27(jAlc)fN€/’l,m _ 27(j/\2k)7N€m)}

X (D * )Y Ym)dy' dym,

+ Z Z ¢j,k(€ﬂ/ N 2—(j/\k)—N€/,mm N 2_(j/\2k)_N€m)
Gk (0 em) IxJ

X (B % [y ym) — by * f(27UNITNY o= UAKI=Ny N ay dy,,
= R}V(f)(l‘/,l‘m) + R?\/’(ljal‘m)-
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Here, the I are dyadic cubes in R™~!, and the J are dyadic intervals in R with
side lengths £(I) = 27UMN)=N and £(J) = 27020 =N and the lower left corners
of T and the left endpoints of J are 2= =N/ and 2-0A2K) =Ny respectively.
We claim that for i = 1,2,

(4.8) IRN(Dllzz@my < C27N (1 fll2@m),
and
(4.9) IRN (P 2,y < C 27NNl 12, 2

where C' is a constant independent of f and N.
Assuming the claim for the moment, then, by choosing sufficiently large N,
Ty' =32, (Rn)" is bounded in both L? and HZ, , which implies that

1T (Pl L2gey = 1 fl2@ny  and 1T ()l gz, @my = 1|z, @m)-
Moreover, for any f € L2(R™) N HE  (R™), set h = T (f). Then
f(x’,xm) = TN(T1§1<f))<$/a-rm)
=SS gl — 27O N g, 2GRN
JKEL (0 L)€L XL
% (¢j,k % h)(2_(j/\k)_N€/’ 2—(j/\2k)—N€7n)’
where the series converges in L2.

Now we show the claim. Since the proofs for R}, and R%; are similar, we only
give the proof for RY;. Roughly speaking, the proof is similar to Theorem 1.6. To
see this, let f € L2(R™) N HE  (R™). Applying the discrete Calderén identity in

com

L?(R™) from Theorem 1.3 yields
Vjr ke * R ()@, 2m)

=2 > i * (D =Y — Ym)

ngeZ (é'7ém)€Zm'_1XZ IxJ
— $j(- — 2_(j/\k)_N€l>' - 2_(j/\2k)_N€m)]<m/a Tn) (D) k * f)(y/a Ym)dY' dyrm,
=2 > Vi * [Bju(- =Y, — Ym)

ngeZ (é'7ém)€Zm'_1XZ IxJ

_ ¢j,k(' _ 2_(j/\k)—N€/’ L 2_(j/\2k)_N€m)]<$/,$m)

xgipx{ S0 ST g (- — 27 g

j”,k‘”EZ (@”',@’,;L)Ezm_lxz
(wj”,k?” *f)(27('] Nk )8///,27(j N2k w%)}(fylvym)dy/dymv

where the I are dyadic cubes in R™~! with side length 6([”) = 2=U"M") the J”
are dyadic intervals in R with side length £(.J”) = 27U"A26") " and the lower left
corners of I” and the left endpoints of J” are 2=U" A" and 2-G"r2k") g
respectively.

(4.10)
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Set
Gik = bjn(z — U 2m — Ym) — Gju(2 — 2GRNy o 9= (GA=Ny
Then by the almost orthogonality arguments in the proof of Lemma 3.1, we obtain

(i AK) (m—1)
(1 + QI AR |:E’ _ y/|)(M+m71)
2j'/\2k:'

X v 7
T+ 2 s =yl 7D

- “N 6—10M|j—j"| o—10M|k—Fk
g * Gy (2 )| S 27N 27 1OMIT=3"| o= 1OM K=

and similarly, for y' € I,y,, € J,

|,k 5 g por (3 — 270 KOy — 27N )|
(3" AK")(m—1)
(1 + 23" Nk |y/ _ 2—(j”/\k")g//|)(M+m—1)
2j///\2k”

X (1 + 2j”/\2k”|ym o 27(']-”/\2]6”)6;71”)(1\/[4’1) .

. 73 1"
< 9—10M|j—j"| 9—10M|k—k"|

Substituting these estimates into the last term in (4.10) yields

g0k + RY(F) (@, 2]
Y S T @y e # f)(27G A 9= BN g

3K EL (€ ) ELM X T,
X Z Z / 9—No—li—3'[3Mg—|k—Fk'[3M
GREL (0 £y, €L~ X, IxJ
2(ﬁ/\k,“)(7n—1) 2jl/\2k/
X (1 + 2j’/\k;’|x/ _ y/|)(M+m—1) (1 + 2j'A2k/|mm — ymI)(M“)
2(]”/\]@”)(”’1—1)
(14 23" AR gyt — 2= (AR gir | ) (M+m—1)
2j///\2k” /
X (1 T 2j///\2k11|ym — 2_(j,,/\2k”)€;n)|)(1\/1+1) dy dth

 9—1i=3"13M 9—|k—k"|3M

<2—N E § /‘ 2—\j’—j”\3M2—\k’—k”\3M|I//||J//|
~Y
JUSE (e )
2(j//\j”/\k//\k”)(m—1)

x (1 + 93" N3 NK' NE |m/ _ 2—(j”/\k”)€l//|)(1\/1+7n—1)
93" NG YN2(kNK")
x (1 + 2(j’/\j”)/\2(k/\k’)|xm _ 27(j”/\2k”)€%|)(]v1+1)

X (b gor * F) (270N g =GN gy
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By the L? boundedness of the discrete Littlewood-Paley—Stein square func-
tion gfj (f), we have

RN (F)llze S G2 RY P ) |1
1/2
= NH{ 2 D 1@y g 5 (27D g 9= (TN >€”)2x’1’xf§} ’

// k:”€Z eu/ eu )GZm 17
S27Yflze.

Repeating the proof, as in Theorem 1.6, implies

RN (N2, S NGERN (@, 2m)l| 2o
-1 II 1/2
f, 27NH{ Z Z 7/’]” ot *f)(2 (5" NE )6”/ —(5" N2k £” ) 2X/1/Xf//'} HL

// kl(eZ Z(N 0 )GZ'" 17

L2

S 27V f |l s, -

com *

The claim is concluded and hence Theorem 4.1 follows. m
Arguing as in the proof of Theorem 1.6, we deduce, from Theorem 4.1:

Corollary 4.2. Let 0 < p < 1. Suppose ¢; . satisfies the same conditions as in
Theorem 4.1 with a large M depending on p. Then for a large N as in Theorem 4.1
and f € L>NHE, |
| £z, = H( Z Z (Pj.k * f)(Q_(jAk)_Nél,TUA%)_NEm)lQXIXJ)

G REL (U 8m)ELM—1IXT

1/2’

L
We now prove Theorem 1.7.

Proof of Theorem 1.7. We may assume that K; is the kernel of the convolution
operator T;, i = 1,2, and K is the kernel of the composition operator T' =T} o T5.
Then T(f) = Kx f and K = Ky * K. For f € L> N HP, .0 < p < 1, by the L?

com?

boundedness of T and the discrete Calderdn identity of Theorem 4.1 applied to f

2 P
in L* N HE,, we conclude

1T 2.

<Ol(5: 5 towerspersseavm s,
gk (0 L)

_CH{Z ) ’Z Z 9= (m=1)(7"AK") 9=(i"A2k")

7,k (@ em) k! eu Z’
by 2RO g

X(’C*(bjk *d)j/ k/)(Qf(jAk)fNyiQf(j’Ak Ngll —(jA2k)— N£m72f(j'/\2k’)fN£;n) 2

1/2
X XIXJ} ‘

where ¢; 1, @ i, h and N are the same as in Theorem 4.1.

)
Lp
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We claim that for any given M > 0,

km
1)y, 2
(4.11) (K1 ¢y (2, om)| < C(l 2R )M (1 4 2K| )M
and
@) 2k(m+1)
(4.12) Ko« ¢ (2, 2m)| < C

(1 + lem/DM-&-m-&-l (1 + 22k|x7n|)1\/1+1 :

We only prove (4.12) here, since the proof of (4.11) is similar. We consider the
following two cases:

Case 1. |z|, <2 27F.
In this case, 2¥|2'| < 2 and 22*|z,,| < 4, which imply that

1+2%2| ~1 and 14 2%%|z,,| ~ 1.

By the fact supp ¢§€2) C {z : |z|n £ 27%} and the cancellation condition in (4.4),
Ko * ¢§€2) (x) is bounded by

Ko+ )7 ()] =

iy | ol = )6 (v)dy|
e<|z—y|,<10 2—F

e—0
Sy Kalz — ) 67 () — o ()]
e20 Je<lo—yln<3 27k
<cotmin [ (g ey enntiay [ [ — >y
|$,7y,|§3 ‘xmfymlgg

9k(m~+1)

< CQk(m—i-l) <C )
= = (1 28| |)MEm=T(1 + 22|z, [)M+1

Case 2. |z|, >227F.
In this case, 2F|2’| > 2 or 22*|x,,,| > 4, which imply that

14282/ | ~ 282| or 1+ 2%|2,,| ~ 2% |2,
By the cancellation condition of ¢(?) with order 4M in (4.4) and the size condition
of ICQ in (13),
2
K2 % 07 ()]

1
= ‘ |:’C2(J) — y) — E _DallD;Q ’C2($/>$m)ya} 5@2) (y)dy’
<2-k e "

lyln< la| =] a1 |+[ 202 | <4M

)4M+1

(lyln (2)
= Jypzae Ty 901
9k(m+1)

<C .
— (1+2k|m/|)M+mfl(1+22k|xm|)M+1

The claim follows.
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By the classical orthogonality argument, for any fixed L and M,

9—1i—3'|L 9gm(ins")

1), (1)
(4.13) |¢’j * ¢j' (@' am)| < C(1 + 206N |/ |)(MAm=1) (1 4 20" |z, |)(M+1)?

and
2—\k—k’|L Q(k/\k/)(m—i-l)
(1 + 20AR) [/ YMFm=1) (1  22(:AR) [z 1Y M)

(4.14) |6} 0y (@ am)| < C
The estimates (4.11)—(4.14) yield that

1 1 2 2
1K % i * by o (2, )| = |1 % 05 % 630 % (Ko 07 % 022, )|
2—|j—j/\LQ—\k—k’|L2(j/\j//\k/\k’)(m—1) 2j/\j’/\2k/\2k’

(4-15) = C(l 4 QNG AEAK! |m/|)(M+m71) (1 4 QING N2kN2K! |xm|)(M+1) :

Using the estimates in (4.15) and applying the same proof as in Theorem 1.6 yield
that for f € L2NHP, _and 0 < § <p <1,

Tz < CH{ 3 {Ms[( T (600 + B2 NN RN
3 k! (e//’e;n) 5 2/6y1/2
x XI/XJI) ]} } ‘ Lp

< Clibll e, < Clf N,

Since L2 N HP._ is dense in HP

com com?

this concludes the proof of Theorem 1.7. O

5. Proofs of Theorems 1.8 and 1.9

In this section we prove Theorem 1.8 using Theorem 4.1. Theorem 1.9 then follows
directly from Theorem 1.8.

Proof of Theorem 1.8. For any f € L*>(R™) N HP,  (R™), set
Q= {(z',z) ER™ T xR GU(f)(@, 2m) > 27,

where

~ ) ) 1/2
Gl = { X % @)UV 27NNy 2y L
G KEZL (0 ) ELM—1XT,

Here ¢, and h are given by Theorem 4.1. Write
Bi={(,k 1, J): [(IxJ)NQ| > SIxJ|, |(IxJ)N Q| <3 xJ[},

where the I are dyadic cubes in R™~! and the J are dyadic intervals in R with
side lengths £(I) = 2= UM=N and ¢(J) = 270A2K)=N "and the lower left corners
of I and the left endpoints of J are 2-UNI=Ng/ and 2-UAZF =Ny regpectively.
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Using Theorem 4.1, we write

f@ zm) =" Y [[J] ¢l — 270N g, — 07 UAZRI=N
v (j,k,1,J)EB;

(¢]k*h)( (GNk)— Nf’ 9- (GN2k)— Ne )

where the series converges in the L? norm. We claim that

H Z || J|¢j k(- 72*(jAk)fN£/7. 727(j/\2k)7]\]€m)
(4,k,1,J)€EB; . . P .
X (g0 * h)(2_(3A’“)_N€’,2_(JA2’“)_N€m)H < C27 Q)
Lp

which together with 0 < p < 1 yields

1715, < €S 27| < CIGANIG, < ClIlL, < ClFIL,

Now we show the claim. Note that the functions ¢(*) and ¢(®) are supported in
unit balls. Hence if (j,k,I,J) € B;, then the ¢, are supported in

Qs = { (@) - Mo )& 2m) > #}

For the sake of convenience, we denote x; = 2=UAR) =Nyl and ; = 2= UA2K) =Ny
Since |©Q;] < C|€;], by Holder’s inequality we obtain

P

S M il = wre = w0) @i+ W),

(4,k,1,J)€EB;
P

<IN I g = = 2 (@ < )@ a) |

(4.k,1,T)EB;

By the duality argument, we estimate the L? norm of

S I bk —ar, = xa) (k% h) (21, 25)

(4.k,1,T)EB;

as follows: for all g € L? with ||g|l2 < 1,

‘ < >0 M G —ar, = ag) bk h)(xr,25),9 > ‘

(4,1, T)EB;

<o X @ mEnane)

(4,1, T)EB;

(X W)

(4,k,I,J)EB;
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At the same time,

Yo I (bsn * 9)ar, 2

(4:k,1,T)EB;

:/Rm—lxR{ Z |(¢j»k*g)(xl,mJ))FX[(:E/)XJ(xm)

4.k, 1,J)EB;
</ G3(9)(@ wm)? da'dan < ||g7 -
= ) ym m = L2
R™—1xR

In addition,

dz’ dx,,

}(1/2).2

C 2% Q| > /~ [g(;f(f)(:c,y)]2 dx'dx,y,

Qi\Qit1
> N (@ xh) (e ag)? (T x T) N QA\Qi]
(4,k,I,J)EB;

Y (i x h)(ar,zn)P,

3,k 1,J)EB;

<

>

DO | =

where in the last inequality we use the fact that |(I x J) N Q:\Qi+1| > I x J|
when (j,k,I,J) € B;. This completes the proof of Theorem 1.8. O

Proof of Theorem 1.9. Suppose f € HP N L?. By Theorem 1.7, T is bounded
on HP . which together with the fact that T is also bounded on L? yields that

com?

T(f) € HE,,, N L?, so applying first Theorem 1.8 and then Theorem 1.7 we obtain
TNl < CIT(Hllaz,.. < Clflla,, forany fe L*n HE,

com — com com*

Since HP, NL?is dense in HZ, , the composition operator T extends to a bounded

operator from HE  to LP. O

6. Proofs of Theorems 1.10 and 1.11

We now prove the Calderén—Zygmund decomposition and the interpolation theo-
rem on HP (R™).

com

Proof of Theorem 1.10. We first assume f € L> N HP, . Let « > 0 and Qy = {x €
R™ : G4(f)(x) > a2'}, where G4(f) is defined as in the the proof of Theorem 1.8.
Let

Ro={IxJ: |(IxJ)NQ| < 3T xJ[},

and for £ > 1,
Re={IxJ: |(IxJ)NQe_1| >3 xJ|, |(IxJ)NQ| < 3IxJ|},

where the I are dyadic cubes in R™~! and the J are dyadic intervals in R with
side lengths ¢(I) = 2= UN=N and ¢(J) = 27UA2F)=N "and the lower left corners
of I and the left endpoints of J are 2-UN=Ng/ and 2-UAZK =Ny respectively.
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By the discrete Calderén-type identity of Theorem 4.1,

F@wm) =Y N 602" = 1, 2m — y2) bk = hlar, y.)

3.k I,J

= Z Z Z |I||J|¢j,k(m/ — XL, Tm — yJ)¢j,k * h(mlayJ)

jk £>1IxJER,
YD k(e = 2r,@m — ) bjk * h(2r,y.0)
7,k IXJERy

= b(l‘/, -rm) + g(m/, mm)a

where z; = 27UN=Nyl and y; = 2-0A2k) =Ny
When p; > 1, using a duality argument as in the proof of Theorem 1.8, it is
easy to show that

lgllp, <C H{ YD [k h(xz,yJ)|2XIXJ}1/2

3.k IXJERo

p1

Next, we estimate [|g||zr:  when 0 < p; < 1. Clearly, the duality argument will
not work here. Nevertheless, we can estimate the HZ! norm directly by using

discrete Calderdn’s identity in Theorem 1.3. To this end, we note that

oz, < [[{ 3 3 1w« 9)ar v @} |

j/,k/ I’,J/

)
Lr1

where the I’ are dyadic cubes in R™~! and the .J’ are dyadic intervals in R with
side lengths £(I') = 27 U'AF) and £(J) = 2702 "and the lower left corners of I’
and the left endpoints of J’ are 2= )¢ and 2-G'A2K) 01 respectively.

Since

Wy g)@r,ys) =D > NI (Wyrwxdin) (@r =21, y5—ys)Gjxh(Tr, ),

3.k IXJERo

we have, by following the proof of Theorem 1.6, that

1 S 1w )@@ m) |

j',k/ I/7J/

P1

SCH{Z ) |¢j,k*h(fcbyJ)|2XfXJ}1/2le

jk IXJER

This shows that, for all 0 < p; < oo,

lgllgm, < C H{ ST b h(fﬂl,yJ)FXIXJ}l/szl

jk IxJER



HARDY SPACES ASSOCIATED WITH DIFFERENT HOMOGENEITIES 1153

Claim 1.

[ G (@ ) iy
gd(f)(aj zm)<0‘

ZCH{Z > |¢j,k*h($17yJ)|2XIXJ}1/2 :1

j.k IxJER

This claim implies

Hg| HPL <C (gd(f))pl (‘rla .Z‘m)dl‘/dl‘m

Gi(f) (! xm)<a
<canr [ G (s e)d'de
gd(f)(aj ajm)
< CaP 7P| f|1R,

To show Claim 1, we choose 0 < ¢ < p; and note that

/§d<f>< )< G (D) @' wm)da’ e

p1/2
:/gn(f)(, )<{ Z|¢j,k*h(l'layJ)|2XI(l'/)XJ(l'm)} da’ day,

3.k I,J

p1/2
= C/ {Z Z |Gjk * h(2r,y7)] XIXJ} dz'dz,,

J.k R=IxJERo

=c { Z Z |51 h(xlayJ)FXRng (ml,xm)}pl/zdm’dmm

R™—1xR j.k RERo

- ¢ {{ D > (Ma(sk * hlar v xrno;) (w’,mm))Q/q }‘1/2}”1/‘1

R'ln,fl XR ] k RERO

x dx’ dz,,

=C { Z Z |pj e * h(mlayJ)|2XR(.Z‘/,.Z‘m)}p1/2 dz' dz,,

R'ln,fl XR ]7k RERO

where in the last inequality we have used the fact that |Q§ N R| > 1|R| for R =
I x J € Ry, and thus

Xf(m/)XJ(mm) < 21/q Ms(XRﬁﬂg)l/q(m/a mm)a

and in the penultimate inequality we have used the vector-valued Fefferman—Stein
inequality for strong maximal functions

|| <c(Sisr)”
k=1 k=1

with the exponents r = 2/¢ > 1 and p = p1 /¢ > 1. The claim follows.
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We now recall Q = {(z/,2,,) €ER™ ! xR : M(xa,) > 3}
Claim 2. For any 0 < po <1 and ¢ > 1,

HZ > 1] k(2" — 21, Zm — yJ)%k*h(fEl,yJ)‘ 2,,2

Gk IXJER, Heom

< C(2L)P Q1]

Claim 2 implies

b7, < (2% 00|

£>1

<CY (2ol <C [ (GNP ()@ ) da’ dy,
>1 Ga(f)(zy)>a

<carr [ (G (1)) da' iz < C 0P| £ty
G f)(zy)>a

com

To show Claim 2, again we have

H Z Z | || djr(a’ — 1, @m — y)djk * h(xlvyJ)’ o

gk IxJER, com

= CH{ > ’Z ST Wyre * bk (@ =20,y — ya) ik

'k T, Gk IXJER,

241/2
*h(fchyJ)' } ‘va
) 1/2
SCH{Z > bk x bz ys)l XIXJ} ’Lm
7k IXJER,

where we can use an argument similar to that in the proof of Theorem 1.8 to prove
the last inequality.

However, as in the proof of the first claim, choosing 0 < ¢ < 2 and ¢ < p2
implies that

(2 Q| > / G )7 (2!, ) ' de
Qe1\Q

2/
:/ﬁ @ {ZZWM*h(fcl,yJ)FXI(ﬂC’)XJ(fcm)}p Qdm’dmm

gk 1.J

p2/2
= /Rm—lxR { Z Z |¢j,k * h(xb yJ)|2X([><J)mﬁé_1\Q£)(m/, mm)} dlﬂ/ditm

3.k I,J

>C [ {{ZZ (150 % b, y0)|?

Rm—lxR jk; IJ
2/q) 4/2\P2/4
X X(IXJ)ﬁﬁé_l\Qe)(xlvxm))) } } dz'dz,,

p2/2
>C [ ou s harnun Pt} de'de,,
RM=IXR * 1o jeRr,
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In the above string of inequalities, we have used the fact that for I x J € R, we
have

1 1
[(I xJ)NQe_q| > §|I>< J| and |(I xJ)NQl < §|I>< Jl,

and consequently I x J C €_;. Therefore |(I x J) N (Q—1\)| > I x J| for
I xJeRy. Thus

xr(@')x(@m) < 241 Ms(X(IxJ)mﬁ,g,l\Qz))l/q(mla Ton).

This gives the proof of the second claim. Since L?(R™)NHPE

. S
b o isdensein HY . O

We are now ready to prove the interpolation theorem on Hardy spaces H?,
for all 0 < p < 0.

Proof of Theorem 1.11. Suppose that 7" is bounded from HE2 to LP? and from
HPr to LP'. For any given A > 0 and f € HP . we have, by the Calderén—

com com?
Zygmund decomposition,

f(@) = g(x) + b(z),
with
gl < CXPPIfI,  and b2 < CNPRfIL,

Moreover, we have proved the estimates

lglhm <C [ GLHP (2, 2m) da' dy
com gd(f)(:v’,a:m)ga
and
I6l[}7, < C GL P2 (2!, my,) da' da

G (@ mm)>a
which imply that

(il :p/o a”*1|{($',xm) T f (2 xm)| > /\}| da
< p/ o (@ am) [ Tyg(2 )| > A2} da
0
+p/ o (@ ) ¢ |TH(2 )| > A/2}] da
0
§p/ Ozf”_l/~ GHAP (&, ) da’ dap, dov
0 G f) (" zm)<a

+p/ ozp*l/~ GU )P (2 ) da dar, dv
0 gd(f)(a:/,a:m)>a

<ClIfIE .
Thus,
ITfllp < Clfllmz,,
for any ps < p < p1. Hence, T is bounded from H?  to LP.

com
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any given A > 0 and f € H?

To prove the second assertion that 7" is bounded on HZ  for ps < p < p1, for

*ms using again the Calderén—Zygmund decomposition

gives

H(@' s zm) = g(T )@ 2m)| > a}

which, as above, shows that | Tf| g

<@ 2m) 1 19(T9) (@, 2m)| > a/2} + [{(2, 2m) : [9(TH) (2", wm)| > a/2}|
< Ca P |Tglffm +CaP [ Toli, < Ca ™ gl +Ca™ bl

P11 P2 Pl P2
Hcom Heom Heom Heom

<Ca™Pt / FQV"I(]")”1 (@, 2y) d2' dzy,
GUf) (@ wm) <o

+CaP /~ GUAP2 (2, 2 da' dpy
G f) (@' am)>a

< Clg(ThHllp < Cllfllmz,, for any 0 <

com —

P2 <p<p < oo O
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