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On varieties with higher osculating defect

Pietro De Poi, Roberta Di Gennaro and Giovanna Ilardi

Abstract. In this paper, using the method of moving frames, we ge-
neralise some of Terracini’s results on varieties with tangent defect. In
particular, we characterise varieties with higher order osculating defect in
terms of Jacobians of higher fundamental forms and moreover we char-
acterise varieties with “small” higher fundamental forms as contained in
scrolls.

Introduction

The starting point of this paper is given by the classical papers [20], [21], [22]
and [23] of Terracini on the description of the k-dimensional varieties V of PN(C),
(N > 2k), such that the embedded tangent variety Tan(V ) is defective, i.e. it has
dimension less than 2k (2k− � with � > 0). In [21], Terracini links this problem to
the determination of the linear systems of quadrics for which the Jacobian matrix
has rank k− �. After Terracini, there have been many papers on this subject: here
we cite as examples only [2], [16], [17] and [18].

Terracini proved results bounding the tangent defect of V and on the structure
of the varieties satisfying a certain number of Laplace equations. Given a local
parametrisation x(t1, . . . , tk) = (x1(t1, . . . , tk), . . . , xN (t1, . . . , tk)) and denoting by

xI = ∂|I|x(t1,...,tk)
∂t

i1
1 ...∂t

ik
k

the partial derivatives of x, we will say that V satisfies δs Laplace

equations of order s if there hold the following partial differential equations:∑
0≤|I|≤s

E
(h)
I xI = 0, h = 1, . . . , δs ,

where at least a E
(h)
I �= 0 with |I| = s and these equations are linearly independent.

In this paper, we apply the method of moving frames, developed by Darboux,
Cartan and others, to understand the relationship between the algebraic geometry
of subvarieties of projective space and their local projective differential geometry.
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scrolls.
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This was a project of classical geometers, revived by Akivis and Goldberg (see [1]
and references therein) and Griffiths and Harris (see [6]) and more recently by
Landsberg (see for example [12], [13], and with other authors, [11] and [14]).

We generalise Terracini’s Theorem to varieties with defect of higher order by
studying linear systems of hypersurfaces (the fundamental forms) instead of the
Laplace equations of every order satisfied by the variety. We prove the following.

Theorem. Let V ⊆ PN be a k-dimensional irreducible variety whose t-th funda-
mental form has dimension k − � − 1, with � > 0; then V has (t − 1)-osculating
defect ≥ � and moreover there hold:

1) V is contained in a d-dimensional scroll S(Σh
r ) in Pr, with 0 ≤ h ≤ k − �

and k − h ≤ r.

2) The tangent Pd’s to S(Σh
r ) at the smooth points of a generic Pr of S(Σh

r ) are
contained in a linear space of dimension dt − h = dt−1 + k − �− h, where dt
is the dimension of the t-th osculating space to V at its general point. In
particular, r ≤ d ≤ dt−1 + k − �− h.

See Theorem 2.4.
Moreover, we have obtained classifications for the extremal cases of the preced-

ing theorem; for example, we show that, if � = k − 1 and t = 2, then V is either a
hypersurface or a developable Pk−1-bundle.

Later, in [21], Terracini studied again varieties with tangent defect, but satis-
fying a number of Laplace equations less than

(
k
2

)
+ �.

We also generalise this result as follows, in terms of fundamental forms:

Theorem. Let V ⊆ PN be a k-dimensional irreducible variety. V has t-th oscu-
lating defect ot = � > 0 and the (t+1)-st fundamental form has dimension at least
k − � if and only if the Jacobian matrix of the (t + 1)-st fundamental form of V
has rank k − �.

See Theorem 2.8.
Rational varieties satisfying one Laplace equation are studied also in [5], [9]

and [10] or, more recently, in [3] and [15].

The article is structured as follows. In Section 1 we give the basic notations
and preliminaries, and we show some results that we need. Many of them either
are natural generalisations of known results (mainly from [6]) or are not very sur-
prising; nevertheless, we think that including them is useful because of the lack
of adequate references. More precisely, after fixing some notation and recalling
basic definitions, such as Laplace equations, Darboux frames, the second funda-
mental form and apolarity, we prove the relation between the dimension of the
second fundamental form and the number of Laplace equations of order two for a
k-dimensional projective variety V ⊂ PN . More precisely, if V satisfies δ2 Laplace
equations, then the second fundamental form has dimension

(
k+1
2

)− 1− δ2.
Then, after recalling the definition of osculating spaces of higher orders, we

link them to the higher fundamental forms, proving in particular that the Jacobian
system of the t-th fundamental form is contained in the (t−1)-st fundamental form.
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We also prove the equivalence between the dimension of the t-th fundamental form
and the number of Laplace equations of order t, extending the above result for the
second fundamental form.

We recall the definition of the t-th Gauss map and we show that its differen-
tial can be interpreted as the t-th fundamental form. Finally, we introduce the
definition of the t-th dual variety of V and we prove some lemmas about it.

In Section 2 we state and prove the main theorems of the article, i.e., Theo-
rems 2.4 and 2.8. In order to do so, we also prove a lemma on the tangent space
of the higher osculating variety of V .

1. Notation and preliminaries

We use notation as in [6] and [8]. Let V ⊂ PN be a projective variety of dimension
k over C, that will be always irreducible. For any point P ∈ V we use the following
notation: T̃P (V ) ⊂ PN is the embedded tangent projective space to V in P and
TP (V ) is the Zariski tangent space.

As in [6], we abuse notation by identifying the embedded tangent space in PN

with the affine cone over it in CN+1. With this convention, TP (V ) ∼= T̃P (V )/C.
We denote by G(N, t) the Grassmannian of t-planes of PN .

We define Tan(V ) :=
⋃

P∈V0
T̃P (V ) where V0 ⊂ V is the smooth locus of V .

Tan(V ) has expected dimension 2k, and the case in which Tan(V ) is less than
expected has been studied by many algebraic geometers: classically Terracini [21]
linked the dimension 2k− � of Tan(V ) with the number of Laplace equations that
the variety V satisfies, and more recently Griffiths and Harris [6] analysed the same
dimension in terms of second fundamental form II.

Actually, for studying Laplace equations, it is standard to consider a parametric
representation of V ; in [6] and [11] the authors instead use the language of Darboux
frames. So, our first step is to understand in this language what it means that V
satisfies a Laplace equation.

We begin by defining the Laplace equations. Let V ⊆ PN and let x =
x(t1, . . . , tk) = x(t) be a local affine parametrisation of V centred at the smooth
point P = [p0 : p1 : · · · : pN ], with, for example, p0 �= 0 and x(0) = P . Let
I = (i1, . . . , ik) be a multi-index, that is a k-tuple of nonnegative integers. We
shall denote by |I| the sum of the components of I, i.e., |I| = i1 + · · · + ik. If
x(t1, . . . , tk) = (x1(t1, . . . , tk), . . . , xN (t1, . . . , tk)) is the above vector-valued func-
tion, we shall denote by xI the partial derivatives of x:

xI =
∂|I|x(t1, . . . , tk)
∂ti11 . . . ∂tikk

.

Definition 1.1. By saying that V satisfies δs Laplace equations of order s we
mean that, with the above local parametrisation x of V , x satisfies the following
system of partial differential equations:∑

0≤|I|≤s

E
(h)
I xI = 0, E

(h)
I ∈ C, h = 1, . . . , δs(1.1)
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where there is at least one E
(h)
I with |I| = s that does not vanish, and that these

equations are linearly independent. Equivalently, we say that V represents the
system of differential equations (1.1) or that V is an integral variety for it.

It is not restrictive to suppose that P = [1 : 0 : · · · : 0], and therefore we have
x(0) = P = 0 ∈ AN , and

xi(t1, . . . , tk) = ti ∀i ≤ k,(1.2)

i.e., xk+1 = · · · = xN defines T̃P (V ) ⊂ PN . With these hypotheses, the equa-
tions (1.1) become ∑

2≤|I|≤s

E
(h)
I xI = 0, h = 1, . . . , δs.(1.3)

In what follows, we will make these assumptions.
At the same time, to study the behaviour of V in P , following [6] (and references

[2], [6], [7] and [10] therein) and [12], we consider the manifold F(V ) of frames in V .
An element of F(V ) is a Darboux frame centred in P . This means an (N+1)-tuple{

A0;A1, . . . , Ak; . . . , AN

}
which is a basis of CN+1 such that, if π : CN+1 \ {0} → PN is the canonical pro-
jection,

π(A0) = P and π(A0), π(A1), . . . , π(Ak) span T̃P (V ).

Let this frame move in F(V ); then we have the following structure equations (in
terms of the restrictions to V of the Maurer–Cartan 1-forms ωi, ωi,j on F(PN ))
for the exterior derivatives of this moving frame:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωμ = 0 ∀μ > k

dA0 =

k∑
i=0

ωi Ai,

dAi =

N∑
j=0

ωi,j Aj i = 1, . . . , N,

dωj =
k∑

h=0

ωh ∧ ωh,j j = 0, . . . , k,

dωi,j =
N∑

h=0

ωi,h ∧ ωh,j i = 1, . . . , N, j = 0, . . . , N.

(1.4)

Remark 1.2. Geometrically, the frame {Ai} defines a coordinate simplex in PN .
The 1-forms ωi, ωi,j give the rotation matrix when the coordinate simplex is in-
finitesimally displaced; in particular, modulo A0, as dA0 ∈ T ∗

P (P
N ) (the cotangent

space), the 1-forms ω1, . . . , ωk give a basis for the cotangent space T ∗
P (V ), the cor-

responding π(Ai) = vi ∈ TP (V ) give a basis for TP (V ) such that vi is tangent to
the line A0Ai, and ωk+1 = · · · = ωN = 0 on TP (V ).
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Using this notation, we can define the second fundamental form locally:

Definition 1.3. The second fundamental form of V in P is the linear system |II|
in the projective space P(TP (V )) ∼= Pk−1 of the quadrics defined by the equations:

k∑
i,j=1

qi,j,μ ωi ωj = 0, μ = k + 1, . . . , N,

where the coefficients qi,j,μ are defined by the relations

ωi,μ =

k∑
j=1

qi,j,μ ωj , qi,j,μ = qj,i,μ(1.5)

obtained from dωμ = 0, ∀μ > k, via the Cartan lemma (see (1.17) in [6]).

We may write the second fundamental form symbolically (as in (1.20) of [6]) as

d2A0 ≡
∑

0≤i,j≤k
k+1≤μ≤N

qi,j,μ ωi ωj Aμ mod T̃ (V ),(1.6)

or more intrinsically, as the (global) map

II : Sym(2) T (V ) → N(V ) ,(1.7)

where N(V ) is the normal bundle (NP (V ) := CN+1/T̃P (V ) as in [6]) which in
coordinates is

II
(∑

i,j

ai,j vi vj

)
=

∑
0≤i,j≤k

k+1≤μ≤N

qi,j,μ ai,j Aμ.

To relate the second fundamental form to the Laplace equations (1.1), for ease
of exposition, we consider the case s = 2 . If there are δ2 independent relations of
the form

k∑
i,j=1

a
(α)
i,j x(ij) +

k∑
i=1

b
(α)
i x(i) + c(α) x = 0, α = 1, . . . , δ2,

that, with our assumptions on the coordinates can be rewritten as

k∑
i,j=1

a
(α)
i,j x(ij) = 0, α = 1, . . . , δ2,(1.8)

we can consider the linear system of quadrics of P(TP (V )∗) of dimension δ2 − 1,
generated by the quadrics of equations

k∑
i,j=1

a
(α)
i,j vi vj = 0, α = 1, . . . , δ2.(1.9)

This defines the linear system of quadrics associated to the system of Laplace
equations.
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We recall now some notions of apolarity. Since our definitions are base depen-
dent, for ease of exposition, we say that two forms f =

∑
I aI x

I ∈ C[x0, . . . , xN ]
and g =

∑
I bI y

I ∈ C[y0, . . . , yN ] = C[x0, . . . , xN ]∗ of the same degree n, are
apolar if ∑

I=(i0,...,iN )

aI bI = 0.

Since f and g define hypersurfaces F := V (f) ⊂ PN = Proj(C[x0, . . . , xN ]) and
G := V (g) ⊂ PN∗ = Proj(C[y0, . . . , yN ]), we will say also that F and G are apolar
if f and g are apolar.

Given a system h of hypersurfaces in PN , we say that the linear system K
in PN∗ given by the hypersurfaces which are apolar to all hypersurfaces in H is
the apolar system of H .

The following result is classical:

Proposition 1.4. |II| is the apolar system to the system of quadrics (1.9); so,
if V satisfies δ2 independent Laplace equations, then dim |II| = (

k+1
2

)− 1− δ2.

Proof. Since we can identify the parametrisation x around P with π(A0), by (1.6),

d2A0

( k∑
i,j=1

a
(α)
i,j vi vj

)
=

∑
1≤i,j≤k

qi,j,μ a
(α)
i,j , α = 1, . . . , δ2, μ = k + 1, . . . , N ;

for our choice of the coordinates. On the other hand,

d2A0

( k∑
i,j=1

a
(α)
i,j vi vj

)
=

k∑
i,j=1

a
(α)
i,j

d2A0

dvi dvj
=

k∑
i,j=1

a
(α)
i,j x(ij), α = 1, . . . , δ2.

�

The second fundamental form can be related also with the second osculating
space that we define as follows:

Definition 1.5. Let P ∈ V . The second osculating space to V at P is the subspace

T̃
(2)
P (V ) ⊂ PN spanned by A0 and by all the derivatives dA0/dvα = Aα and

dAα/dvβ = dAβ/dvα for 1 ≤ α, β ≤ k.

From now on we can consider the Darboux frame{
A0;A1, . . . , Ak;Ak+1, . . . , Ak+r ;Ak+r+1, . . . , AN

}
so that A0;A1, . . . , Ak;Ak+1, . . . , Ak+r in P span T̃

(2)
P (V ). It is straightforward to

see, for example from the proof of Proposition 1.4, that

dim |II| = r − 1 ⇐⇒ dim T̃
(2)
P (V ) = k + r.

Generalising Definition 1.3, we can define the t-th fundamental form and the
t-th osculating space at P ∈ V , for t ≥ 3, and relate them with (1.1).
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Definition 1.6. Let P ∈ V , let t ≥ 3 be an integer and let I = (i1, . . . , ik) be such

that |I| ≤ t. The t−th osculating space to V at P is the subspace T̃
(t)
P (V ) ⊂ PN

spanned by A0 and by all the derivatives d|I|A0/dv
i1
1 · · · dvikk , where v1, . . . , vk

span TP (V ). We will put

dt := dim
(
T̃

(t)
P (V )

)
,

et := expdim
(
T̃

(t)
P (V )

)
= min

(
N, dt−1 +

(k − 1 + t

t

))
.

Remark 1.7. If V satisfies δt Laplace equations of order t, we have dt = et − δt.
Moreover, since a Laplace equation of order t contains at least one of the

(
k−1+t

t

)
partial derivatives of order t, we have δt ≤

(
k−1+t

t

)
.

Put kt :=
(
k+t
t

) − 1. Obviously, dt ≤ min(kt, N). If N < kt, then V ⊆ PN

represents at least kt −N Laplace equations of order t. These Laplace equations
are called trivial.

Definition 1.8. Let t ≥ 2 and let V0 ⊆ V be the quasi projective variety of points

where T̃
(t)
P (V ) has maximal dimension. The variety

Tant(V ) :=
⋃

P∈V0

T̃
(t)
P (V )

is called the variety of osculating t-spaces to V . Its expected dimension is

expdimTant(V ) := min(k + dt, N)

The t-th osculating defect of V is the integer

ot := expdimTant(V )− dimTant(V ).

If t = 1, we call o1 the tangent defect.

Remark 1.9. Obviously we have

dt ≤ dt−1 +
(k − 1 + t

t

)
≤ · · · ≤

t∑
i=1

(k + i − 1

i

)
= kt.

We will study the osculating defects related to the fundamental forms. Follow-
ing [6] and recalling (1.6) we give:

Definition 1.10. The t-th fundamental form of V in P is the linear system |It|
in the projective space P(TP (V )) ∼= Pk−1 of hypersurfaces of degree t defined
symbolically by the equations:

dtA0 = 0.

More intrinsically, we write It as the map

It : Sym(t) T (V ) → N t(V )
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where N t(V ) is the bundle defined locally by N t
P (V ) := CN+1/T̃

(t−1)
P (V ) and the

map It is defined locally at each v ∈ TP (V ) by

vt �→ dtA0

dvt
mod T̃

(t−1)
P (V ).

Choose a Darboux frame

(1.10)
{
A0;A1, . . . , Ak;Ak+1, . . . , Ad2 ;Ad2+1, . . . , Ads ; . . . , Adt ; . . . , AN

}
such that A0, A1, . . . , Ads span T̃

(s)
P (V ) for all s = 1, . . . , t, with d1 := k. By the

definition of T̃
(s)
P (V ), we have that

dAαs−1 ≡ 0 mod T̃
(s)
P (V ), αs−1 = ds−2 + 1, . . . , ds−1, s = 2, . . . , t− 1,(1.11)

where we put d0 = 0, and from (1.4) we have

ωαs−1,μs = 0, αs−1 = ds−2 + 1, . . . , ds−1, μs > ds, s = 2, . . . t− 1,(1.12)

from which we infer, after some computation,

(1.13) dtA0 ≡
∑

ds−1+1≤αs≤ds

s=1,...,t−1
dt−1+1≤αt≤N

ωα1ωα1,α2 · · ·ωαs,αs+1 · · ·ωαt−1,αtAαt mod T̃
(t−1)
P (V ).

Alternatively, using the Cartan lemma,

dtA0 ≡
∑

1≤i1,...,it≤k
dt−1+1≤αt≤N

qi1,...,it,αt ωi1 · · ·ωit Aαt

=
∑
|I|=t

dt−1+1≤αt≤N

qI,αt ωI Aαt mod T̃
(t−1)
P (V ),

(1.14)

with the natural symmetries for the indices i1, . . . , it of qi1,...,it,αt which can be
expressed as

dt−1Ai

dvj
≡ dt−1Aj

dvi
mod T̃

(t−1)
P (V ), i, j = 1, . . . , k.(1.15)

From (1.12),

0 = dωαs−1,μs =

ds∑
hs=ds−1+1

ωαs−1,hs ∧ ωhs,μs

αs−1 = ds−2 + 1, . . . , ds−1, μs > ds, s = 2, . . . t− 1.
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Now, ωαs−1,hs and ωhs,μs are horizontal for the fibration T̃
(t−1)
P (V ) → V , and

therefore, by induction on s, since the case s = 2 is proved on page 374 of [6], they
are a linear combination of ω1, . . . , ωk. Then, we have

0 = dωαs−1,μs

( ∂

∂ωγ

)
=

ds∑
hs=ds−1+1

(∂ωαs−1,hs

∂ωγ
ωhs,μs − ωαs−1,hs

∂ωhs,μs

∂ωγ

)
αs−1 = ds−2 + 1, . . . , ds−1, μs > ds,

γ = 1, . . . , k, s = 2, . . . t− 1.

which means

ds∑
hs=ds−1+1

(∂ωαs−1,hs

∂ωγ
ωhs,μs

)
=

ds∑
hs=ds−1+1

(∂ωhs,μs

∂ωγ
ωαs−1,hs

)
(1.16)

αs−1 = ds−2 + 1, . . . , ds−1, μs > ds,

γ = 1, . . . , k, s = 2, . . . t− 1.

Since by relation (1.13) the linear system |It| is generated by the degree t polyno-
mials

Vαt :=
∑

ds−1+1≤αs≤ds

s=1,...,t−1

ωα1ωα1,α2 · · ·ωαs,αs+1 · · ·ωαt−1,αt , dt−1 + 1 ≤ αt ≤ N,

we can prove Theorem 1.12. In order to do so, we recall:

Definition 1.11. Let Σ be the linear system of dimension d of hypersurfaces of
degree n > 1 in PN (N > 1), generated by the d + 1 hypersurfaces f0 = 0, . . . ,
fd = 0. The Jacobian matrix of the forms f0, . . . , fd,

J(Σ) := (∂fi/∂xj)i=0,...,d;j=0,...,r

is called the Jacobian matrix of the system Σ.
The Jacobian system of Σ is the linear system of the minors of maximum order

of J(Σ). Obviously, the Jacobian system depends not on the choice of f0, . . . , fd,
but only on Σ.

Theorem 1.12. Given a k-dimensional projective variety V ⊂ PN , its t-th fun-
damental form |It| is a linear system of polynomials of degree t whose Jacobian
system is contained in the (t− 1)-st fundamental form |It−1|.
Proof. With the notation as above, we start considering, with dt−1 +1 ≤ αt ≤ N ,

∂Vαt

∂ωγ
=

∑
ds−1+1≤αs≤ds

s=2,...,t−1

ωγ,α2 · · ·ωαs,αs+1 · · ·ωαt−1,αt + · · ·

+
∑

ds−1+1≤αs≤ds

s=1,...,t−1

(
ωα1 · · ·

∂ωαs,αs+1

∂ωγ
· · ·ωαt−1,αt + · · ·+ ωα1 · · ·ωαs,αs+1 · · ·

∂ωαt−1,αt

∂ωγ

)
.



1200 P. De Poi, R. Di Gennaro and G. Ilardi

Then, from (1.16), we deduce

∂Vαt

∂ωγ
=

∑
ds−1+1≤αs≤ds

s=2,...,t−1

ωγ,α2 · · ·ωαs,αs+1 · · ·ωαt−1,αt

+ (t− 1)
∑

ds−1+1≤αs≤ds

s=1,...,t−1

ωα1 · · ·ωαs,αs+1 · · ·
∂ωαt−1,αt

∂ωγ
.

Then, for example by (1.5),

ωγ,α2 =
k∑

α1=1

qγ,α1,α2ωα1 =
k∑

α1=1

qα1,γ,α2ωα1 =
k∑

α1=1

∂ωα1,α2

∂ωγ
ωα1

and again by (1.16),

∂Vαt

∂ωγ
= t

∑
ds−1+1≤αs≤ds

s=1,...,t−1

ωα1 · · ·ωαs,αs+1 · · ·
∂ωαt−1,αt

∂ωγ
. �

Actually, as for the second fundamental form, Proposition 1.13 holds with a
proof adapted from the one given for Proposition 1.4. In order to do so, we fix a
Darboux frame as in (1.10). Then, if we have a system of δt Laplace equations of
order t as in (1.1), they can be expressed as∑

|I|=t

E
(h)
I xI = 0, h = 1, . . . , δt.(1.17)

As in (1.9), we can define the linear systems of homogeneous polynomials of degree t
associated to (1.17) by∑

|I|=t

E
(h)
I vI = 0, h = 1, . . . , δt, where vI =

∏
i=1,...,k

i1+···+ik=t

v
ij
i .(1.18)

Proposition 1.13. If V satisfies δt Laplace equations of order t as in (1.1), the
t-th fundamental form is the apolar system to the system of the hypersurfaces
of degree t associated to the system of Laplace equations (i.e., the hypersurfaces
in (1.18)), and vice versa.

Proof. It is enough to repeat the proof of Proposition 1.4 with an adapted local
coordinate system. More precisely, we can choose a Darboux frame as in (1.10).
Since we can identify the parametrisation x around P with π(A0), then, by our
hypothesis, the Laplace equations of order t become∑

|I|=t

E
(h)
I xI = 0, h = 1, . . . , δt.(1.19)
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By (1.14), we have

dtA0

( ∑
|I|=t

E
(h)
I vI

)
=

∑
|I|=t

qI,β E
(h)
I , h = 1, . . . , δt, β = dt−1 + 1, . . . , N,

and, on the other hand,

dtA0

( ∑
|I|=t

E
(h)
I vI

)
=

∑
|I|=t

E
(h)
I

dtA0

(dv)I
=

∑
|I|=t

E
(h)
I xI , h = 1, . . . , δt. �

From Proposition 1.13 we recover immediately the following:

Corollary 1.14. If V satisfies δt Laplace equations of order t as in (1.1), the t-th
fundamental form has dimension

(
k−1+t

t

)− 1− δt, and vice versa.

We will denote the dimension of the t-th fundamental form by Δt:

Δt := dim(|It|).
Corollary 1.15. If N ≥ kt, we have that

dt = dt−1 +Δt + 1,

and vice versa: if dt = dt−1 + Δ + 1, then the t-th fundamental form has dimen-
sion Δ.

From now on, we will suppose that our Darboux frame is as in (1.10).
In order to prove the results of the following section, we recall also the following

notation and definitions.
Let Σh

t ⊂ G(N, t) be a subvariety of pure dimension h. Let IΣh
t
⊂ Σh

t × PN be

the incidence variety of the pairs (σ, q) such that q ∈ σ and let p1 : IΣh
t
→ Σh

t and

p2 : IΣh
t
→ PN be the maps induced by restricting to IΣh

t
the canonical projections

of Σh
t × PN to its factors.
The morphism p1 : IΣh

t
→ Σh

t is said to be a family of t-dimensional linear

subvarieties of PN . While Σh
t is the parameter space of the family, for brevity we

will often refer to it as to the family itself. Obviously,

dim(IΣh
t
) = t+ dim(Σh

t ).

Let us suppose that Σh
t is irreducible. We will denote by S(Σh

t ) the image of IΣh
t

under p2. By definition, S(Σh
t ) is a scroll in Pr of PN . The previous notation will

be useful to study the osculating variety.

Definition 1.16. Let t ≥ 1. The t-th projective Gauss map is the rational map

γt : V ��� G(PN , dt)

P �→ T̃
(t)
P (V ).
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For the classification of surfaces with second Gauss map not birational on the
image see [4].

Remark 1.17. The t-th osculating variety is

T̃ant(V ) =
⋃

P∈V0

γt(P ) ⊂ G(PN , kt),

where, as before, V0 denotes the open subset of the variety V comprising the points

for which dim T̃
(t)
P (V ) = dt and then Tant(V ) is the scroll S(T̃ant(V )) of dimension

dimTant(V ) ≤ dim Im γt + dt = k + dt − dim((γt)−1(Π)),

where Π is a general element of T̃ant(V ).

We prove now:

Theorem 1.18. The first differential of γt at P is the (t+1)-st fundamental form
at P .

Proof. We have, by definition of γt, that

dγt
P : TPV ��� T

T̃
(t)
P V

G(PN , dt),

and we recall that T
T̃

(t)
P V

G(PN , dt) ∼= Hom(T̃
(t)
P V,N t+1

P (V )). Moreover, if we

choose a Darboux frame as in (1.10), we have that dA0 ∈ T̃PV ⊂ T̃
(t)
P V and

T̃
(t)
P V

CA0
= T

(t)
P V

and therefore dγt
P ∈ Hom(TPV ⊗ T

(t)
P V,N t+1

P (V )).
Now, we remark that, in our Darboux frame, we can interpret γt as

γt(P ) = A0 ∧ · · · ∧ Adt ,

and therefore by (1.4),

dγt
P ≡

∑
1≤i≤dt

dt+1≤j≤N

(−1)dt−i+1ωi,jA0 ∧ · · · ∧ Âi ∧ · · · ∧ Adt ∧ Aj mod T̃
(t)
P V.

Now, a basis for TPV ⊗ T
(t)
P V can be written as (Aα ⊗Aμ)α=1,...,k

μ=1,...,dt

, and

dγt
P (Aα ⊗Aμ) =

∑
dt+1≤j≤N

ωμ,j(Aα)Aj ∈ N t+1
P (V ).

On the other hand, for the (t+ 1)-st fundamental form we have

dAμ

dvα
≡

∑
dt+1≤j≤N

ωμ,j(Aα)Aj mod T̃
(t)
P (V ). �
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We recall now the definition of higher order dual varieties (see [19]), which is
the natural extension of the definition of the dual variety.

Definition 1.19. Let V ⊂ PN be a projective variety. By the t-th dual variety V̌ (t)

of V we mean

(1.20) V̌ (t) =
⋃

P∈V0

C
(t)
P (V ),

where, as before, V0 ⊂ V is the set of the points for which dimT
(t)
P (V ) = dt,

and C
(t)
p (V ) is

C
(t)
P (V ) :=

⋂
K∈T

(t)
P (V )

K =
{
H ∈ PN ∗ ∣∣ H ⊃ T̃

(t)
P (V )

} ⊂ PN ∗
.

This C
(t)
p (V ) is classically called the t-th characteristic space of V in P .

We now make an observation similar to the one in §3(a) of [6]: elements

of C
(t)
P (V ) can naturally be identified with hyperplanes in P(N t+1

P (V )) and there-
fore V̌ (t) is just the image of the map

δt : P(N t+1(V )∗) → PN∗
,

analogous to the one in (3.1) of [6]. In terms of frames, a hyperplane ξ of
P(N t+1

P (V )) can be given by choosing Adt+1, . . . , AN−1 such that their projec-

tions in N t+1
P (V ) = CN+1/T̃

(t)
P (V ) span ξ. Therefore, in terms of coordinates, δt

can be expressed as

δt(P, ξ) = A0 ∧A1 ∧ · · · ∧ AN−1,

(see (3.2) in [6]) or, if we choose dual coordinates

A∗
i := (−1)N−iA0 ∧ · · · ∧ Ai−1 ∧ Ai+1 ∧ · · · ∧ AN ,

δt(P, ξ) = A∗
N . From the relations (1.4) we deduce

dA∗
j =

∑
i�=j

(− ωi,jA
∗
i + ωi,iA

∗
j

)
,

and in particular

dA∗
N =

N−1∑
i=0

(− ωi,NA∗
i + ωi,iA

∗
N

)
=

N−1∑
i=1

(−ωi,NA∗
i ) +

(
ω0 +

N−1∑
i=1

ωi,i

)
A∗

N .

By definition of V̌ (t), we have for its dimension

N − dt − 1 ≤ dim V̌ (t) =: dt,1 ≤ N − dt − 1 + k.
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Choosing a Darboux frame as in (1.10), these formulas become, thanks to (1.12),

dA∗
j =

∑
i�=j

i>u−2

(− ωi,jA
∗
i + ωi,iA

∗
j

)
,

{
j = du−1 + 1, . . . , du if u = 0, . . . , t− 1,

j = dt−1 + 1, . . . , N if u = t,

where we put d−1 := −1 when we vary j. In particular,

dA∗
N =

N−1∑
i=t−1

(− ωi,NA∗
i + ωi,iA

∗
N

)
=

N−1∑
i=t−1

(−ωi,NA∗
i ) +

(
ω0 +

N−1∑
i=t−1

ωi,i

)
A∗

N ,

and therefore

dA∗
N ≡

N−1∑
i=t−1

(−ωi,NA∗
i ) mod A∗

N .(1.21)

Definition 1.20. We say that V̌ (t) is degenerate if it has dimension less than
expected: dt,1 < N − 1− dt + k.

In relation (1.21) the last N − dt − 1 forms ωi,N , i = dt +1, . . . , N − 1, restrict
to a basis for the forms of the fibres P(N t+1

P )∗ = PN−1−dt; in fact, they describe
the variation of ξ when P is held fixed. The first ωi,N , with i ≤ dt are horizontal
for the fibreing P(N t+1(V )∗) → V , and therefore V̌ (t) is degenerate if and only if

ωi1,N ∧ · · · ∧ ωik,N = 0 ∀i1, . . . ik with t− 1 ≤ i1 < · · · < ik ≤ dt.

If we put dt,s := dim T̃
(s)
ξ (V̌ (t)), if N − dt,s ≥ dt−1 +1, i.e., dt,s ≤ N − dt−1 − 1

(otherwise T̃
(s)
ξ (V̌ (t)) = PN∗), we can choose a Darboux frame such that T

(s)
ξ (V̌ (t))

is generated by A∗
N and A∗

N−1, . . . , A
∗
N−dt,s

.

Let us now define the characteristic varieties of a projective variety V ⊂ PN .

Definition 1.21. The variety of the s-th characteristic spaces of the t-th osculating
spaces of V is the s-th dual of the t-th dual variety of V , that is,

Carst (V ) :=
⋃

ξ∈V̌
(t)
0

C
(s)
ξ (V̌ (t)) ⊂ PN ,

where V̌
(t)
0 is the open subset of V̌ (t) comprising the points ξ such that ξ ⊃ T̃

(t)
P (V )

and dim T̃
(t)
P (V ) = dt. In the following we will denote this s-th characteristic space

of V̌ (t) in a general ξ ⊃ T̃
(t)
P (V ) by C

(s)
t,P (V ) := C

(s)
ξ (V̌ (t)). Then, using the above

notation, dim(C
(s)
t,P (V )) = N − 1− dt,s.

Lemma 1.22. With notation as above, if P ∈ V , we have:

a) T̃
(t−1)
P (V ) ⊂ C

(1)
t,P (V );

b) P ∈ C
(s)
t,P (V );

c) if ξ ∈ C
(t)
P (V ), T̃ξ(V̌

(t)) ⊂ C
(t−1)
P (V ).
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Proof. a) Using the above notations, we have that, since T̃ξ(V̌
(t)) is generated by

A∗
N and A∗

N−1, . . . , A
∗
t−1, we can choose a frame such that we have that the first

dt,1, A
∗
N−1, . . . , A

∗
N−dt,1

are basis of T̃ξ(V̌
(t)). Then, C

(1)
ξ (V̌ (t)) contains A0 and

A1, . . . , AN−dt,1−1, and since dt−1 ≤ dt − k ≤ N − dt,1 − 1, we have the assertion.

b) Since T̃
(s)
ξ (V̌ (t)) is generated, as usual, in an appropriate frame, by A∗

N and

A∗
N−1, . . . , A

∗
N−dt,s

, we have that C
(s)
ξ (V̌ (t)) contains A0.

c) This is just a) in the dual space. �

Corollary 1.23. With the notation above, if P ∈ V , ξ ∈ V̌ (t) and Q ∈ C
(s)
t,P (V )

are general points, then T̃ξ(Car
s
t (V )) ⊂ C

(s−1)
t,P (V ).

Proof. This is simply the dual of Lemma 1.22 c). �

2. Terracini’s theorems and generalisations

In this section we generalise the classical results of Terracini in terms of the os-
culating defect and higher fundamental forms instead of the Laplace equations, so
that we forget the parametrisation of V . First of all, by Corollary 1.14 we rewrite
the results of [20] and Section 3 of [21] as follows:

Theorem 2.1. Let V ⊆ PN be a k-dimensional irreducible variety whose second
fundamental form has dimension k−�−1, with � > 0. Then V has tangent defect at
least � and it is contained in a scroll S(Σh

t ) in Pt such that TPt
v
(S(Σh

t )) ⊂ P2k−h−�

with 0 ≤ h ≤ k − �, where v ∈ Σh
t is a general point, and Pt

v is the corresponding
fibre of the scroll.

Theorem 2.2. Let V ⊆ PN be a k-dimensional irreducible variety. Then V has
tangent defect o1 = � > 0 and the second fundamental form has dimension at least
k − � if and only if the Jacobian matrix of the second fundamental form of V has
rank k − �.

We will prove Theorems 2.4 and 2.8. Theorems 2.1 and 2.2 are just corollaries
of them.

Lemma 2.3. Let V ⊆ PN be a k-dimensional irreducible variety, and let P ∈ V .

Then, the tangent cone to Tant−1(V ) in P is contained in T̃
(t)
P (V ), and therefore

T̃P (Tan
t−1(V )) ⊂ T̃

(t)
P (V ).

Proof. Let us take a frame in V as above, i.e., {A0;A1, . . . , Akt ; . . . , AN}, where the
first k-elements A1, . . . , Ak generate TP (V ), and so on, and therefore A1, . . . , Akt

generate T
(t)
P (V ).

Let us take also a frame {B0;B1, . . . , B�; . . . , BN} on Tant−1(V ), centred at P ,
such that B0 represents P ∈ Tant−1(V ) and B1, . . . , B� generate TP (Tan

t−1(V )).
By definition, we have

B0 = C0A0 +

kt−1∑
i=1

CiAi.
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Taking the exterior derivative,

dB0 = dC0A0 + C0dA0 +

kt−1∑
i=1

(
dCiAi + CidAi

)
.

From this we infer that the tangent cone to Tant−1(V ) in P is contained in T̃
(t)
P (V ).

Since the tangent cone spans the tangent space, we have T̃P (Tan
t−1(V )) ⊂ T̃

(t)
P (V ).

�

Theorem 2.4. Let V ⊆ PN be a k-dimensional irreducible variety whose t-th
fundamental form has dimension k − �− 1, with � > 0. Then:

a) V has (t− 1)-osculating defect ot−1 ≥ �.

b) V is contained in a d-dimensional scroll S(Σh
r ), (d ≤ h+ r), in linear spaces

of dimension r, with 0 ≤ h ≤ k − � and k − h ≤ r.

c) Let Pr ⊂ S(Σh
r ) be a general r-dimensional space of the scroll S(Σh

r ). Then〈 ∪A∈Pr T̃A(S(Σ
h
r ))

〉
is contained in a linear space of dimension

dt − h = dt−1 + k − �− h ≤
(
k + t− 1

t− 1

)
− 1 + k − �− h.

In particular, r ≤ d ≤ dt−1 + k − �− h.

Proof. a) By hypothesis, Lemma 2.3 and Corollary 1.15 (and with the above no-
tations)

dimTant−1(V ) ≤ dimTP (Tan
t−1(V ))

≤ dim(T̃
(t)
P (V )) = dt−1 +Δt + 1 ≤ expdimTant−1(V )− �.

b) As above, let γt : V ��� G(N, dt) be the t-th Gauss map. Let h := dim Im(γt),
so that k−h is the dimension of the general fibre of γt. Let Φk−h(Π) := (γt)−1(Π)

be a general fibre; this is just the set of points Q ∈ V for which Π = T̃
(t)
Q (V ). Then

Φk−h(Π) generates a linear space Pr, k − h ≤ r ≤ dt. Let us consider the scroll
S(Σh

r ) over Im(γt) =: Σh
r of these spaces. By definition, V ⊂ S(Σh

r ).

Let V̌ (t) ⊂ PN ∗
be the t-th dual variety. We have

dim(V̌ (t)) = h+N − 1− dim(T̃
(t)
P (V )).

Moreover, by Lemma 1.22 a), T̃
(t−1)
P (V )) ⊂ C

(1)
t,P (V ), so that, by Corollary 1.15,

(2.1) dt−1 ≤ N − 1− dt,1 = dt − h = dt−1 + δt + 1− h = dt−1 + k − �− h,

and therefore h ≤ k − �.

c) We have, by Lemma 1.22 b), Q ∈ C
(t)
t,P (V ) if Q ∈ Φk−h(Π), Π = T̃

(t)
P (V ).

Since C
(t)
t,P (V ) is a linear space, we have that 〈Φk−h(Π)〉 = Pr ⊂ C

(t)
t,P (V ), and
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therefore S(Σh
r ) ⊂ Cartt(V ). Finally, apply Corollary 1.23 to get that if R ∈ Pr is

a general point, T̃RS(Σ
h
r ) ⊂ C

(t−1)
t,P (V ) and, moreover, since dim(V̌ (t)) = N − 1−

dt + h, we have that

dimC
(t−1)
t,P (V ) ≤ dt − h = dt−1 + k − �− h ≤

(k + t− 1

t− 1

)
− 1 + k − �− h. �

We give some applications of this theorem.

Example 2.5. Clearly, when h = 0, V is contained in a Pdt . For example, this is
the only possibility when k = 1, i.e, the case of curves. However, in this case we
can say even more: we have � = 1 and k − � = 0 = h, and from (2.1) we deduce
that the curve is contained in a Pdt−1 . So, if the theorem holds for k = 1 and t = 2,
V = P1 and for k = 1 and t = 3, V is a plane curve, etc.

Example 2.6. More generally, if � = k and h = 0 = k − �, thanks to (2.1), we
deduce that V is contained in a Pdt−1 . In particular, if the theorem holds for t = 2,
we deduce V = Pk.

Example 2.7. Let us pass to the next case � = k − 1; in this case h = 0, 1. If
h = 0 < 1 = k− �, thanks to (2.1), we infer that dt = dt−1+1. Hence V ⊂ Pdt−1+1

by Example 2.5. For t = 2, we deduce that V is a hypersurface in a Pk+1.
If h = 1 = k− �, again by (2.1), we infer that dt = dt−1 +1. Since, k− 1 ≤ r ≤

dt − 1 for t = 2, we have that k − 1 ≤ r ≤ d ≤ k, but we cannot have r = k, since
otherwise we would have that V = Pr = S(Σh

r ) and then we would have h = 0.
Therefore, r = k − 1, Φk−h(Π) = Pk−1 and V is a developable Pk−1-bundle.

Our result generalising Theorem 2.2 is the following.

Theorem 2.8. Let V ⊆ PN be a k-dimensional irreducible variety. Then V
has t-th osculating defect ot = � > 0 and the (t + 1)-st fundamental form has di-
mension at least k−� if and only if the Jacobian matrix of the (t+1)-st fundamental
form of V has rank k − �.

Proof. Let us fix as usual a Darboux frame for V as in (1.10). If P ∈ V is a general
point, then, by Definition 1.6,

T̃ t
P (V ) =

〈( d|I|A0

dvi11 . . . dvikk

)
|I|≤t

〉
,

with the convention that d0A0 = A0. Therefore, we can fix a Darboux frame
{B0;B1, . . . , Bd;Bd+1, . . . , BN} (d := dimTan(t)(V ) = expdimTan(t)(V ) − �) for

Tan(t)(V ) centred at Q ∈ T̃ t
P (V ), where B1, . . . , Bd span TQ(Tan

(t)(V )), and so

(2.2) B0 = A0

∑
|I|=t

λ(I) d|I|A0

dvi11 . . . dvikk
.



1208 P. De Poi, R. Di Gennaro and G. Ilardi

Saying dimTan(t)(V ) = expdimTan(t)(V )− � means that there are � linearly inde-
pendent linear homogeneous relations between the (first) partial derivatives of B0

with respect to the vj ’s and the λ(I)’s:

k∑
j=1

aα,j
∂B0

∂vj
+

∑
|I|=t

aα,I
∂B0

∂λ(I)
= 0, α = 1, . . . , �.

Then, by (2.2),

k∑
j=1

aα,j

( ∑
|I|=t

λ(I) d
|I|+1A0

dvjdvI

)
≡ 0, α = 1, . . . , �, mod T

(t)
P (V ).

In other words, these relations are indeed relations between the partial derivatives
up to order t+1 of A0, and we can think of them as a system of Laplace equations
of order t+ 1:

k∑
j=1

aα,j

( ∑
|I|=t

λ(I) xI+j
)
= 0, α = 1, . . . , �,

and their associated polynomials

( k∑
j=1

aα,j vj

)( ∑
|I|=t

λ(I) vI

)
= 0, α = 1, . . . , �,(2.3)

are all reducible with the same factor of degree t,∑
|I|=t

λ(I) vI .

Since these homogeneous polynomials are independent, the � linear forms

k∑
j=1

aα,j vj , α = 1, . . . , �,

are independent. In particular, up to a change of coordinates, it is not restrictive
to suppose that these forms are v1, . . . , v�.

By Proposition 1.13, we have that the (t + 1)-fundamental form is the apolar
system associated to (2.3); in particular, we have that all the partial derivatives of
the (t + 1)-fundamental form with respect to v1, . . . , v�, are zero, from which we
get that the rank of the Jacobian is k − �.

Since all the above can be reversed, the converse follows easily. �

This theorem suggests the project of classifying varieties with tangent, or more
generally, higher osculating defect. We will study this in a future paper. This
relies on the study of linear systems of quadrics, or more generally, of higher
degree hypersurfaces, with Jacobian matrices having ranks lower than expected.
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[18] Muracchini, L.: Le varietà V5 i cui spazi tangenti ricoprono una varietà W di
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