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On complete submanifolds with parallel mean

curvature in product spaces

Dorel Fetcu and Harold Rosenberg

Abstract. We prove a Simons type formula for submanifolds with parallel
mean curvature vector field in product spaces of type Mn(c) × R, where
Mn(c) is a space form with constant sectional curvature c, and then we
use it to characterize some of these submanifolds.

1. Introduction

In 1968, James Simons obtained an equation for the Laplacian of the second fun-
damental form of a minimal submanifold of a Riemannian manifold (see [18]). He
then applied this theorem in several ways; in particular by characterizing certain
minimal submanifolds of spheres. Over the years, such formulas, now called Si-
mons type equations, proved to be a powerful tool not only for studying minimal
submanifolds in Riemannian manifolds, but also, more generally, for studying sub-
manifolds with constant mean curvature (cmc submanifolds) or with parallel mean
curvature vector (pmc submanifolds). Special attention was paid to cmc and pmc
submanifolds in space forms, articles like [2], [5], [8], [10], [15], [16], [17], [20] being
only a few examples of contributions on this topic in which Simons type formu-
las are used to prove gap and reduction of codimension theorems. An excellent
presentation of the classical result of Simons and some of its applications can be
found in the very recent book [9]. The authors point out, for example, how Simons’
equation can be used to obtain curvature bounds for minimal surfaces with small
total curvature and also curvature estimates for stable minimal surfaces in R

3, and
then, more generally, for stable minimal hypersurfaces in R

n.

Recently, such equations were obtained for cmc and pmc submanifolds in prod-
uct spaces of the form Mn(c)×R, where Mn(c) stands for an n-dimensional space
form with constant sectional curvature c, and then used to characterize some of
these submanifolds (see, for example, [6], [12]). More exactly, in [6] the author com-
puted the Laplacian of the second fundamental form of a cmc surface in M3(c)×R,
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as well as the Laplacian of the traceless part of the Abresch–Rosenberg differential
introduced in [1] for such surfaces, whilst in [12] there was found the expression of
the Laplacian of |AH |2 for a pmc submanifold in Mn(c)×R with shape operator A
and mean curvature vector field H .

In our paper, we first compute the Laplacian of the second fundamental form
of a pmc submanifold in Mn(c)× R and then we use this Simons type formula to
prove some gap theorems for pmc submanifolds in Mn(c)×R when c > 0 and the
mean curvature vector field H of the submanifold makes a constant angle with the
unit vector field ξ tangent to R, or when c < 0 and H is orthogonal to ξ.

Our main results are the following four theorems.

Theorem 4.4. Let Σm be an immersed complete non-minimal pmc submanifold
in Mn(c) × R, n > m ≥ 3, c > 0, with mean curvature vector field H and second
fundamental form σ. If the angle between H and ξ is constant and

|σ|2 + 2c(2m+ 1)

m
|T |2 ≤ 2c+

m2

m− 1
|H |2,

where T is the tangent part of ξ, then Σm is a totally umbilical cmc hypersurface
in Mm+1(c).

Theorem 4.5. Let Σm be an immersed complete non-minimal pmc submanifold
in Mn(c) × R, n > m ≥ 3, c < 0, with mean curvature vector field H and second
fundamental form σ. If H is orthogonal to ξ and

|σ|2 + 2c(m+ 1)

m
|T |2 ≤ 4c+

m2

m− 1
|H |2,

then Σm is a totally umbilical cmc hypersurface in Mm+1(c).

Theorem 4.6. Let Σ2 be a complete non-minimal pmc surface in Mn(c) × R,
n > 2, c > 0, such that the angle between H and ξ is constant and

|σ|2 + 3c|T |2 ≤ 4|H |2 + 2c.

Then, either

1. Σ2 is pseudo-umbilical and lies in Mn(c); or

2. Σ2 is a torus S
1(r) × S

1
(√

1/c− r2
)
in M3(c), with r2 �= 1/(2c).

Theorem 4.7. Let Σ2 be a complete non-minimal pmc surface in Mn(c) × R,
n > 2, c < 0, such that H is orthogonal to ξ and

|σ|2 + 5c|T |2 ≤ 4|H |2 + 4c.

Then Σ2 is pseudo-umbilical and lies in Mn(c).

Acknowledgments. The first author would like to thank the IMPA in Rio de
Janeiro for providing a very stimulating work environment during the preparation
of this paper.
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2. Preliminaries

Let Mn(c) be a space form, i.e., a simply-connected n-dimensional manifold with
constant sectional curvature c. Thus, Mn(c) is the sphere S

n(c), the Euclidean
space, or the hyperbolic space H

n(c), as c > 0, c = 0, or c < 0. Now, let us
consider the product manifold M̄ = Mn(c) × R. The expression of the curvature
tensor R̄ of such a manifold can be obtained from〈

R̄(X,Y )Z,W
〉
= c

{〈dπY, dπZ〉〈dπX, dπW 〉 − 〈dπX, dπZ〉〈dπY, dπW 〉},
where π : M̄ = Mn(c)×R → Mn(c) is the projection map. After a straightforward
computation we get

R̄(X,Y )Z = c
{〈Y, Z〉X − 〈X,Z〉Y − 〈Y, ξ〉〈Z, ξ〉X + 〈X, ξ〉〈Z, ξ〉Y

+ 〈X,Z〉〈Y, ξ〉ξ − 〈Y, Z〉〈X, ξ〉ξ},(2.1)

where ξ is the unit vector tangent to R.
Let Σm be an m-dimensional submanifold of M̄ . From the Gauss equation〈

R(X,Y )Z,W
〉
=

〈
R̄(X,Y )Z,W

〉

+

n+1∑
α=m+1

{〈AαY, Z〉〈AαX,W 〉 − 〈AαX,Z〉〈AαY,W 〉},
we obtain the expression of its curvature tensor,

R(X,Y )Z = c
{〈Y, Z〉X − 〈X,Z〉Y − 〈Y, T 〉〈Z, T 〉X + 〈X,T 〉〈Z, T 〉Y
+ 〈X,Z〉〈Y, T 〉T − 〈Y, Z〉〈X,T 〉T}

+
n+1∑

α=m+1

{〈AαY, Z〉AαX − 〈AαX,Z〉AαY
}
,

(2.2)

where T is the component of ξ tangent to Σm and A is the shape operator defined
by the Weingarten equation

∇̄XV = −AV X +∇⊥
XV,

for any vector field X tangent to Σm and any normal vector field V . Here ∇̄ is
the Levi-Civita connection on M̄ , ∇⊥ is the connection in the normal bundle, and
Aα = AEα , where {Eα}n+1

α=m+1 is a local orthonormal frame field in the normal
bundle.

Definition 2.1. A submanifold Σm of Mn(c)×R is called a vertical cylinder over
Σm−1 if Σm = π−1(Σm−1), where π : Mn(c) × R → Mn(c) is the projection map
and Σm−1 is a submanifold of Mn(c).

It is easy to see that vertical cylinders Σm = π−1(Σm−1) are characterized by
the fact that ξ is tangent to Σm.

Definition 2.2. If the mean curvature vector field H of a submanifold Σm is
parallel in the normal bundle, i.e., ∇⊥H = 0, then Σm is called a pmc submanifold.
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Remark 2.3. It is straightforward to verify that Σm = π−1(Σm−1) is a pmc
vertical cylinder in Mn(c)×R if and only if Σm−1 is a pmc submanifold in Mn(c).
Moreover, the mean curvature vector field of Σm is H = m−1

m H0, where H0 is the
mean curvature vector field of Σm−1.

We end this section by recalling the following three results, which we shall use
later in this paper.

Lemma 2.4 ([7]). Let a1, . . . , am, where m > 1, and b be real numbers such that

(2.3)
( n∑

i=1

ai

)2

≥ (n− 1)

n∑
i=1

a2i + b.

Then, for all i �= j, we have

(2.4) 2aiaj ≥ b

n− 1
.

Moreover, if the inequality (2.3) is strict, then so are the inequalities (2.4).

Lemma 2.5 ([14]). Let A1, . . . , Ap, where p ≥ 2, be symmetric m ×m matrices.
Then

p∑
α,β=1

{
N(AαAβ −AβAα) + (trace(AαAβ))

2
} ≤ 3

2

( p∑
α=1

N(Aα)
)2

,

where N(A) = trace(AtA). Equality holds if and only if either

1) A1 = · · · = Ap = 0; or

2) only two matrices Aα0 and Aβ0 are different from the null m × m matrix.
Moreover, in this case, N(Aα0) = N(Aβ0) = L and there exists an orthogonal
matrix T such that

T tAα0T =

√
L

2

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 −1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

and T tAβ0T =

√
L

2

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠
.

Theorem 2.6 (Omori–Yau maximum principle, [21]). If Σm is a complete Rie-
mannian manifold with Ricci curvature bounded from below, then for any smooth
function u ∈ C2(Σm) with supΣm u < +∞ there exists a sequence of points
{pk}k∈N ⊂ Σm satisfying

lim
k→∞

u(pk) = sup
Σm

u, |∇u|(pk) < 1

k
and Δu(pk) <

1

k
.
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3. A Simons type formula for pmc submanifolds in Mn(c)×R

Let Σm be an m-dimensional pmc submanifold in Mn(c)×R with mean curvature
vector field H .

In the following, we shall compute the Laplacian of the squared norm of the
second fundamental form σ of Σm, where σ is defined by the Gauss equation

∇̄XY = ∇XY + σ(X,Y )

for any tangent vector fields X and Y .
Let {Em+1, . . . , En+1} be a local orthonormal frame field in the normal bundle.

Then, normal connection forms sαβ are determined by

∇⊥
XEα =

n+1∑
β=m+1

sαβ(X)Eβ

for any vector field X tangent to Σn and any α ∈ {m+1, . . . , n+1}. It is easy to
see that sαβ = −sβα and that

∇⊥
XH =

1

m
∇⊥

X(traceσ) =
1

m

n+1∑
α=m+1

∇⊥
X

(
(traceAα)Eα

)

=
1

m

n+1∑
α=m+1

(
X(traceAα)−

n+1∑
β=m+1

sαβ(X) traceAβ

)
Eα.

Therefore, the mean curvature vector field H is parallel if and only if

(3.1) X(traceAα)−
n+1∑

β=m+1

sαβ(X) traceAβ = 0

for all α’s.
Now, from the Codazzi equation,

〈
R̄(X,Y )Z,Eα

〉
=

〈∇⊥
Xσ(Y, Z), Eα

〉− 〈
σ(∇XY, Z), Eα

〉− 〈
σ(Y,∇XZ), Eα

〉
− 〈∇⊥

Y σ(X,Z), Eα

〉
+
〈
σ(∇Y X,Z), Eα

〉
+
〈
σ(X,∇Y Z), Eα

〉
,

we get

〈
R̄(X,Y )Z,Eα

〉
= X

(〈
AαY, Z

〉)− 〈
σ(Y, Z),∇⊥

XEα

〉− 〈
Aα(∇XY ), Z

〉
− 〈

AαY,∇XZ
〉− Y

(〈
AαX,Z

〉)
+
〈
σ(X,Z),∇⊥

Y Eα

〉
+
〈
Aα(∇Y X), Z

〉
+
〈
AαX,∇Y Z

〉
=

〈
(∇XAα)Y − (∇Y Aα)X,Z

〉

−
n+1∑

β=m+1

〈
sαβ(X)AβY − sαβ(Y )AβX,Z

〉
.
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Therefore, using (2.1), we obtain

(∇XAα)Y = (∇Y Aα)X +

n+1∑
β=m+1

(
sαβ(X)AβY − sαβ(Y )AβX

)

+ c〈Eα, N〉(〈Y, T 〉X − 〈X,T 〉Y )
,

(3.2)

where N is the normal part of ξ.
Next, we have the following Weitzenböck formula:

(3.3)
1

2
Δ|Aα|2 = |∇Aα|2 + 〈trace∇2Aα, Aα〉,

where we have extended the metric 〈, 〉 to the tensor space in the standard way.
The second term on the right hand side of (3.3) can be calculated by using a

method introduced in [16] and developed in [10].
Let us consider

Cα(X,Y ) = (∇2Aα)(X,Y ) = ∇X(∇Y Aα)−∇∇XY Aα,

and note that we have the following Ricci commutation formula:

(3.4) Cα(X,Y ) = Cα(Y,X) + [R(X,Y ), Aα].

Next, consider an orthonormal basis {ei}mi=1 in TpΣ
m, p ∈ Σm, extend ei to

vector fields Ei in a neighborhood of p such that {Ei} is a geodesic frame field
around p, and write X = Ek. We have

(trace∇2Aα)X =
m∑
i=1

Cα(Ei, Ei)X.

Using equation (3.2), we get, at p,

Cα(Ei, X)Ei = ∇Ei

(
(∇XAα)Ei

)

= ∇Ei

(
(∇EiAα)X

)
+∇Ei

( n+1∑
β=m+1

(
sαβ(X)AβEi − sαβ(Ei)AβX

))

+ c∇Ei

(〈Eα, N〉(〈Ei, T 〉X − 〈X,T 〉Ei

))
and then

Cα(Ei, X)Ei = Cα(Ei, Ei)X +∇Ei

( n+1∑
β=m+1

(
sαβ(X)AβEi − sαβ(Ei)AβX

))

+ c

n+1∑
β=m+1

〈
sαβ(Ei)Eβ , N

〉(〈Ei, T 〉X − 〈X,T 〉Ei

)

− c
〈
AαEi, T

〉(〈Ei, T 〉X − 〈X,T 〉Ei

)
+ c〈Eα, N〉(〈ANEi, Ei

〉
X − 〈

ANX,Ei

〉
Ei

)
,

(3.5)
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where we used σ(Ei, T ) = −∇⊥
Ei
N and ∇EiT = ANEi, which follow from the fact

that ξ is parallel, i.e., ∇̄ξ = 0.

We also have, at p,

(3.6) Cα(X,Ei)Ei = ∇X((∇EiAα)Ei),

and then, from (3.4), (3.5) and (3.6), we get

Cα(Ei, Ei)X = ∇X

(
(∇EiAα)Ei

)
+
[
R(Ei, X), Aα

]
Ei

−∇Ei

( n+1∑
β=m+1

(
sαβ(X)AβEi − sαβ(Ei)AβX

))

− c

n+1∑
β=m+1

〈
sαβ(Ei)Eβ , N

〉(〈Ei, T 〉X − 〈X,T 〉Ei

)

+ c
〈
AαEi, T

〉(〈Ei, T 〉X − 〈X,T 〉Ei

)− c〈Eα, N〉(〈ANEi, Ei

〉
X − 〈

ANX,Ei

〉
Ei

)
.

Since ∇EiAα is symmetric, from (3.2) one obtains

〈 m∑
i=1

(∇EiAα)Ei, Z
〉
=

m∑
i=1

〈
Ei, (∇EiAα)Z

〉

=

m∑
i=1

〈
Ei, (∇ZAα)Ei

〉−
m∑
i=1

〈 n+1∑
β=m+1

sαβ(Z)AβEi, Ei

〉

+
m∑
i=1

〈 n+1∑
β=m+1

sαβ(Ei)AβEi, Z
〉
+ c〈Eα, N〉

m∑
i=1

〈
Ei, 〈Z, T 〉Ei − 〈Ei, T 〉Z

〉
,

(3.7)

which, together with (3.1), leads to

〈 m∑
i=1

(∇EiAα)Ei, Z
〉
= Z(traceAα)−

n+1∑
β=m+1

sαβ(Z) traceAβ

+
〈 m∑

i=1

n+1∑
β=m+1

sαβ(Ei)AβEi + c(m− 1)〈Eα, N〉T, Z〉

=
〈 m∑

i=1

n+1∑
β=m+1

sαβ(Ei)AβEi + c(m− 1)〈Eα, N〉T, Z〉
(3.8)

for any vector Z tangent to Σm.



1290 D. Fetcu and H. Rosenberg

Therefore, we have

(trace∇2 Aα)X =

m∑
i=1

Cα(Ei, Ei)X

=

m∑
i=1

n+1∑
β=m+1

{
X(sαβ(Ei))AβEi + sαβ(Ei)∇XAβEi

− Ei(sαβ(X))AβEi − sαβ(X)∇EiAβEi

+ Ei(sαβ(Ei))AβX + sαβ(Ei)∇EiAβX
}

+ c(m− 1)
〈 n+1∑
β=m+1

sαβ(X)Eβ , N
〉
T

− c

m∑
i=1

〈 n+1∑
β=m+1

sαβ(Ei)Eβ , N
〉(〈Ei, T 〉X − 〈X,T 〉Ei

)

+ c〈AαT, T 〉X − c〈X,T 〉AαT − cm〈Eα, N〉〈H,N〉X
+ cm〈Eα, N〉ANX − c(m− 1)〈AαT,X〉T

+

m∑
i=1

[
R(Ei, X), Aα

]
Ei.

(3.9)

Now, using the Ricci equation

〈
R⊥(X,Y )Eα, Eβ

〉
=

〈
[Aα, Aβ ]X,Y

〉
+
〈
R̄(X,Y )Eα, Eβ

〉
,

we get, after a straightforward computation,

(3.10)

m∑
i=1

n+1∑
β=m+1

(
X(sαβ(Ei))AβEi − Ei(sαβ(X))AβEi

)

=

m∑
i=1

n+1∑
β=m+1

(
(∇Xsαβ)(Ei)AβEi − (∇Eisαβ)(X)AβEi

)

=
n+1∑

β=m+1

Aβ [Aα, Aβ ]X −
m∑
i=1

n+1∑
β,γ=m+1

sαγ(Ei)sγβ(X)AβEi

+

m∑
i=1

n+1∑
β,γ=m+1

sαγ(X)sγβ(Ei)AβEi.
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From (3.2), we have

m∑
i=1

n+1∑
β=m+1

sαβ(Ei)∇XAβEi =

m∑
i=1

n+1∑
β=m+1

sαβ(Ei)(∇XAβ)Ei

=
m∑
i=1

n+1∑
β=m+1

sαβ(Ei)
{
(∇EiAβ)X − c〈Eβ , N〉(〈X,T 〉Ei − 〈Ei, T 〉X

)

−
n+1∑

γ=m+1

(
sβγ(Ei)AγX − sβγ(X)AγEi

)}
.

(3.11)

We now use (3.8) to compute

m∑
i=1

n+1∑
β=m+1

sαβ(X)∇EiAβEi =

m∑
i=1

n+1∑
β=m+1

sαβ(X)(∇EiAβ)Ei

=
m∑
i=1

n+1∑
β,γ=m+1

sαβ(X)sβγ(Ei)AγEi

+ c(m− 1)
〈 n+1∑
β=m+1

sαβ(X)Eβ , N
〉
T.

(3.12)

From the Gauss equation (2.2) of Σm, we get

m∑
i=1

R(Ei, X)AαEi = c
{
AαX − (traceAα)X + (traceAα)〈X,T 〉T

− 〈AαX,T 〉T − 〈X,T 〉AαT + 〈AαT, T 〉X
}

+

n+1∑
β=m+1

{
AβAαAβX − (trace(AαAβ))AβX

}
,

(3.13)

and

m∑
i=1

AαR(Ei, X)Ei = −c
{
(m− 1− |T |2)AαX − (m− 2)〈X,T 〉AαT

}

+
n+1∑

β=m+1

{
AαA

2
βX − (traceAβ)AαAβX

}
.

(3.14)

Finally, taking into account that

Ei(sαβ(Ei))AβX = (∇Eisαβ)(Ei)AβX

and then replacing (3.10), (3.11), (3.12), (3.13) and (3.14) in (3.9), we obtain, after
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a long but straightforward computation,

〈trace∇2Aα, Aα〉 =
m∑
i=1

〈
(trace∇2Aα)Ei, AαEi

〉

=

m∑
i=1

{ n+1∑
β=m+1

2sαβ(Ei) trace
(
(∇EiAβ)Aα

)

−
n+1∑

β,γ=m+1

sαγ(Ei)sγβ(Ei) trace(AαAβ)

+
n+1∑

β=m+1

(∇Eisαβ)(Ei) trace(AαAβ)
}

+ c
{
(m− |T |2)|Aα|2 − 2m|AαT |2 + 3(traceAα)〈AαT, T 〉

+m(trace(ANAα))〈Eα, N〉−(traceAα)
2−m(traceAα)〈H,N〉〈Eα, N〉}

+

n+1∑
β=m+1

{
(traceAβ)(trace(A

2
αAβ)) + trace[Aα, Aβ ]

2

− (trace(AαAβ))
2
}
.

(3.15)

From equation (3.3), we know that

(3.16)
1

2
Δ|σ|2 =

1

2

n+1∑
α=m+1

Δ|Aα|2 =
n+1∑

α=m+1

{|∇Aα|2 + 〈trace∇2Aα, Aα〉
}
,

and, in order to estimate this Laplacian, we first note that

n+1∑
α=m+1

(traceAα)〈AαT, T 〉 = m〈σ(T, T ), H〉,

n+1∑
α=m+1

(traceAα)〈H,N〉〈Eα, N〉 = m〈H,N〉2,

n+1∑
α=m+1

(trace(ANAα))〈Eα, N〉 = |AN |2,
n+1∑

α=m+1

(traceAα)
2 = m2|H |2,

and, since sαβ = −sβα, that

n+1∑
α,β=m+1

(∇Eisαβ)(Ei) trace(AαAβ) = 0.

Next, we easily get

(∇⊥σ)(X,Y, Z) = ∇⊥
Xσ(Y, Z)− σ(∇XY, Z)− σ(Y,∇XZ)

=

n+1∑
α=m+1

〈
(∇XAα)Y −

n+1∑
β=m+1

sαβ(X)AβY, Z
〉
Eα



Complete pmc submanifolds 1293

for all tangent vector fields X , Y and Z, and then

|∇⊥σ|2 =

m∑
i,j,k=1

∣∣(∇⊥σ)(Ei, Ej , Ek)
∣∣2

=

n+1∑
α=m+1

m∑
i,j=1

〈
(∇EiAα)Ej −

n+1∑
β=m+1

sαβ(Ei)AβEj , (∇EiAα)Ej −
n+1∑

γ=m+1

sαγ(Ei)AγEj

〉
,

which means that

|∇⊥σ|2 =

n+1∑
α=m+1

{
|∇Aα|2 +

m∑
i=1

( n+1∑
β=m+1

2sαβ(Ei) trace
(
(∇EiAβ)Aα

)

−
n+1∑

β,γ=m+1

sαγ(Ei)sγβ(Ei) trace(AαAβ)
)}

.

Using (3.15) and (3.16), we can state the following proposition.

Proposition 3.1. Let Σm be a pmc submanifold of Mn(c)×R, with mean curva-
ture vector field H, shape operator A, and second fundamental form σ. Then we
have

1

2
Δ|σ|2 = |∇⊥σ|2 + c

{
(m− |T |2)|σ|2 − 2m

n+1∑
α=m+1

|AαT |2

+ 3m〈σ(T, T ), H〉+m|AN |2 −m2〈H,N〉2 −m2|H |2}

+
n+1∑

α,β=m+1

{
(traceAβ)(trace(A

2
αAβ)) + trace[Aα, Aβ ]

2 − (trace(AαAβ))
2
}
,

where {Eα}n+1
α=m+1 is a local orthonormal frame field in the normal bundle.

Corollary 3.2. If Σm is a minimal submanifold of Mn(c)× R, then we have

1

2
Δ|σ|2 = |∇⊥σ|2 + c

{
(m− |T |2)|σ|2 − 2m

n+1∑
α=m+1

|AαT |2 +m|AN |2
}

+
n+1∑

α,β=m+1

{
trace[Aα, Aβ ]

2 − (
trace(AαAβ)

)2}
.

Now, let us consider a non-minimal pmc submanifold Σm of Mn(c) × R. For
any normal vector field V , define φV = AV − traceAV

m I, the traceless part of AV .
We shall also consider φ the traceless part of σ, given by

φ(X,Y ) = σ(X,Y )− 〈X,Y 〉H.

It is easy to see that ∇⊥φ = ∇⊥σ, |σ|2 = |φ|2 + m|H |2 and |AV |2 = |φV |2 +
(traceAV )

2/m. It is also easy to obtain, from the Ricci equation, that if a normal
vector field V is parallel in the normal bundle, then [AV , AU ] = 0 for all normal
vector fields U .
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Let {Em+1, . . . , En+1} be a local orthonormal frame field in the normal bundle
such that Em+1 = H/|H |. Then, we obtain the following corollary directly from
Proposition 3.1.

Corollary 3.3. If Σm is a non-minimal pmc submanifold of Mn(c)×R, then we
have

1

2
Δ|φ|2 = |∇⊥φ|2 + (

c(m− |T |2) +m|H |2)|φ|2 − 2cm

n+1∑
α=m+1

|φαT |2

− cm
〈
φ(T, T ), H

〉
+ cm|φN |2 +m|H |

n+1∑
α=m+1

trace(φ2
αφm+1)

+
∑

α,β>m+1

trace[φα, φβ ]
2 −

n+1∑
α,β=m+1

(
trace(φαφβ)

)2
.

In the following, we shall compute the Laplacian of the squared norm of the
tangent part T of ξ.

As above, let us consider an orthonormal basis {ei}mi=1 in TpΣ
m, p ∈ Σm, and

then extend ei to vector fields Ei in a neighborhood of p such that {Ei} is a
geodesic frame field around p. Then, at p, we have

1

2
Δ|T |2 =

m∑
i=1

(〈∇EiT,∇EiT
〉
+
〈∇Ei∇EiT, T

〉)
= |AN |2 +

m∑
i=1

〈∇EiANEi, T
〉

and, since ∇XAN is symmetric,

m∑
i=1

〈∇EiANEi, T
〉
=

m∑
i=1

〈
(∇EiAN )Ei, T

〉
=

m∑
i=1

〈
(∇EiAN )T,Ei

〉

=

m∑
i=1

〈∇EiANT −AN∇EiT,Ei

〉
=

m∑
i=1

〈∇Ei∇TT −∇∇Ei
TT,Ei

〉

=

m∑
i=1

〈∇Ei∇TT +∇[T,Ei]T,Ei

〉
=

m∑
i=1

(〈∇T∇EiT,Ei

〉− 〈
R(T,Ei)T,Ei

〉)

=

m∑
i=1

(〈∇TANEi, Ei

〉− 〈
R(T,Ei)T,Ei

〉)
= T (traceAN )−

m∑
i=1

〈
R(T,Ei)T,Ei

〉

= mT (〈H,N〉)−
m∑
i=1

〈
R(T,Ei)T,Ei

〉
= −m

〈
σ(T, T ), H

〉−
m∑
i=1

〈
R(T,Ei)T,Ei

〉

where we used ∇XT = ANX and ∇⊥
XN = −σ(X,T ).

From the Gauss equation (2.2), it follows that

m∑
i=1

〈
R(T,Ei)T,Ei

〉
= c(1−m)|T |2(1−|T |2)+

n+1∑
α=m+1

{|AαT |2−(traceAα)〈AαT, T 〉
}
,
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and then we get

1

2
Δ|T |2 =|AN |2 −m〈σ(T, T ), H〉+ c(m− 1)|T |2(1− |T |2)

−
n+1∑

α=m+1

{|AαT |2 − (traceAα)〈AαT, T 〉},

where {Eα}n+1
α=m+1 is a local orthonormal frame field in the normal bundle.

We conclude with the following proposition.

Proposition 3.4. Let Σm be an m-dimensional pmc submanifold in Mn(c) × R,
with shape operator A. Then we have

1

2
Δ|T |2 = |AN |2 + c(m− 1)|T |2(1− |T |2)−

n+1∑
α=m+1

|AαT |2.

4. Some gap theorems for pmc submanifolds in Mn(c) × R

In this section we shall present some applications of Propositions 3.1 and 3.4 in
the study of pmc submanifolds. First we have the following result.

Proposition 4.1. Let Σm be an immersed complete pmc submanifold in Mn(c)×R

with second fundamental form σ. If

sup
Σm

{|σ|2 + c(m− 1)|T |2} < max
{
0, c(m− 1)

}
,

then either

1. Σm lies in Mn(c), if c > 0; or

2. Σm is a vertical cylinder π−1(Σm−1) over a pmc submanifold Σm−1 in the
space form Mn(c), if c < 0.

Proof. Let us consider first the case when c > 0. Then, from Proposition 3.4, using
our hypothesis, we have that

1

2
Δ|T |2 = |AN |2 + c(m− 1)|T |2(1− |T |2)−

n+1∑
α=m+1

|AαT |2

≥ |T |2(c(m− 1)(1− |T |2)− |σ|2) ≥ 0.

Next, let us consider a local orthonormal frame field {Ei}mi=1 on Σm, X a unit
tangent vector field, and an orthonormal frame field {Eα}n+1

α=m+1 in the normal
bundle. From equation (2.2), we get the expression of the Ricci curvature of our
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submanifold

RicX =

m∑
i=1

〈
R(Ei, X)X,Ei

〉

=
m∑
i=1

{
c
(|X |2 − 〈X,Ei〉2 − 〈X,T 〉2 + 2〈X,T 〉〈T,Ei〉〈X,Ei〉

− 〈T,Ei〉2|X |2)+
n+1∑

α=m+1

(〈AαEi, Ei〉〈AαX,X〉 − 〈AαX,Ei〉2
)}

= c
(
m− 1− |T |2 − (m− 2)〈X,T 〉2)+m

〈
AHX,X

〉−
n+1∑

α=m+1

|AαX |2.

It follows that

RicX ≥ c(m− 1)(1− |T |2)−m|AHX | −
n+1∑

α=m+1

|Aα|2 ≥ −m|AH | − |σ|2.

Since by hypothesis |σ| is bounded, we can see that the Ricci curvature is bounded
from below, and then the Omori–Yau maximum principle holds on Σm.

Therefore, we can use Theorem 2.6 with u = |T |2. It follows that there exists
a sequence of points {pk}k∈N ⊂ Σm satisfying

lim
k→∞

|T |2(pk) = sup
Σm

|T |2 and Δ|T |2(pk) < 1

k
.

Since supΣm{|σ|2+c(m−1)|T |2} < c(m−1), it follows that 0 = limk→∞ |T |2(pk) =
supΣm |T |2, which means that T = 0, i.e., Σm lies in Mn(c).

When c < 0, we come to the conclusion in the same way as above, using that

1

2
Δ|N |2 = −1

2
Δ|T |2 = −|AN |2 − c(m− 1)|T |2(1− |T |2) +

n+1∑
α=m+1

|AαT |2

≥ |N |2(−|σ|2 − c(m− 1)|T |2) ≥ 0,

and that
RicX ≥ c(m− 1)−m|AH | − |σ|2,

and then applying Theorem 2.6 to function u = |N |2. �

For minimal submanifolds in Mn(c)× R, with c > 0, we have the following:

Proposition 4.2. Let Σm be a complete minimal submanifold in Mn(c)×R, with
c > 0. If

sup
Σm

{
3|σ|2 + 2c(2m+ 1)|T |2} < 2cm,

then Σm is a totally geodesic submanifold in Mn(c).

Proof. From Corollary 3.2, since Schwarz inequality implies |AαT |2 ≤ |T |2|Aα|2,
using |AN |2 ≥ 0 and Lemma 2.5, we obtain

Δ|σ|2 ≥ −(
3|σ|2 + 2c((2m+ 1)|T |2 −m)

)|σ|2 ≥ 0.
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As we have seen, since |σ| is bounded, the Ricci curvature of Σm is bounded
from below, and then we can apply the Omori–Yau maximum principle to the
function u = |σ|2. One obtains that there exists a sequence of points {pk}k∈N ⊂ Σm

satisfying

lim
k→∞

|σ|2(pk) = sup
Σm

|σ|2 and Δ|σ|2(pk) < 1

k
,

from where it follows that 0 = limk→∞ |σ|2(pk) = supΣm |σ|2, which means that
σ = 0. Moreover, AN = 0 and then the hypotheses imply that |T |2 = constant < 1.
From Proposition 3.4, it follows that T = 0, which means that our submanifold is
totally geodesic in Mn(c). �

Before stating our first main result, we shall prove the following lemma, which
will then be used in its proof.

Lemma 4.3. Let Σm be an immersed non-minimal pmc submanifold in Mn(c)×R

with mean curvature vector field H. Then we have

Δ〈H,N〉 = −c(m− 1)|T |2〈H,N〉 − trace(AHAN ).

Proof. Let {Ei}mi=1 be a geodesic frame field around a point p ∈ Σm. Then, since
H is parallel and ∇⊥

XN = −σ(X,T ), we have, at p,

Δ〈H,N〉 =
m∑
i=1

Ei

(
Ei(〈H,N〉)) = −

m∑
i=1

Ei

(〈AHT,Ei〉
)
.

Using the facts that ∇XAH is symmetric and that ∇XT = ANX , and also equa-
tion (3.7), we get

Δ〈H,N〉 = −
m∑
i=1

Ei

(〈AHT,Ei〉
)
= −

m∑
i=1

〈∇EiAHT,Ei

〉

= −
m∑
i=1

(〈
(∇EiAH)T,Ei

〉
+
〈
AH∇EiT,Ei

〉)

= −
m∑
i=1

〈
(∇EiAH)Ei, T

〉− trace(AHAN )

= −c(m− 1)|T |2〈H,N〉 − trace(AHAN ). �

Our main results are similar to those obtained in [5], [8] for the pmc submani-
folds of a sphere and Euclidean space, and as in the above cited papers, their proofs
rely on the use of the formulas obtained in Section 3 and Lemmas 2.4 and 2.5.

Theorem 4.4. Let Σm be a complete non-minimal pmc submanifold in Mn(c)×R,
n > m ≥ 3, c > 0, with mean curvature vector field H and second fundamental
form σ. If the angle between H and ξ is constant and

(4.1) |σ|2 + 2c(2m+ 1)

m
|T |2 ≤ 2c+

m2

m− 1
|H |2,

then Σm is a totally umbilical cmc hypersurface in Mm+1(c).
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Proof. We shall prove first that Σm actually lies in a space form Mm+1(c), and,
in order to do that, we will show that, if {Em+1, . . . , En+1} is a local orthonormal
frame field in the normal bundle such that Em+1 = H/|H |, then Aα = 0 for all
α > m+ 1.

Let us recall now the following formula proved in [12], which can be also ob-
tained as a particular case of the computation in Section 3, tacking into account
that, since Em+1 is parallel, we have [Am+1, Aα] = 0 for all α ≥ m+ 1:

1

2
Δ|Am+1|2 = |∇Am+1|2+ c

{
(m− |T |2)|Am+1|2

− 2m|Am+1T |2 + 3m
〈
σ(T, T ), H

〉
+m

(
trace(ANAm+1)

)〈Em+1, N〉 −m2〈H,N〉2 −m2|H |2}

+

n+1∑
α=m+1

{
(traceAα)(trace(A

2
m+1Aα))− (trace(Am+1Aα))

2
}
.

(4.2)

Next, we define the function |A|2 on Σm by |A|2 =
∑

α>m+1 |Aα|2, and, us-
ing (4.2), we obtain, from Proposition 3.1, that

1

2
Δ|A|2 =

∑
α>m+1

|∇∗Aα|2 + c
{
(m− |T |2)|A|2 − 2m

∑
α>m+1

|AαT |2

+m|AN |2 −m(trace(ANAm+1))〈Em+1, N〉
}

+
∑

α>m+1

{
(traceAm+1)(trace(A

2
αAm+1))− (trace(AαAm+1))

2
}

+
∑

α,β>m+1

{
trace[Aα, Aβ ]

2 − (trace(AαAβ))
2
}
,

(4.3)

where ∇∗ is the sum of the tangent and normal connections and

∇∗
XAα = ∇XAα −

∑
β>m+1

sαβ(X)Aβ .

The Schwarz inequality implies that

(4.4) −
∑

α>m+1

|AαT |2 ≥ −|T |2
∑

α>m+1

|Aα|2 = −|T |2|A|2.

From Lemma 4.3, since 〈H,N〉 = constant, we have

(4.5) |AN |2−(trace(ANAm+1))〈Em+1, N〉 = |AN |2+c(m−1)|T |2〈Em+1, N〉2 ≥ 0.

Since trace[Aα, Aβ ]
2 = −N(AαAβ −AβAα), using Lemma 2.5, we get

(4.6)
∑

α,β>m+1

{
trace[Aα, Aβ ]

2− (trace(AαAβ))
2
} ≥ −3

2

( ∑
α>m+1

|Aα|2
)2

= −3

2
|A|4.

Next, we shall evaluate the term∑
α>m+1

{
(traceAm+1)(trace(A

2
αAm+1))− (trace(AαAm+1))

2
}
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in (4.3). In order to do so, we note first that, since [Am+1, Aα] = 0, the matrices
Am+1 and Aα can be diagonalized simultaneously, for each α > m + 1. Let λi

and λα
i , i = 1, . . . ,m, be the eigenvalues of Am+1 and Aα, respectively. Then, for

each α > m+ 1, we have

(4.7)

(
traceAm+1

)(
trace(A2

αAm+1)
)− (

trace(AαAm+1)
)2

=
( m∑

i=1

λi

)( m∑
j=1

λj(λ
α
j )

2
)
−
( m∑

i=1

λiλ
α
i

)( m∑
j=1

λjλ
α
j

)
=

1

2

m∑
i,j=1

λiλj(λ
α
i − λα

j )
2.

Our hypothesis (4.1) can be written as

(m|H |)2 ≥ (m− 1)|Am+1|2 + (m− 1)
(
|A|2 + 2c(2m+ 1)

m
|T |2 − 2c

)

which means that

(4.8)
( m∑

i=1

λi

)2

≥ (m− 1)

m∑
i=1

(λi)
2 + (m− 1)

(
|A|2 + 2c(2m+ 1)

m
|T |2 − 2c

)
.

Thus, from Lemma 2.4, it follows that

(4.9) λiλj ≥ 1

2
|A|2 + c(2m+ 1)

m
|T |2 − c,

for i �= j, and then

(4.10)

1

2

m∑
i,j=1

λiλj (λ
α
i − λα

j )
2 ≥ 1

2

(1
2
|A|2 + c(2m+ 1)

m
|T |2 − c

) m∑
i,j=1

(λα
i − λα

j )
2

=
(1
2
|A|2 + c(2m+ 1)

m
|T |2 − c

) m∑
i,j=1

(
(λα

i )
2 − λα

i λ
α
j

)

=
(m
2
|A|2 + c(2m+ 1)|T |2 − cm

)
|Aα|2

−
(1
2
|A|2 + c(2m+ 1)

m
|T |2 − c

)( m∑
i=1

λα
i

)2

=
(m
2
|A|2 + c(2m+ 1)|T |2 − cm

)
|Aα|2.

Substituting this in (4.7), we get

(4.11)

∑
α>m+1

{
(traceAm+1)(trace(A

2
αAm+1))− (trace(AαAm+1))

2
}

≥
(m
2
|A|2 + c(2m+ 1)|T |2 − cm

)
|A|2.

Now, from (4.3), (4.4), (4.5), (4.6) and (4.11), one obtains

(4.12)
1

2
Δ|A|2 ≥ m− 3

2
|A|4.
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As we have seen in Proposition 4.1, the fact that |σ| is bounded implies that
the Ricci curvature of Σm is bounded from below. Therefore we can apply Theo-
rem 2.6 to the function u = |A|2, and we get that there exists a sequence of points
{pk}k∈N ⊂ Σm satisfying

lim
k→∞

|A|2(pk) = sup
Σm

|A|2 and Δ|A|2(pk) < 1

k
.

From the inequality (4.12) it follows that

0 = lim
k→∞

Δ|A|2(pk) ≥ (m− 3) sup
Σm

|A|2 ≥ 0,

i.e., (m− 3) supΣm |A|2 = 0. Therefore, we get that m = 3 or |A|2 = 0.

Next, we shall split our study in two cases as m ≥ 4 or m = 3.

Case I: m ≥ 4. In this case, we have |A|2 = 0, and then Aα = 0 for all
α > m + 1. Moreover, all the inequalities (4.4), (4.5), (4.6) and (4.11) become
equalities. Since AN = 0, we get that |T |2 is constant and that 〈H,N〉 = 0. We
also have

0 = X(〈H,N〉) = 〈H,∇⊥
XN〉 = −|H |〈Em+1, σ(T,X)

〉
= −|H |〈Am+1T,X〉,

for any tangent vector field X . Therefore, from Proposition 3.4, it follows that

0 = c(m− 1)|T |2(1− |T |2),
i.e., either T = 0 or T = ±ξ.

If T = ±ξ, then Σm is a vertical cylinder π−1(Σm−1) over a pmc submanifold
Σm−1 in Mn(c) with second fundamental form σ0, satisfying |σ0| = |σ|, and mean
curvature vector field H0 = m

m−1H . Then, condition (4.1) can be rewritten as

|σ0|2 ≤ (m− 1)|H0|2 − 2c(m+ 1)

m
< (m− 1)|H0|2,

which is a contradiction, since the squared norm of the traceless part φ0 of σ0

satisfies
0 ≤ |φ0|2 = |σ0|2 − (m− 1)|H0|2.

Hence, we have T = 0, i.e., ξ is normal to Σm. Since Aα = 0 for all α > m+1,
it follows that the subbundle L = span{σ} = span{H} of the normal bundle
is parallel, i.e., ∇⊥V ∈ L for all V ∈ L. Now, one can see that TΣm ⊕ L is
parallel, orthogonal to ξ, and invariant by the curvature tensor R̄. Using Theorem 2
in [11], all these lead to the conclusion that Σm lies in an m+1-dimensional totally
geodesic submanifold of Mn(c)×R, which is also orthogonal to ξ, i.e., Σm is a cmc
hypersurface in Mm+1(c).

Case II: m = 3. We shall prove that |A|2 = 0 in this situation too, which
means, as we have seen above, that Σ3 is a cmc hypersurface in M4(c).

Our hypothesis (4.1) implies that the sequence {σα
ij(pk)}k∈N, where

σα
ij =

〈
σ(Ei, Ej), Eα

〉
,
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is bounded for all i, j and α. We also know that the sequence {|T |2(pk)}k∈N is
bounded. Therefore, there exists a subsequence {pkr}kr∈N of {pk}k∈N such that
the following limits exist:

σ̄α
ij = lim

kr→∞
σα
ij(pkr ) < ∞ and |T̄ |2 = lim

kr→∞
|T |2(pkr ) < ∞,

and we denote by
Āα = lim

kr→∞
Aα(pkr )

the matrix with entries σ̄α
ij .

From limkr→∞ Δ|A|2(pkr ) = 0, it follows that, when we take the limit after
kr → ∞, all the inequalities (4.4), (4.5), (4.6), and (4.11) become equalities. Then,
from (4.6) and (4.11) we obtain
(4.13)∑
α,β>4

{
trace[Āα, Āβ ]

2 − (trace(ĀαĀβ))
2
}
= −3

2

(∑
α>4

|Āα|2
)2

= −3

2

(
sup
Σ3

|A|2
)2

and
(4.14)∑

α>4

{
(trace Ā4)(trace(Ā

2
αĀ4))− (trace(ĀαĀ4))

2
}

=
(3
2

∑
α>4

|Āα|2 + 7c|T̄ |2 − 3c
)∑

α>4

|Āα|2 =
(3
2
sup
Σ3

|A|2 + 7c|T̄ |2 − 3c
)
sup
Σ3

|A|2,

respectively. From (4.13) and Lemma 2.5, it follows that either

1. Ā5 = . . . = Ān+1 = 0; or

2. only two matrices Āα0 and Āβ0 are different from the null m × m matrix,
|Āα0 |2 = |Āβ0 |2 = L, and there exists an orthogonal matrix T such that

(4.15) T tĀα0T =

√
L

2

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠ , T tĀβ0T =

√
L

2

⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ .

In the first case, one obtains

0 =
∑
α>4

|Āα|2 = sup
Σ3

|A|2,

which means that |A|2 = 0 or, equivalently, that Aα = 0 for all α > 4.
In the following, we shall assume that the second case occurs, and we will come

to a contradiction.
Restricting (4.10) to the sequence of points {pkr}kr∈N and then taking the limit,

we get, also using (4.14), that

3∑
i,j=1

λ̄iλ̄j(λ̄
α
i − λ̄α

j )
2 =

(1
2
sup
Σ3

|A|2 + 7c

3
|T̄ |2 − c

) 3∑
i,j=1

(λ̄α
i − λ̄α

j )
2,

where λ̄i = limkr→∞ λi and λ̄α
i = limkr→∞ λα

i .
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From (4.15) we have λ̄α
i �= λ̄α

j for i �= j, and then, from (4.9), one obtains

(4.16) λ̄iλ̄j =
1

2
sup
Σ3

|A|2 + 7c

3
|T̄ |2 − c for i �= j.

Now, on the one hand, taking the limit in (4.8) and applying Lemma 2.4, we get

( 3∑
i=1

λ̄i

)2

= 2
3∑

i=1

(λ̄i)
2 + 2

(
sup
Σ3

|A|2 + 14c

3
|T̄ |2 − 2c

)
,

or, equivalently,

(4.17)
3

2
|H |2 = |φ̄4|2 + sup

Σ3

|A|2 + 14c

3
|T̄ |2 − 2c,

where φ4 = A4 − |H | I is the traceless part of A4 and φ̄4 = limkr→∞ φ4(pkr ).
On the other hand, we have

∑
i�=j

λiλj =
( 3∑

i=1

λi

)2

−
3∑

i=1

(λi)
2 = 9|H |2 − (|φ4|2 + 3|H |2) = 6|H |2 − |φ4|2,

which, taking the limit and using (4.16), gives

(4.18) |φ̄4|2 = 6|H |2 − 3 sup
Σ3

|A|2 − 14c|T̄ |2 + 6c.

Summarizing, from (4.17) and (4.18) one obtains

|φ̄4|2 = −3

4
|H |2,

which is a contradiction and, therefore, this case cannot occur.
We have just proved that our submanifold Σm actually is a cmc hypersurface

in Mm+1(c) for any m ≥ 3.
Now, from (4.1), it is easy to see that

|φ|2 ≤ 2c+
m

m− 1
|H |2 < r2,

where φ is the traceless part of σ and r is the positive root of the polynomial

P (t) = t2 +
m(m− 2)√
m(m− 1)

|H | t−m(c+ |H |2).

We then use Theorem 1.5 in [2] (see also [17]) to conclude that φ = 0, i.e., Σm is
a totally umbilical cmc hypersurface in Mm+1(c). �

Theorem 4.5. Let Σm be a complete non-minimal pmc submanifold in Mn(c)×R,
n > m ≥ 3, c < 0, with mean curvature vector field H and second fundamental
form σ. If H is orthogonal to ξ and

(4.19) |σ|2 + 2c(m+ 1)

m
|T |2 ≤ 4c+

m2

m− 1
|H |2,

then Σm is a totally umbilical cmc hypersurface in Mm+1(c).
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Proof. Let us consider a local orthonormal frame field {Em+1, . . . , En+1} in the
normal bundle such that Em+1 = H/|H |. Then, since H ⊥ ξ, we have

AN =
∑

α>m+1

〈N,Eα〉Aα

and, therefore, from the Schwarz inequality, one obtains

|AN |2 =
∣∣∣ ∑
α>m+1

〈N,Eα〉Aα

∣∣∣2 ≤
( ∑

α>m+1

|〈N,Eα〉||Aα|
)2

≤
( ∑

α>m+1

|〈N,Eα〉|2
)( ∑

α>m+1

|Aα|2
)
≤ |N |2|A|2 = (1− |T |2)|A|2,

where |A|2 =
∑

α>m+1 |Aα|2. Then, from (4.3), it follows that

1

2
Δ|A|2 ≥ c

(
2m− (m+ 1)|T |2)|A|2

+
∑

α>m+1

{
(traceAm+1)(trace(A

2
αAm+1))− (trace(AαAm+1))

2
}

+
∑

α,β>m+1

{
trace[Aα, Aβ]

2 − (trace(AαAβ))
2
}
,

(4.20)

where we also used the fact that −c
∑

α>m+1 |AαT |2 ≥ 0.
Next, in the same way as in the proof of Theorem 4.4, we get

∑
α,β>m+1

{
trace[Aα, Aβ ]

2 − (trace(AαAβ))
2
} ≥ −3

2
|A|4

and, using (4.19),∑
α>m+1

{
(traceAm+1)(trace(A

2
αAm+1))− (trace(AαAm+1))

2
}

≥
(m
2
|A|2 + c(m+ 1)|T |2 − 2cm

)
|A|2.

Substituting this in (4.20), we obtain that

1

2
Δ|A|2 ≥ m− 3

2
|A|4,

which, as in the proof of Theorem 4.4, implies that |A|2 = 0, and, therefore, Aα = 0
for all α > m+ 1.

On the other hand, since H ⊥ ξ implies that Am+1T = 0, and AN = 0 implies
that |T | = constant, from Proposition 3.4, we can see that

0 = c(m− 1)|T |2(1− |T |2),
which means that either T = 0 or T = ±ξ. If T = ±ξ, then Σm is a vertical cylinder
π−1(Σm−1) over a pmc submanifold Σm−1 inMn(c), with second fundamental form
σ0, satisfying |σ0| = |σ|, and mean curvature vector field H0 = m

m−1H .
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Then, from (4.19), it follows that

|σ0|2 ≤ (m− 1)|H0|2 + 2c(m− 1)

m
< (m− 1)|H0|2,

which is a contradiction. Hence T = 0 and, using Theorem 2 in [11], this leads to
the conclusion that Σm is a cmc hypersurface in Mm+1(c).

Finally, we observe that, using (4.19), we have

|φ|2 ≤ 4c+
m

m− 1
|H |2 < r2,

where φ is the traceless part of σ and r is the positive root of the polynomial

P (t) = t2 +
m(m− 2)√
m(m− 1)

|H |t−m(c+ |H |2),

and then, from Theorem 5 in [4], we get that φ = 0, which means that Σm is
totally umbilical in Mm+1(c). �

In the case of pmc surfaces, we can state the following two results.

Theorem 4.6. Let Σ2 be a complete non-minimal pmc surface in Mn(c) × R,
n > 2, c > 0, such that the angle between H and ξ is constant and

|σ|2 + 3c|T |2 ≤ 4|H |2 + 2c.

Then, either

1. Σ2 is pseudo-umbilical and lies in Mn(c); or

2. Σ2 is a torus S
1(r) × S

1
(√

1/c− r2
)
in M3(c), with r2 �= 1/(2c).

Proof. The map p ∈ Σ2 → (AH − μ I)(p), where μ is a constant, is analytic, and,
therefore, either Σ2 is a pseudo-umbilical surface (at every point), or H is an
umbilical direction on a closed set without interior points. In the second case, H
is not an umbilical direction on an open dense set W . We shall work on this set
and then we shall extend the results to the whole surface by continuity.

If Σ2 is a pmc surface in Mn(c) × R, then either Σ2 is pseudo-umbilical, i.e.,
H is an umbilical direction everywhere, or, at any point in W , there exists a local
orthonormal frame field that diagonalizes AU for any normal vector field U defined
on W (see Lemma 1 in [3]). According to Theorem 1 in [3], if Σ2 is a pseudo-
umbilical pmc surface in Mn(c)×R, then it lies in Mn(c), and if the surface is not
pseudo-umbilical, then it lies in M4(c)× R.

In the following, we shall assume that Σ2 is not pseudo-umbilical and we shall
prove that, in this case, it is a torus in M3(c).

First, let {E3 = H/|H |, E4, E5} be a local orthonormal frame field in the normal
bundle, and then observe that [Aα, Aβ ] = 0 for all α and β. Moreover, diagonalizing
simultaneously A4 and A5, we easily get

(
trace(A4A5)

)2
= 2 |A4|2 |A5|2 ≤ 1

2

(|A4|2 + |A5|2
)2

=
1

2
|A|4,

which means that

(4.21) trace[A4, A5]
2 − (

trace(A4A5)
)2

= −2 |A4|2 |A5|2 ≥ −1

2
|A|4.
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Now, taking into account that

|AαT |2 =
1

2
|T |2 |Aα|2

for α ∈ {4, 5}, since traceAα = 0, and then working exactly as in the proof of
Theorem 4.4, we obtain

Δ|A|2 ≥ 1

2
|A|4 ≥ 0.

By hypothesis, we have that the Gaussian curvature K of our surface satisfies

2K = 2c(1− |T |2) + 4|H |2 − |σ|2 ≥ c|T |2 ≥ 0,

which means that Σ2 is a parabolic space. Therefore, since |A|2 is a bounded
subharmonic function, we get that |A|2 = 0, i.e., A4 = A5 = 0. Moreover, using
Proposition 3.4, we see that either T = 0 or T = ±ξ. Again as in Theorem 4.4 we
discard the second case and we conclude that Σ2 lies in M3(c) by using Theorem 2
in [11].

Finally, since Σ2 is not pseudo-umbilical, from a result in [13] (see also Theo-
rem 1.5 in [2]), we obtain that |σ|2 = 4|H |2 + 2c and that our surface is the torus
S
1(r) × S

1
(√

1/c− r2
)
, with r2 �= 1/(2c). �

Theorem 4.7. Let Σ2 be a complete non-minimal pmc surface in Mn(c) × R,
n > 2, c < 0, such that H is orthogonal to ξ and

|σ|2 + 5c|T |2 ≤ 4|H |2 + 4c.

Then Σ2 is pseudo-umbilical and lies in Mn(c).

Proof. Let us assume that Σ2 is not pseudo-umbilical. Then, from (4.21), and
working as in Theorem 4.5 we can prove that Σ2 lies in M3(c). On the other hand,
we observe that |σ|2 ≤ 4|H |2 + 4c < 4|H |2 + 2c, and, therefore, using a result
in [19], we have that the surface is totally umbilical, which is a contradiction. �
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