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On the boundedness of the Carleson

operator near L1

Victor Lie

Abstract. Based on the tile discretization elaborated in [14], we develop
a Calderón–Zygmund type decomposition of the Carleson operator. As a
consequence, through a unitary method that makes no use of extrapolation
techniques, we recover previously known results regarding the largest rear-
rangement invariant space of functions with almost everywhere convergent
Fourier series.

1. Introduction

In this paper we analyze some aspects of the behavior of the Carleson operator
near L1. Elaborating on an idea1 introduced in [14], we construct a Calderón–
Zygmund type decomposition of the Carleson operator which, besides its own
interest, may prove useful for studying other related problems. In particular,
through this technique we are able to encompass previously known results regarding
the problem of the largest rearrangement invariant space of (integrable) functions
with almost everywhere convergent Fourier series. The relevant point here though
is not the possibility of reproving these results but rather the existence of a method
that avoids the limitations of extrapolation techniques – the main ingredient on
which all the previous results rely.

As we will see, most of the difficulty and interest resides in the tile decompo-
sition for the Carleson operator. Once this decomposition is available, everything
else follows naturally. In the present paper we focus on the method rather than on
obtaining the best possible space on which the Carleson operator is finitely almost
everywhere. With respect to the latter objective, the best current result belongs
to Arias de Reyna ([2]).

Mathematics Subject Classification (2010): Primary 42A20; Secondary 47A30.
Keywords: Time-frequency analysis, Carleson’s theorem.

1This approach has as a consequence the removal of the exceptional sets in the tile decom-
position and thus gives directly strong L2 bounds for the Carleson operator. Also this is one of
the key ingredients in providing the full range for the Lp bounds (1 < p < ∞) of the polynomial
Carleson operator.
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A significant improvement of his result seems to require an original idea, the
present paper proposing just the first step towards opening up a new direction of
investigation.

This being said, let us state the precise theme of interest regarding the behavior
of Fourier series near L1.

Open problem. What is the largest Banach rearrangement invariant space
(Y, ‖ · ‖Y ) with Y ⊆ L1(T) for which the Carleson operator defined 2 by

T : C∞(T) �→ D′(T)

with

(1.1) Tf(x) := sup
N∈N

∣∣∣
∫
T

eiN (x−y) cot(x− y) f(y) dy
∣∣∣ ,

obeys the relation

(1.2) ‖Tf‖1,∞ � ‖f‖Y ∀ f ∈ Y ?

Observation. Notice that by Stein’s maximal principle ([19]) the above open
problem is equivalent to asking for the largest Banach rearrangement invariant
space (Y, ‖ · ‖Y ) with Y ⊆ L1(T) for which the partial Fourier series {Snf}n have
the property

(1.3) Snf(x)
n→∞−→ f(x) a.e. x ∈ T, ∀ f ∈ Y.

A lot has been written on this subject. The major breakthrough was made
by Carleson ([6]), who showed that L2(T) ⊂ Y . Later, Hunt ([10]) extended
this result by showing that Lp(T) ⊂ Y for any 1 < p < ∞. A new influential
proof of Carleson’s result3 was given by Fefferman in [9]. From this point, the
problem evolved at a slower rate towards the limiting index p = 1. Sjölin proved
in [16] that one may take Y = L(logL)2 in (1.2) (if one requires strong L1 bounds
in (1.2)) or even L logL log logL for just L1,∞ bounds. Next, Soria ([17], [18])
constructed a larger space4 B∗

ϕ1
⊂ Y . In [1], Antonov showed that (1.2) holds

for Y = L logL log log logL. Finally, combining elements from Antonov’s and
Soria’s approaches with techniques on logconvex quasi-Banach spaces, Arias de
Reyna ([2]) proved that QA ⊂ Y , where QA is a quasi-Banach space described in
the appendix.

The following chain of inclusions5 holds:

(1.4) L(logL)2 � L logL log logL � B∗
ϕ1
, L logL log log logL � QA � L logL .

The main result in this paper is given by:

2We write D′(T) for the class of distributions supported on the torus.
3More recently ([12]), Lacey and Thiele, combining ideas from both [6] and [9], provided a

third approach to Carleson’s theorem on the pointwise convergence of the Fourier series.
4See the appendix for the definition.
5Notice that there is no order relation between the spaces B∗

ϕ1
and L logL log log logL (for

more details see [2]).
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Theorem 1.1. There exists a partition of the family of tiles

P =
⋃
n∈N

Pn , with T =
∑
n

T Pn

such that for each n ∈ N we have:

a) Given nonzero f ∈ L1, there exists a further decomposition6

Pn =
⋃
α∈Z

Pα
n ,

such that for any n ∈ N we have7

suppT P
α
n ⊆ 100 {Mf > 2−α} ,(1.5)

‖T P
α
n f‖1 � 2−α

∣∣{Mf > 2−α}∣∣ ,(1.6)

where here M stands for the dyadic Hardy–Littlewood maximal function.
In particular, we deduce that

(1.7) ‖T Pn f‖1 � ‖f‖L logL .

b) For f ∈ L1 there holds:

(1.8) ‖T Pn f‖1,∞ � ‖f‖1 .

c) If 1 < p < ∞ and p∗ = min{p, p′}, with p′ the Hölder conjugate of p, then
there exists an absolute constant δ > 0 such that

(1.9) ‖T Pn f‖p �p 2−δn(1−1/p∗) ‖f‖p .

d) If f ∈ Lp with 1 < p ≤ ∞ then8

(1.10) ‖Tf‖1,∞ �p ‖f‖1 log
2 ‖f‖p
‖f‖1 .

As a direct application of Theorem 1.1 we have the following:

Corollary 1.2. The following are true:

1) (Carleson–Hunt, [6], [10]) ‖Tf‖p �p ‖f‖p for any 1 < p <∞.

2) (Sjölin, [16]) ‖Tf‖1 � ‖f‖L(logL)2 .

3) For measurable E ⊆ [0, 1], ‖TχE‖1,∞ � |E| log(2/|E|) .
6This second decomposition depends on f .
7Here, if J = (c − |J |/2, c + |J |/|2|) is any given interval, we use the standard notation b J

(b > 0) to designate the interval (c − b |J |/2, c + b |J |/|2|). Moreover, if I = ∪n∈NJn with each
Jn an interval, then we set b I := ∪n∈Nb Jn.

8Throughout the paper, for x > 0, we set logx := log2 x.
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4) (Sjölin, [16]) ‖Tf‖1,∞ � ‖f‖L logL log logL .

5) (Arias de Reyna, [2]) ‖Tf‖1,∞ � ‖f‖QA . In particular 5) also implies

6) (F. Soria, [17],[18]) ‖Tf‖1,∞ � ‖f‖B∗
ϕ1
.

7) (Antonov, [1]) ‖Tf‖1,∞ � ‖f‖L logL log log logL .

Comment. In fact, as a consequence of d) in Theorem 1.1, we obtain that for
1 < p ≤ ∞ one has

‖Tf‖1,∞ �p ‖f‖QAp ,

where QAp is the quasi-Banach space defined by

QAp :=
{
f : T �→ C | f measurable, ‖f‖QAp <∞}

with
(1.11)

‖f‖QAp := inf
{ ∞∑

j=1

(
1 + log j

)‖fj‖1 log
2 ‖fj‖p
‖fj‖1

∣∣∣ f =
∞∑
j=1

fj ,
∞∑
j=1

|fj | <∞ a.e.
}
.

However, it turns out, based on an observation of Luis Rodŕıguez-Piazza kindly
communicated to me by Arias de Reyna, that the spaces QAp are equivalent in
the sense that

‖f‖QAp ≈p ‖f‖QA∞ .

Notice that QA∞ is the original space QA defined in [2]; for an interesting study
concerning the properties of the space QA one should consult [7].

Acknowledgment. I thank Arias de Reyna for reading the manuscript and sup-
plying useful comments.

2. Discretization of the operator

In this section we decompose the operator T in components {TP}P which are
“well” time-frequency localized. We follow the procedure in [9].

Let T be the Carleson operator defined by

Tf(x) := sup
N∈R

∣∣∣
∫
T

1

x− y
eiN(x−y) f(y) dy

∣∣∣ ,
which after linearization becomes

Tf(x) =

∫
T

1

x− y
eiN(x) (x−y) f(y) dy ,

where N is some arbitrary measurable function (which henceforth will be fixed).
Choose now an odd C∞ function ψ such that

supp ψ ⊆ {
y ∈ R | 2 < |y| < 8

}
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and having the property

1

y
=

∑
k≥0

ψk(y) ∀ 0 < |y| < 1 ,

where by definition ψk(y) := 2k ψ(2ky) (with k ∈ N).
Thus, we have that

Tf(x) =
∑
k≥0

Tkf(x) :=
∑
k≥0

∫
T

eiN(x) y ψk(y) f(x− y) dy .

Take the canonical dyadic grid on T (time grid), denoted by DT , and the cor-
responding canonical dyadic grid on R (frequency grid), denoted by DF . A tile P
will consist of a pair9 [ω, I] ∈ DF × DT with the property that |ω| = |I|−1. The
collection of all such tiles will be denoted by P. Further, for each P = [ω, I] ∈ P
we set E(P ) := {x ∈ I |N(x) ∈ ω}.

For |I| = 2−k (k≥0) and P = [ω, I] ∈ P, we define the operator TP on L2(T) by

TP f(x) =
{∫

T

eiN(x) yψk(y)f(x− y)dy
}
χE(P )(x) .

Notice that the Carleson operator satisfies

(2.1) Tf(x) =
∑
P∈P

TP f(x) .

Finally, whenever P ⊆ P is a family of tiles we set

TP :=
∑
P∈P

TP .

3. The proof of Corollary 1.2

3.1. The proof of 1)

We want to show that, for 1 < p <∞,

(3.1) ‖Tf‖p �p ‖f‖p .

This is a trivial application of statement c) in Theorem 1.1. Indeed, we have

‖Tf‖p ≤
∑
n∈N

‖T Pn f‖p �p

∑
n∈N

2−δn(1−1/p∗) ‖f‖p � ‖f‖p .

9Here we abuse language and refer to DT also as the collection of all dyadic intervals for the
specified grid. We do the same for DF .
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3.2. The proof of 2)

We want to show that

(3.2) ‖Tf‖1 � ‖f‖L(logL)2 .

We will use the decomposition defined for each l ∈ Z by

Ql :=
{
x ∈ T | |f(x)| ∈ [2l, 2l+1)

}
.

Then we have that

(3.3) ‖f‖L(logL)2 ∼
∑
l∈Z

2l |Ql|
(
log

2

|Ql|
)2

.

Thus, using duality, to prove (3.2) it will be enough to show

(3.4)

∫
Ql

|T ∗g| � |Ql|
(
log

2

|Ql|
)2

‖g‖∞ .

Taking f = χQl
= χQ in the statements dual to a) and c) in Theorem 1.1 we

deduce∫
Q

|T Pn
∗
g| � |Q| log 2

|Q| ‖g‖∞ and

∫
Q

|T Pn
∗
g| � |Q|1/2 2−nδ/2 ‖g‖∞ .

Thus∫
Q

|T Pn
∗
g| �

∑
n

min
{
|Q| log 2

|Q| , |Q|1/2 2−n δ/2
}
‖g‖∞ � |Q|

(
log

2

|Q|
)2

‖g‖∞ .

3.3. The proof of 3)

To show

(3.5) ‖TχE‖1,∞ � |E| log 2

|E| ,

just apply d) with f = χE .

3.4. The proof of 4)

Of course, this result is implied by claims 5)–7). Still, we think it is worth providing
a different approach to this problem, one that isolates a relevant idea in Sjölin’s
original proof and adapts it to the context of Theorem 1.1.

Our task is to prove that

(3.6) ‖Tf‖1,∞ � ‖f‖L logL log logL

where here ‖ · ‖L logL log logL is defined according to (8.2) in the Appendix.
The definition that we take here for L logL log logL is as in the original paper

of Sjölin ([16]) given by the space of functions f ∈ L1(T) for which we have10

‖f‖L logL log logL =
∫ |f | log+ |f | log+ log+ |f | <∞ .

10Notice that unlike ‖f‖L logL log logL, ‖f‖L logL log logL is not a norm. However, we always
have ‖f‖L logL log logL ≈ ‖f‖L logL log logL.
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Thus, setting as before Ql := {x ∈ T : |f(x)| ≈ 2l}, we can always assume
Ql = ∅ for l ≤ 2 and consequently

‖f‖L logL log logL ≈
∑
l>2

2l l log l |Ql| .

Now fix l > 2. For χl = χQl
we apply11 the tile partition described in a) of

Theorem 1.1, taking into account that ‖χl‖∞ ≤ 1. Then for each n ∈ N there
exists a decomposition of

Pn =
⋃
α∈N

Pα
n

such that

(3.7) suppT P
α
n ⊆ 100

{
Mχl > 2−α

}
and ‖T P

α
n χl‖1 � 2−α

∣∣{Mχl > 2−α}∣∣ .
Partition the set N = Al ∪Bl ∪ Cl, where

Al :=
{
r ∈ N : 2−r < γ 2−l l−3

}
,

Bl :=
{
r ∈ N : γ 2−l l−3 ≤ 2−r < γ 2−l

}
,

Cl :=
{
r ∈ N : 2−r ≥ γ 2−l

}
,

with γ > 0 a parameter that will be chosen later. Set

T P
α

:=
∑
n∈N

T P
α
n .

Then, by (3.7), we have

(3.8) suppT P
α ⊆ 100

{
Mχl ≥ 2−α

}
,

which implies that

(3.9)
∑
α∈Cl

∣∣ suppT P
α∣∣ � ∑

α∈Cl

∣∣{Mχl ≥ 2−α
}∣∣ � ∑

α∈Cl

2α |Ql| � γ−1 2l |Ql| .

Thus the set Sl =
⋃

α∈Cl
suppT P

α

can be excised since we have good control on

∑
l∈Z

|Sl| � γ−1
∑
l∈Z

2l |Ql| � γ−1 ‖f‖L logL log logL .

Next, it is useful to notice that by (3.7) we have∥∥T P
α
n χl

∥∥
1
� 2−α

∣∣{Mχl ≥ 2−α
}∣∣ � min

{
2−α, |Ql|

}
,

while from d) in Theorem 1.1 we infer that∥∥T P
α
n χl

∥∥
2
� 2−n δ/2 |Ql|1/2 .

From these we deduce

(3.10)
∥∥T P

α

χl

∥∥
1
� α min

{
2−α, |Ql|

}
.

11We assume here that |Ql| �= 0.
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Then, from (3.10), we have that

(3.11)
∑
α∈Bl

∥∥T P
α

χl

∥∥
1
�

(
l + log

1

γ

)
log l |Ql| ,

and similarly,

(3.12)
∑
α∈Al

∥∥T P
α

χl

∥∥
1
�

∑
α∈Al

α 2−α � γ
(
1 + log

1

γ

)
2−l l−2 .

Combining (3.9), (3.11) and (3.12) and choosing γ = c ‖f‖2/3L logL log logL (with c > 0
some large number) we have proved the following:

Proposition 3.1. Let f ∈ L logL log logL with ‖f‖L logL log logL < 1. Then there

exists A ⊆ [0, 1] with |A| ≤ ‖f‖1/3L logL log logL and an absolute constant C > 0 such
that

(3.13)
∥∥Tf∥∥

L1(Ac)
≤ C

∥∥f∥∥1/2L logL log logL .

Now, by a canonical density argument, we obtain that the sequence of the par-
tial Fourier sums {Snf(x)}n converges almost everywhere for f ∈ L logL log logL.
The relation (3.6) follows from an application of Stein’s maximal principle ([19]).

3.5. The proof of 5)–8)

We will show that

(3.14)
∥∥Tf∥∥

1,∞ �p

∥∥f∥∥
QAp

.

We choose12 here to use the log-convexity result due to Kalton ([11]), as further
described in [2]:

Theorem (Kalton, [11]). If {fj}j≥1 is a sequence of functions in L1,∞(T), then

(3.15)
∥∥∥

∞∑
j=1

fj

∥∥∥
1,∞

�
∞∑
j=1

(
1 + log j

) ‖fj‖1∞ .

Take f ∈ W and set f =
∑∞

j=1 fj with fj as in (1.11). Apply now (3.15) and
point d) in Theorem 1.1 to conclude

‖Tf‖1,∞ �
∑
j

(
1 + log j

) ‖Tfj‖1∞ �p

∑
j

(
1 + log j

)‖fj‖1 log
2 ‖fj‖p
‖fj‖1 .

12One can use a different approach to show (3.14) that avoids the use of Kalton’s theorem on
the log convexity of ‖ · ‖1,∞. For this, one can follow the proof of 4).
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4. Finding structures in our family of tiles; main definitions

In this section we isolate the main concepts needed for further discretizing and
organizing the family P of tiles. Our presentation here is based on the definitions
and notations introduced in [14].

Definition 4.1 (weighting the tiles). Let A be a (finite) union of dyadic intervals
in [0, 1] and let P be a finite family of tiles. For P = [ω, I] ∈ P with I ⊆ A we
define the mass of P relative to the set of tiles P and the set A as

(4.1) AP,A(P ) := sup
P ′=[ω′,I′]∈ P

I⊆I′⊆A

|E(P ′)|
|I ′| �Δ(10P, 10P ′)�N ,

where N is a fixed large natural number.

Definition 4.2 (ordering the tiles). Let Pj = [ωj , Ij ] ∈ P with j ∈ {1, 2}. We say
that P1 ≤ P2 if I1 ⊆ I2 and ω1 ⊇ ω2. We write P1 < P2 if P1 ≤ P2 and |I1| < |I2|.

Notice that ≤ defines an order relation on the set P.

Definition 4.3 (modulated/scaled (maximal) Hilbert transform –“tree”). We say
that a set of tiles P ⊂ P is a tree with top P0 if the following conditions hold:

1) For all P ∈ P there holds 2P ≤ 10P0.

2) If P = [ω1, IP ] ∈ P and P ′ = [ω2, IP ] are such that 2P ′ ≤ P0, then P
′ ∈ P .

3) If P1, P2 ∈ P and P1 ≤ P ≤ P2, then P ∈ P .

Definition 4.4 (Carleson measure relative to a tree). We say that a set of tiles
P ⊂ P is a sparse tree if P is a tree and for any P ∈ P we have

(4.2)
∑
P ′∈P

IP ′⊆IP

|IP ′ | ≤ C |IP | ,

where here C > 0 is an absolute constant.

Definition 4.5 (L∞ control over union of trees). Fix n ∈ N. We say that P ⊆ Pn

is an L∞-forest (of the nth-generation) if

i) P is a collection of separated trees, i.e.,

P =
⋃
j∈N

Pj

with each Pj a tree with top Pj = [ωj , Ij ] and such that

(4.3) ∀ k �= j & ∀ P ∈ Pj 2P � 10Pk ;



1248 V. Lie

ii) the counting function

(4.4) NP(x) :=
∑
j

χIj (x)

obeys the estimate ‖NP‖L∞ � 2n.

Further, if P ⊆ Pn only consists of sparse separated trees then we refer to P
as a sparse L∞-forest.

Definition 4.6 (BMO control over union of trees). A set P ⊆ Pn is called a BMO-
forest (of the nth-generation), or simply a forest, if

i) P may be written as

P =
⋃
j∈N

Pj

with each Pj an L∞-forest (of the nth-generation);

ii) for any P ∈ Pj and P
′ ∈ Pk with j, k ∈ N, j < k we either have IP∩IP ′ = ∅ or

|IP ′ | ≤ 2j−k |IP | .

As before, if P ⊆ Pn only consists of sparse L∞-forest, then we refer to it as a
sparse forest.

Notice that if P ⊆ Pn is a forest then, by ii) above, the counting function
NP :=

∑
j NPj obeys the estimate

‖NP‖BMOC � 2n .

5. Discretization of the family of tiles

5.1. The mass decomposition: n discretization

In this section we partition the set P into
⋃

n∈N
Pn, with each Pn a BMO-forest.

The procedure described below is an adaptation of the one introduced by the
author in [14] for proving the Lp boundedness (1 < p < ∞) of the polynomial
Carleson operator.

We start by constructing the family P1 according to the following algorithm:

• Let P0,max
1 be the collection of maximal tiles P ∈ P with |E(P )|/|I| ≥ 1/2

and let I0
1 :=

{
I |P = [ω, I] ∈ P0,max

1

}
.

• Define the counting function N 0
1 :=

∑
I∈I0

1
χI and verify that

(5.1) ‖N 0
1 ‖BMOC

:= sup
Jdyadic
J⊆[0,1]

∑
I⊆J

I∈I0
1

|I|
|J | ≤ 2 .

and hence N 0
1 ∈ BMOD(R).



Carleson operator near L1 1249

• Apply the John–Nirenberg inequality

(5.2)
∣∣∣
{
x ∈ J :

∣∣∣N1(x)− 1

|J |
∫
J

N 0
1

∣∣∣ > γ
}∣∣∣ � |J | exp

(
−c γ

‖N 0
1 ‖BMOD(R)

)
.

for13 γ > c ‖N 0
1 ‖BMOC

(here c > 0 is an appropriately chosen large absolute
constant) and deduce that

(5.3)
∣∣∣
{
x ∈ J :

∑
I⊆J

I∈I0
1

χI(x) > γ
}∣∣∣ � |J | e−c .

• Based on (5.3), conclude that the set

A1
1 :=

{
x ∈ [0, 1] :

∑
I⊆[0,1]

I∈I0
1

χI(x) > c
∥∥N 0

1

∥∥
BMOC

}

obeys the relation |A1
1| ≤ e−c.

• Remove from P all the tiles for which the time interval is not included in
the set A1

1. Run the above algorithm again for the new collection P. This
process ends in a finite number of steps since without loss of generality we
may assume that the initial family P is finite.

This way, after the kth repetition of our algorithm, we have constructed the
sets Ak

1 , Pk,max
1 , Ik

1 and the counting function N k
1 .

We now define the 1-maximal set of tiles Pmax
1 :=

⋃
k Pk,max

1 , the collection of
the time intervals I1 :=

⋃
k Ik

1 and finally the counting function N1 :=
∑

I∈I1
χI .

Notice that from the above construction we have that

• ‖N1‖BMOC
� maxk ‖N k

1 ‖BMOC
;

• for any l < k we have Ak
1 ⊂ Al

1 and |Ak
1 | ≤ e−(k−l) c |Al

1| .
Next, define

P0
1 :=

{
P = [ω, I] ∈ P :

AP,[0,1](P ) ∈ [2−1, 20],

and if I ⊆ A1
1 then AP,A1

1
(P ) �∈ [2−1, 20]

}

and further, by induction, construct

Pk
1 :=

{
P = [ω, I] ∈ P :

I ⊆ Ak
1 , AP,Ak

1
(P ) ∈ [2−1, 20)

and if I ⊆ Ak+1
1 then A

P,Ak+1
1

(P ) �∈ [2−1, 20]

}
.

Finally, setting

P1 :=
⋃
k

Pk
1

we end the construction of the family of tiles having mass of order 1.

13Notice that ‖N 0
1 ‖BMOD(R) ≤ 2‖N 0

1 ‖BMOC
.
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Now suppose that we have constructed the sets {Pk}k<n. Here is how we
define the set Pn. First, select the family P0,max

n of maximal tiles P ∈ P with
|E(P )|/|IP | ≥ 2−n. Then, collect the time intervals of these maximal tiles into the
set I0

n and define the counting function

N 0
n :=

∑
I∈I0

n

χI .

Next use John–Nirenberg inequality to get that

A1
n :=

{
x ∈ [0, 1] :

∑
I∈I0

n

χI(x) > c ‖N 0
n‖BMOC

}

has measure less than 1/2 for an appropriate choice of c.

Proceeding as in the algorithm for the tiles of mass 1, we repeat the above
procedure and construct

• the collection of sets of maximal tiles {Pk,max
n }k;

• the collection of sets representing the time intervals {Ik
n}k;

• the collection of counting functions {N k
n}k;

• the level sets {Ak
n}k.

Notice the following key properties of our construction:

• Ak
n ⊂ Al

n and |Ak
n| ≤ 2−(k−l) |Al

n| for any k ≥ l;

• supk ‖N k
n‖BMOC ≤ 2n and supk ‖N k

n‖L∞(Ak
n\A

k+1
n ) � 2n ;

• if we set Nn :=
∑

k N k
n , then ‖Nn‖BMOC

� 2n .

Now for each k ∈ N set

(5.4) Pk
1 :=

{
P = [ω, I] :

I ⊆ Ak
n, AP,Ak

n
(P ) ∈ [2−n, 2−n+1) and

if I ⊆ Ak+1
n then A

P,Ak+1
n

(P ) �∈ [2−n, 2−n+1]

}
.

and let

(5.5) Pn :=
⋃
k≥0

Pk
n .

Conclude that

(5.6) P =
⋃
n≥0

Pn .

This ends the mass partition of our set P.

In [14], the author shows that each family Pn may be decomposed as a union of
Cn (C ∈ N some absolute constant) BMO-forests of the nth generation. While this
is not a problem if one aims for Lp bounds (1 < p <∞), when p = 1 this becomes
a serious issue. Still, by carefully inspecting the proof in [14], one can actually be
more precise: Pn may be decomposed in at most C sets

⋃n
l=1 Pn,l with {Pn,l}l a
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“special” sequence of BMO-forests such that: for each l ∈ N, applying the decom-
position in Definition 4.6, one can write Pn,l =

⋃
k P

k
n,l, with Pk

n,l an L∞-forest

having the L∞-norm of the counting function � 2l. This fact resolves the possi-
ble difficulty and thus, from now on, we will always suppose that Pn stands for a
BMO-forest of the nth generation.

5.2. The Calderón–Zygmund decomposition: α discretization

Unlike the mass decomposition, the Calderón–Zygmund decomposition presented
below depends on the environment, namely on the function to which we apply the
Carleson operator T .

Thus, once and for all, fix a nonzero function f ∈ L1. Now choose n ∈ N and
focus on the BMO-forest Pn. Our aim is to write

Pn =
⋃
α∈Z

Pα
n ,

with each Pα
n being “nicely” structured and, in particular, satisfying (1.5).

We start by decomposing the torus into the corresponding level sets of the
(dyadic) maximal function associated to f . First notice that without loss of gene-
rality we may assume that there exists N ∈ Z such that

2N < ‖Mf‖∞ ≤ 2N+1 .

On the other hand, since our function f ∈ L1(T) is nonzero,

2M+1 ≥
∫
T
|f |

|T| > 2M for some N ≥M ∈ Z.

Now let Jα be the collection of maximal dyadic intervals J such that∫
J
|f |

|J | > 2−α ,

and let J̄α :=
⋃

J∈Jα
J = {Mf > 2−α} . We then have that

• for all α ∈ Z such that α ≤ −(N + 1), we have J̄α = ∅ ;
• if −N ≤ α1 < α2 ≤ −M, then J̄α1 � J̄α2 ;

• for all α ∈ Z such that α ≥ −(M + 1), we have J̄α = J̄−M = T .

(5.7)

For decomposing our family Pn we follow now an (increasing) inductive process.
First set

(5.8) P−N
n :=

{
P ∈ Pn : ∃ J ∈ J−N such that IP ∩ 51 J �= ∅ & |IP | ≤ |J |} .

Suppose that we have constructed the set Pα−1
n . Then let

P̄α
n := Pn \

⋃
j≤α−1

Pj
n

and define

(5.9) Pα
n :=

{
P ∈ P̄α

n : ∃ J ∈ Jα such that IP ∩ 51 J �= ∅ & |IP | ≤ |J |} .
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By (5.7), the decomposition process will end in a finite number of steps since

• for all α ∈ Z such that α ≤ −(N + 1),we can set Pα
n = ∅;

• for all α ∈ Z such that α ≥ −(M + 1), we have Pα
n = ∅ .(5.10)

Thus, we obtain a partition

(5.11) Pn =
⋃
α∈Z

Pα
n

of the collection Pn such that

(5.12) suppPα
n :=

⋃
P∈Pα

n

IP ⊂ 100 {Mf > 2−α} .

We end this section with several important observations.

Observation. 1) This partition of Pn conserves the convexity property on which
the boundedness of the trees depends heavily. More precisely we have that

(5.13) if P1 < P2 < P3 such that P1, P3 ∈ Pα
n, then P2 ∈ Pα

n .

2) Notice that for any P ∈ Pα
n �= ∅ we have that

• either for all J ∈ Jα−1, IP ∩ 51 J = ∅ ,
• or if J ∈ Jα−1 is such that IP ∩ 51 J �= ∅, then |IP | > |J | .
3) For P = [ωP , IP ] ∈ Pα

n �= ∅, let c(IP ) be the center of the interval IP and
define

IP∗ =
[
c(IP )− 17

2 |IP |, c(IP )− 3
2 |IP |

] ∪ [
c(IP ) +

3
2 |IP |, c(IP ) + 17

2 |IP |
]
.

Then we have that

(5.14) suppTP ⊆ IP and suppT ∗
P ⊆ IP∗ .

Moreover, writing

IP∗ =

14⋃
r=1

IrP∗

with each IrP∗ a dyadic interval of length |IP |, we have the property

(5.15)

∫
Ir
P∗

|f |
|IP | < 2−α+10 .

4) Let P ∈ Pα
n be a tree. Define Pmin to be the collection of minimal tiles in P .

Furthermore, set

JP∗ :=
{
IrP∗ : P ∈ Pmin and r ∈ {1, . . . , 14}} ,

and let CZ(JP∗) be the Calderón–Zygmund decomposition of the interval [0, 1]
with respect to JP∗ .

Then, from (5.9) and (5.15) we deduce the following key property :

(5.16)

∫
I |f |
|I| < 2−α+10 ∀ I ∈ CZ(JP∗) .
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6. The proof of the Theorem 1.1

6.1. Proof of a)

With the notations and definitions previously introduced, our aim is to show that

(6.1) suppT P
α
n ⊆ 100 {Mf > 2−α} and ‖T P

α
n f‖1 � 2−α |{Mf > 2−α}| .

The first of the above conditions is an immediate consequence of the construction
of the tile families {Pα

n} .
For the second condition we need to analyze the structure of each Pα

n. Let P
α
n =⋃

j∈N
Pα,j
n be the decomposition of Pα

n into L∞-forests. Furthermore, for j ∈ N,

we decompose each L∞-forest Pα,j
n =

⋃
k Pα,n,j

k in maximal trees. Let IPα,n,j
k

be

the time interval of the top of the tree Pα,n,j
k and define I

P
α,j
n

:=
⋃

k IPα,n,j
k

and

IPα
n
:=

⋃
j IPα,j

n
respectively.

Now, as a consequence of the construction in Section 5, forNα,n
j :=

∑
k χI

P
α,n,j
k

and Nα,n =
∑

j Nα,n
j , we have

(6.2) ‖Nα,n
j ‖∞ � 2n ∀ j ∈ N and ‖Nα,n‖1 � 2n |IPα

n
| .

By (6.2), it is thus enough to prove that for P ⊂ Pα
n,

(6.3)

∫
|TPf | � 2−n 2−α |IP | .

Indeed, from (6.3) and (6.2) we deduce

(6.4)

∫
|T P

α
nf | � 2−n 2−α ‖Nα,n‖1 � 2−α |IPα

n
| � 2−α

∣∣{Mf > 2−α}∣∣ .
Now to show (6.3) we proceed as follows.
Without loss of generality we may assume that all the tiles P ∈ P are at a

constant frequency ω (the frequency of the tree).
Define

(6.5) LP(f) :=
∑

J∈CZ(JP∗ )

∫
J f(s) e

i ω s ds

|J | χJ .

Observe that as a consequence of (5.16) we have

(6.6) |LP(f)| � 2−α χIP .

Now letting P0 be the shift of P to the origin, we have∫
|TPf | ≤

∫ ∣∣TP0
(
ei ω ·f(·)− LP(f)(·)

)∣∣ +
∫ ∣∣TP0(LP (f)(·))

∣∣ .
For the first term we use the mean zero condition∫

IP∗

{
f(·) ei ω · − LP (f)(·)

}
= 0 ∀ P ∈ P ,
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and deduce that

(6.7)

∫ ∣∣TP0
(
ei ω ·f(·)− LP (f)(·)

)∣∣ � 2−n ‖f‖L1(IP) .

For the second term, we use the relation (6.6) and the L2-boundedness of the
Hilbert transform:

(6.8)

∫ ∣∣TP0(LP(f))
∣∣ � |E(P)|1/2 2−n/2 ‖LP(f)‖L2(IP) � 2−n 2−α |IP | ,

where we set E(P) :=
⋃

P∈P E(P ). Here we have used the key Carleson measure
estimate

(6.9) |E(P)| � 2−n |IP | .

Indeed, for proving (6.9), we follow the reasoning from [13] (page 481) and for

JP :=
{
IP : P ∈ Pmin

}
,

we set

J̌ (P) :=
{
I ⊂ IP : exactly one of the left or right halves

of I contains an element of JP
} ∪ JP .

and P̆ =
{
P = [ω, I] ∈ P : I ∈ J̌ (P)

}
. Then we have

|E(P)| ≤
∑
P∈P̆

|E(P )| � 2−n
∑

I∈J̌ (P)

|I| � 2−n |IP | .

This ends our proof. Notice that (6.1) implies

‖T Pn‖1 �
∑
α

‖T P
α
n f‖1 � ‖Mf‖1 � ‖f‖L logL .

6.2. Proof of b)

In this section we will show a slightly stronger statement than the one claimed in
Theorem 1.1. More precisely, we prove that the operators {T Pn}n are uniformly
weak (1, 1) bounded.

We claim that for all G ⊆ [0, 1] there exists G′ ⊆ G, |G′| > 1
2 |G|, such that14

(6.10)

∫
G′

|T Pn f | � ‖f‖1 ∀ n ∈ N .

14A similar statement for a rougher mass-discretized family Pn is proved in [8]. For this,
the authors use the mass-size decomposition technique presented in [12]. Then they interpolate
the resulting L1-estimate with a “modified” L2-estimate to get good control near L1. This
interpolation reasoning is also used in our approach.
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Fix G ⊂ T and define G′ by

G′ =
{
x ∈ G :Mf(x) ≤ C

‖f‖1
|G|

}
,

where here C > 0 is some large appropriately chosen constant. This guarantees
that G′ ⊂ G, with |G′| � |G|.

Set now λ = C ‖f‖1/|G|. It will be enough to prove the following:15

Lemma 6.1. Let k ∈ N and suppose 2−α ≈ λ 2−k. Then the following relation
holds:

(6.11)

∫
G′

|T P
α
n f | � 2−k/2 ‖f‖1 ∀ n ∈ N .

This result relies on the tree estimate provided below.

Lemma 6.2. Let P ⊂ Pα
n be a tree with top IP . Then we have

(6.12)

∫
G′

|TP f | � 2−α |G′ ∩E(P)|1/2 2−n/2 |IP |1/2.

Proof. Let CZ(JP∗) be the Calderón–Zygmund decomposition described in the
observation 4) of Section 5.2. As before, we can assume16 without loss of generality
that all the tiles P ∈ P are at a constant frequency ω = 0.

Now following the description from a) we have
∫
G′

|TPf | ≤
∫
G′

|TP(f − LP(f))| +
∫
G′

|TP(LP (f))| .

The second term is trivially bounded by the Cauchy–Schwarz inequality and
the L2 boundedness of the Hilbert transform:∫

G′
|TP(LP (f))| � |G′ ∩ E(P)|1/2 2−n/2 ‖LP(f)‖L2(IP )(6.13)

� 2−α |G′ ∩ E(P)|1/2 2−n/2 |IP |1/2.
For the first term we need to be more careful; we will show that for any g ∈

L∞(T) with supp g ⊆ G′ we have

(6.14)
∣∣∣
∫
(TP∗

g) (f − LP (f))
∣∣∣ � 2−α |G′ ∩ E(P)|1/2 2−n/2 |IP |1/2 ‖g‖∞.

At this point we make essential use of the mean zero property
∫
J

(
f − LP(f)

)
= 0 ∀ J ∈ CZ(JP∗) .

15For two positive quantities A and B we write A ≈ B if 2−10 B < A < 210 B.
16To put our problem in the context of this assumption we take advantage of the translation

invariance of our statement and use a standard estimate (see [9]) that gives an error of order
2−α |G′ ∩ E(P)|.
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Thus, for proving (6.14), it is enough to show that, for g = gχG′ ∈ L∞,

(6.15)

∫ ∣∣∣(TP∗
g−LP(T

P∗
g)) (f−LP(f))

∣∣∣ � 2−α |G′∩E(P)|1/2 2−n/2 |IP |1/2 ‖g‖∞.

For fixed J ∈ CZ(JP∗) and x ∈ J we have∣∣∣TP∗
g(x)− 1

|J |
∫
J

TP∗
g(s)ds

∣∣∣
=

∣∣∣ 1

|J |
∫
J

{ ∑
P∈P

|IP |≥|J|

∫
T

[
ϕk(x− y)− ϕk(s− y)

]
g(y)χE(P )(y)dy

}
ds
∣∣∣

� 1

|J |
∫
J

{ ∑
IP∗⊇J

|IP |−1 |J |
∫
E(P )∩G′ |g|

|IP |
}
ds .

Thus, we have proved
∣∣∣TP∗

g(x)− 1

|J |
∫
J

TP∗
g(s)ds

∣∣∣χJ � ‖g‖∞ χJ

|J |
∑

IP∗⊇J

|J |2
|IP |2 |G′ ∩E(P )| .(6.16)

This last relation gives us∫ ∣∣∣(TP∗
g−LP (T

P∗
g)
)
(f − LP (f))

∣∣∣
� 2−α 2−n/2 ‖g‖∞

∑
J∈CZ(JP∗ )

∑
IP∗⊇J

|J |1/2 (|J |/|IP |)3/2 ∣∣G′ ∩ E(P )
∣∣1/2

� 2−α
∣∣G′ ∩ E(P)

∣∣1/2 2−n/2 |IP |1/2 ‖g‖∞ ,

proving (6.12). Here we have relied on the following key relation:

(6.17)
∑
P∈P

∑
J∈CZ(JP∗ )

J⊆IP∗

( |J |
|IP |

)3/2 ∣∣J∣∣1/2 ∣∣G′ ∩ E(P )
∣∣1/2 �

∣∣G′ ∩ E(P)
∣∣1/2 ∣∣IP ∣∣1/2 .

To prove (6.17), take l ∈ N and set

CZ∗
l (IP ) :=

{
J ∈ CZ(JP∗)

∣∣ J ⊆ IP∗ , |J | ≈ 2−l |IP |
}
.

Now (6.17) will be a consequence of

(6.18) Sl :=
∑
P∈P

∑
J∈CZ∗

l (IP )

|J |1/2 |G′∩E(P )|1/2 �ε 2
l(1/2+ε) |G′∩E(P)|1/2 |IP |1/2 ,

where here ε ∈ (0, 1) is some absolute constant.
To prove (6.18), we start by refining the set P as follows: for u∈{0 . . . , l+100}, let

P l,u :=
{
P ∈ P : 2u−1 < #CZ∗

l (IP ) ≤ 2u
}
.

Fix u and define

Sl,u :=
∑

P∈Pl,u

∑
J∈CZ∗

l (IP )

|J |1/2 |G′ ∩ E(P )|1/2 .
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Next, we decompose the set P l,u inductively as follows: let P l,u
1 be the collection

of maximal (with respect to “ ≤ ”) tiles in P l,u; repeat this procedure for the

collection P l,u \ P l,u
1 and thus construct the set of maximal tiles P l,u

2 . Continue
this process until P l,u is exhausted. We finish with a partition

P l,u =

m⋃
r=1

P l,u
r ,

of collections of (successively) maximal tiles.
Applying now Cauchy–Schwarz we deduce that

(6.19) Sl,u ≤ ∣∣G′ ∩ E(P)
∣∣1/2 m∑

r=1

( ∑
P∈Pl,u

r

( ∑
J∈CZ∗

l (IP )

|J |1/2
)2)1/2

.

Finally, we observe that

(6.20)

m∑
r=1

( ∑
P∈Pl,u

r

( ∑
J∈CZ∗

l (IP )

|J |1/2
)2)1/2

� 2l/2
∣∣IP ∣∣1/2 .

This last fact is a consequence of the construction of the sets {P l,u
r }, the defi-

nition of CZ∗
l (IP ) and the fact that for any J ∈ CZ(JP∗) one has

#
{
P ∈ P : J ∈ CZ∗

l (IP )
}
� 1 .

Indeed, by the above mentioned facts, one has that the main contribution to
the left hand side of (6.20) comes from the first O(2l−u) terms of the sum. We
leave further details to the interested reader. �

We pass now to the proof of Lemma 6.1. With the notations from point a) and
by (6.12), for each L∞-forest Pα,j

n we decompose Pα,j
n =

⋃
k Pα,n,j

k into maximal
trees and deduce∫

G′
|T P

α,j
n f | �

∑
k∈N

∫
G′

|TPα,n,j
k f | � 2−α

∑
k∈N

∣∣G′ ∩ E(Pα,n,j
k )

∣∣1/2 2−n/2 |IPα,n,j
k

|1/2

≤ 2−α 2−n/2
{∑

k∈N

∣∣G′ ∩E(Pα,n,j
k )

∣∣}1/2 {∑
k∈N

|IPα,n,j
k

|
}1/2

� 2−α |G′ ∩ E(Pα,j
n )|1/2 |I

P
α,j
n

|1/2 .
From the Carleson measure condition imposed in Definition 4.6 ii), we have∫

G′
|T P

α
n f | �

∑
j

∫
G′

|T P
α,j
n f | � 2−α |G′|1/2

∑
j

|I
P
α,j
n

|1/2 � 2−α |G′|1/2 |IPα
n
|1/2 .

Finally, using that

(6.21) |IPα
n
| � |J̄α| ≈ 2α

∫
J̄α

|f | ,

and setting 2−α ≈ λ 2−k we conclude that (6.11) holds.



1258 V. Lie

6.3. Proof of c)

The central estimate for proving (1.9) is given by

(6.22) ‖T Pn f‖2 � n2 2−n/2 ‖f‖2 .

We limit ourselves to providing the main ideas. For the details of the proof
the reader should consult [14]. One first decomposes Pn =

⋃
Pj
n with each Pj

n an
L∞-forest, and then proves that

• ‖T P
j
n f‖2 � n 2−n/2 ‖f‖2 .

• for each k ∈ {0, . . . , n − 1} the sequence {T P
k+j n
n }j∈N comprises almost or-

thogonal operators and thus one can apply the Cotlar–Stein lemma.

This ensures that (6.22) holds. Now, for 1 < p ≤ 2, (1.9) is just a consequence
of (1.8), (6.22) and classical interpolation theory. For p > 2 we can proceed as in
the L2 case: one first proves the desired estimate for an L∞ forest and then using
the structure of the BMO-forest one is able to extend the initial result to the entire
family Pn (for more details see [14]).

6.4. Proof of d)

We will show17 that, for 1 < p <∞,

(6.23) ‖Tf‖1,∞ �p ‖f‖1 log
2 ‖f‖p
‖f‖1 .

As before, we start by reformulating (6.23) in the equivalent form: for all G ⊂ T
there exists G′ ⊂ G with |G′| � |G| such that

(6.24)

∫
G′

|Tf | �p ‖f‖1 log
2 ‖f‖p
‖f‖1 .

Repeat the construction as in a). Then, with the notations as in c), we have

(6.25)

∫
G′

|T Pnf | �p 2−δn(1−1/p∗) ‖f‖p .

Combining (1.8) and (6.25) we conclude that

∫
G′
|Tf | ≤

∑
n∈N

∫
G′
|T Pnf | �p

∑
n∈N

min
{‖f‖1, 2−δn(1−1/p∗)‖f‖p

}
�p ‖f‖1 log 2 ‖f‖p

‖f‖1 ,

proving the desired result.

17In [4], one can find (without proof) the following statement: for 1 ≤ p ≤ 2 we have that

‖Tf‖p,∞ � ‖f‖p log
2 ‖f‖2
‖f‖p . The unpublished proof ([3]) of this result, communicated to me by

Arias de Reyna, relies on Carleson’s original approach to the pointwise convergence of the Fourier
series. Finally, note that the case p = 1 in his result is equivalent with the case p = 2 in (6.23).
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7. Remarks

1) As mentioned in the introduction, the central part of our paper is the tile
decomposition described in Section 5.

The mass discretization of Tf is independent18 of f and results in the geometric
organization of P =

⋃
n Pn which gives us both the n-decay19 for each {‖T Pnf‖p}n

with 1 < p < ∞ (f ∈ Lp) and the ability to sum20 within each “scale” n the
lengths of the time support of the maximal trees in Pn.

The Calderón–Zygmund discretization Pn =
⋃

α Pα
n realizes the decomposition

of the function T Pnf depending on f and is designed to get good control near L1.
This discretization accounts for the multi-frequency nature of our problem. A sim-
ilar issue appeared in [15], where the authors describe a “Calderón–Zygmund de-
composition for multiple frequencies” for a given function f . Our approach though
is quite different: instead of decomposing the input object (the function f) at mul-
tiple frequencies imposing a mean zero condition on the initial function for each
frequency, we rely on the properties21 of the initial discretization P =

⋃
n Pn and

first decompose the tile family Pn into subfamilies {Pα
n}α followed by a further

decomposition of the corresponding output object T P
α
nf into multiple pieces, with

each piece having the mean zero condition strictly relative to the frequency at
which it lives.

In the setting of the present paper our procedure is more effective and unlike the
one in [15] gives an explicit construction. On the other hand, the decomposition
in [15] is more general and hence can be used in other problems which are not
necessarily related to the Carleson operator.

2) The treatment of the “forest” operators T Pn in Theorem 1.1 offers a sub-
stitute for the classical theory of Calderón–Zygmund operators. Indeed, following
the tile decomposition and the proofs of a) and b) one notices that the weak (1, 1)
bound is obtained by using a Vitali type covering argument, in which we can sum
the lengths of the intervals of the trees in the structure of T Pnf depending on
the size of the maximal function associated to f . Also, as in the classical theory,
once we apply our tile decomposition, the entire difficulty resides in providing L2

bounds on T Pn. For this last task, one needs to use orthogonality methods. To
complete the parallelism, it would be of interest if our methods could provide a
satisfactory theory for the adjoint operator T Pn

∗
near L1. We think this topic

deserves further investigation.

3) Finally, in view of our approach, the following question appears to be natural:

Open question. Fix f ∈ L1(T). With the previous notations and definitions, set

Pα :=
⋃
n

Pα
n , with α ∈ N .

18The mass parameter depends on the function N which may be taken as just an arbitrary
measurable function as long as the final estimates on the operator T do not depend on it.

19This helps us in both summing the operators {T Pn}n (and thus obtaining Lp bounds for
1 < p < ∞) and in interpolating with norm estimates near L1.

20Here is the point where our technique overcomes the difficulty of treating exceptional sets.
21Here the algorithm described for the mass decomposition plays a fundamental role.
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Is it then true that there exists an absolute constant C > 0 such that, for any α ∈ N,

(7.1) ‖T P
α

f‖1 ≤ C‖f‖1 ?
A positive answer to this question would imply that

(7.2) ‖Tf‖L1 � ‖f‖L logL ,

which is the best one can hope for if we require strong L1 bounds for the Carleson
operator T .

Of course it would be still very interesting if (7.1) holds with the L1 norm
replaced by the L1,∞ norm on the left-hand side. With the current technology we
can only prove that

‖T P
α

f‖1 ≤ C‖f‖L logL .

8. Appendix. Spaces near L1

In this section we briefly introduce the definitions of the relevant rearrangement
invariant Banach spaces which appeared in the previous literature when studying
the problem of the pointwise convergence of Fourier series near L1.

Definition 8.1. Let ϕ : [0,∞) �→ [0,∞) be an absolutely continuous function
with the following properties:

• there is C > 0 such that ϕ(t2) ≤ C ϕ(t) for all t ≥ 0;

• ϕ′(t) ≥ 0 almost everywhere;

• ϕ(0) = 0;

• limt→∞ ϕ(t) = ∞.

Then Lϕ(L) is the space of all (measurable) functions f for which

(8.1) ‖f‖Lϕ(L) :=

∫
T

|f | |ϕ(f)| <∞ .

A classical result in Banach space theory (see e.g. [5]) asserts:

Proposition. The space Lϕ(L) endowed with the norm22

(8.2) ‖f‖Lϕ(L) :=

∫
T

f∗(t)ϕ(1/t) dt <∞ ,

becomes a rearrangement-invariant Banach space.

In the topic treated in this paper three special choices for the function ϕ are of
interest:

• ϕ(t) = log(1 + t) defines the Zygmund space L logL;

22Here f∗ stands for the decreasing rearrangement of f .
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• ϕ(t) = log(1+ t) log log(10+ t) defines the space L logL log logL considered
by Sjölin in [16].

• ϕ(t) = log(1 + t) log log log(10 + t) defines the space L logL log log logL
considered by Antonov in [1].

To complete the picture, we need to consider two more spaces.
The first space was considered by F. Soria in [17]. Let Bϕ be the set of the

measurable functions for which

‖f‖ϕ :=

∫ ∞

0

ϕ(λf (t)) dt <∞ ,

where λf is the distribution function of f given by λf (t) = |{x ∈ T
∣∣ |f(x)| > t}|.

Take now the subspace B∗
ϕ ⊂ Bϕ defined by

B∗
ϕ :=

{
f : ‖f‖∗ϕ <∞}

where

‖f‖∗ϕ =

∫ ∞

0

ϕ
(
λf (t)

)(
1 + log

( ‖f‖ϕ
ϕ(λf (t))

))
dt.

The pointwise convergence theory developed by Soria applied to the space B∗
ϕ1

with ϕ1(s) = s(1 + log+ 1/s).

The second space was introduced by Arias de Reyna in [2]. Let QA be the
quasi-Banach space defined as follows:

QA :=
{
f : T �→ C | f measurable, ‖f‖QA <∞}

where

‖f‖QA := inf
{ ∞∑

j=1

(1 + log j)‖fj‖1 log
2 ‖fj‖∞
‖fj‖1

∣∣∣ f =
∞∑
j=1

fj ,
∞∑
j=1

|fj| <∞ a.e.
}
.

With the exception of Zygmund’s L logL space, it is known ([16], [1], [17]
and [2]) that all the other spaces considered here, namely L logL log logL, L logL
log log logL, B∗

ϕ1
and QA are rearrangement invariant spaces of functions with

almost everywhere convergent Fourier series.
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