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Five squares in arithmetic progression
over quadratic fields

Enrique Gonzalez-Jiménez and Xavier Xarles

Abstract. We provide several criteria to show over which quadratic num-
ber fields Q(v/D) there is a nonconstant arithmetic progression of five
squares. This is carried out by translating the problem to the determi-
nation of when some genus five curves Cp defined over @Q have rational
points, and then by using a Mordell-Weil sieve argument. Using an elliptic
curve Chabauty-like method, we prove that, up to equivalence, the only
nonconstant arithmetic progression of five squares over Q(+/409) is 72, 132,
172, 409, 232. Furthermore, we provide an algorithm for constructing all
the nonconstant arithmetic progressions of five squares over all quadratic
fields. Finally, we state several problems and conjectures related to this
problem.

1. Introduction

A well-known result of Fermat, proved by Euler in 1780, states that there does
not exist an arithmetic progression of four squares over Q. Recently, the second
author showed that there do not exist six squares in arithmetic progression over a
quadratic field (see [29]). As a by-product of his proof, one reaches the conclusion
that five squares in arithmetic progression over quadratic fields exist, but are all
obtained from arithmetic progressions defined over Q. The aim of this paper is to
study over which quadratic fields there are such five-square sequences, in a manner
similar to how the first author and J. Steuding studied the four-square sequences
in [17].

However, there is a big difference between the four-square and the five-square
problems: if a field contains four squares in arithmetic progression, then it probably
contains infinitely many (inequivalent modulo squares), but a number field contains
only a finite number of five squares in arithmetic progression. The reason for this
is that the moduli space parametrizing these objects is a curve of genus 5 (see
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Section 3), and can therefore only contain a finite number of points over a fixed
number field by Faltings’ Theorem.

On the other hand, one can easily prove (Remark 8.2, Section 8), that there are
infinitely many arithmetic progressions such that their first five terms are squares
over a quadratic field. The conclusion is that there are infinitely many quadratic
fields with five squares in arithmetic progression.

In this paper, we will attempt to persuade the reader that, even though there are
infinitely many such fields, they are few. For example, we will show that there are
only two number fields Q(v/D), for D a square-free integer, with D < 10'3 having
five squares in arithmetic progression: those with D = 409 and D = 4688329 (see
Corollary 8.1). In order to obtain this result, we will develop a method, related to
the Mordell-Weil sieve, to prove that certain curves have no rational points.

The outline of the paper is as follows: in Section 2, we provide another proof
of a result in [29], essential for our paper. This result states that any arithmetic
progression such that its first five terms are squares over a quadratic field is defined
over Q. Using this result, we will show in Section 3 that a number field Q(\/B)
contains five different squares in arithmetic progression if and only if some curve Cp
defined over Q has Q-rational points. Next, we study a little bit of the geometry
of these curves C'p. In the following sections, we provide several criteria to show
when Cp(Q) is empty: in Section 4, when it has no points at R or at Qp; in
Section 5, when it has an elliptic quotient of rank 0; and in Section 6, when it
does not pass some kind of Mordell-Weil sieve. Section 7 is devoted to computing
all the rational points for Cyg9. This is carried out by modifying the elliptic
curve Chabauty method, developed by Bruin in [5] and [4]. The result obtained is
that there are only 16 rational points, all coming from the arithmetic progression
72,132%,17%,409, 23%. Finally, in the last section, we give some tables related to the
computations, some values of D where we do have rational points in Cp, and we
state several problems and conjectures.

Acknowledgements. We would like to thank Gonzalo Tornaria for aiding us with
some computations concerning the Corollary 8.1. The authors thank the referees
for helpful comments and suggestions.

2. The 5 squares condition

Recall that n+ 1 elements of a progression ag, . .., a, in a field K are in arithmetic
progression if there are @ and r € K such that a; = a+i-r foranyi =0,...,n. This
is equivalent, of course, to having a; —a;—1 = r for any ¢ = 1,...,n. Observe that,

in order to study squares in arithmetic progression, we can and will identify the
arithmetic progressions {a;} and {a’} such that there is an o € K* with a} = o? a;
for any i. Hence, if ag # 0, we can divide all a; by ag, and the corresponding
common difference is then ¢ = aq/ag — 1.

Let K/Q be a quadratic extension. The aim of this section is to show that
any nonconstant arithmetic progression whose first five terms are squares over K
is defined over Q modulo the previous identification. Another proof of this result

can be found in [29].
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First, let us consider the case of four squares in arithmetic progression over K.

Proposition 2.1. Let K/Q be a quadratic extension, and let x; € K for i =

0,...,3 be four elements, not all zero, such that x? —x?_; = IE? — :E?_l € K for all
i,j=1,2,3. Then xo # 0; and if q := (x1/x0)* — 1, then ¢ =0 or
3q + 2)2
( qt ) o 0.
q

Proof. Observe that the conditions on xg, x1, T2, T3 are equivalent to the equations
a2 — 222 + 22 =0, a2 —223+22=0,

which determine a curve C in P3. Observe also that g is invariant after multiplying
all the x; by a constant, so we can work with the corresponding point [zg : z7 :
x9 : 3] € P3. Using the previous equations, one shows easily that zo cannot be
Z€To.

Before continuing, we explain the strategy of the proof. Since there are no
four squares in arithmetic progression over QQ, the genus one curve C satisfies
C(Q) ={[1:£1:=£1: +£1]}. Suppose we have a nonconstant map ¢ : C — E’
defined over Q, where E’ is an elliptic curve defined over Q, such that ¢ (P) = 0
for all P € C(Q). Denote by o the only automorphism of order two of K, so
Gal(K/Q) = {o,id}. Then, for any point P € C(K), ¥(P) @ ¢ (c(P)) must be 0,
so Y(o(P)) = a(y(P)) = ©(P). We will choose such an elliptic curve E’ such
that the Weierstrass equation satisfies that the x-coordinate of 1(P) is equal to
(3¢+2)2/q%. Since the z-coordinate is invariant by the ©-involution, we will obtain
the result.

Multiplying the equations 2? = 22 + iq, for i = 1,2, 3 we obtain

2
(w12223)% = (2§ + q) (a§ + 20)(a + 3q).

So, replacing ¢ by (z — 2)23/6, and z1x9w3/23 by y/6, we get the elliptic curve E
given by the equation
y? =2 + 522 + 4u,

with a map given by f(zo, 71,22, 73) = (222 /22, 6212223/23). This map is in fact
an unramified degree four covering, corresponding to one of the descendants in the
standard 2-descent. It sends the 8 trivial points to the points (2,46), which are
torsion and of order 4. We need a map that sends some trivial point to the zero,
so we just take 7(P) := P @ (2,—6). The map 7 : £ — E (not a morphism of
elliptic curves) has the equations

(y) = (2(x2+14m+6y+4) _6(6xy+m3+16m2+32m+12y+8))
Y) = (x72)2 ’ (x72)3 .

The trivial points then go to the 0 point and the point (0,0).
Now consider the standard 2-isogeny p : E — E’, where E’ has the equation
y? = o3 — 1022 + 92, given by

uw,y) = (5. 5—=2)
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(see for instance [24], Example 111.4.5.). The composition po 7o f is exactly the
map ¢ we want. By applying the formulae above we obtain that the z-coordinate
of u(r(f(xo,r1,22,23))) is exactly equal to (3q + 2)?/q>. O

We apply this proposition to obtain the result on five squares in arithmetic
progression.

Corollary 2.2. Let K/Q be a quadratic extension, and let x; € K fori=0,...,4
be five elements, not all zero, such that x? — x?_| = x? — mil € K foralli,j=
1,2,3,4. Then zo # 0; and if q := (v1/20)* — 1, then q € Q. In particular,

w}ai=14igeQ, i=1,...,4.

Proof. Suppose g # 0. By Proposition 2.1, we have that ¢, := (3¢ +2)?/¢*> € Q
and that the same is true for ¢/ := (z2/21)? — 1. As ¢ = q/(q + 1), the condition
for ¢' is equivalent to tj := (5¢ + 2)2/¢* € Q. However, ty —tg = 16+ 8/q, so
q€ Q. O

3. A diophantine problem over QQ

Let D be a square-free integer. We will say that the sets S; and Ss of Q(\/E) are
square equivalent if there exists o € Q(v/D), a # 0, such that Sy = oS;. Notice
that the previous equivalence is natural when the sets are formed by squares. Then,
Corollary 2.2 shows that any arithmetic progression of 5 squares over @(\/5) is
square equivalent to an arithmetic progression defined over Q.

Lemma 3.1. Let D be a square-free integer. Then an arithmetic progression of
five squares over Q(v/D) is square equivalent to one of the form x? = d; X?, where
d; =1 or D, X; € Z, and the greatest common divisor of x3,...,x3 is square-

free. We say that the 5-term arithmetic progression is of type I = {i: d; = D} C

{0,....4}.

Proof. Let zo,...,24 € Q(v/D) be such that 22,...,27 form an arithmetic pro-
gression. By Corollary 2.2, it is square equivalent to y? = 1+ir/s, i = 0,...,4
for some r,s € Z. In particular, it is square equivalent to s’y? = s® + isr with

s2,sr € Z. Now let d be the greatest integer such that d? divides the greatest
2

common divisor of s?y3,...,s?y3. Then the arithmetic progression 22 is square
equivalent to 22 = (s/d)?y?, where the greatest common divisor of z3,..., 27 is
square-free and since #? € Z and x; € Q(v/D) we have that 2? = d;X? where
di=1or D and X; € Z. O

Notice that 72,132, 172,409,232 is an arithmetic progression of length 5 over

Q(v409) of type {3}, since ds = 409.

We define another equivalence relation on the set of 5-term arithmetic progres-

sions over Q(v/ D) as follows: we say that two arithmetic progressions 22, ..., 23

and y2,...,y3 over Q(v/D) are equivalent if there exists r € Q and o = r? or

o = Dr? such that y? = ax? or y2_, = 2? for i = 0,...,4.

%
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Lemma 3.2. Up to equivalence, a nonconstant arithmetic progression of five
squares over a quadratic field is of type {3}.

Proof. Notice that up to the equivalence defined above, there are only a few types of
nonconstant arithmetic progressions of 5 squares over quadratic fields: namely {i}
fori=2,3,4and {i,j} fori =0,1and j =1,...,4 with i < j.

Now, assume that we have a 5-term arithmetic progression ¥2 = a + ng, n =
0,...,4, over Q(v/D) of type {i,j}. Then, by Lemma 3.1, z? = DX?, m? = DXJZ
and 22 = X7 if k # 4,4, where X,, € Z, n = 0,...,4. Let p > 3 be a prime
dividing D. Since (j —i)q = x5 — 7 = D(X7 — X?), we have p|q, and therefore pla.
Thus p divides z2 for all n =0, ..., 4.

Let us see that, in fact, p?|z2 for all n = 0,...,4, to obtain a contradiction
(recall that the x,, are not in Z, so this is not automatic). Observe that for any
k € {0,...,4} with k # 4,j, we have that x% = X,f with X, € Z. Hence p
divides X} and so p? divides z7. But now, considering k,l € {0,...,4} such that
k,l # 1,7 and | > k, we obtain that (I—k)r = 27 —z7, and hence p?|q, and therefore
p*|a. We have proved that the type {i,7} is not possible over Q(v/D) for |D| > 6
and |D| = 5. The cases D = —6,—3,—2,—1,2 and 3 are not possible since there
are no nonconstant arithmetic progressions of four squares over Q(v/D) (cf. [17]).
The remaining case D = 6 is not possible, although by a different argument, since
there are infinitely many nonconstant arithmetic progressions of four squares over
Q(v/6) (cf. [17]). We are going to prove that the types {4,5} for i = 0,1 and
j =1,...,4 with i < j are not possible over Q(v/6). Define the following three
conics in P?(Q):

Cr,: 6X7 —12X2 + X2, =0,
Cs,i : 6X7 —2X2, +6X2,=0,
Cs, 0 X7 —2X7, +6X7, =0.

Then it is straightforward to prove, using Hilbert symbols, that C; ;(Q) = 0 for
j =1,2,3. Now, consider a 5-term arithmetic progression x3,z%, 3,22, #3. Then
o, 1, T2, X3, x4 are solutions of the system of equations

x%—Qm%—i—x%zO, m%—Zm%—i—m%:O, x%—Zx%—i—xizO.

In particular, if this 5-term arithmetic progression is over Q(v/6) of type, say, {0, 1}
then 22 = 6X¢, 23 = 6X7 and 22 = X? for k = 2,3,4 and X, X1, X2, X5, X4 € Q.
Then the first equation of the previous system becomes 6X3 — 12X? + X2 = 0.
That is, [Xo : X1 : Xa] € C1,0(Q). But since C1,0(Q) = @ we conclude that there is
no nonconstant 5-term arithmetic progression over Q(v/6) of type {0,1}. For the
remaining types we follow the same argument but replacing the conic C o by the
conics indicated in the following table:

10,1} 1 {0,2} | {0,3} | {0,4} | {1,2} | {1,3} | {1,4}
Cio | Cop | C31 | C32 | Cip | Can | Csp0

The type {4} (or equivalently {0}) is not possible since there are no nonconstant
arithmetic progressions of four squares over the rationals.
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To finish, let us see that the type {2} is not possible. In this case we have that
[0 : x1 : w3 : 74] € P3(Q) is a point on the intersection of the two quadric surfaces

X?+2X2-3X3=0
Cray + § 42 5 ay2
X2+2Xx2-3X2=0.

in P3. Note that the eight points [1 : £1 : £1 : £1] belong to C2y- In the
generic case the intersection of two quadric surfaces in P? gives an elliptic curve
and, indeed, this will turn out to be true in our case. A Weierstrass model for
this curve is given by E : y?> = z(z + 1)(x + 9) (this is denoted by 48a3 in
Cremona’s tables [11], [12]). Using a computer algebra package like MAGMA or
SAGE ([3] and [25] respectively), we check that E(Q) = Z/2Z & Z/4Z. Therefore
Cay = {[1: £1: £1: £1]}, which implies 22 = 23 for n = 0,1, 3,4. Deriving from
this that Dx3 = 22 is then straightforward, but this is impossible. O

Let D be a square-free integer. We will denote by Cp the curve over QQ that
classifies the arithmetic progressions of type {3}. As a consequence of the previous
result, we get the following geometric characterization.

Corollary 3.3. Let D be a square-free integer. The, up to equivalence, noncon-
stant arithmetic progressions of 5 squares over Q(\/E) are in bijection with the

set Cp(Q).

The curve Cp has remarkable properties that we are going to show in the
sequel. First of all, the curve Cp is a nonsingular curve over QQ of genus 5 that can
be given by the following equations in P*:

Foio := Xg —2X2+ X2 =0,
(31) CD : F123 = X12 - 2X22 +DX§ = 0,
Fysq = X3 —2DX; + X; =0,

where we use the convention that for distinct 4, j, k € {0,...,4}, F;;i denotes the
curve that classifies the arithmetic progressions {a,,}, (modulo equivalence) such
that a; = din, aj = dejz, ap = de,f, where d; = 1if i # 3 and ds = D.

Observe that we could also describe the curve Cp by choosing three equa-
tions Fj;, with the only condition that each of the numbers 1,...,4 appears as the
subindex of some Fjjy.

We have 5 quotients of genus 1 that are the intersection of the two quadric
surfaces in P? given by Fyj, = 0 and Fj;; = 0, where the 4,5, k,1 € {0,...,4}
are distinct. Note that these quotients are obtained by removing the variable X,
where n # i, j, k,l. We denote by Fén) this genus 1 curve.

These genus 1 curves do not always have rational points (except for F® .= Fg’)).
Weierstrass models of the Jacobians of these genus 1 curves can be computed by
finding them in the case D = 1 (using that Fl(l) always has some easily found ra-
tional point), and then twisting by D. Using the labeling of Cremona’s tables ([11]
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and [12]), one can check that Jac(Fl()O)) (resp. Jac(Fg)), Jac(Fg)), Jac(Fgl))) is
the D-twist of 24a1 (resp. 192a2, 48a3, 24a1) and Jac(F®)) is 192a2. We denote
by E© (resp. E®M, E®) the elliptic curve 24a1 (resp. 192a2, 48a3) and by Eg)
the D-twist of E(, for i = 0,1, 2. Observe also that E() = E(_Ol), o) E(DQ) = E(_O)D.

Note that, in particular, we have shown the following result about the decom-
position of the Jacobian of Cp in the Q-isogeny class.

Lemma 3.4. Let D be a square-free integer. Then

Jac(Cp) 2 (Eg)))2 X Eg) X Eg) x BEW)

4. Local solvability for the curve Cp

The aim of this section is to describe under which conditions with respect to D
the curve Cp has points in R and Q,, for all prime numbers p.

Proposition 4.1. Let D be a square-free integer. Then Cp has points in R and
in Qp for all primes p if and only if D >0, D = £1 (mod5) and for all primes p
dividing D, p =1 (mod 24).

This result is deduced from the following lemmas.

Lemma 4.2. Let D be a square-free integer. The curve Cp has points in K, for
K =R, Qz, Qs and Qs if and only if D is a square in K. FExplicitly, D > 0,
D =1(mod8), D=1 (mod3) and D = £1 (mod5), respectively.

Proof. First, suppose that D is a square over a field K. Then the curve Cp
contains the sixteen points [1 : £1 : +1 : il/\/l_) : +1]. This shows one of the
implications. In order to show the other implication we will consider the different
fields separately. Suppose that Cp(K) # 0.

If K = R, the equation Fyzy = 0 implies that 2DX2 = X3 + X2, which has
solutions in K only if D > 0.

Consider now the case K = Q2. On one hand, the conic given by the equation
Fia3 = X2 —2X2 + DX?2 has points in Qy if and only if (2, —D)s = 1, where (, )2
denotes the Hilbert symbol. This last condition is equivalent to D = £1 (mod 8)
or D = £2(mod16). On the other hand, making the same argument for the
equation Fhsy = X2 — 2DX2 + X2 we get the condition (—1,2D)s = 1, which
implies D = 1(mod4) or D = 2(mod8). So we get D odd and D = 1 (mod8),
or D even and D = 2 (mod 16). This last case is equivalent, modulo squares, to
the case D = 2 and it is easy to show that Co(Qg) = 0.

If K = Qj3, considering the reduction modulo 3 of the conic given by the
equation Fpeg = 0, we obtain that D # —1(mod3). Similarly, we have D # 0
(mod 3) using Fia3 = 0.

Finally if K = Qs, one can show by an exhaustive search that there is no
point in Cp(F5) if D = +2(mod5). The case D = 0 (mod 5) is handled by using
Fio3 = 0 modulo 5. O
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In the following we will study the remaining primes p > 5 in two separate cases,
depending on whether p divides D or not. The first observation is that the case
that p does not divide D corresponds to the good reduction case.

Lemma 4.3. Let p > 3 be a prime not dividing D. Then the model of Cp given
by the equations Fy12, Fia3 and Fy34 has good reduction at p.

Proof. We use the Jacobian criterion. The Jacobian matrix of the system of equa-
tions defining Cp is

A= (0F;(i41)(i42) (Xi, Xig1, Xiv2)/0X)

0<i<2,0<j<4’

For any ji < j2, denote by A;, j, the square matrix obtained from A by deleting
the columns j; and js. Their determinants are

Aol = ki ] X0
i#£j1,J2
where
ko1 =2°D, koo=-2'D, ko3=2%3, kos=2°D, k1o =2°D,
kiz=—2%  kia=2%3D, koz=2% kou=—2'D, kzy=2%

Now, suppose we have a singular point of Cp(F,). Then, at this point, the
matrix A must have rank less than 3, so all these determinants must be 0. However,
if p > 3 and p does not divide D, then all products of the three homogeneous
coordinates must be zero, so the point must have three coordinates equal to 0,
which is impossible if p > 3. O

Lemma 4.4. Letp >5 be a prime such that p does not divide D. Then Cp(Q,)#0.

Proof. First, by Hensel’s lemma, and since Cp has good reduction at p, we have
that any point modulo p lifts to some point in Q,. So we only need to show
that Cp(F,) # . Now, because of the Weil bounds, we know that §Cp(F,) >
p+1—10\/p. So, if p > 97, then Cp(F,) # 0 and we are done. For the primes p
satisfying 5 < p < 97, an exhaustive search proves the result. O

We suspect that there should be some reason, besides the Weil bound, that for
all primes p > 5 not dividing D, the curve Cp has points modulo p, that should
be related to the special form it has or to the moduli problem it classifies.

Lemma 4.5. Let p > 3 be a prime dividing D. Then Cp(Qy) # 0 if and only if
p=1(mod24).

Proof. We will show that a necessary and sufficient condition for Cp(Q,) # 0 is
that 2, 3 and —1 are squares in F),. This happens exactly when p = 1 (mod 24).
Note that this condition is sufficient since [\/§ :v/2:1:0: \/—_1] belongs to Cp.
Suppose that we have a point in Cp(Q),) given by a solution of the equa-
tions Fj;i, in projective coordinates [xo : 1 : @2 : @3 @ 4], with z; € Z,, and such
that not all x; are divisible by p. The first observation is that only one of the x;
may be divisible by p; since if two of them, say z; and z;, are divisible by p, we
can use the equations Fjj; in order to show that x;, is also divisible, for any k.



FIVE SQUARES IN ARITHMETIC PROGRESSION OVER QUADRATIC FIELDS 1219

Now, reducing Fj23 modulo p, we obtain that 2 must be a square modulo p.
Reducing Fb34 modulo p we obtain that —1 must be a square modulo p. And
finally, reducing Fy3s = X3 — 4D X3 + 3X7 modulo p we obtain that 3 must be a
square modulo p. Hence the conditions are necessary. O

5. The rank condition

Let us begin by recalling the well-known 2-descent on elliptic curves, as explained
for example in Proposition 1.4 of Chapter X in [24]. Consider an elliptic curve F
over a number field K given by an equation of the form

v =x(z —e1)(r —ep), withep, e € K.

Let S be the set of places of K including all archimedean places, all places divid-
ing 2, and all places at which E has bad reduction. Let K (S,2) be the set of all
elements b in K*/K*? such that ord,(b) is even for all v ¢ S. Given any (b1, b2) €
K(S,2) x K(S,2), define the curve Hy, p, as the intersection of two quadrics in P3
given by the equations

blzf — bgzg = elzg,
Hy, b, 2 2 2
bi1z7 — bibazz = eazj.
Then the curves Hy, p, do not depend on the representatives, up to isomorphism,
and they have genus one with Jacobian E. Moreover, we have a natural degree
four map ¢p, b, : Hp, b, — E given by
Doy s (20, 21, 22, 23) 1= (b1(21/20)%, b1baz1 2223/ 2.

Moreover, the 2-Selmer group S (E/K) of E may be identified with the subset
SOE/K) = {(b1,b2) € K(S,2) x K(S,2) | Hp, p,(Ky) # 0 Vo place in K}.
The group E(K)/2E(K) may be described, via the natural injective map v :

E(K)/2E(K) — S®(E/K) defined by
(x,2 —eq) it #0, e
$(0)=(1,1) and ¥((z,y)) = (e2/e1,—€1) if (z,y) =(0,0)
(e1,(e1 —e2)/er) if (x,y) = (e1,0)

as the subgroup consisting of (b1, bs) € K(S,2) x K(S,2) such that Hy, p,(K) # 0.
The following lemma is elementary by using the description above, and it is
left to the reader.

Lemma 5.1. Let H be a genus 1 curve over a number field K given by an equation
of the form

2 2 2
- {blzl —bazy =e1%

2 2 2
blzl — b1b223 = €22

for some by,ba,e1,e0 € K. Let D € K* and consider the curves H(Dl), Hg)
and Hg’) given by replacing 23 by D23, 22 by D22 and 23 by Dz3 respectively in
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the equations above. Then Hg), Hg) and Hg’) are homogeneous spaces for the
elliptic curve Ep, the twist by D of E, given by the Weierstrass equation 3> =
x(x — Dey)(x — Des).

Moreover, if Sp denotes the set of places of K including all archimedean places,
all places dividing 2D, and all places at which E has bad reduction, the curves

Hl()l), Hg) and Hg) correspond respectively to the elements (Dby,ba), (b1, Dbs)
and (Dbl,DbQ) m K(SD,Q) X K(SD,Q).

Proposition 5.2. Let D > 0 be a square-free integer. A necessary condition for
the existence of 5 nontrivial squares in arithmetic progression over Q(v/ D) is that

the elliptic curves EJ(DO) and E(DQ) given by the equations Dy? = x(x +1)(z+4) and

Dy? = z(z+1)(z+9) have rank 2 or more over Q, and that the elliptic curve Eg)
given by the equation Dy? = x(x + 2)(x + 6) has positive rank.

Proof. Assume we have 5 nontrivial squares in arithmetic progression over Q(v/ D).
By using the results from Section 3, we can assume that such squares have the
form 23, 22, 22, D23 and 23, with x; € Z. The condition of being in arithmetic

progression is equivalent to 22 = a, 23 = a + ¢, 23 = a + 2¢, Dx3 = a + 3q and

22 = a + 4q for some a,q € Z. From these equations we easily obtain that the

homogeneous spaces
2(DX3)? —3DX3 = —DX? 4 2DX? - 3(DX3)? = ~DX?
1
2(DX3)* —6DX? = —4DX} 2DX? —6DX3 = —4DX?

attached to Eg)) have rational points, which give (2,3D) and (2D, 3) € S (EJ(DO)/(@)
by using Lemma 5.1. Since we are supposing both curves have points in Q, they
correspond to two points P; and P in E(DO) (Q). In order to show these have infinite
orders, we only need to show that the symbols (2,3D) and (2D, 3) are not in

1/)(Eg))[2]) = {(1’ 1)7 (4,4D) = (LD)’ (7D7 71)7 (7D, 7D)}

which is clear since D > 0. In order to show that P; and P, are independent
modulo torsion, it is sufficient to show that (2,3D)(2D,3) = (D, D) is not in

w(Eg)) [2]), which is again clear. So Eg)) (Q) has rank > 1.
The other conditions are used in a similar fashion. We have

3DXT—A(DXy)* = —DX§ - [3DX§—4DX} = DX}
an
3DX} - 12DX? = —9DX? 3DXZ —12D*X2 = —9DX?
which give (3D, 1) and (3D,4D) = (3D,D) € S(Z)(Eg)/@), again giving two

independent points in Eg)((@).
Finally, we have

6DX? —2(2DX3)*> = —2DX? , 6DX; —12DX? = —6DX}

which gives (6D,2) € S (Ej(jl)/(@), giving a non-torsion point in Eg)((@) O
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Remark 5.3. Suppose that D satisfies the conditions in Proposition 4.1, so that
Cp(Qp) # 0 for all p. Then the root number of Eg)) and Eg) is 1 independent

of D in both cases, and the root number of Ej(jl) is always —1. This is because the
root number of the twist by D of an elliptic curve E of conductor N, if N and
D =1 (mod 4) are coprime, is equal to the Kronecker symbol (D/ — N) times
the root number of E (see, for example, Section 4.3 of [23], which is deduced from
the corollary to Proposition 10 in [21]). In our case, assuming D satisfies the
()
D

conditions in Proposition 4.1, we obtain that the root number of F}, is equal to

the root number of E®, since (D/ — N) = 1 for N = 24,48,192.

Assuming the parity conjecture, this implies that the rank of EJ(DO) and Eg)

)

is always even, and the rank of Eg is always odd. So the last condition in the

proposition is (conjecturally) empty.

5.1. Ternary quadratic forms

It has been shown in Proposition 5.2 that a necessary condition for the existence of
a nonconstant arithmetic progression of five squares over a quadratic field Q(\/E)
is that the elliptic curves EJ(DO) and Eg) have ranks > 2. In this part, we describe
some explicit results concerning the ranks of these curves, thereby obtaining an
explicitly computable condition.

Remark 5.4. The elliptic curve Eg)) (resp. Eg)) parametrizes nonconstant arith-
metic progressions of four squares over Q(v/D) (resp. Q(v/—D)) (cf. [17]). There-
fore, a necessary condition for the existence of a nonconstant arithmetic progression
of five squares over @(\/5) is the existence of a nonconstant arithmetic progression

of four squares over Q(v/D) and over Q(v/—D).

Using Waldspurger’s results and Shimura’s correspondence a la Tunnell, Yoshida

(see [30]) obtained several results on the ranks of EJ(DO) and E(DZ). In particular, we

apply his results for the D = 1 (mod 24) case to our problem.

Proposition 5.5. Let D be a square-free integer. If Q(z,y,z) € Z[x,y,z] is a
ternary quadratic form, denote by r(D,Q(x,y, z)) the number of integer represen-
tations of D by Q. If

r(D, 2% +12y% + 152% 4 12y2) # r(D, 32% + 4y* + 132 + 4y2)
or 7(D,z* + 3y + 1442%) # r(D, 32 4 9y* + 162?),
then there are no nonconstant arithmetic progressions of five squares over Q(\/E)

Proof. First, by Proposition 4.1 we have that D = 1(mod24). Now, Yoshida
constructs two cusp forms of weight 3/2 denoted by ®3 _3 and @41, such that
if we denote by ap(®3 _3) (resp. ap(®1,1)) the D-th coefficient of the Fourier
g-expansion of ®3 _3 (resp. ®1,1), we have

ap(®3,_3) =0 if and only if L(EJ(DO), 1) =0,

ap(®11) =0 if and only if L(Eg), 1)=0.
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Then by the definition of these cusp forms we have

ap(®3,_3) = r(D,2® + 12y +152% + 12y2) — (D, 32 + 4y* + 132* + 4y2) ,
ap(®11) = (D, 2% + 3y* + 1442%) — r(D, 32% + 9y + 162?),

which concludes the proof. O

Remark 5.6. For D = 2521, the conditions in Propositions 4.1, 5.2 and 5.5 are
fulfilled, and in fact all of the relevant genus 1 curves have rational points. But we
will show in Corollary 8.1 that Ca521(Q) = 0.

6. The Mordell-Welil sieve

In this section we develop a method to test when C'p has no rational points based
on the Mordell-Weil sieve (see [22], [15], [20], [27], [7]).

The idea is the following: suppose we have a curve C defined over a number
field K together with a map ¢ : C' — A to an abelian variety A defined over K.
We want to show that C(K) = (), and we know that ¢(C(K)) ¢ H C A(K),
where H is a certain subset of A(K). Let p be a prime of K and consider the
reduction at g of all the objects ¢, : C, — A, together with the reduction maps
red, : A(K) — A(k,), where k, is the residue field at p. Now, we have that
red,(C(K)) C ¢o(C(ky)) Nredy,(H), so

$(C(K)) ¢ H®) :=red " (¢,(C(ky)) Nredg,(H)).

After considering enough primes, it can occur that

ﬂ H®) =,

some primes g

yielding that C(K) = 0.

In our case, we consider the curve Cp together with a map ¢ : Cp — EM),
where E(M) is the curve given by the Weierstrass equation y? = z(z + 2)(z + 6).
The curve E™) has Mordell-Weil group E(Y)(Q) generated by the 2-torsion points
and P := (6,24).

Lemma 6.1. Let D be a square-free integer, and consider the curve Cp, together
with the map ¢ : Cp — EM) defined by

622 24x0T1T0
O([xo : x1 T2t T3 1 14]) = (_20) 73)
Ty Ty

Let P := (6,24) € EV(Q). Then

(Cp(Q)) C H :={kP | k odd}.
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Proof. This lemma is an easy application of the 2-descent method. The map ¢ is
the composition of two maps. First, the forgetful map from Cp to the genus one
curve in P? given by the equations

F014 = 3X§ — 4X12 +XZ = 0,
Foos = X2 —2X2 + X2 =0,
given by sending [z : 21 : X2 : @3 : T4] t0 [To : 1 : T2 : x4]. Multiplying Fp14 by 2
and Fpo4 by 6 we obtain the equations
6X5 —2(2X,)? = —2X3,
6X5 —12X5 = —6X;
of a 2-descendent. The second map is the corresponding 4-degree map ¢g 2 from
these curves to E(M) given by the equations above, and determines that the ele-
ment (6,2) is contained in S (EM/Q), so ¢(Cp(Q)) is contained in the subset
of elements (z,y) of EM(Q) with o((z,y)) = (z,z + 2) = (6,2) in Q*/(Q*)%.

However, P := (6,24) € EM(Q) is a generator of EM(Q)/EM(Q)[2], and has
1¥(6,24) = (6,2), hence any such point (z,y) is an odd multiple of P. O

For any prime ¢, we will denote by Hl(jq) C H the subset corresponding to
Hj(jq) = redq_1 (¢q(Cp(Fy)) Nredy(H)).

First, consider the reduction modulo a prime ¢ dividing D, so a prime of bad
reduction. Suppose we have a point [zg : z1 : T2 : x3 : 24] of Cp, so 22, 23, 23,
D3 and 27 are coprime integers in arithmetic progression. By reducing modulo ¢
one gets that 3, 23, 23, 0 and 27 are in arithmetic progression modulo ¢, so, after
dividing by %, we may suppose that the arithmetic progression is —3, —2, —1,0, 1.

Proposition 6.2. Let g > 3 be a prime number dividing D. Then
HY = {kP | k odd and z(kP) = —18 (mod ¢)},
and Hl(jq) is independent of D.

Proof. This is an easy application of the ideas above. Since the only points in the

reduction of Cp are the ones having 22 = —3, 27 = -2, 23 = —1 and 27 = 1,
the set ¢4(Cp(Fy)) contains at most the two points having x-coordinate equal to
6(—3) = —18. 0

Corollary 6.3. Suppose that g > 3 is a prime number such that red,(H) contains
a point @ with x(Q) = —18 (modq). Then infinitely many pairs of square-free
integers D and primitive tuples [xg : 1 : x2 : x5 : x4] € Cp(Q) ewist, such that
either q divides D or x3 =0 (mod q) .

Proof. Let O, be the order of P modulo ¢, and let k be such that z(kP) =
—18 (mod ¢). Then z(k'P) = —18 (modgq) for all £’ = k (mod O,). So, if k is odd
or Oy is odd, H (9) has infinitely many elements. For any point Q € H(9, we have
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that 2(Q) = 622, for certain z € Q, such that 22 = —3 (mod q). Write z = a/b with
a and b € Z and coprime. Then, if we denote by r := (a® — b?)/4, then r € Z and
x; i= a®+ir are squares for i = 0,1,2 and 4, and a? + 3r = 0 (mod q). Define D as
the square-free part of a? + 37, and we obtain the result by defining 3 such that
a® + 3r = Da?. O

Observe, however, that we do not obtain that Cy(Q) # @ for the primes sat-
isfying the hypothesis of the previous corollary. For example, the prime ¢ = 457
satisfies the conditions of the corollary, but we will show that Cy57(Q) = 0.

Now we will consider primes ¢ > 3 that do not divide D, and are hence good
reduction primes. We will obtain conditions depending on D being a square or not
modulo q.

Proposition 6.4. Let ¢ > 3 be a prime number that does not divide D. Then Hg])
c EM(Q) depends only on the Legendre symbol (D/q). If we denote by H()(P/a)
the subgroup corresponding to any (D/q), and by O, the order of P € EM(Q)

modulo q, we have that there are subsets Ml(q) and Mﬁql) of Z/O4Z such that

H@(P/9) = [P | k odd and 3m € M

(D/q) Such that k=m (mod Og) }.

Moreover, 1 € Ml(q) for any g > 3, and if k € M((f))/q), then —k € M((f))/q).
Proof. First we show that Hl(jq) only depends on (D/q). Suppose that D = D’a?
(mod g), for some a # 0 € F,. Then the morphism given by 0([zg : 1 : x2 : 23 :
x4]) = [0 : 71 : 2 : x3a® : 4] determines an isomorphism between Cps and Cp
defined over Iy, clearly commuting with ¢, which does not depend on x3.

In order to define M ((f)) /q)» One computes g (Cp(F,)) and then intersects it with

the subset {kP | k odd } of E()(F,). Then

M(%)/q) = {k € ZJO,Z | kP € ¢o(Cp(Fy))}.

Hence k belongs to M((f))/q) if there is some Q = [z : x1 : 2 : x3 : x4] € Cp(Fy)

such that ¢(Q) = kP. But then ¢([—xo : @1 : 22 : x5 : 24]) = —kP.
Finally, if (D/q) = 1, we can suppose D = 1 (mod ¢). But then Qg :=[1:1:
1:1:1] € Cp(Fy), and ¢(Qo) = P. O

The following table shows some examples of Miql) for 5 < ¢ < 30 prime.

q 0, Ml(Q) M(ql)

7 6 {£1} {3}

11 8 {£1} {£3}

13 6 {£1} {3}

17 6 {1, 3} {}

19 8 {£1} {£3}

33| 3 | {1.2.3) 7

29 | 16 {£1} {£3,+5, £7}
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We are going to use the previous result to obtain conditions on D.

Corollary 6.5. If Cp(Q) # 0 then D satisfies the following conditions:

(i) D is a square modulo 17, 23, 41, 191, 281, 2027, and 836477.

(i) (D/7) = (D/13), (D/11) = (D/19) = (D/241), (D/4T) = (D/73),
(D/149) = (D/673), (D/43) = (D/1723), (D/175673) = (D/2953),
(D/97) = (D/5689) = (D/95737), (D/577) = (D/2281),

(D/83) = (D/4391) = (D/27449), (D/67) = (D/136319),
(D/2111) = (D/2521).

(ifi) If (D/29)=1 then (D/11)=1. If (D/149)=1 then (D/31)=1. If (D/7019)
=1 then (D/8123) = 1. If (D/617) =1 then (D/37) = 1, and in this case
(D)7) =1.

(iv) If (D/83) = —1 then (D/11) = —1. If (D/2347) = —1 then (D/47) = —1.
If (D/10369) = —1 then (D/47) = —1.

Proof. We have computed the sets Ml(q) and Miql) for ¢ < 105 and O, < 200. The
algorithm to obtain the conditions for the statement is as follows: fix an integer
k < 200 and compute the primes g such that O, = k and 5 < ¢ < 10°. For

these primes compute Ml(q) and ngl). If Miql) is empty, then (D/q) = 1 and we
obtain (i). If these sets are equal for different primes, then we obtain (ii). Now,
for any integer m > 1 such that mk < 200, compute the primes p < 10® such that
O, = mk. Compute Ml(p) and Mipl). Now check if Ml(p) (resp. M(_pl)) mod k is

equal to some of the sets Ml(q) (resp. M(_ql)) computed above. If this occurs, then

we obtain the rest of the conditions.
For example, looking at the previous table we see that Mﬁﬁ” = {}, therefore

D/17) = 1. Now, O; = Oz3, MD = M and Mg) = M£13) so we have
1 1 1 1
D/7) = (D/13). Finally, Os9 = 20717 and M3 mod Oq1 is equal to MM and
1 1
then we obtain that if (D/29) = 1 then (D/11) = 1. O

7. Computing all the points for D = 409

We want to find all the rational points of the curve Cp when we know there are
some. We will concentrate at the end on the case D = 409, which is the first num-
ber that passes all of the tests (see Corollary 8.1), but in most of the section we can
suppose that D is any prime integer fulfilling the conditions in Proposition 4.1. Ob-
serve first that we do have the 16 rational points [+7, £13, £17, 1, £23] € C4g9(Q).
Our aim is to show that there are no others.

In recent years, some new techniques have been developed for computing all
the rational points of a curve of genus greater than one over Q. These techniques
work only under some special hypotheses. For example, Chabauty’s method (see
[8], [9], [14], [26], [27], [19]) can be used when the Jacobian of the curve has rank
less than the genus of the curve, or even when there is a quotient abelian variety of
the Jacobian with rank less than its dimension. In our case, however, the Jacobian
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of the curve Cp is isogenous to a product of elliptic curves, each with rank at
least one (in fact, the Jacobian of Cp must have rank > 8 by Proposition 5.2).
So we cannot apply this method. Other methods, like the Dem’janenko—Manin’s
method [13], [18], cannot be applied either. We will instead apply the covering
collections technique, as developed by Coombes and Grant [10], Wetherell [28]
and others, and specifically a modification of what is now called the elliptic curve
Chabauty method developed by Flynn and Wetherell in [16] and by Bruin in [5], [4].

The idea is as follows: suppose we have a curve C over a number field K and
an unramified map y : C’ — C of degree greater than one, and defined over K.
We consider the distinct unramified coverings x(*) : C’(*) — C' formed by twists of
the given one, and we obtain that

O(K) = Jx (" (K)),

S

the union being disjoint. In fact, only a finite number of twists do have rational
points, and the finite (larger) set of twists with points locally everywhere can be
explicitly described. Now one hopes to be able to compute the rational points of
all the curves C’(®), and therefore also of the curve C.

We will consider degree 2 coverings of C'p. To construct such coverings, we will
use the description given by Bruin and Flynn in [6] of the 2-coverings of curves
which are 2-coverings of the projective line. In our case, Cp is not of such form,
but a quotient of Cp is of this form. Therefore we will use a 2-covering for such
a quotient. Specifically, we will use one of the five genus 1 quotients, particularly
the quotient

FY i DX2=t'—8 + 262 + 8t + 1,

along with the forgetful map ¢(*): Cp — ng) givenby t = (Xo — X1)/(X2 — X1).

Observe first that the curve C'p has Q-defined automorphisms 7; of order 2
defined by 7;(x;) = x; if j # 4, 7i(x;) = —a;. These, together with their com-
positions, generate a subgroup Y of the automorphisms isomorphic to (Z/27Z)*.
For every Q-defined point of C'p, composing with these automorphisms gives 16
different points. Given @ € Cp(Q), we denote by Tg the set of these 16 different
points. Observe that ¢*)(Tg) is formed by 8 distinct points.

Lemma 7.1. The involutions 1y, T1, T2 and 73 give rise to the following involutions
(4)
on Iy’

1—t 2X, - 412X,
To(t’X3):(1—H’m)’Tl(t’Xg):(T’t_z)’T2(t’X3):(m’W)’

and 13(t, X3) = (t,—X3). Moreover, if Fz()4)((@) # (0 and 9 : Fgg — Eg)) s an
isomorphism, then the involutions of EJ(DO) given by €; := Y13~ fori=0,1,2,
are independent of . Specifically, €¢; = €g, for Ry = (0,0), Ry = (—=D,0) and
Ry = (—4D,0), where e¢g denotes the translation by Q € Eg)),
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Proof. Checking the formulae for the involutions on F' 1(74) is a straightforward com-
putation.

First, we show that the involutions ¢; are independent of the fixed isomor-
phism . In order to show this, recall that, in any elliptic curve, any involu-
tion e that has no fixed points must be of the form er(S) = S + R, for a fixed
2-torsion point R. Since 7;73 has no fixed points in F' 1(74), the corresponding involu-

tion ¢; in Eg)) must be equal to some €p,, hence, determined by the corresponding
2-torsion point R;, which is equal to ¢;(0). Now, replacing the isomorphism )
from F gl) to E(DO) is equivalent to conjugating €; by a translation eg of E(DO) with
respect to a point Q) in Eg)), so0, in principle we obtain a new involution e_ge;eq,
again without fixed points. But e_ge€;e0(0) = e_g(€;(Q)) = e_o(Q + R;) = Ry, so
€E_QEEQ = €.

Second, since ¢; is independent of the chosen isomorphism %, and also does
not depend on the field K, we can work out with a field K’ := K (\/5) where
we have Fgl) = F1(4), so the proof is reduced to the case D = 1. In this case, a
simple computation by choosing some point in F1(4)(@) shows that €; = e, where
Ry = (0,0), Ry = (—1,0) and Ry = (—4,0) in E%O), which gives the result when
we translate these points to the curve EJ(DO). O

Now, we want to construct some degree two unramified coverings of F’ 1(34). All
these coverings are, in this case, defined over Q, but we are interested in special
equations not defined over Q. The idea is simple: first, write the polynomial ¢(¢) :=
4 —8t34-2¢24-8t+1 as the product of two degree 2 polynomials (over some quadratic
extension K). In the rest of this section, we will denote K := Q(+/2). Then we have
the factorization q(t) = ¢1(t)g2(t) over K where q;(t) := 1> — (4 +2v/2)t —3 —2/2
and ¢o(t) := qi(t), where Z denotes the Galois conjugate of z € K over Q. We
could have chosen other factorizations over other quadratic fields, but this one is
especially suitable for our purposes as we will show in the sequel. Then, for any
§ € K, the curves F} defined in A by the equations

. Syt =q(t) =12 — (44+2V2)t —3 —2V2
P\ (D)) = aa(t) = 12— (4—2V2)t —3+2V3

along with the map vs that gives X3 = y1y2 are all the twists of an unramified
degree two covering of F’ 1(74). Observe that, for any 0 and ¢’, such that §¢’ is a square
in K, we have an isomorphism between Fj and Fj,. So we only need to consider
the d’s modulo squares. This also means that we can suppose that § € Z[v/2].
However, only very few of them are necessary in order to cover all the rational
points of Fgl). A method to show this type of result is explained in [6], but we
will follow a different approach.

Lemma 7.2. Let D > 3 be a prime number such that Fgl) (Q) # 0. Let a € Z[\V/?2]
be such that v, (F.(K)) N F1(74) (Q) # 0. Then

Fp Q) C va(FL(K)) U va(Fa(K)) Uv_o(F! o (K)) Uv_a(F 5(K)).

-«
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Moreover, for any Q € Cp(Q), either
S (TQ) Nwva(FL(K) # 0 or ¢ (To) Nv_a(F.5(K))) # 0.
Proof. Observe that, for any point P € F 1(34), an easy calculation shows that

2 o (1+v2)?
W%(WD)) and q1(t(m1(P))) = TR

where t(R) denotes the t-coordinate of the point R. This implies that, if P is in

l/a(F’( )N F(4)( Q), then 79(P) and 135(P) also are, and 71 (P) and 7o(P) are in
_z(F' Z(K))N F(4) (Q). This last fact shows the last assertion of the lemma.
Now, using a fixed point P € F(4)((@), we choose o € Z[\/2] Such that P €

Vo (F!(K)), and an isomorphism ¢p of Fz()) with Jacobian F := E by send-
ing P to 0 (this isomorphism is determined, modulo signs, by thls fact). Via
this isomorphism, one can identify the degree two unramified covering v, with
a degree two isogeny v : B/ — E. Recall that E has the Weierstrass equation
y? = 23 + 5Dx? + 4D?z, and that the degree two isogenies are determined by a
nontrivial 2-torsion point.

By Lemma 7.1, we have ¢p(7973(P)) = €(0) = (0,0). But 7973(P) also belongs
to vo(FL(K)), and hence (0,0) must be in 7(E'(Q)), thereby determining the
isogeny as the one corresponding to (0, 0).

Now we use the standard descent via a 2-isogeny. One obtains that the quo-
tient F(Q)/7(E'(Q)) is mapped injectively to the subgroup of Q*/(Q*)? generated
by —1 and the prime divisors of 4D?. Since D is prime, the only possibilities
are —1, 2 and D, which become only —1 and D over K*/(K*)2. Hence, we need
only four twists of 7 over K in order to cover all the points of E(Q). Note that the
twist corresponding to 1 is identified with v,,. To find the twist corresponding to —1
one can argue in the following way: when replacing the field K with K (v/—1), —1
becomes equal to 1 modulo squares and not to D or —D, and the same applies to «
and —a. Hence —1 is identified with v_,. A similar argument, but postulating
that aa is equal to D modulo squares in K, shows that D corresponds to vg. O

a1 (t(ro(P))) = 02(t(P)),

In order to obtain some coverings of Cp from these coverings of F 1(74) we
write C'p in a different form, the one given by the following equations in A3:

(7.1) Cp: { DX} =q(t), X =p(t)},

where p(t) = t* — 12¢3 +2t2 + 12t + 1. Then, Lemma 7.2 implies that any rational
point of Cp, modulo the automorphisms in YT, comes from a point in K of one of
the curves C}, with § = o or § = —a, given by the following equations in A*:

Cs = { 0yf = au(t), (D/8)y3 = ga(t), XF =p(t) }

(and, moreover, with ¢ € Q) by the natural map ps. Observe, before continuing,
that any rational point in C'p comes from a point in the affine part in the previous
form, which is singular at infinity, since D is not a square in Q.
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Now we consider the hyperelliptic quotient H; of the curve Cj, which can be
described by the equation

Hs : sW?2 = q1(t)p(t),

where the quotient map 7 is determined by saying that W = y; X,.
The proof of the following lemma is a simple computation.

Lemma 7.3. Let Ejs be the elliptic curve defined by the equation
Es : oy =2°+ 5v222 — .

Then, the equation

—2(=3+2v2)qi(t) 3(—4+ 3\/§)W>
t—V2+1)2 7 (t—+v2+1)3

determines a nonconstant morphism from the genus 2 curve Hs to Fs.

¢ : Hs — Ej, w(th):(

Remark 7.4. The group of automorphism of the genus 2 curve Hs is generated
by a non-hyperelliptic involution 7 and by the hyperelliptic involution w. Then,
we have that the elliptic curve Ej is H;/(r). The other elliptic quotient Ef is
obtained by Tw; that is, Ef = Hs/(tw). It is easy to compute that E} : dy* =
23 + 9v/2x% — 81z. Therefore, Jac(Hj) is Q(v/2)-isogenous to Ejs x Ej. Moreover,
E; and E| are Q(v/2)-isomorphic respectively to 3842 and 384c2 in Cremona’s
tables, so Es and Ej are d-twists of them.

Remark 7.5. The fact that Hs has an elliptic quotient defined over K is the
main reason we consider these specific 2-coverings of Cp. If we carry out the
)

. . . . 4
same arguments with other 2-coverings, coming from 2-coverings of F 1(3 or from

2-coverings of other genus 1 quotients Fg), we will not obtain such a quotient
defined over a quadratic extension of Q.

In the following proposition we will determine a finite subset of Fs(K) contain-
ing the image of the points @ in Cs(K) such that us(Q) € Cp(Q).

Proposition 7.6. Let D > 3 be a prime number such that Cp(Q) # 0. Consider
P e Cp(Q). Then T €Y exists such that 7(P) = ps(Q) for 6 = a or 6 = —a, with
Q€ C5(K). Let R := p(n(Q)) € E5(K) be the corresponding point in Es. Then

2(—4+2v2 —z(1 — v?2))
(6 —4v2 — ) 6(@}'

Proof. Part of the lemma is a summary of what we have proved in lemmas above.
Only the last assertion needs a proof. Suppose we have a point @ € C§(K) such
that us(Q) € Cp(Q). Then the t-coordinate of @ is in Q, since ps leaves the
t-coordinate unchanged. This implies that the z-coordinate of R := ¢(n(Q)), that
—2(=3+2v2)a1 ()
(—1+v2—1)?
the sum of the ¢-coordinates of the two preimages of R is a rational number, but

this sum can be expressed in the x-coordinate of R as 7(z,y). O

Re {(:E,y) € Bs(K) | m(,y) :=

is , must come from a rational number ¢. This again implies that
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The following diagram illustrates all the curves and morphisms involved in our
problem:

Cs
y \
Cp H;
¢(4) l \Lgp
P < Fy Es —> P!

Hence, to find all the points in C'p(Q), it is enough to find all the points (z,y)
in Es(K) such that m(z,y) € Q for 6 = o or 6 = —a. But this is what the
so-called elliptic curve Chabauty method does, if the rank of the group of points
E5(K) is less than or equal to 1. And this seems to be the case in the cases we are
considering.

Example 7.7. Let us consider the case D = 409. The 16 points [£7, £13,+17,1,
+23] give the 8 points in Flqg with t € {—3/2, —5,2/3,1/5}. Take o := 21 + 4/2,
which satisfies the hypothesis of Lemma 7.2. Then the 8 points in Cyp9 with
t = —3/2 and t = —5 come from the 16 points in C?, given by [t,y1,y2, X4] =
[3/2,+1/2,41/2,423/4] and [—5, £v/2, /2, £46] respectively, which in turn
give the 4 points in H,, given by [t, W] = [~3/2,+£23/8] and |5, +46+/2]. Finally,
these 4 points give the following 2 points E,:
(;2(—663 +458v3), 00 (o394 163\/5)).

49 77343
The other points with ¢ = 2/3 and ¢t = 1/5 give rise to points in E_z(K), as shown
in Lemma 7.2. We will show that these points in E,(K) are the only points R
with 7(R) € Q, and that there are no such points in E_,(K).

7.1. The elliptic curve Chabauty method

In order to apply the elliptic curve Chabauty technique [5], [4], we first need to fix
a rational prime p such that p is inert over K and Fs has good reduction over p.
The smallest such prime satisfying our conditions is p = 5, since by Proposition 4.1
we have D = £1 (mod 5). Denote by Ej the reduction modulo 5 of Ej, which is an
elliptic curve over Fao5 := F5(\/§) Then the elliptic curve Chabauty method will
allow us to bound, for each point R in Ey(Fas), the number of points R in Es(K)
reducing to the point E, and such that 7(R) € Q, if the rank of the group of points
Es(K) is less than or equal to 1. In the next lemma we will show that, in fact, we
only need to consider four (or two) points in ET;(IF%), instead of all 32 points.

Lemma 7.8. Let D be a square-free integer such that D = 1 (mod 5), and let ¢ €

Z[\V?2] and Q € C4(K) be such that us(Q) € Cp(Q). Let R := ¢(n(Q)) € Fs(K)
be the corresponding point in Es. Then m(R) = —1 (mod5) or m(R) = oo (mod 5).
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Moreover, if the rank of the group of points Es(K) is equal to 1, the torsion
subgroup has order 2, and the reduction of the generator has order 4, then only one
of the two cases can occur.

Proof. We repeat the whole construction of the coverings, but modulo 5. First,
observe that, since D = £1 (mod 5), the only Fs-rational points of Cp are the ones
with coordinates [£1 : £1 : +1 : 1 : £1]. So the t-coordinates of these points
are t = 0,1,4 and co. Substituting these values in ¢;(t) modulo 5, we always
obtain squares in Fy5. This implies that the twists of the curves involved are all
isomorphic modulo 5 to the curves with § = 1.

Consider the curve H; over Fa5. A simple computation shows that the only
points in H; whose t-coordinates are Fs-rational are the points with ¢ =0, ¢ =1
and the two points at infinity. Now, the images under ¢ in F; of these points are
equal to the points with z-coordinate equal to —& = —1 4+ /2 in the first two
cases, and equal to £ = 1 + /2 for the points at infinity. In the first case we have
7(—14+/2) = —1 (mod 5), and in the second case we have (1 ++/2) = oo (mod 5).

Now, the curve E, given by the equation y? = 23 4 4z, has 32 rational points
over Fo5, and Eq(Fa5) & Z /47 & 7,/8Z as abelian group, with generators points Py
and Pg with z-coordinates equal to € = 14 v/2 and V2 = 2 + /2 respectively.
We then obtain that

{R S El(]FQs) |7T(R) = OO} = {P4, 7P4}
and .
{R € E\(F35) |7(R) = —1} = {2Ps + P4, —2Ps — P4 }.
Now, if the rank of the group of points E5(K) is less than or equal to 1, the torsion
subgroup has order 2, and the reduction of the generator has order 4, then the
reduction of Es(K) is a subgroup of E;(Fa5) isomorphic to Z/4Z®Z/27. However,

the subgroup generated by P, and 2Ps + P, is isomorphic to Z/47 & Z /47, and
therefore the reduction cannot contain both points. O

In order to use the elliptic curve Chabauty method, it is advisable to transform
the equation that gives Ej into a Weierstrass equation, by employing the standard
transformation sending (z,y) to (dx,dy). We obtain the equation

y? = 2% +5v202% — 6%

Abusing notations, we will denote this elliptic curve by Es. Moreover, the map 7
becomes the map f : Es — P!, given by

(2v2 — 2)z + 6(4V2 — 8)

x) =
f(@) 5(—4\/§+6)—m
Let us explain first the idea of the elliptic curve Chabauty method. For a
given D, we fix a § = a or 6 = —a, and we want to compute the set

Q5 = {Q € E5(K) | £(Q) € Qand £(Q) = ~1,00 (mod5)}.

As we have already remarked, we need first to compute the rank of the group Es(K),
which should be less than or equal to one. We will also need to know explicitly the
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the torsion subgroup of this group, and some non-torsion point if the rank is 1,
which is not an /-multiple of a K-rational point for some primes ¢ to be determined
(in our cases, they will occur only ¢ = 2). In the cases where we already know some
points in Es(K), those coming from the known points in Cp(Q), we will show that
those points are non-torsion points.

We have two cases to consider. The first such case is when we do not know
any point R € Es(K) such that f(R) € Q. In such a case we show that Qs = 0) by

proving that the reduction of the group E5(K) does not contain any point ¢ such

that f(Q) € F5. We do this for the two cases in the following lemma.

Lemma 7.9. Take D = 409 and o = 21 + 4v/2. Then the elliptic curves E,, and
E_,, have rank 1 over K and torsion subgroup isomorphic to Z/27 (generated by
the point (0,0)). The points P = ((—30v/2 — 43)/2, (759v/2 + 1104)/4) in E.(K)
and the point P' € E_,(K) with x-coordinate equal to

297692958097081/2 + 42339835565318
4185701809 ’

generate the free part of the corresponding Mordell-Weil group.
Moreover, if R € Q_,, then f(R) = co(modb) and if R € Q, then f(R) =
—1 (mod5).

Proof. The first part of the previous statement was obtained by using the MAGMA
function DescentInformation. For our elliptic curves E, and E_,, this function
has unconditionally computed that the rank of both elliptic curves is 1, and it has
returned the generators of these Mordell-Weil groups.

The last assertions are shown by proving that the subgroup generated by the
reduction modulo 5 of the point P’ and the point (0,0) does not contain any point
with image by j7 equal to —1, and that the subgroup generated by the reduction
modulo 5 of the point P and the point (0, 0) does not contain any point with image
by fequal to co. These last two cases are in fact instances of the previous lemma,
since the reductions of the points P and P’ have order 4. O

Now, in order to show that Q_,, is, in fact, empty, we need to use information
from some other primes. This is what we do in the following lemma.

Lemma 7.10. Tuke D = 409 and o = 21 + 4v/2. Then Q_, = 0.

Proof. By using reduction modulo 5, we obtain that any point R in Q_, must be
of the form R = (4n + 1)P’ + (0,0) for some n € Z, since it must reduce to the

point P’ + T, and the order of P’ is 4.

Now we reduce modulo 13. One shows easily that the order of P’ modulo 13 is
equal to 24, and that the points R € E_,(K) such that f(R) € P*(Q) reduce to the
points 6P’ or 12P’+4(0,0). Hence the points R must be of the form R = (24n+6)P’
or (24n + 12)P’ 4 (0,0). Comparing with the result obtained from the reduction
modulo 5, we obtain the result that there is no such point. O
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The second case is where we already know some points R € Q5. Then our
objective will be to show there are no more, by showing that the set

Qs,p = {Q EE;(K)| QeNsand Q= R(mod5)}

only contains the point R. This is done by translating the problem of computing
the number of points in €5 r into a problem of computing the number of p-adic
zeros of some formal power series, and using Strassmann’s theorem to do so.

Proposition 7.11. Take a = 21 + 4v/2, and consider the point

_ (2 69 ,
R = (75(~663 + 458v2)a, 7= (~232 + 163v2)a? ).

Then

Q= {Q € Eu(K) | f(Q) €Q and f(Q) = —1(mod5)} = {R,~R}.

Proof. First observe that the order of the reduction of P modulo 5 is 4. Also, any
point R’ in €, reduces modulo 5 to one of the points =R, so it is of the form
+R + 4nP. We are going to prove there is only one point in €, reducing to R,
and we deduce the other case by using the —1-involution.

Observe that any point in E,(K) that reduces to 0 modulo 5 is of the form
4nP for some n € Z. We are going to compute the z-coordinate of such points,
where z = —x/y if P = (z,y), as a formal power series in n. Denote by zy the
z-coordinate of 4P. The idea is to use the formal logarithm logy and the formal
exponential expp of the formal group law associated to E,. These are formal
power series in z, one inverse to the other insofar as the composition is concerned,
and such that

log (z-coord(G + G")) = logy, (z-coord(G)) + logy (2-coord(G"))

for any G and G’ reducing to 0 modulo 5, and where the power series are evaluated
in the completion of K at 5. Thus, we obtain that

z-coord(n(4P)) = expg(nlogy(z0)),

which is a power series in n.
Now, we are going to compute f(R + 4nP) as a power series in n. To do so,
we use that, by the addition formulae,

w(z)(1 + yow(2))? — (aaw(2) + 2 + zow(2)) (2 — zow(2))”

az-coord(R + G) = w(2)(z — wow(2))?

where R = (z0,v0), az = 5v2a, z is the z-coordinate of a point G reducing to 0
modulo 5, and w(z) = —1/y evaluated as a power series in z. This function is
a power series in z, starting as z-coord(R + G) = zo + 2yoz + (322 + 2a20 +
as)z? + O(2%), where ay = —a? = y?/z — (22 + 5v/2ax). Hence we obtain that
f(R+4nP) = f(a-coord(R+ n(4P)) can be expressed as a power series O(n) in n
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with coefficients in K. We express this power series as ©(n) = 0;(n) + v202(n),
with ©;(n) now being a power series in Q. Then f(R + 4nP) € Q for some n € Z
if and only if ©2(n) = 0 for that n. Observe also that, since f(R) € Q, we will
obtain that ©5(0) = 0, so O(n) = jin + jan? + jzn® + .. To conclude, we will
use Strassmann’s theorem: if the 5-adic valuation of j; is strictly smaller than the
5-adic valuation of j; for any i > 1, then this power series has only one zero at Zs,
and this zero is n = 0. In fact, one can easily show that this power series satisfies
that the 5-adic valuation of j; is always greater or equal to i, so, if we show that
41 #0 (mod 52) we have concluded.

In order to do all this explicitly, we will work modulo some power of 5. In
fact, working modulo 52 will be sufficient. We have that 2 = z-coord(4P) =
—10v/2 + 5 (mod 52), and that z-coord(n(4P)) = (15v/2 + 5)n (mod 52). Finally,
we obtain that ©(n) = 19 4 (15v/2 + 20)n (mod 52), hence O4(n) = 151 (mod 52),
s0 j1 = 15 (mod 52) which completes the proof. O

An alternative way of proving this result is to use the built-in MAGMA function
Chabauty. The answer is that there are only 2 points R’ in E,(K) such that
f(R') € Q, both having f(R') = 13/2. Since we already have two points +R, both
giving f(R) = 13/2, we are done.

8. Explicit computations and conjectures

We have followed two different approaches to compute for which square-free inte-
gers D there are nonconstant arithmetic progressions of five squares over Q(\/E)
On the one hand, for each D we have checked if D passes all the sieves from the
previous sections, obtaining the following result.

Corollary 8.1. Let D < 10'3 be a square-free integer such that Cp(Q) # 0, then
D =409 or D = 4688329.

Proof. First, for each D we have checked all the local conditions (Proposition 4.1)
and the conditions coming from the Mordell-Weil sieve (Corollary 6.5). Only 1048
values of D have passed these sieves. To discard all the values except D = 409
and D = 4688329, we first apply a test derived from Proposition 6.2. We test if,
for any prime ¢ dividing such D, there is an odd multiple kP of the point P :=
(6,24) € EM(Q) reducing to a point with z-coordinate equal to —18 modulo ¢. To
explicitly verify this condition, we first compute if there is a point @ in E(l)(IE"q)
with 2-coordinate equal to —18, the order O, of P in E(M(F,) and the discrete
logarithm log(Q, P), i.e., the number k such that Q = kP, if it exists. In case
there is no such @), or there is no such logarithm, or both k£ and O, are even,
then D does not pass the test. In the case that D passes this first test, we combine
this information with the information from the computation of the M l()q) for the
first 100 primes to discard some other cases.

After this last test there are 34 values of D that survive, and we then employ
a test based on the ternary forms criterion given by Proposition 5.5, by using a
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short program in SAGE implemented by Gonzalo Tornaria. We check that for these
values (D, 3z% + 9y? + 162%) # r(D, 2% + 3y* + 1442?). Hence for those values
of D, L(Eg), 1) # 0, so the analytic rank of Eg) is zero, hence their rank is also 0.

Only D = 409 and D = 4688329 survive all these tests, but for these values
there are points in Cp(Q). O

On the other hand, remember that if we take ¢t = (Xo — X1)/(X2 — X;) then
an affine model of C'p is defined by:

Cp: {DX5=t"—8t>+2t> +8t+1, Xj=t"—126> + 2> + 12t +1}.

Therefore the curve F(3) that consists of removing the variable X3 from Cp has the
equation F®) : X7 =+ —12t3 42t 412t + 1, and a Weierstrass equation is given
by EM : 4? = z(z + 2)(z 4+ 6). Then we have an isomorphism 1 : EV) — F()
defined by

6—=x —72 — 108z — 1822 + 23 +48y)
6+3z—y’ (6 + 3z — y)? ’

v(P) = (

if P = (:L'» y) 7£ (72, 0)7 (737 73)7 (6’ 24) and 1/)(67 24) = (2/3’ 23/9), 1/1(*27 0) = 001
and ¥(—3,—3) = ooz, where co; and ooz denote the two branches at infinity at
the desingularization of F(3) at the unique singular point [0 : 1 : 0] € P?. This
construction allows us to construct all the nonconstant arithmetic progressions of
five squares over all quadratic fields. Let P = (2,—8) be a generator of the free
part of EM(Q), and let n be a positive integer. Let (t,,2,) = ¥([n]P). Now,
consider the square-free factorization of the number

t} — 8t3 +2t2 4+ 8t,, + 1 = Dyw?,
where D,, € Z is square-free, w,, € Q. Then the sequence

(—t2 —2t, + 1), (2 +1)2, (2 —2t, —1)%, D,w?, 22

n

defines a nonconstant arithmetic progression of 5 squares over Q(v/D,,), and we
have points Q,, = [~t2 —2t, +1 : 2 +1: 2 -2t, —1 : w, : 2,] € Cp,(Q).

Remark 8.2. Observe that the pairs (D,,, @) constructed in this way are different
for different n. On the other hand, we cannot be sure that all the fields Q(v/D,,)
are different. However, we do have an infinite number of integers D such that
Cp(Q) # 0. This is because for any integer D, the curve Cp, being of genus 5
(greater than 1), always has a finite number of rational points. Since we have an
infinite number of pairs (D,,, Q) with @, € Cp, (Q), we have an infinite number
of different D,,.

Remark 8.3. If we replace [n|P by Q € {[ri]T1 + [n2]T2 + [m|Po|ni,ne €
{0,1}, m € {n,—n — 1}}, where T} = (—2,0) and T» = (—6,0) is a basis of
EM(Q),..., we obtain the same arithmetic progression (up to equivalence). Note
that if n = 0, then we obtain Dy = 1 and the previous sequence is the constant
arithmetic progression.



1236 E. GONZALEZ-JIMENEZ AND X. XARLES

In Tables 1 and 2 we summarize the computations that we have carried out
using the previous algorithm. We have normalized the elements of the arithmetic
progressions to be integers and to have no squares in common. We have separated
the results into two tables. Table 1 gives n and the factorization of D,, appears.
In Table 2, for each value of n, the corresponding factorization of Xy appear. For
all the values of n computed, we have obtained that the fourth element of the
arithmetic progression is v/D,, (in our earlier notation, w, = 1). That is, if we
denote by r = (D, — X2)/3, then the sequence {X? = X3 +kr|k € {0,...,4}}
defines an arithmetic progression over Q(v/Dy,).

3

Dn
409
4688329
457 - 548240447113
199554894091303668073201
4343602906873 - 53313950039984189254513
2593 - 9697 - 4100179090153 - 293318691741678881166926936593
330823513952828243573122480536077533156064000139119724642295861921
24697 - 303049 - 921429638596379458921 - 291824110407387399760153 - 3462757049033071137768291886369

| ~fo| o] s w|f=

TABLE 1. Factorization of D,,

X0
7
47 -89
31113 - 577
7 - 176201 - 515087
2111 - 133967 - 1134755801
119183 - 12622601 - 2189366343649

210 .3 .17 .73 . 103787 - 112261 - 963877 - 20581582583
238 .32 5. 7.23. 102179447 - 1017098920090613939

o || o|ufsfw o] =]3

TABLE 2. Factorization of Xj

One can see that the size of the D,, we encounter grows very quickly, but we
do not know if the D, constructed in this way always satisfy D,, < Dyy1. We
guess that this condition holds. Even more, the previous table and Corollary 8.1
suggest that, in fact, there is no square-free integer D such that Cp(Q) # 0 and
D, <D< Dypy.

If we only use the results in Section 4 (Proposition 4.1) and Section 6 (Corol-
lary 6.5), we obtain the result that the number of square-free integers D that pass
both tests have positive (but small) density. This is possibly true if we also use the
condition of the rank, for example Proposition 5.5, since the number of twists with
positive rank of a fixed elliptic curve should also have positive density. However,
we suspect that the number of square-free integers D such that C'p has rational
points should have zero density.

Data. All the MAGMA and SAGE sources are available on the first author’s webpage.
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