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Commutators, paraproducts and BMO in
non-homogeneous martingale settings

Sergei Treil

Abstract. In this paper we investigate the relations between (martin-
gale) BMO spaces, paraproducts and commutators in non-homogeneous
martingale settings. Some new, and one might add unexpected, results
are obtained. Some alternative proof of known results are also presented.
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Notation

X : real line R or its subinterval.

L : lattice of intervals in X.

1
I
: characteristic function of the set I.

〈f〉
I
: average value of the function f on I,

〈f〉
I
=

 
I

f(x) dx := |I|−1

ˆ
I

f(x) dx.

E
I
: averaging operator, E

I
f := 〈f〉

I
1
I
.

Δ
I
: martingale difference operator, Δ

I
=

(∑
J∈child(I) EJ

) − E
I
; here child(I)

denotes the collection of the “children” of I.

1. Introduction and main objects

This paper was started in an attempt to understand the relations between (martin-
gale) commutators, paraproducts and space BMO. The initial hope was to cover
both the one-parameter and multi-parameter cases, but it became clear at an early
stage that in the general, non-homogeneous case, even the one-parameter situation
is far from well understood.

While the results aboutH1-BMO duality for general martingales are well known
and can be considered classical, paraproducts and commutators have mostly been
studied for regular r-adic martingales.

In this paper several new, and one might add unexpected, results are obtained
for the non-homogeneous situation. Let me list some of them here; for the defini-
tions and exact statements the reader should see the sections that follow.

• Despite what one might expect, the condition b ∈ BMO is not necessary (al-
though it is, of course, sufficient) for the boundedness of the paraproduct πb

in Lp. This means, in particular, that unlike the homogeneous case it is
impossible to characterize b ∈ BMO via boundedness of commutators of the
multiplication operator Mb and martingale multipliers.

The condition b ∈ BMO however is necessary and sufficient for the bound-

edness of the so-called extended paraproduct π
(∗)
b .

• The necessary and sufficient condition for the Lp boundedness of the para-
product is, as one might expect, that it is enough to check the boundedness
on the characteristic functions of intervals. This statement is well known
and now almost trivial for p = 2; the result for p �= 2 is new and its proof is
rather complicated.
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Note that this condition depends on p, unlike the condition b ∈ BMO, which

guarantees the boundedness of π
(∗)
b in all Lp, p ∈ (1,∞).

• The condition b ∈ BMO is, as one might expect, sufficient for the Lp bound-
edness (p ∈ (1,∞)) of the commutator [Mb, T ] = MbT −TMb of the multipli-
cation operator Mb and a bounded martingale transform T . This condition
(up to some technical details) is also necessary for the boundedness of the
commutator, provided that the martingale transform T satisfies some “mix-
ing property”.

This result generalizes the classical result of S. Janson [8], which gives the
description of BMO via commutators in the case of regular r-adic martin-
gales. The “mixing properties” that the martingale transform should satisfy
generalize (and in the case of a regular r-adic lattice coincide with) the notion
of the non-degenerate martingale transform, considered in [8].

The “mixing condition” introduced in this paper is necessarily more compli-
cated than the non-degeneracy condition in [8]. This is mainly due to the
fact that it includes a condition that was “hidden” (trivially satisfied) in the
homogeneous case. An example, demonstrating that this “hidden” condition
is essential is presented in the paper.

• It is shown in this paper that in the general non-homogeneous case the mar-
tingale difference spaces D

I
= Δ

I
Lp do not constitute a so-called strong un-

conditional basis in Lp, p �= 2 (more precisely, in the martingale Hardy
space Hp, which is, in general for p ∈ (1,∞) a subspace of Lp with an equiv-
alent metric). Essentially this means that it is impossible to define an equiv-
alent norm in Hp using only the norms of the martingale differences ‖ΔIf‖p.
An equivalent statement is that, unlike the case p = 2, for each p �= 2 one
can construct a martingale transform (essentially a block diagonal operator,
see the definition in the subsections that follow) with blocks T

I
uniformly

bounded in Lp, which is not bounded in Lp.

A few words about general setup used in the paper. We do not work here in the
setting of martingale spaces, because we want to include the situation with infinite
measure, such as the standard dyadic lattice in Rn. While getting results in the
case of infinite measure from the corresponding result in the martingale case (the
finite measure case) is usually pretty easy, there are some delicate situations, when
one has to be careful stating the result. (Of course, usually after the results are
stated, they are quite easy to prove, but stating the results requires some care).

For example, while this is well known to specialists, it might be a surprise to a
reader only casually acquainted with martingale Hardy spaces and BMO, that for
the standard dyadic lattice in R (and in Rn) one can find a function b in dyadic
BMO such that the martingale difference decomposition

∑
I∈D Δ

I
b diverges a.e.

I haven’t seen this mentioned anywhere in the literature, probably everyone has
had to notice this fact for him or herself.

So, in this paper we work on the real line R, and our σ-algebras are generated
by disjoint intervals. While practically everything can be stated and proved in the
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setting of arbitrary measure space, we want to avoid non-essential technical details
and concentrate on the main ideas. For example, at some point we will be using
the Fefferman–Stein maximal theorem, which is stated and proved for Rn but not
for an arbitrary measure space.

The setting of the real line covers the example of principal interest: the case
of Rn with the standard dyadic lattice and with an arbitrary Radon measure μ,
where the averages are taken with respect to μ. Such a situation is typical in
non-homogeneous harmonic analysis, see for example [10], [13] and [12].

1.1. Lattices, expectations and martingale differences

Let X be either the real line R or its subinterval (finite or infinite)0. A lattice L
is a collection of nontrivial finite (bounded) intervals of X (say, for definiteness, of
the form [a, b)) with the following properties:

(i) L is a union of generations Lk, k ∈ Z, where each generation is a collection
of disjoint intervals, covering X.

(ii) For each k ∈ Z, the covering Lk+1 is a finite refinement of the covering Lk,
i.e., each interval I ∈ Lk is a finite union of disjoint intervals J ∈ Lk+1. We
allow the situation where there is only one such interval J (i.e., J = I); this
means that I ∈ Lk also belongs to the generation Lk+1.

(iii)
⋂

k∈Z Lk = ∅, i.e., no interval I belongs to all generations Lk.

Remark. We allow situations where I ∈ Lk for all k ≥ N or for all k < N for
some N ∈ Z, but the case when I ∈ Lk for all k ∈ Z is forbidden, because in the
latter case nothing interesting happens on the interval I, as it does not interact
with the rest of the space.

Example. The main example we have in mind is the following one. Consider the
space Rd with a Radon measure μ and the standard dyadic lattice. Let us represent
cubes Qk = Q1

k = [0, 2k)d by the intervals I1k = [0, μ(Qk)) ⊂ R. For each cube Q1
k

we pick some ordering of its children (dyadic subcubes of Q1
k with side 2k−1) with

Q1
k−1 = [0, 2k−1)d being the first, and split I1k into a disjoint union of intervals

Ijk−1, of the form [a, b), |Ijk−1| = μ(Qj
k−1), with the ordering of the intervals Ijk−1

given by the ordering of Qj
k−1.

Then we the order children of Qj
k, j �= 1, and represent them as subintervals

of Ijk, then order their children, and so on.
We have represented the standard dyadic lattice in the first “octant” [0,∞)d

of Rd with the measure μ by our lattice (with X = [0, μ([0,∞)d)), so the measure
of each dyadic cube equals the length of the corresponding interval. Note that
the dyadic cubes Q, μ(Q) = 0, are ignored, as the corresponding intervals are
empty sets.

If the measure μ is finite, we can represent the dyadic lattice in all of Rd as our
lattice: in general, we can only put 2 “octants” on the line, but the dyadic lattice
on the whole space can be represented as a finite disjoint union of our lattices.
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1.1.1. More definitions. For an interval I ∈ L, let rk(I) be the rank of the
interval I, i.e., the largest number k such that Lk 
 I. If no such number exists,
i.e., if I ∈ Lk for all k ≥ N , we say that rk(I) = ∞.

For an interval I ∈ L, rk(I) = k < ∞, a child of I is an interval J ∈ Lk+1 such
that J ⊂ I (note that in this case an interval always has more than one child).
If rk(I) = ∞ we consider I to be its own (and only) child. The collection of all
children of an interval I is denoted by child(I).

We say that a lattice L is homogeneous if there exists K < ∞ such that
|I|/|J | ≤ K for all I ∈ L, J ∈ child(I).

Most of the results of this paper are well known for homogeneous lattices; the
non-homogeneous case is the interesting one here.

1.1.2. Conditional expectations and martingale differences. For an inter-
val I ∈ L, let E

I
be the averaging operator,

E
I
f :=

(
|I|−1

ˆ
I

f(x)dx
)
1
I
=: 〈f〉

I
1
I
,

and let Ek be the “conditional expectation”,

Ekf =
∑
I∈Lk

E
I
f.

Consider the martingale differences Δ
I
and Δk:

Δ
I
=

( ∑
J∈child(I)

E
J

)
− E

I
, Δk = Ek − Ek−1 =

∑
I∈L:rk(I)=k−1

Δ
I

(note that we cannot write Δk =
∑

I∈Lk−1
Δ

I
here).

Let Ak be the σ-algebra generated by Lk (i.e., countable unions of intervals
in Lk). Let A∞ be the smallest σ-algebra containing all Ak, k ∈ Z, and let A−∞
be the largest σ-algebra contained in all Ak, A−∞ = ∩k∈ZAk.

The structure of the σ-algebras A∞ and A−∞ is easy to understand. Thus,
A−∞ is the σ-algebra generated by all the intervals I of form

(1.1) I =
⋃
k∈Z

Ik, where Ik ∈ Lk, Ik ⊂ Ik−1.

Note that X is a disjoint union of such intervals I and at most countably many
points (we might need to add left endpoints to the intervals I, if they happen to
be open intervals). It is possible that there is only one such I, I = X, in which
case the σ-algebra A−∞ is trivial.

Let us denote the collection of the intervals I of form (1.1) by A0
−∞. Define

(1.2) A0,fin
−∞ :=

{
I ∈ A0

−∞ : |I| < ∞}
;

here “fin” is included in the notation to remind that the set consists of intervals
of finite measure.

For example, in the case of the standard dyadic lattice in R, we have that
A0−∞ = {[0,∞), (−∞, 0)} and so A0,fin

−∞ = ∅.
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Instead of describing A∞, let us describe the corresponding measurable func-
tions. Namely, a function f is A∞-measurable if it is Borel measurable and it is
constant on intervals

I =
⋂
k∈Z

Ik, where Ik ∈ Lk, Ik ⊂ Ik−1.

Clearly, such intervals I do not intersect, so there can only be countably many of
them. Note, that if we assume that, for every x ∈ X,

lim
k→+∞

|Ik(x)| = 0,(1.3)

where Ik(x) is the unique interval in Lk containing x, then A∞ is the Borel
σ-algebra.

1.2. Martingale difference decomposition of Lp spaces

In this paper we always assume that all functions are A∞-measurable.
One can easily see that∑

I∈L
m≤rk(I)<n

Δ
I
=

∑
m<k≤n

Δk = En − Em.

Note that, for any f ∈ Lp (as mentioned above, we assume here that all the
functions are A∞-measurable),

Enf → f as n → +∞,

where the convergence is a.e. (for p ∈ [1,∞]), and in the Lp norm for p ∈ [1,∞).
To compute the limit Emf as m → −∞, we notice that for a bounded com-

pactly supported f we can estimate |E
I
f | ≤ C/|I|, so if |In| → ∞ as n → ∞, then

for such functions and for p ∈ (1,∞]

lim
n→∞ ‖E

In
f‖p = 0.

Since bounded compactly supported functions are dense in Lp, p ∈ [1,∞), and
the operators En are contractions in Lp, we get, by applying the ε/3 Theorem,
that for f ∈ Lp, p < ∞,

E−nf →
∑

I∈A0,fin
−∞

E
I
f as n → ∞,

where the convergence is in Lp for p ∈ (1,∞) and in a weaker sense (say L1

convergence on compacts) for p = 1.
Therefore any function f ∈ Lp, p ∈ (1,∞) can be represented as an Lp conver-

gent series

f =
∑
I∈L

Δ
I
f +

∑
I∈A0,fin

−∞

E
I
f =

∑
k∈Z

Δkf +
∑

I∈A0,fin
−∞

E
I
f =

∑
k∈Z

Δkf +Δ−∞f ;(1.4)

we use the notation Δ−∞ = E−∞ :=
∑

I∈A0,fin
−∞

E
I
here.
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We have shown the convergence of the partial sums
∑n

m, but in fact the con-
vergence of the series is unconditional (independent of the ordering).

1.3. Martingale Hardy spaces

Everything in this subsection is well known. We present it only for the convenience
of the reader.

Let us recall the classical result of D. Burkholder, which in our notation can
be stated as follows.

Theorem 1.1 (D. Burkholder). Let f and g be two locally integrable functions
on X such that, a.e. on X,

|Δ
I
f | ≤ |Δ

I
g| ∀I ∈ L, and |E

I
f | ≤ |E

I
g| ∀I ∈ A0,fin

−∞ .

Then
‖f‖p ≤ (p∗ − 1)‖g‖p ,

where p∗ = max{p, p′}, 1/p+ 1/p′ = 1.

In [2] this theorem was proved for arbitrary discrete time martingales, which
immediately gives the above theorem in the special case where |X| = 1 an Ak = {X}
for k ≤ 0. The general statement can be obtained from this special case by easy
and standard reasoning, which we skip.

Burkholder’s theorem implies that, for |αk| = 1,

1

C
‖f‖p ≤

∥∥∥ ∑
k∈Z∪{−∞}

αkΔkf
∥∥∥
p
≤ C ‖f‖p,

where C = p∗ − 1.
Taking for the αk independent Bernoulli random variables taking values ±1

with probability 1/2, and taking expectations one gets

1

Cp
‖f‖pp ≤

ˆ
Ω

ˆ
X

∣∣∣ ∑
k∈Z∪{−∞}

αk(ω)Δkf(x)
∣∣∣ pdx dP (ω) ≤ Cp ‖f‖p.

Changing the order of integration, and noticing that, by the Khinchine inequality
for any sequence of xk ∈ C, the averages(ˆ

Ω

∣∣∣∑
k

αk(ω)xk

∣∣∣ pdP (ω)
)1/p

and (ˆ
Ω

∣∣∣∑
k

αk(ω)xk

∣∣∣ 2dP (ω)
)1/2

=
(∑

k

|xk|2
)1/2

are equivalent with constants depending only on p, we can see that the quan-
tity ‖S̃f‖p, where S̃f is the so-called extended square function,

(1.5) S̃f(x) =
( ∑
k∈Z∪{−∞}

|Δkf(x)|2
)1/2

,
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defines an equivalent norm in Lp (recall that we assume that all functions are A∞
measurable).

In particular, this implies that for f ∈ Lp the sum in (1.4) converges uncon-
ditionally (independently of the ordering) in Lp. Note that if for a formal sum f

of form (1.4) we have S̃f ∈ Lp, then the series converges unconditionally in Lp,

so Lp, p ∈ (1,∞), is isomorphic to the set of formal series (1.4) with S̃f ∈ Lp.
Let us also introduce the classical square function S, where we do not add the

term |Δ−∞f |2,

(1.6) Sf(x) =
(∑
k∈Z

|Δkf(x)|2
)1/2

.

The situation for p = 1 is more interesting. Recall the classical result of Burges
Davis [4] comparing the maximal function with the square function. Let us recall
that the maximal function M = ML is defined by

Mf(x) := sup
I∈L:x∈I

|E
I
f | = sup

k∈Z
|Ekf(x)|

Theorem 1.2 (B. Davis, 1970). Let M = ML be the maximal function defined

above, and let S̃(f) be the extended square function defined by (1.5). Then

1

C
‖Mf‖1 ≤ ‖S̃f‖1 ≤ C ‖Mf‖1,

where C is an absolute constant.

Remark. The theorem in [4] was proved for general discrete time martingales,
and in our case it can be applied directly to the situation where |X| = 1, Ak = {X}
for k ≤ 0, and EXf = 0. However, the general case can be easily obtained from
this by standard reasoning, which we omit here.

Note that by the Lebesgue differentiation theorem, ‖f‖1 ≤ ‖Mf‖1. Therefore,
if ‖Sfn‖1 → 0, then ‖fn‖1 → 0, so if Sf ∈ L1, then the martingale difference
decomposition (1.4) converges unconditionally in L1.

Definition. The martingale extended Hardy space H̃1 is the set of all functions
f ∈ L1 such that S̃f ∈ L1 (equivalently, Mf ∈ L1), equipped with the norm

‖f‖
˜H1

= ‖S̃f‖1.
The Hardy space H1 consists of all the functions in H̃1 such that E

I
f = 0 for

all I ∈ A0,fin
−∞ (with the norm given by ‖Sf‖1). Note that ‖Mf‖1 also gives an

equivalent norm on H1.

Remark. For p ∈ (1,∞) the extended martingale Hardy space H̃p is also defined

as the space of all locally integrable functions f such that S̃f ∈ Lp, with the norm
‖f‖

˜Hp = ‖Sf‖p. While, as we discussed above, for p ∈ (1,∞) the space H̃p is

isomorphic to Lp, we will use the notation H̃p as well (for example, to emphasize
that we are using a different norm).

Finally, the spacesHp are defined as the subspaces of H̃p comprising functions f
such that E

I
f = 0 for all I ∈ A0,fin

−∞ .
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1.4. Martingale transforms and martingale multipliers

Let D
I
:= Δ

I
L2. A martingale transform is a linear transformation T

T
(∑
I∈L

Δ
I
f
)
=

∑
I∈L

T
I
(Δ

I
f),

where each T
I
is a linear transformation acting on the (finite-dimensional) spaceD

I
.

We also assume that TE
I
f = 0 for all I ∈ A0,fin

−∞ .
Such operators are well defined for finite sums; for now we will not assume the

boundedness of T .
If all the operators T

I
are multiples of the identity, the corresponding martin-

gale transform is called a martingale multiplier.

1.5. Paraproducts

For a function b let us consider the multiplication operator Mb, Mbf = bf . We do
not assume here that Mb is bounded in L2 (i.e., that b ∈ L∞). For our purposes,
it is enough to assume that b ∈ L1

loc, so that 〈Mbf, g〉 is well defined for f and g
with finite martingale decompositions, i.e., for finite sums

(1.7) f =
∑
I∈L

Δ
I
f +

∑
I∈A0,fin

−∞

E
I
f, g =

∑
I∈L

Δ
I
g +

∑
I∈A0,fin

−∞

E
I
g.

1.5.1. The “infinite measure” case. Let us first consider the situation where
A0,fin

−∞ = ∅. In this case, as was discussed above, the space L2 is decomposed as
the orthogonal sum of subspaces D

I
, I ∈ L.

Consider the decomposition

Mbf =
∑
I∈L

∑
J∈L

Δ
I
MbΔJ

f

of the operator Mb in this orthogonal basis. This sum can be split into 3 parts:
over I � J , J � I and I = J , respectively.

The first sum is called the paraproduct and is denoted by πbf ; the corresponding
operator πb is also called the paraproduct. Since, for I � J ,

Δ
I

(
bΔ

J
f
)
= (Δ

I
b)(Δ

J
f),

we can write

(1.8) πbf =
∑

I,J∈L:I�J

Δ
I
(bΔ

J
f) =

∑
I,J∈L:I�J

(Δ
I
b)(Δ

J
f) =

∑
I∈L

(Δ
I
b)(E

I
f);

the last equality follows from the fact that, for fixed I ∈ L,∑
J∈L:I�J

(Δ
J
f)1

I
= E

I
f.
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The second sum (over J � I) is π∗
bf , where π∗

b is the dual of πb with respect
to the standard linear duality 〈f, g〉 = ´

fg. This can be seen easily from the fact
that 〈E

I
f, g〉 = 〈f,E

I
g〉 and so 〈Δ

I
f, g〉 = 〈f,Δ

I
g〉.

The third sum (over I = J) is the “diagonal” term denoted by Λbf . It is easy
to see that

Λbf =
∑
I∈L

Δ
I
(bΔ

I
f) .

This diagonal term commutes with all martingale multipliers, so it can be ignored
when one studies commutators of Mb with martingale multipliers.

In the situation when all intervals I ∈ L have at most 2 children, any martingale
transform is a multiplier, so in this case it is enough to consider the decomposition
of Mb as

(1.9) Mb = πb + π∗
b + Λb ,

where we can ignore the term Λb when studying commutators with martingale
transforms.

In the general situation, we can only ignore a term that is a martingale mul-
tiplier, so a different decomposition is needed. To present this decomposition we
need the following lemma, which gives us a formula for π∗

b .

Lemma 1.3. The ( formal ) dual π∗
b of πb with respect to the standard linear duality

is given by

π∗
bf =

∑
I∈L

E
I

(
(Δ

I
b)(Δ

I
f)
)
=

∑
I∈L

E
I

(
(b− E

I
b)(Δ

I
f)
)
=

∑
I∈L

E
I

(
b(Δ

I
f)
)
.

The word “formal” here means that the equality 〈πbf, g〉 = 〈f, π∗
b g〉 holds for all

finite sums f =
∑

I∈L Δ
I
f , g =

∑
I∈L Δ

I
g.

Proof. It is easy to see that 〈E
I
f, g〉 = 〈f,E

I
g〉, and so 〈Δ

I
f, g〉 = 〈f,Δ

I
g〉. Using

these identities and the fact that (Δ
I
b)(E

I
f) = Δ

I
(bE

I
f), we get

〈πbf, g〉 =
∑
I∈L

〈
Δ

I
(bE

I
f), g

〉
=

∑
I∈L

〈
bE

I
f,Δ

I
g
〉

=
∑
I∈L

〈
E
I
f, bΔ

I
g
〉
=

∑
I∈L

〈
f,E

I
(bΔ

I
g)
〉
.

To complete the proof it remains to show that

E
I
(bΔ

I
g) = E

I

(
(b− E

I
b)(Δ

I
g)
)
= E

I

(
(Δ

I
b)(Δ

I
g)
)
,

which we leave as an exercise for the reader. �

To give an alternative (to (1.9)) decomposition of Mb let us notice that

Δ
I

(
bΔ

I
f
)
= Δ

I

(
(b − E

I
b)Δ

I
f
)
+ (E

I
b)Δ

I
f = Δ

I

(
(Δ

I
b)Δ

I
f
)
+ (E

I
b)Δ

I
f.
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Therefore, we can decompose Λb = Λ1
b + Λ0

b , where

Λ1
bf =

∑
I∈L

Δ
I

[
(Δ

I
b)(Δ

I
f)
]
,(1.10)

Λ0
bf =

∑
I∈L

(E
I
b)(Δ

I
f).(1.11)

Note, that Λ0
b is a martingale multiplier, so it commutes with all martingale trans-

forms.
Defining

(1.12) π
(∗)
b := π∗

b + Λ1
b ,

we can decompose the multiplication operator Mb, Mbf := bf as

(1.13) Mb = πb + π
(∗)
b + Λ0

b .

Lemma 1.4.

(1.14) π
(∗)
b f =

∑
I∈L

(Δ
I
b)(Δ

I
f).

Proof. Notice that

(Δ
I
b)(Δ

I
f) = E

I

(
(Δ

I
b)(Δ

I
f)
)
+Δ

I

(
(Δ

I
b)(Δ

I
f)
)
.

Taking the sum over all I ∈ L we get π∗
bf + Λ1

bf on the right side, which proves
the lemma. �

There is an alternative, probably a more natural way, to get the decomposi-
tion (1.13). Namely, let us consider the product bf , which can be written as∑

I,J∈L
(Δ

I
b)(Δ

J
f)

(let us not worry about convergence here and assume that the sums in the mar-
tingale difference decompositions of f and b are finite).

Let us split the above sum into 3 parts, over the sets I � J , J � I and I = J
respectively.

The first sum gives us the paraproduct πbf :

(1.15)
∑

I,J∈L:I�J

(Δ
I
b)(Δ

J
f) =

∑
I∈L

(Δ
I
b)(E

I
f) =: πbf ;

see (1.8).
The second sum (over J � I) can be written as πfb, so, using (1.8) with f

and b interchanged and recalling the definition of Λ0
b , see (1.11), we get∑

I,J∈L:J�I

(Δ
I
b)(Δ

J
f) =

∑
J∈L

(E
J
b)(Δ

J
f) =: Λ0

bf.
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Finally, the last sum gives us (see (1.14))∑
I∈L

(Δ
I
b)(Δ

I
f) =: π

(∗)
b f.

Remark. Note, that if L is the standard dyadic lattice, then EI((ΔIb)(ΔIf)) =

(ΔIb)(ΔIf)), so π
(∗)
b = π∗

b . This fact was used, for example, in [1].

1.5.2. Paraproducts in the general case. Let us now consider the general
case, where A0,fin

−∞ �= ∅. Consider the decompositions

f =
∑
I∈L

Δ
I
f +

∑
I∈A0,fin

−∞

E
I
f, g =

∑
I∈L

Δ
I
g +

∑
I∈A0,fin

−∞

E
I
g,

and let us decompose 〈bf, g〉. For a fixed I ∈ L( ∑
J∈L:J�I

Δ
J
f +

∑
J∈A0,fin

−∞ :J⊃I

E
J
f
)
1
I
= E

I
f

(note that the second sum on the left-hand side has at most one term). Therefore,〈
b
( ∑
J∈L:J�I

Δ
J
f +

∑
J∈A0,fin

−∞ :J⊃I

E
J
f
)
,Δ

I
g
〉
=

〈
(Δ

I
b)E

I
f,Δ

I
g
〉
= 〈πbf,ΔI

g〉,

where, as above,

(1.16) πbf :=
∑
I∈L

(E
I
f)(Δ

I
b).

Similarly,〈
bΔ

I
f,
( ∑
J∈L:J�I

Δ
J
g +

∑
J∈A0,fin

−∞ :J⊃I

E
I
g
)〉

=
〈
Δ

I
f, (Δ

I
b)E

J
g
〉
= 〈Δ

I
f, πbg〉.

As we discussed above, ∑
I∈L

〈
bΔ

I
f,Δ

I
g
〉
= 〈Λbf, g〉,

where

(1.17) Λbf :=
∑
I∈L

Δ
I
(bΔ

I
f).

The only terms in 〈f, g〉 that we did not yet count are the terms with I, J ∈ A0,fin
−∞ ,

which give us the remainder∑
I∈A0,fin

−∞

〈
bE

I
f,E

I
g
〉
=

〈 ∑
I∈A0,fin

−∞

(E
I
b)E

I
f, E

I
g
〉
=: 〈Rbf, g〉.
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So, the multiplication operator Mb can be decomposed as

Mb = π∗
b + Λb + πb +Rb,

where the paraproduct πb is defined by (1.16), π∗
b is its adjoint, Λb is defined

by (1.17), and

(1.18) Rbf = (E−∞b)(E−∞f) =
∑

I∈A0,fin
−∞

(E
I
b)(E

I
f).

Note that Lemma 1.3 remains true in the general case as well: the proof is
exactly the same. Also, nothing changes in the decomposition Λb = Λ0

b + Λ1
b ,

because we can investigate this decomposition separately in each block D
I
, and

these blocks know nothing about A0,fin
−∞ . Finally, the proof of Lemma 1.4 works in

the general case without any changes.
Summarizing we can state the following proposition.

Proposition 1.5. The multiplication operator Mb is represented (at least for-
mally) as

Mb −Rb = π
(∗)
b + Λ0

b + πb = π∗
b + Λb + πb = π∗

b + Λ0
b + Λ1

b + πb ,

where

Λbf =
∑
I∈L

Δ
I
(bΔ

I
f), Λb = Λ0

b + Λ1
b ,

Λ0
bf =

∑
I∈L

(E
I
b)(Δ

I
f), Λ1

bf =
∑
I∈L

Δ
I

[
(Δ

I
b)(Δ

I
f)
]
.

2. Triebel–Lizorkin type spaces

This part is devoted to the investigation of the “coefficient space” of the spacesHp.
We are mostly interested in the spaces with q = 2, but since the results for q �= 2 are
often obtained with little or no extra effort, we consider here the case of general q.

The notation ġq
p is chosen by analogy with the notation ḟα,qp for Triebel–Lizorkin

spaces, see for example [6]. Since we use a different scaling here, to avoid confusion
we use different notation. Also, we do not use the smoothness parameter α (we
do not need it in what follows, and frankly, it is not completely clear what is
the correct smoothness in the general non-homogeneous case). For the standard
dyadic lattices in Rd our spaces ġq

p are isomorphic to ḟ0,qp , with isomorphism given
by rescaling of the entries.

2.1. Triebel–Lizorkin type spaces ġq
p(L)

Let L be a lattice. For 1 ≤ p, q < ∞ define the sequence spaces ġq
p(L) to consist

of sequences s = {s
I
}I∈L such that

‖s‖ġq
p(L) :=

∥∥∥(∑
I∈L

|s
I
|q1

I

)1/q∥∥∥
Lp

< ∞.
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For p = ∞ the norm is defined using the BMO-like norm

‖s‖ġq
∞(L) := sup

J∈L

( 1

|J |
ˆ
J

∑
I∈L, I⊂J

|s
I
|q1I

)1/q

.

Formally, one can define the whole scale of spaces ġ
q,(r)
∞ (L), 1 ≤ r < ∞,

‖s‖
ġ
q,(r)
∞ (L)

:= sup
J∈L

(
1

|J |
ˆ
J

( ∑
I∈L, I⊂J

|s
I
|q1I

)r/q
)1/r

,

but it will be shown later that these norms are equivalent for 1 ≤ r < ∞.
To shorten the notation, we will omit L and use the notation ġq

p instead of
ġq
p(L), when it is clear from the context what the lattice L is.
The spaces ġq

p(L) can be naturally identified with subspaces of Lp(�q) (Lp with
values in �q). Namely, for a sequence s = {s

I
}I∈L, define functions

fk =
∑

I∈L:rk(I)=k

s
I
1
I
, k ∈ Z := Z ∪ {∞},

and let
f(x, k) = fk(x), k ∈ Z, x ∈ R.

Then clearly, for 1 ≤ p, q < ∞

‖s‖ġq
p(L) = ‖f‖Lp(�q) :=

( ˆ
‖f(x, · )‖p�q dx

)1/p

.

Thus, the space ġq
p(L), 1 ≤ p, q < ∞ can be naturally identified with the sub-

space of Lp(�q) consisting of functions f such that f( · , k) is constant on intervals
I ∈ L, rk(I) = k, and such that f(x, k) = 0 if there is no interval I ∈ L, rk(I) = k,
containing x (recall that rk(I) is the largest integer k such that I ∈ Lk, so the
condition I ∈ Lk does not mean that rk(I) = k).

We will routinely switch between the function and sequence representation of
elements of ġq

P , so regarding f ∈ ġq
p as a sequence {f

I
}
I∈L or as the corresponding

function f( · , · ) ∈ Lp(�q).
We will also need the notion of the coordinate projection of f ∈ ġq

p. Namely,
for E ⊂ L define the coordinate projection fE by

(2.1) fE = {f
I
}
I∈E

(meaning that entries corresponding to I /∈ E are 0). In the function representation
this can be written as

(2.2) fE ( · , k) = f( · , k) ·
( ∑
I∈E:rk(I)=k

1
I

)
, k ∈ Z ∪ {∞}.

For f ∈ Lp(�q) define the vector Hardy–Littlewood maximal function f∗:

f∗(x, k) = sup
I�x

1

|I|
ˆ
I

|f(s, k)| ds.

We will need the following well-known theorem:
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Theorem 2.1 (Fefferman–Stein, [5]). Let f ∈ Lp(�q), 1 < p, q < ∞. Then

‖f∗‖Lp(�q) ≤ C ‖f‖Lp(�q),

where C depends only on p and q.

The following fact is well known.

Proposition 2.2. For 1 < p, q < ∞, the dual space (ġq
p(L))∗ is isomorphic to

ġq′
p′(L), where 1/p+ 1/p′ = 1, 1/q+ 1/q′ = 1, and the pairing is the standard one:

(2.3) 〈f, g〉 =
ˆ
X

∑
k

f(x, k) g(x, k) dx =

ˆ
X

∑
I∈L

f
I
g
I
1
I
=

∑
I∈L

f
I
g
I
|I|.

Note that we only claim that the norm in ġq′
p′(L) is equivalent to the norm in the

dual space (except in the trivial case p = q = 2, where the norms coincide).

For the sake of completeness we present the proof of this proposition.

Proof. Since (Lp(�q))∗ = Lp′
(�q

′
) (for 1 < p, q < ∞), any g ∈ ġq′

p′(L) defines a
bounded linear functional L on ġq

p(L), and ‖L‖ ≤ ‖g‖
ġq′
p′(L)

.

On the other hand, if L is a bounded linear functional on ġq
p(L), it can be

extended by the Hahn–Banach theorem to a bounded linear functional on Lp(�q),
which can be represented by a function g̃ ∈ Lp′

(�q
′
),

L(f) =

ˆ ∑
k

f(x, k) g̃(x, k) dx, ∀f ∈ ġq
p(L).

Note that the functional L does not change if we replace the function g̃ by its

“orthogonal” projection g onto ġq′
p′(L),

g(x, k) =

{ |I|−1
´
I
g̃(s, k)ds, if rk(I) = k, and x ∈ I,

0 if � ∃I 
 x, rk(I) = k.
(2.4)

Clearly |g| ≤ (g̃)∗, so by the Fefferman–Stein maximal theorem (Theorem 2.1),

‖g‖Lp′(�q′ ) ≤ C ‖g̃‖Lp′(�q′ ). �

The dual of ġq
1 is given by the following theorem.

Theorem 2.3. Let 1 < q < ∞. Then the spaces ġ
q,(r)
∞ , 1 ≤ r < ∞ do not depend

on r, and the corresponding norms are equivalent. Moreover, the dual space (ġq
1)

∗

is isomorphic to ġq′
∞ := ġ

q′,(q′)
∞ ∼= ġ

q′,(r)
∞ ; here again 1/q+1/q′ = 1 and the pairing

is given by (2.3).

The notion of maximality, given in the definition below, plays an important
role in the proof of Theorem 2.3, as well as later in the paper.
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Figure 1. Level sets.

Definition. Let E ⊂ L. We say that I ∈ E is maximal for E , or E-maximal, if
there is no J ∈ E such that I � J .

We will use the following simple lemma often.

Lemma 2.4. Let Φ: X → [0,∞) and let Ek := {x∈X : Φ(x)>2k}. Then for p > 0,

∑
k∈Z

2kp |Ek| ≤ 2p
ˆ
X
Φ(x)p dx .

Proof. See Figure 1. �

Proof of Theorem 2.3. The general outline of the proof is as follows. We first show
that

|〈f, g〉| ≤ 4 ‖f‖ġq
1
‖g‖

ġ
q′,(1)
∞

∀ f ∈ ġq
1, ∀ g ∈ ġq′,(1)

∞ .(2.5)

Testing a functional ϕ ∈ (ġq
1)

∗ on sequences with one nonzero term, one can
easily see that there exists a unique sequence g = gϕ = {g

I
}
I∈L such that ϕ(f) =

〈f, g〉 for all sequences f with finitely many nonzero terms. We will show that, for
all r ∈ (1,∞),

‖gϕ‖
ġq′,(r)
∞

≤ C(r) ‖ϕ‖.(2.6)

It easily follows from the Hölder inequality that, for r > 1,

‖g‖
ġ
q′,(1)
∞

≤ ‖g‖
ġ
q′,(r)
∞

.(2.7)
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The estimate (2.5) means that ‖ϕ‖ ≤ 4 ‖gϕ‖ġq′,(1)
∞

. Combining this with (2.7)

and (2.6) we get that

‖ϕ‖ ≤ 4 ‖gϕ‖ġq′,(1)
∞

≤ 4 ‖gϕ‖ġq′,(r)
∞

≤ 4C(r) ‖ϕ‖.

This proves the equivalence of the norms ‖gϕ‖ġq′,(r)
∞

, r ∈ [1,∞), and ‖ϕ‖, and so

the theorem.
Let us prove (2.5). It is sufficient to prove this inequality on a dense set

of functions f for which the corresponding sequence {s
I
}I∈L has finitely many

nonzero terms.
Let Ek := {x ∈ R : ‖f(x, · )‖�q > 2k}, and let Ek := {I ∈ L : I ⊂ Ek}. Note

that Ek is a finite disjoint union of Ek-maximal intervals I ∈ Ek.
Lemma 2.4 implies that

∑
k∈Z

2k |Ek| ≤ 2

ˆ
‖f(x, · )‖�q dx.(2.8)

Since L is a disjoint union of the sets Ek \ Ek+1 we write

f =
∑

fEk\Ek+1

where fE is the coordinate projection of f , see (2.1) and (2.2). Note that

(2.9) ‖fEk\Ek+1
(x, · )‖�q ≤ 2k+1 1

Ek
(x).

Indeed, the estimate for x /∈ Ek+1 is trivial. For x ∈ Ek+1, let J be the Ek+1-maxi-

mal interval containing x, and let J̃ be the parent of J . Clearly J̃ /∈ Ek+1, so there

exists a point y ∈ J̃ , y /∈ Ek+1. Then we can write

‖fEk\Ek+1
(x, · )‖q�q =

∑
I∈Ek:I�J

|f
I
|q =

∑
I∈Ek:I⊃ ˜J

|f
I
|q(2.10)

≤
∑

I∈L:I�y

|f
I
|q = ‖f(y, · )‖q�q ≤ 2(k+1)q

(the last inequality holds because y /∈ Ek+1), and (2.9) is proved.

To finish the proof of (2.5) let us take g ∈ ġ
q′,(1)
∞ , ‖g‖

ġ
q′,(1)
∞

≤ 1, and estimate

|〈f, g〉| =
∣∣∣ ˆ ∑

I∈L
f
I
g
I
1
I
dx

∣∣∣ ≤ ∑
k∈Z

ˆ ∑
I∈Ek\Ek+1

|f
I
| |g

I
|1

I
dx

≤
∑
k∈Z

∥∥fEk\Ek+1

∥∥
L∞(�q)

∥∥gEk\Ek+1

∥∥
L1(�q′ ) ≤

∑
k∈Z

2k+1|Ek| ≤ 4‖f‖L1(�q).

Here the last inequality follows from (2.8); to prove the previous one we notice

that by (2.9) we have ‖fEk\Ek+1
‖L∞(�q) ≤ 2k+1 and the definition of ġ

q′,(1)
∞ implies

that ‖gEk\Ek+1
‖L1(�q′ ) ≤ ‖gEk

‖L1(�q′ ) ≤ |Ek|. So, (2.5) is proven.
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Let us now prove (2.6). Let ϕ be a bounded linear functional on ġq
1. By the

Hahn–Banach theorem it can be extended to a functional on L1(�q), so it can be
represented as

ϕ(f) = 〈f, g̃〉 =
ˆ
R

∑
k∈Z

f(x, k) g̃(x, k) dx

where g̃ ∈ L∞(�q
′
), ‖g̃‖L∞(�q′ ) = ‖ϕ‖.

Let g = Pseq(g̃) be the projection of g̃ onto the space of sequences, i.e., let the
function g be defined by (2.4). The projection Pseq, as can be shown easily, is

not bounded in L∞(�q
′
), but by the Fefferman–Stein theorem (Theorem 2.1) it is

bounded in Lr(�q
′
).

Therefore, for any (finite union of intervals) E ⊂ R and the collection E :=
{I ∈ L : I ⊂ E},

‖gE‖rLr(�q′ ) ≤ C ‖g̃E‖rLr(�q′ ) ≤ C |E| ‖g̃E‖rL∞(�q′ ) ,

which means exactly that g ∈ ġ
q′,(r)
∞ , ‖g‖

ġ
q′,(r)
∞

≤ C ‖ϕ‖. �

2.2. Spaces ġq,(r)
∞ for r < 1

Remark 2.5. In fact, any r ∈ (0,∞) can be used in the definition of ġq∞, i.e., all
the “norms” ‖ · ‖

ġ
q,(r)
∞

, r ∈ (0,∞) are equivalent (of course, for r < 1 the quantity

‖ · ‖
ġ
q,(r)
∞

is not a norm).

This can be proved using the standard John–Nirenberg type estimates, but we
present a different argument, based on a simple lemma below.

Lemma 2.6 (Extrapolation of inverse Hölder inequality). Let μ be a probability
measure, and let Lp = Lp(μ). For a function f ∈ Lp1 and for some p2 > p1,
suppose that there holds the following reverse Hölder inequality:

‖f‖p2 ≤ C ‖f‖p1 .(2.11)

Then, for any p < p1,

‖f‖p1 ≤ Cβ‖f‖p , β =
p2
p

· p1 − p

p2 − p1
.

Proof. Define r := (p2 − p)/(p2 − p1). Then the dual Hölder exponent is given by
r′ := (p2 − p)/(p1 − p). The exponent r is chosen so

1

r
· p+ 1

r′
· p2 = p1.(2.12)

Assume without loss of generality that f ≥ 0. Setting α = p/r we can write

‖f‖p1
p1

= ‖ fp1‖1 ≤ ‖fα‖r ‖fp1−α‖r′ by the Hölder inequality

= ‖f‖αp ‖f‖p1−α
p2

≤ ‖f‖αp (C‖f‖p1)
p1−α

by (2.11).
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The last inequality implies that

‖f‖αp1
≤ Cp1−α‖f‖αp ,

which gives us the conclusion of the lemma with β = (p1−α)/α. To see that it is the
same β as in the lemma, recall that α = p/r, so by (2.12) we have p1 − α = p2/r

′.
Therefore

β =
p1 − α

α
=

p2
r′

· r
p
=

p2
p

· p1 − p

p2 − p1
. �

To show the equivalence of the norms ‖ · ‖
ġ
q,(r)
∞

for all r ∈ (0,∞), take r2 >

r1 ≥ 1 > r > 0. We have proved that the norms ‖ · ‖
ġ
q,(r1)
∞

and ‖ · ‖
ġ
q,(r2)
∞

are

equivalent, i.e., there exists C = C(r1, r2) such that, for all sequences s = {s
I
}I∈L,

‖s‖
ġ
q,(r1)
∞

≤ ‖s‖
ġ
q,(r2)
∞

≤ C ‖s‖
ġ
q,(r1)
∞

(2.13)

(the first inequality here is Hölder inequality).

Take ε > 0 and let J ∈ L be such that

∥∥∥(|J |−1
∑

I∈L:I⊂J

|s
I
|21

I

)1/2∥∥∥
r1

≥ (1 + ε)−1‖s‖
ġ
q,(r1)
∞

.(2.14)

Combining this inequality with (2.13) we get

∥∥∥(|J |−1
∑

I∈L:I⊂J

|s
I
|21

I

)1/2∥∥∥
r2

≤ ‖s‖
ġ
q,(r2)
∞

≤ C ‖s‖
ġ
q,(r1)
∞

≤ (1 + ε)C
∥∥∥(|J |−1

∑
I∈L:I⊂J

|s
I
|21

I

)1/2∥∥∥
r1
,

i.e., we have the inverse Hölder inequality assumption of Lemma 2.6. Therefore,
by Lemma 2.6,

∥∥∥(|J |−1
∑

I∈L:I⊂J

|s
I
|21

I

)1/2∥∥∥
r1

≤ (1 + ε)βCβ
∥∥∥(|J |−1

∑
I∈L:I⊂J

|s
I
|21

I

)1/2∥∥∥
r

≤ (1 + ε)βCβ‖s‖
ġ
q,(r)
∞

.

Combining this estimate with (2.14) we get that

‖s‖
ġq,(r1)
∞

≤ (1 + ε)β+1Cβ‖s‖
ġq,(r)
∞

,

which gives the equivalence of ‖s‖
ġ
q,(r)
∞

and ‖s‖
ġ
q,(r1)
∞

(the opposite inequality

‖s‖
ġ
q,(r)
∞

≤ ‖s‖
ġ
q,(r1)
∞

follows immediately from the Hölder inequality). �
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2.3. Embedding theorem for ġq
p

Let {α
I
}
I∈L be a collection of numbers. We want to know when the operator

f �→ {α
I
〈f〉

I
}
I∈L

is a bounded operator from Lp to ġq
p; recall that for a function f the symbol 〈f〉

I
denotes its average, 〈f〉

I
=
ffl
I f .

The answer to this question is well known if p = q, and is given by the famous
Carleson embedding theorem, that says that a necessary and sufficient condition
for the boundedness is

sup
I∈L

1

|I|
∑

J∈L:J⊂I

|α
J
|q < ∞ ,

which means exactly that {α
I
}
I∈L ∈ ġ

q,(q)
∞ = ġq

∞. This result is especially well
known for p = q = 2; the situation for p = q can be obtained, as it will be shown
below, by a standard comparison with the maximal function.

Below, we will show that the answer is the same for all p ∈ (1,∞). For p = 1

the above condition is not sufficient for the embedding, but if we replace L1 by H̃1,
then the result can be extended to p = 1.

Theorem 2.7. Let p ∈ [1,∞) and q ∈ (1,∞), and let α = {α
I
}
I∈L be a collection

of numbers. Then the operator Aα defined by

Aαf = {α
I
〈f〉

I
}
I∈L

is a bounded operator H̃p → ġq
p if and only if α ∈ ġq∞.

Proof. To prove the necessity of the condition α ∈ ġq
∞ for p > 1 we just have

to test the embedding operator on the functions 1I , I ∈ L. Since 〈1I〉J = 1 for

J ⊂ I, and since for p ∈ (1,∞) the H̃p-norm is equivalent to the Lp norm (see
Section 1.3), the boundedness of the operator Aα implies

∥∥∥( ∑
J∈L:J⊂I

|α
J
|q1

J

)1/q∥∥∥p
p
≤ C‖1

I
‖pp = C|I|,

which means α ∈ ġ
q,(p)
∞ = ġq

∞ (by Theorem 2.3 the space ġ
q,(p)
∞ does not depend

on p).
For p = 1 we need a bit more complicated test function, since generally 1

I
is

not in H̃1. To prove the necessity in this case, take I ∈ L. We need to consider
two possibilities:

(i) |K| < 2|I| for all K ∈ L, K ⊃ I.

(ii) There exists K ∈ L, K ⊃ I such that |K| ≥ 2|I|.
In the first case

| supp(ML1I
)| ≤ 2|I|, so ‖ML1I

‖1 ≤ 2|I|.
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The maximal function characterization of H̃1 (Theorem 1.2) implies that 1
I
∈ H̃1,

‖1
I
‖
˜H1 ≤ C|I|, so testing as above the operator Aα on f = 1

I
we get

∥∥∥( ∑
J∈L:J⊂I

|α
J
|q1

J

)1/q∥∥∥
1
≤ C‖f‖

˜H1 ≤ C|I|.(2.15)

In the second case, let K ∈ L be the first ancestor of I such that 2|I| ≤ |K|.
Let f := 1I + α1K\I , where α ∈ R is chosen such, that

´
fdx = 0. It is easy

to check, using again the maximal function characterization of H̃1 (Theorem 1.2),
that f ∈ H1 and ‖f‖

˜H1
≤ C|I|. Since for J ∈ L, J ⊂ I we still have 〈f〉

J
= 1,

testing Aα on f we get the estimate (2.15).
Let us now prove sufficiency. Let

Ek =
{
x ∈ X : |MLf(x)| > 2k

}
, and Ek =

{
I ∈ L : I ⊂ Ek

}
.

We can write
Aαf =

∑
k∈Z

(Aαf)Ek\Ek+1
,

where (Aαf)Ek\Ek+1
denotes the coordinate projection of Aαf , see (2.1), with

E = Ek \ Ek+1.
Assume that ‖α‖ġq

∞ ≤ 1, and let αEk\Ek+1
be the corresponding coordinate pro-

jection (2.1) of α. Since |E
I
f | ≤ |MLf | ≤ 2k+1 on I ∈ Ek \ Ek+1, we conclude that∥∥(Aαf)Ek\Ek+1

∥∥p
Lp(�q)

≤ 2(k+1)p
∥∥αEk\Ek+1

∥∥p
Lp(�q)

≤ 2(k+1)p |Ek|.

Therefore,

(2.16)
∑
k∈Z

∥∥(Aαf)Ek\Ek+1

∥∥p
Lp(�q)

≤
∑

2(k+1)p |Ek| ≤ C ‖MLf‖pp ≤ C1 ‖f‖p
˜Hp

;

here the second inequality follows from Lemma 2.4, and the last one is the bound-
edness of the maximal function in Lp for p > 1.

The estimate (2.16) is exactly what we need if p = q.

The case p < q is also easy. We can write (in the functional representation)

‖Aαf‖p
Lp(�q)

=

ˆ
X

(∑
k∈Z

∥∥(Aαf)Ek\Ek+1
(x, · )∥∥q

�q

) 1
q p

dx

≤
ˆ
X

(∑
k∈Z

∥∥(Aαf)Ek\Ek+1
(x, · )∥∥p

�q

) 1
p p

dx ‖s‖
�q

≤ ‖s‖
�p
, p < q

=
∑
k∈Z

∥∥(Aαf)Ek\Ek+1

∥∥p
Lp(�q)

≤ C ‖f‖2
˜Hp by (2.16).

The case p > q is a bit more complicated. To treat this case let us first make
some simplifications. Of course, without loss of generality we can assume that
f ≥ 0 and that all α

I
≥ 0.
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Lemma 2.8. Let f ∈ Lp, 1 < p < ∞, and f ≥ 0. There exists a function f̃
satisfying f̃ ≥ f and ‖f̃‖p ≤ Cp‖f‖p such that

Mf̃ ≤ C′
p f̃ ,

where M is the Hardy–Littlewood maximal function.

The conditionMf ≤ Cf for f ≥ 0 is the so-called Muckenhoupt (A1) condition.
It implies, in particular, that for any interval I,

 
I

f ≤ 1

C
min
x∈I

f(x)

Proof of Lemma 2.8. Define f̃ by

f̃ :=
∑
k≥0

γkMkf,

where Mk is kth iteration of M , and γ > 0 is sufficiently small, so that

γ ‖Mh‖p ≤ 1

2
‖h‖p ∀h ∈ Lp. �

Replacing f by the f̃ from Lemma 2.8 we can assume without loss of generality
that Mf ≤ Cf .

It is an easy exercise with the Hölder inequality and the Resonance Lemma
(the fact that equality is attained in Hölder’s inequality) to see that if p > q and
1/p+ 1/r = 1/q,

‖F‖p = sup
{‖Fg‖q : g ∈ Lr, ‖g‖r ≤ 1

}
.

Take g ∈ Lr such that g ≥ 0 and ‖g‖r ≤ 1. Since clearly r > q, applying
Lemma 2.8 to gq with the exponent s = r/q for p, we get a function g̃ ≥ g such
that M(g̃q) ≤ Cg̃q and

‖g̃‖rr = ‖g̃q‖ss ≤ C ‖gq‖ss = C‖g‖rr.
So, replacing g by g̃ we can assume without loss of generality that Mg ≤ Cg

and ‖g‖r ≤ C.
To complete the proof, let us first notice that

(2.17) ‖Aα(fg)‖Lq(�q)
≤ C ‖fg‖q ≤ C ‖f‖p‖g‖r ≤ C′ ‖f‖p.

This inequality follows from the case p = q we discussed above. We used here the
fact that ‖α‖

ġ
q,(q)
∞

≤ ‖α‖
ġ
q,(p)
∞

, which follows immediately from Hölder’s inequality;

note that we do not need here the full equivalence of the ġ
q,(p)
∞ -norms for all p.

So, in light of (2.17), we only need to show that

‖(Aαf)g‖Lq(�q)
≤ C ‖Aα(fg)‖Lq(�q)

,
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which follows immediately if the estimate 
I

|〈f〉
I
g|q ≤ C〈fg〉q

I
.

holds uniformly for all I ∈ L. We know that

(2.18) min
x∈I

f(x) ≤ 〈f〉
I
≤ Cmin

x∈I
f(x)

and that

(2.19) 〈gq〉
I
≤ Cmin

x∈I
gq(x) = C (min

x∈I
g(x))q ≤ C〈g〉q

I

and therefore 
I

|〈f〉
I
g|q = 〈f〉q

I
〈gq〉

I

by (2.19)

≤ C〈f〉q
I
〈g〉q

I

by (2.18)

≤ Cmin
x∈I

f(x)q〈g〉q
I
≤ C〈fg〉q

I
. �

3. Hp
q and BMOq spaces

Most of the results of this section are well known, and are presented here only for
the convenience of the reader. However, I believe some of the proofs are new.

3.1. Hp
q spaces

As we discussed in Section 1.3, the Lp norm of a function f , p ∈ (1,∞) (H1 norm
if p = 1), is equivalent to the Lp norm of the square function Sf .

Acting by analogy, one can use the “q-function” instead, and consider the
space H̃p

q , p, q ∈ [1,∞], of formal martingale difference decompositions, such that

(3.1) ‖f‖
˜Hp
q
:=

∥∥∥(∑
I∈L

|Δ
I
f |q +

∑
I∈A0,fin

−∞

|E
I
f |q

)1/q∥∥∥
Lp

< ∞.

We assume here that the “martingale differences” Δ
I
f are simply some func-

tions h
I
, constant on children of I and such that

´
X h

I
dx = 0. The functions E

I
f

are just some multiples of 1
I
. While we do not assume that all the h

I
are mar-

tingale differences for some function f , we will still use the notation Δ
f
, meaning

by f the whole collection of such “martingale differences”.1

We can also consider the space Hp
q , consisting of formal martingale difference

decompositions for which E
I
= 0 for all I ∈ A0,fin

−∞ .

The spaces H̃p
qand Hp

q are clearly Banach spaces, as closed subspaces of Lp(�q).

As we discussed above in Section 1.3, if f ∈ H̃p
2, then the series converges to a

function in Lp (to a function in H̃1 if p = 1), and for p ∈ (1,∞) the norm ‖f‖
˜Hp
2

is equivalent to the standard Lp norm.

1Such notation is partially justified by the fact that, in the essential case where our collection
has only finitely many nonzero terms, all Δ

f
are martingale differences of the function

∑
I∈L Δ

I
f .
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Since ‖x‖�2 ≤ ‖x‖�q for q ∈ [1, 2], any formal martingale decomposition f ∈ Hp
q ,

q ∈ [1, 2], converges to a function in Lp. Thus, in this case we can identify the

spaces H̃p
q and Hp

q with function spaces, which we denote by H̃p
q and Hp

q , respec-
tively.

For q > 2 convergence is not clear, so in this case we only consider the spaces H̃p
q

and Hp
q of formal martingale differences.

Remark 3.1. Informally, we can say that f ∈ Hp
q if {Δ

I
f}

I∈L ∈ ġq
p. We are

saying “informally” here, because the Δf are not numbers but functions, so we
have to interpret the sequence {Δ

I
f}I∈L as a sequence of numbers.

In this paper we will interpret this by saying that each Δ
I
f determines the

number xJ , J ∈ child(I), where xJ is simply the value of Δ
I
f on J .

The space H1
2 is the classical martingale H1 space, and we will often skip the

index q referring to the case q = 2. The spaces Hp
q were studied by many authors;

for example the spaces H
Sq
p were considered in [15] (the superscript stands for

“square function”).

Remark. There are alternative ways of obtaining the numbers x
I
from the martin-

gale differences Δ
I
. For example, one puts x

I
:= (E

I
|Δ

I
f |q)1/q, and the condition

{x
I
}I∈L ∈ ġq

p, defines a martingale Hardy space that is denoted by H
sq
p in [15]

(note that the superscript here is sq, no the Sq of the previous paragraph).
For homogeneous lattices it is not hard to show that this definition is equivalent

to the first one. It is also well known and can be seen from what follows, that in
the general, non-homogeneous case, these spaces can be different.

3.2. BMO spaces and H1-BMO duality

We want to define BMO spaces, so we have the H1-BMO duality, as usual.

Definition. We say that a formal martingale difference decomposition

f =
∑
I∈L

Δ
I
f

belongs to the space BMOq, q ∈ (1,∞) if the sequence {x
I
}
I∈L , obtained from

{Δ
I
f}

I∈L as in Remark 3.1, belongs to ġq∞.

The extended BMO spaces BMO∼
q are obtained by adding to the formal sum

f ∈ BMOq additional terms∑
I∈A0,fin

−∞

E
I
f, ‖E

I
f‖∞ ≤ C < ∞ ∀I ∈ A0,fin

−∞ .

We can rewrite the definition of BMOq by picking r ∈ (0,∞) and saying that
f ∈ BMOq if, for any I ∈ L,

(3.2)

 
I

( ∑
J∈L:J⊂I

|Δ
J
f |q

) 1
q r

dx ≤ C < ∞
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(uniformly in I), and, in addition

(3.3) sup
I∈L

‖Δ
I
f‖∞ < ∞.

These two conditions mean exactly that the sequence x = {x
I
}I∈L, obtained from

{Δ
I
f}I∈L as in Remark 3.1, belongs to ġ

q,(r)
∞ . Since, as we discussed above (see

Theorem 2.3 and Remark 2.5) the spaces ġ
q,(r)
∞ , r ∈ (0,∞) coincide, this means

x ∈ ġ
q,(q)
∞ =: ġq∞.

Remark. One would expect that the condition (3.2) alone defines the space
BMOq, but it has been known for a long time that the additional condition is
needed. One can look, for example, at Garsia’s 1973 book [7], where the BMO2

space was defined. One can easily see that the definition from [7] is equivalent to
the one presented here.

If |X| < ∞, BMOq ⊂ Hr
q , so (see Section 3.1 above) for q ∈ (1, 2] the formal

martingale difference decomposition f ∈ BMOq converges to a function in Lr. So
in the case |X| < ∞ one can identify for q ∈ [1, 2] the spaces BMOq and BMO∼

q

with function spaces, which we will call BMOq and BMO∼
q , respectively.

The following theorem is known, but the proof presented here is probably new.

Theorem 3.2. The dual of the space H1
q (respectively, H̃1

q), 1 < q < ∞, is the
space BMOq′ (respectively, BMO∼

q′).

Proof. We will prove the duality between H1
q and BMOq′ . The duality between

H̃1
q and BMO∼

q′ follows trivially.
The sufficiency of the condition g ∈ BMOq′ for the boundedness of the linear

functional f �→ 〈f, g〉 on H1
q follows immediately from Theorem 2.3.

To prove the necessity of this condition, let us note that by definition Hq
1 can

be identified with a subspace of ġq
1 (by identifying the family {Δ

I
g}

I∈L with an

element in ġq
1 as described in Remark 3.1).

Thus a linear functional ϕ onH1
q can be extended by the Hahn–Banach theorem

to a functional on ġq
1, so by Theorem 2.3 there exists g̃ = {g̃

I
}
I∈L ∈ ġq′∞, ‖g̃‖

ġq′
∞

≤
C‖ϕ‖, such that the functional ϕ is given by

(3.4) ϕ(f) =

ˆ
X

∑
I∈L

∑
J∈child(I)

Δ
I
f(x)g̃

J
dx =

∑
I∈L

ˆ
X

∑
J∈child(I)

Δ
I
f(x)g̃

J
dx.

We would like to interpret the function
∑

J∈child(I) g̃J1J
as a martingale difference,

but this function does not have average zero. But since
´
X Δ

I
fdx = 0, the integrals

on the right side of (3.4) do not change if we subtract from g̃
J
, J ∈ child(I), a

constant c = c
I
.

Therefore, if for J ∈ child(I) we define g
J
:= g̃

J
− |I|−1

∑
I′∈child(I) g̃I′ |I ′|, we

get that

ϕ(f) =
∑
I∈L

ˆ
X

∑
J∈child(I)

Δ
I
f(x)g

J
dx.
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However now the functions
∑

J∈child(I) gJ1J
have zero average, so we can treat

them as martingale differences.
Let us check that {g

I
}
I∈L ∈ ġq′

∞. Using the fact that the averaging operator
f �→ 〈f〉

I
1
I
is a contraction in all Lp, p ∈ [1,∞] (it follows immediately from the

Hölder inequality), we can see that∥∥∥ ∑
J∈child(I)

g
J
1
J

∥∥∥
q′
≤ 2

∥∥∥ ∑
J∈child(I)

g̃
J
1
J

∥∥∥
q′

Using this inequality we get that for I0 ∈ L
∑

J∈L:J⊂I0

|g
J
|q′ |J | = |g

I0
|q′ · |I0|+

∑
I∈L:I⊂I0

∥∥∥ ∑
J∈child(I)

g
J
1
J

∥∥∥ q′

q′

≤ |g
I0
|q′ · |I0|+ 2q

′ ∑
I∈L:I⊂I0

∥∥∥ ∑
J∈child(I)

g̃
J
1
J

∥∥∥ q′

q′
≤ |g

I0
|q′ · |I0|+ 2q

′ |I0| · ‖g̃‖ q′

ġ
q′,(q′)
∞

.

Noticing that |g̃
I0
| ≤ ‖g̃‖

ġ
q′,(q′)
∞

, and therefore |g
I0
| ≤ 2‖g̃‖

ġ
q′,(q′)
∞

, and taking

into account that ġ
q′,(r)
∞ norms are equivalent for all r ∈ [1,∞), we conclude that

‖{g
I
}
I∈L‖ġq′

∞
≤ C‖g̃‖

ġq′
∞
. Thus g = {g

I
}
I∈L ∈ BMOq′ . �

3.3. BMOq as function spaces

Proposition 3.3. For q ∈ [1, 2] the space BMOq can be identified with a function
space, i.e., for each formal martingale decomposition f =

∑
I∈LΔ

I
f ∈ BMOq

there exists a locally integrable function f̃ such that for all I ∈ L

Δ
I
f = Δ

I
f̃ .

A similar statement holds for the spaces BMO∼
q as well.

Remark. As can be seen from a simple example below, the martingale difference
decomposition f =

∑
I∈L Δ

I
f ∈ BMOq, q ∈ (1, 2], does not necessarily converge

if |X| = ∞.

Let L be the standard dyadic lattice D in R, and let Ik = [0, 2k), k ∈ N.
Consider the formal martingale sum f =

∑∞
k=1 ΔIk

f , where

Δ
Ik
f = 1[0,2k−1) − 1[2k−1,2k).

It is easy to see that f ∈ BMOq for all q ∈ (1,∞), but the series clearly diverges.

Proof of Proposition 3.3. It is sufficient to analyze the convergence on each interval
J ∈ A0−∞ separately.

If |J | < ∞, then the series f
J
:=

∑
I∈L:I⊂J Δ

I
f belongs to H2

q . Therefore, as

was discussed before in Section 3.1, the series converges to an L2 function.
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Let now consider J ∈ A0−∞ such that |J | = ∞. It is not hard to see that any
such interval can be represented as the union

J =
⋃
k≥1

Ik, Ik ∈ child(Ik+1) ∀k ≥ 1

(note that here k is not the number of generation). Let

L(J) := {
I ∈ L : I ⊂ J, I �= Ik∀k ∈ N

}
so the collection {I ∈ L : I ⊂ J} is split into a disjoint union of L and the set
{Ik, : k ∈ N}.

For k = 2, 3, . . . let αk be the value of Δ
Ik

on Ik−1, and let α1 = 0. Define the

function f̃ on J by

f̃ :=
∑

I∈L(J)

Δ
I
f +

∑
s∈N

(
Δ

Is
f − αs1J

)

Let us show that the sum restricted to any of the above intervals Ik converges in
L2(Ik). This will immediately imply that Δ

I
f̃ = Δ

I
f for all I ∈ L, I ⊂ J .

The second sum converges trivially, because Δ
Is
f − αs1J

= 0 on Ik if s > k.
Let us show the convergence of the first sum. Note that we only need to count

the terms Δ
I
f with I ∈ L(J), I ⊂ Ik, because the terms with I ∈ L(J), I �⊂ Ik

are zero on Ik.
The condition f ∈ BMOq implies that∑

I∈L(J):I⊂Ik

Δ
I
f ∈ H2

q ⊂ H2
2,

so the sum converges in L2(Ik). �

Remark 3.4. For r ∈ (1,∞), the condition that the sequence obtained from

{Δ
I
}
I∈L belongs to ġ

2,(r)
∞ can be rewritten as

sup
I∈L

|I|−1

ˆ
I

|f − 〈f〉
˜I
|r < ∞;

here Ĩ denotes the parent of I.

4. Lp bounds of paraproducts

4.1. Martingale differences do not form a strong unconditional basis
in Hp in the non-homogeneous case

In [9] the notion of a strong unconditional basis was introduced. A system of
nontrivial subspaces Ej (of a Banach spaceX), j ∈ J (where J is a some countable
set) was called a strong unconditional basis if

(i) the linear span L{Ej : j ∈ J } is dense in X ;
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(ii) there exists an ideal Banach space Y of sequences {cj}j∈J and a constant
A > 0 such that for any sequence {xj}j∈J , xj ∈ Ej with finitely many nonzero
elements

1

A

∥∥∥∑
j∈J

xj

∥∥∥
X

≤ ∥∥{‖xj‖
}
j∈J

∥∥
Y
≤ A

∥∥∥∑
j∈J

xj

∥∥∥
X

.

Recall that a Banach space Y of sequences {cj}j∈J of complex numbers is called
ideal if for any sequence of factors αj , |αj | ≤ 1 the sequence {αjcj}j∈J ∈ Y and
‖{αjcj}j∈J ‖

Y
≤ ‖{cj}j∈J ‖

Y
.

Note that a strong unconditional basis is an unconditional basis, meaning that
any vector x ∈ X admits a unique representation

x =
∑
j∈J

xj , xj ∈ Ej ,

and the series converges unconditionally, i.e., independently of the ordering of J .
One can easily see that the martingale difference spaces D

I
= Δ

I
form an

unconditional basis in Hp, p ∈ [1,∞). It is also well known that for a homogeneous
lattice L the subspaces D

I
form a strong unconditional basis.

Unfortunately, as we demonstrate below, that is not the case in the general
situation.

If the system of the martingale difference spacesD
I
were a strong unconditional

basis, one might imagine that the natural “coefficient space” for Hp should be the
Triebel–Lizorkin type space ġ2

p.
In other words, one could guess that one could get an equivalent norm in Hp

by replacing the functions Δ
I
f in the square function by multiples of 1

I
. The

norms have to be equivalent on singletons f = Δ
I
f , so if one wants to replace

the functions Δ
I
f by c

I
1
I
, c

I
= c

I
(f), the functions Δ

I
f and c

I
1
I
should have

equivalent Lp norms (uniformly in I).
If everything works when the norms of Δ

I
f and c

I
1
I
are equivalent, it works

when they are equal. So everything reduces to the question of whether the quantity

(4.1)
∥∥∥(∑

I∈L

(
E
I
|Δ

I
f |p)2/p)1/2∥∥∥

p

gives an equivalent norm on Hp.
The answer is well known to be “yes” in the case where the lattice is homoge-

neous. In fact, in this case for q ∈ [1,∞) the averages (E
I
|Δ

I
|q)1/q are equivalent,

so one can replace Δ
I
f by any of these averages (the case q = 2 is usually consid-

ered in the literature).
In the general case, as the theorem below asserts, only “half” of necessary

inequalities are true, so the answer is unfortunately “no”.
Note that Theorem 4.1 does not imply that the system of martingale difference

spacesD
I
is not a strong unconditional basis: it only implies that a particular norm

on the coefficient space does not give an equivalent norm. However, modifying the
proof of Theorem 4.1 one can show that indeed the martingale difference spacesD

I
do not form a strong unconditional basis in Hp.
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Theorem 4.1. Let f ∈ Hp.

(i) For p ∈ [1, 2] the inequality

(4.2)
∥∥∥(∑

I∈L

(
E
I
|Δ

I
f |p)2/p)1/2∥∥∥

p
≤ C

∥∥∥(∑
I∈L

|Δ
I
f |2

)1/2∥∥∥
p

holds; here C = Cp and does not depend on f and L.
(ii) For p ∈ [2,∞) the opposite inequality

(4.3)
∥∥∥(∑

I∈L
|Δ

I
f |2

)1/2∥∥∥
p
≤ C

∥∥∥(∑
I∈L

(
E
I
|Δ

I
f |p)2/p)1/2∥∥∥

p

holds with C = Cp.

(iii) For p ∈ (2,∞) the inequality (4.2) fails, i.e., for each p > 2 one can find
a lattice L and f ∈ Hp such that the left side of (4.2) is infinite (while the
right side is finite because f ∈ Hp).

(iv) For p ∈ [1, 2) the inequality (4.3) fails (in the same sense as in state-
ment (iii)).

4.1.1. Proof of two of the estimates in Theorem 4.1. To prove state-
ment (i), let us consider the sequence {|Δ

I
f |p}

I∈L ∈ ġq
1, q = 2/p, where as in

Remark 3.1, |Δ
I
f |p defines numbers x

J
, J ∈ child(I), x

J
being the value of

|Δ
J
f |p on J . Then the estimate (4.2) follows immediately from the boundedness

of the averaging operator Av in ġq
1, q = 2/p,

(Av x)
I
= |I|−1

∑
J∈child(I)

x
J
|J |.

To prove that Av is bounded, let us notice that its adjoint Av∗ is the “forward
shift”

(Av∗ x)
I
= x

˜I
, Ĩ is a parent of I.

We want to show that this operator is bounded in ġq′
∞ = (ġq

1)
∗. If x =

{x
I
}
I∈L ∈ ġq∞, then for J ∈ L

∑
I∈L:I⊂J

|(Av∗ x)
I
|q′1

I
= |x

˜J
|q′1

J
+

∑
I∈L:I⊂J

|x
I
|q′1

I

where J̃ is the “parent” of J . Since |x
˜J
| ≤ ‖x‖

ġq′
∞

and

 
J

∑
I∈L:I⊂J

|x
I
|q′1

I
≤ ‖x‖q′

ġq′
∞
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we conclude that  
J

( ∑
I∈L:I⊂J

|(Av∗ x)
I
|q′1

I

)
dx ≤ 2‖x‖q′

ġq′
∞
,

which proves that Av∗ is bounded. Therefore Av is a bounded operator in ġq
1,

which proves (4.2).
Statement (ii) follows from (4.2) by duality. Namely, take g∈Hp′

, 1/p+1/p′=1,
‖g‖Hp′ ≤ 1 and estimate∣∣∣ ˆ

X
fgdx

∣∣∣ ≤ ∑
I∈L

ˆ
I

∣∣Δ
I
fΔ

I
g
∣∣ dx ≤

∑
I∈L

ˆ
I

(
E
I
|Δ

I
f |p)1/p(E

I
|Δ

I
g|p′)1/p′

dx

=

ˆ ∑
I∈L

(
E
I
|Δ

I
f |p)1/p(E

I
|Δ

I
g|p′)1/p′

dx

≤
ˆ (∑

I∈L

(
E
I
|Δ

I
f |p)2/p)1/2(∑

I∈L

(
E
I
|Δ

I
g|p′)2/p′)1/2

≤
∥∥∥(∑

I∈L

(
E
I
|Δ

I
f |p)2/p)1/2∥∥∥

p

∥∥∥(∑
I∈L

(
E
I
|Δ

I
g|p′)2/p′)1/2∥∥∥

p′
.

By (4.2), ∥∥∥(∑
I∈L

(
E
I
|Δ

I
g|p′)2/p′

1
I

)1/2∥∥∥
p′

≤ C‖g‖Hp′ .

So by taking the supremum over g ∈ Hp′
, ‖g‖Hp′ ≤ 1, and taking into account

that the dual of Hp is isomorphic to Hp′
, we get

‖f‖Hp ≤ C
∥∥∥(∑

I∈L

(
E
I
|Δ

I
f |p)2/p)1/2∥∥∥

p
,

which is exactly condition (ii). �

4.1.2. Counterexamples in Theorem 4.1. To prove (iii), take I0 = [0, 2). Fix
n ∈ N, n > 2 and let

Ik = [0, rk), Jk = [rk, rk−1),

where r = 1− 1/n, k = 1, 2, . . . n. Note that Ik−1 is a disjoint union of Ik and Jk.
We assume here that Ik, Jk ∈ Lk; we will only consider functions whose only

nonzero martingale differences are Δ
Ik−1

f , k = 1, 2, . . . , n, so the other intervals

in Lk are irrelevant for our construction.
For k = 1, 2, . . . , n define

Δ
Ik−1

f = 1
Jk

− α1
Ik

where α = 1/(n− 1), so
´
X Δ

Ik−1
fdx = 0. Since Ik ∩ Jk = ∅,

|Δ
Ik−1

f |2 = 1
Jk

+ α21
Ik

≤ 1
Jk

+ α21
I1
.
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Since the intervals Jk, k = 1, 2, . . . , n, are disjoint, we can see that on I0

(n−1∑
k=0

|Δ
Ik
f |2

)1/2

≤
(
1 +

n∑
k=1

α2
)1/2

≤
(
1 + n

1

(n− 1)2

)1/2

≤ 21/2

(each point x ∈ I0 belongs to at most one of the intervals Jk, which contributes 1
to the sum, and each Ik contributes α2). Therefore

(4.4)
∥∥∥(n−1∑

k=0

|Δ
Ik
f |2

)1/2∥∥∥
p
≤ 21/2.

On the other hand, for x ∈ Ik−1,

E
Ik−1

|Δ
Ik−1

f |p =
1

n
+ (1− 1/n)αp ≥ 1

n
,

so for x ∈ In,
n∑

k=1

(
E
Ik−1

|Δ
Ik−1

f |p)2/p ≥ n
( 1

n

)2/p

= n1−2/p.

Since p > 2 we have n1−2/p → ∞ as n → ∞, so by increasing n we can make
the left side of (4.2) as large as we want (because |In| = (1 − 1/n)n > 1/2e for
sufficiently large n). By (4.4) the right side of (4.2) is uniformly bounded. Thus,
the uniform (in all lattices) estimate (4.2) fails.

Repeating the construction (with n → ∞) on disjoint intervals, we get a lattice
where the uniform (in f) estimate (4.2) fails. But from this one can easily construct
a function such that the right side of (4.2) is finite, but the left side is infinite.

The same construction allows us to prove statement (iv) as well. We can easily
see that on J = ∪n

k=1Jk, (n−1∑
k=0

|Δ
Ik
f |2

)1/2

≥ 1.

Note that |J | = 1 − rn = 1 − (1/n)n, so for sufficiently large n, we can estimate
that |J | > 1/2. Therefore

∥∥∥(n−1∑
k=0

|Δ
Ik
f |2

)1/2∥∥∥
p
≥ 2−1/p.

On the other hand, for x ∈ Ik−1,

E
Ik−1

|Δ
Ik−1

f |p =
1

n
+ (1− 1/n)αp =

1

n
+
(n− 1

n

)( 1

n− 1

)p

≤ 2

n
,

so for x ∈ I0,

n∑
k=1

(
E
Ik−1

|Δ
Ik−1

f |p)2/p ≤ n
( 2

n

)2/p

= 22/pn1−2/p.
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Therefore

∥∥∥(n−1∑
k=0

(
E
Ik
|Δ

Ik
f |p)2/p)1/2∥∥∥

p
≤ 21/pn1/2−1/p → 0 as n → ∞,

because p < 2. So for p ∈ [1, 2) the uniform estimate (4.3) fails, and from this
it is easy to get a function for which the right side is finite, but the left side is
infinite. �

4.1.3. Not a strong unconditional basis.

Proposition 4.2. There exist a lattice L such that the martingale difference
spaces D

I
do not form a strong unconditional basis.

This proposition also demonstrates that, unlike the p = 2 case, the uniform
boundedness in Lp of the blocks T

I
of a martingale transform T does not imply

the boundedness of T in Lp if p �= 2.
The proof of the proposition can be obtained by modifying the construction

in Section 4.1.2. Define I0 = [0, 1). Fix n ∈ N, n > 2. Let split I0 into two
subintervals, I1 and J1, where |J1| = (1/n)|I0|, so |I1| = (1 − 1/n)|I0|, and let us
split the intervals I1 and J1 into two equal subintervals, Ik1 , J

k
1 , k = 1, 2. These

four intervals will be children of I0.
For an interval I, let h

I
be the Haar function (normalized in L∞),

h
I
= 1

I+
− 1

I−
,

where I+ and I− are the right and left halves of I respectively.
Define the martingale differences in D

I0
,

Δ
I0
f = h

J1
+ αh

I1
, Δ

I0
g = β(h

J1
+ h

I1
),

where, as in Section 4.1.2, α = (n− 1)−1, and β = n−p
(
1 + (n− 1)1−p

)1/p
, so

(4.5) ‖Δ
I0
f‖p = ‖Δ

I0
g‖p.

We then apply the same construction to the “children” Ik1 of I0, then to all
“children” Ij2 of all Ik1 and so on. Note, that we do not care about the “children”
of the “smaller” intervals Jk

r , because we set the martingale differences to zero for
all intervals different from one of Ijk.

So, we get the collection of intervals Ijk and the corresponding martingale dif-
ferences ΔIj

k
f and ΔIj

k
g, constructed in the same manner as in (4.5).

Now let us notice that this construction just models the construction from
Section 4.1.2. Namely, for every k ∈ N, the total length of the intervals Ijk is
exactly the length of the interval Ik from Section 4.1.2. It is easy to see that
the function

∑
j |ΔIj

k
f | and the function |Δ

Ik
f | from Section 4.1.2 have the same

distribution function.



Non-homogeneous commutators, paraproducts and BMO 1357

Moreover, the corresponding square functions(∑
k,j

|Δ
Ij
k

f |2
)1/2

and
(∑

k

|Δ
Ik
f |2

)1/2

also have the same distribution function.
The distribution functions of the square function(∑

k,j

|Δ
Ij
k

g|2
)1/2

and of the function (∑
k

(
E
Ik
|Δ

Ik
|p)2/p)1/2

from Section 4.1.2 also coincide. Therefore, all estimates from Section 4.1.2 apply
here, and repeating the reasoning from that section we prove the proposition. �

4.2. “Paraproduct” version of the embedding theorem

Let b = {bI}
I∈L be a family of functions such that bI is supported on I and is

constant on “children” of I. Define a “paraproduct type” operator π̃ = π̃b by

(4.6) π̃bf( · , k) =
∑

I∈L:rk(I)=k

〈f〉
I
bI .

If bI = Δ
I
b for some scalar function b, this is just the vector representation of the

classical paraproduct. However, here we do not assume that the bI are orthogonal
to constants, so here b is simply a collection of functions bI .

We want to know when this operator is a bounded operator Lp → Lp(�q),

1 < p < ∞ (or from H̃p → Lp(�q), if we are also interested in the case p = 1).
If each bI is constant on I, the answer is given by Theorem 2.7 above, and it

does not depend on p ∈ [1,∞). In the general case, if we do not assume that the
lattice is homogeneous, the answer generally depends on p; one can easily come
up with a counterexample in the simplest situation when only the bI with I in a
disjoint family are nonzero.

Theorem 4.3. Let p ∈ [1,∞), q ∈ (1,∞). The operator π̃b defined above is a

bounded operator H̃p → Lp(�q) if and only if

(4.7) sup
I∈L

 
I

( ∑
J∈L:J⊂I

|bJ(x)|q
) 1

q p

dx = Kp < ∞

Moreover, the norm of π̃b is bounded by CK, where C = C(p).

Proof. (Necessity and the easy case p ≤ q). The necessity of the condition (4.7)
is trivial, one just needs to test the boundedness of π̃b on the characteristic func-
tion 1

I
, I ∈ L, and when computing the Lp(�q)-norm count only the 〈f〉

J
bJ

corresponding to J ⊂ I.
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To be completely honest, this test function works fine for p > 1; for p = 1 one
should take for the test function f = 1I −α1K\I , where K is the first ancestor of I
for which 2|I| ≤ |K|, and α ∈ R is such, that

´
fdx = 0 (if no such K exists, one

can take 1
I
for the test function). We refer the reader to the proof of Theorem 2.7

for the details.
To prove the sufficiency, let us first fix the notation. As in the proof of Theo-

rem 2.7, let Ek := {x ∈ X : MLf(x) > 2k} and let Ek := {I ∈ L : I ⊂ Ek}.
For E ⊂ L let (π̃bf)E be the coordinate projection of π̃bf corresponding to the

set E , meaning that the sum in (4.6) is taken only over I ∈ E .
The sufficiency for p ≤ q is proved in exactly the same way as in Theorem 2.7:

using the same reasoning as was used there, we get the analogue of (2.16), namely
that ∑

k∈Z

∥∥(π̃bf)Ek\Ek+1

∥∥p
Lp(�q)

≤ C‖f‖pp,

(this inequality holds for all p, q ∈ (1,∞) with C = C(p, q)).
If p ≤ q, this gives immediately the desired estimate in the same way as in the

proof of Theorem 2.7. We did not use the fact that the α
I
were constants there;

the estimate works for arbitrary functions. �

4.2.1. Stopping moments and the hard estimate in Theorem 4.3. To
treat the estimate in the situation when p > q we employ the stopping moment
technique.

First of all let us note that if p > q > 1, then p > 1, so the space H̃p is
isomorphic to Lp. This means that without loss of generality we can assume f ≥ 0,
which we will do in what follows (note that we cannot do this for H̃1).

So, let us assume f ≥ 0, f ∈ Lp.
To prove the theorem we are going to construct the generations G∗

k of stopping
intervals. For an interval J ∈ L let G∗(J) be the collection of the maximal (with
respect to inclusion) intervals I ∈ L, I ⊂ J such that

〈f〉
I
> 2〈f〉

J
.

Fix some k0 ∈ Z (later we let k0 → −∞) and define G∗
1 := Lk0 ,

G∗
k+1 :=

⋃
I∈G∗

k

G∗(I), G∗ =
⋃
k≥1

G∗
k .

For an interval J let L(J) := {I ∈ L : I ⊂ J}, and let

F(J) := L(J) \ ∪I∈G∗(J)L(I).(4.8)

We will need the following simple lemma.

Lemma 4.4. Let J ∈ L. Then,

(i) for any I ∈ F(J) we have 〈f〉
I
≤ 2〈f〉

J
;

(ii)
∑

I∈G∗(J) |I| ≤ |J |/2.
Proof. The proof is an easy exercise for the reader. �
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Corollary 4.5. The collection G∗ of stopping intervals satisfies the Carleson mea-
sure condition

(4.9)
∑

I∈G∗,I⊂J

|I| ≤ 2|J | ∀J ∈ L.

Proof. For an interval I ∈ L let G(I) be the collection of intervals which are
maximal for the family {I ′ ∈ G∗ : I ′ ⊂ I}. Denote G1 := G(J), and for k ≥ 1
define

Gk+1 :=
⋃

I∈Gk

G∗(I) =
⋃

I∈Gk

G(I).

The collection G1 = G(J) consists of disjoint intervals, so
∑

I∈G1
≤ |J |. State-

ment (ii) of the lemma implies that∑
I∈Gk+1

|I| ≤ 1

2

∑
I∈Gk

|I|, k ≥ 1.

Since {I ∈ G∗ : I ⊂ J} =
⋃∞

k=1 Gk, we immediately get (4.9) by summing a geo-
metric series. �

Remark 4.6. The estimate (4.9) means that the sequence w = {w
I
}I∈L

w
I
=

{ |I|1/p, I ∈ G∗,
0, I /∈ G∗,

belongs to the space ġp
∞.

Recall that for E ⊂ L the coordinate projection (π̃bf)E is defined by taking the
sum in (4.6) only over I ∈ E .

Let Lk0 :=
⋃

k≥k0
Lk. To prove the theorem it is sufficient to get an estimate

of the norm of (π̃bf)Lk0
uniform in k0. Since Lk0 =

⋃
J∈G∗ F(J) (see (4.8) for the

definition of F(J)), we have the decomposition

(π̃bf)Lk0
=

∑
J∈G∗

(π̃bf)F(J)
.

Statement (i) of Lemma 4.4 together with the assumption (4.7) imply that∥∥∥(π̃bf)F(J)

∥∥∥
Lp(�q)

≤ 2K〈f〉
J
|J |1/p.(4.10)

Take g ∈ Lp′
, ‖g‖p′ ≤ 1. Then

(4.11)

ˆ
X
‖(π̃bf)Lk0

(x, · )‖
�q
|g(x)|dx ≤

∑
J∈G∗

ˆ
J

‖(π̃bf)F(J)
(x, · )‖

�q
|g(x)|dx

Let us denote by G(J) the “shadow’ of G∗(J), G(J) := ∪I∈G∗(J)I. Each integral
in the sum on the right-hand side of (4.11) can be split asˆ

J

· · · =
ˆ
J\G(J)

· · · +
ˆ
G(J)

· · · = A(J) +B(J).
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The sum of A(J) is easy to estimate. Namely, using (4.10) and the fact that
the sets J \G(J), J ∈ G∗ are disjoint we can write∑

J∈G
A(J) ≤

∑
J∈G∗

‖(π̃bf)F(J)
‖
Lp(�q)

‖g1
J\G(J)

‖
p′

≤
( ∑

J∈G∗
‖(π̃bf)F(J)

‖p
Lp(�q)

)1/p( ∑
J∈G∗

‖g1
J\G(J)

‖p′
p′

)1/p′

Hölder

≤
( ∑

J∈G∗
‖(π̃bf)F(J)

‖p
Lp(�q)

)1/p

‖g‖p′ J \G(J) are disjoint

≤ 2K
( ∑

J∈G∗

∣∣〈f〉
J

∣∣p |J |)1/p

‖g‖p′ by (4.10).

The collection G∗ satisfies the Carleson measure condition (4.9), so by the Carleson
embedding theorem (Theorem 2.7 for p = q; see Remark 4.6) we get that∑

J∈G∗

∣∣〈f〉
J

∣∣p |J | ≤ C ‖f‖pp,(4.12)

which gives the desired estimate for
∑

J∈G∗ A(J).
To estimate the sum of the B(J), let us notice that for J ∈ G∗ the function

(π̃bf)F(J) is constant on intervals I ∈ G∗(J), so the integral B(J) does not change
if we replace g there by the function g

J
,

g
J
:=

∑
I∈G∗(J)

〈g〉
I
1
I
.

Since
‖g

J
‖p′
p′ =

∑
I∈G∗

k+1,I⊂J

|〈g〉
I
|p′ |I|,

using (4.10) we can estimate

(4.13) B(J) ≤ 2K〈f〉
J
|J |1/p

( ∑
I∈G∗(J)

| 〈g〉
I
|p′ |I|

)1/p′

.

Since the collections G∗(J), J ∈ G∗ are disjoint and
⋃

J∈G∗ G∗(J) ⊂ G∗, applying
the Hölder inequality to (4.13) we get

∑
J∈G∗

B(J) ≤
( ∑

J∈G∗

∣∣ 〈f〉
J

∣∣p |J |)1/p( ∑
I∈G∗

∣∣ 〈g〉
I

∣∣p′
|I|

)1/p′

.(4.14)

The first factor on the right side was already bounded by C‖f‖p in (4.12). The
second factor is estimated in exactly the same way by ‖g‖p′. Note that while
the collection G∗ of stopping intervals depends on f , only the Carleson measure
condition (4.9) was used to prove (4.12), so (4.12) holds for g (with p′ instead of p).
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Combining (4.14) with the estimate for the sum of A(J)s, we get

ˆ
Ek0

‖(π̃bf)Ek0

(x, · )‖
�q
|g(x)| dx ≤ C ‖f‖p ‖g‖p′.

Letting k0 → −∞ concludes the proof. �

Remark. The estimates (4.10) and (4.12) imply that, for p > 1,∑
J∈G∗

∥∥(π̃bf)F(J)

∥∥p
Lp(�q)

≤ C ‖f‖pp.(4.15)

Since ‖x‖�q ≤ ‖x‖�p for p ≤ q, the conclusion of Theorem 4.3 for 1 < p ≤ q follows
easily from (4.15).

This reasoning does not work for p = 1: if p = 1 we cannot assume without loss
of generality that f ≥ 0, and this assumption was essential in the construction.

The proof we presented earlier for the easy case p ≤ q works for all p ≥ 1.

4.3. Bounds for paraproducts

We will need the following simple lemma.

Lemma 4.7. Let I be a disjoint union of sets I1 and I2, and let h be a “Haar
function”, i.e., h = α11I1

+ α21I2
and

´
X hdx = 0. Then, assuming without loss

of generality that |I1| ≤ |I2| we get that for p ∈ [1,∞)

‖h‖pp ≤ 2‖h1
I1
‖pp

and that the inverse Hölder inequality holds:

‖h‖p‖h‖p′ ≤ 2‖h‖22, 1/p+ 1/p′ = 1.

Proof of Lemma 4.7. Assume without loss of generality that |I1| ≤ |I2|. The con-
dition

´
X hdx = 0 means that

α1|I1| = −α2|I2|,
which immediately implies |α2| ≤ |α1|. Then

ˆ
X
|h|pdx = |α1|p |I1|+ |α2|p |I2| = |α1|p |I1|+ |α2|p−1 |α1| |I1| ≤ 2 |α1|p |I1|,

so
‖h‖pp ≤ 2 ‖h1

I
‖pp

and similarly for p′.
Since for constant functions the Hölder inequality becomes an identity, using

the above estimate we can write

‖h‖p‖h‖p′ ≤ 2 ‖h1
I
‖p ‖h1I

‖p′ = 2 ‖h1
I
‖22 ≤ 2 ‖h‖22. �
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Theorem 4.8. Let b = {Δ
I
b}I∈L be a martingale difference sequence, and let

p ∈ [1,∞), q ∈ (1,∞). Then:

(i) The paraproduct πb is a bounded operator from H̃p to Hp
q if and only if

(4.16) sup
I∈L

 
I

( ∑
J∈L:J⊂I

|Δ
J
b(x)|q

) 1
q p

dx =: Kp < ∞.

Moreover,
K ≤ ‖πb‖

˜Hp→Hp
q

≤ CK,

where C = C(p, q).

(ii) The paraproduct π
(∗)
b is a bounded operator in H̃p = H̃p

2 if and only if b ∈
BMO = BMO2. Moreover,

1

C
‖b‖BMO ≤ ‖π(∗)

b ‖
˜Hp→ ˜Hp

≤ C ‖b‖BMO ,

where C = C(p).

Remark 4.9. For q = 2, statement (i) of the theorem describes the boundedness of

the paraproduct πb in H̃p (or equivalently, in H̃p). For p ∈ (1,∞) this is equivalent
to the boundedness of πb in Lp.

Note that, unlike the condition b ∈ BMO, which is necessary and sufficient

for the boundedness of π
(∗)
b in all H̃p, the above condition (4.16) (for q = 2, for

example) does depend on p.

Remark 4.10. Note that the condition (4.16) (for p = q = 2) is weaker then the
condition b ∈ BMO. Since by Proposition 1.5

Mb = πb + π∗
b + Λb +Rb,

and λb and Rb commute with all martingale multipliers, the above theorem implies,
in particular, that unlike the homogeneous case, it is impossible in general to
characterize b ∈ BMO via boundedness of the commutators of Mb with martingale
multipliers.

Proof of Theorem 4.8. The statement (i) is easy. The “only if” part and the esti-
mate K ≤ ‖πb‖ follow from testing the boundedness of πb on functions 1

I
, I ∈ L.

The “if” part with the estimate ‖πb‖ ≤ CK follow from Theorem 4.3 above.
Let us prove statement (ii). Notice that, by Proposition 1.5,

π
(∗)
b = π∗

b + Λ1
b.

If b ∈ BMO, we know that, for any p′ ∈ (1,∞),

sup
I∈L

 
I

( ∑
J∈L:J⊂I

|Δ
J
b(x)|2

) 1
2p

′

dx ≤ C‖b‖p′
BMO.

Taking p′ to be the exponent dual to p, 1/p + 1p′ = 1, we get that, by (i), πb is

bounded in H̃p′
, so by duality π∗

b is bounded in H̃p.
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Since, by Proposition 1.5,

(4.17) Λ1
bf =

∑
I∈L

Δ
I

[
(Δ

I
b)(Δ

I
f)
]
=

∑
I∈L

(Δ
I
b)(Δ

I
f)−

∑
I∈L

E
I

(
(Δ

I
b)(Δ

I
f)
)
,

and by the definition of BMO we have ‖Δ
I
b‖∞ ≤ ‖b‖BMO, we can conclude

that Λ1
b is bounded in H̃p. Indeed, since ‖Δ

I
b‖∞ ≤ ‖b‖BMO,

ˆ
X

(∑
I∈L

∣∣(Δ
I
b)(Δ

I
f)
∣∣2)p/2

dx ≤ ‖b‖pBMO

ˆ
X

(∑
I∈L

∣∣Δ
I
f
∣∣2)p/2

dx = ‖b‖pBMO‖f‖p˜Hp
.

By the Fefferman–Stein maximal theorem we get from this inequality
ˆ
X

(∑
I∈L

∣∣E
I
((Δ

I
b)(Δ

I
f))

∣∣2)p/2

dx ≤ C‖b‖pBMO‖f‖p˜Hp
.

Hence both sums in (4.17) can be controlled and we get that Λ1
b is bounded in H̃p.

Assume now that π
(∗)
b is bounded in H̃p, so that(

π
(∗)
b

)∗
= πb + (Λ1

b)
∗ = πb + Λ1

b

is bounded in H̃p′
. Testing this operator on the functions 1

I
and counting in the

result only martingale differences with J ⊂ I, we get

(4.18) sup
I∈L

 
I

( ∑
J∈L:J⊂I

|Δ
J
b(x)|2

) 1
2p

′

dx ≤ Kp′
< ∞, K =

∥∥(π(∗)
b

)∗∥∥
Hp→Hp

By (i) this means that πb is bounded in Hp′
(with norm at most CK), and so Λ1

b

is also bounded in Hp′
with the norm at most C1K. By duality, Λ1

b is bounded
in Hp (with the same norm).

The estimate (4.18) also implies that ‖Δ
I
b‖p′ ≤ K|I|1/p′

.

To prove that b ∈ BMOq′ there remains only to show that, for all I ∈ L,
‖Δ

I
b‖∞ ≤ CK.

Assume that ‖Δ
I
b‖∞ ≥ 21/pK, because otherwise we already have the desired

estimate. Let J ∈ child(I) be an interval where ‖Δ
I
b‖∞ is attained. Then

2Kp |J | ≤ ‖Δ
I
b‖p∞ |J | ≤ ‖Δ

I
b‖pp Kp |I|,

so |J | ≤ |I|/2.
Define a test function h by

h := 1
J
− α1

I\J , α = |J |/(|I| − |J |) ≤ 1,

so
´
X hdx = 0. Since |J | ≤ |I \ J |, Lemma 4.7 implies that

‖h‖pp ≤ 2 ‖1
J
‖pp = 2 |J |.
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Our test function Δ
I
h = h is the only nonzero martingale difference, so (4.17)

yields
‖hΔ

I
b‖p ≤ ‖Λ1

bh‖p + ‖E
I
(hΔ

I
b)‖p.

We can estimate

‖hΔ
I
b‖p ≥ ‖1

J
hΔ

I
b‖p = |J |1/p ‖Δ

I
b‖∞.

On the other hand,

‖Λ1
bh‖p ≤ C1K‖h‖p = C1K(2|J |)1/p

and

‖E
I
(hΔ

I
b)‖p ≤ |I|1/p

 
I

|hΔ
I
b| dx ≤ |I|1/p−1 ‖Δ

I
‖p′ ‖h‖p

≤ 0|I|1/p−1K |I|1/p′
(2|J |)1/p = 21/p K |J |1/p.

Combining the preceeding we get that

|J |1/p‖Δ
I
b‖∞ ≤ 21/pC1K|J |1/p + 21/pK|J |1/p,

so ‖Δ
I
b‖∞ ≤ CK, C = 21/p(C1 + 1). �

5. Boundedness of commutators in Lp

5.1. Sufficiency

We start with a simple proposition.

Proposition 5.1. Let p ∈ (1,∞), and let T be a martingale transform bounded

in Lp (equivalently in H̃p
2 ). Let b be a locally integrable function.

If the formal sum b0 :=
∑

I∈LΔ
I
b is in BMO, the commutator [Mb, T ] =

MbT − TMb is bounded in Lp (equivalently in H̃p). Moreover, for C = C(p),∥∥[Mb, T ]
∥∥
Lp→Lp

≤ C ‖T ‖
Lp→Lp‖b0‖BMO ,

Remark. Note that the case p = 1 is not included here. While the condition
b0 ∈ BMO is necessary and sufficient for the boundedness of the paraproduct πb

in H̃1, this condition is not sufficient for the boundedness of the adjoint π∗
b there,

even in the simplest case of the standard dyadic grid.
This can be seen easily by going to the dual space and noticing that the con-

dition b ∈ BMO is not sufficient for the boundedness of the paraproduct πb in
BMO (here we are considering the simplest case of the standard dyadic grid on R,
so all BMO spaces are the same). Since the condition f ∈ BMO does not imply
any bounds on the averages 〈f〉

I
, one can take an unbounded function f ∈ BMO

(so the averages 〈f〉
I
are not uniformly bounded) and easily construct a function

b ∈ BMO such that πbf /∈ BMO.

Proof of Proposition 5.1. By Proposition 1.5,

Mb = π
(∗)
b + Λ0

b + πb +Rb.



Non-homogeneous commutators, paraproducts and BMO 1365

The operator Λ0
b commutes with all martingale transforms, so we can exclude

it from the commutator. Since TRb = RbT = 0, we can exclude Rb as well, so

[Mb, T ] = [πb + π
(∗)
b , T ].

Therefore, if πb and π
(∗)
b are bounded, the commutator is bounded as well. But

according to Theorem 4.8, the condition b ∈ BMO implies the boundedness of both

of the paraproducts πb and π
(∗)
b (for q = 2 condition (i) of Theorem 4.8 follows

from condition (ii) there). �

It will be shown later that in the case where A0,fin
−∞ ∩L = ∅ and the martingale

transform T has the right “mixing” properties, the condition
∑

I∈L ΔIb ∈ BMO
is also necessary for the boundedness of the commutator. If A0,fin

−∞ ∩ L �= ∅, the
sufficient condition

∑
I∈L ΔIb ∈ BMO can be relaxed a little. As will be shown

below in Section 5.2, this relaxed condition is also necessary (again if the martingale
transform T has the right “mixing” properties).

5.2. Necessity

We want to state and prove an inverse (at least partial) to Proposition 5.1. Of
course, to prove such a theorem one needs to make some additional assumptions
about the martingale transform T (for example, the identity is a martingale trans-
form, and it commutes with everything).

Definition 5.2. Let T be a martingale transform. Following S. Janson [8], we
say that an interval I ∈ L with parent I ′ is (p, ε,K) non-degenerate for T if there
exists h = h

I′ ∈ D
I′ = Δ

I′L
2, such that

(i) ‖h‖p = 1,

(ii) h|I = 0 ,

(iii) ‖1
I
T
I′h‖p ≥ ε,

(iv) ‖h‖∞ ≤ K|I ′|−1/p if I is “small”, namely if |I| < |I ′|/K.

The last condition (iv) means that for “small” intervals I the function h has to
be “spread” over the interval I ′. If we omit condition (iv), we get the definition of
a (p, ε) non-degenerate interval.

We say that the martingale transform T is weakly (p, ε,K) mixing if each
interval I with a parent is either (p, ε,K) non-degenerate for T or (p′, ε,K) non-
degenerate for the adjoint T ∗.

We say that the martingale transform T is strongly (p, ε,K) mixing if each
interval I with a parent is (p, ε,K) non-degenerate.

Using the notion of (p, ε) non-degenerate intervals, one can define weakly and
strongly (p, ε) mixing martingale transforms.

Remark. The above definition of weakly (p, ε) mixing martingale transform is es-
sentially a restatement (and a generalization) of the definition of a non-degenerate
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transform from [8]. It was given there for the case of the uniform r-adic lattice,
with all the operators TI being equal (after canonical identification of the sub-
spaces DI).

Recall, that in our notation the r-adic lattice can be represented as a union of
generations Lk, k ∈ Z+, where

L0 = {[0, 1)} and Lk = {j + 2−rk[0, 1): j = 0, 1, 2, . . . rk − 1}.
For the case considered in [8], our definition coincides with the definition given

there. The easiest way to see this equivalence is to look directly at the proof of
Theorem 2 in [8] (at least that was the easiest way for me).

Note also, that for homogeneous lattices the norms ‖f‖p|I|−1/p on D
I
are all

equivalent. This means that any (weakly or strongly) (p, ε) mixing martingale
transform is also (p, ε,K) mixing (resp. weakly or strongly) with appropriate K.
It also mean that any (p, ε) mixing martingale transform is also (r, ε′) mixing with
appropriate ε′.

Recall that we defined the formal sum b0 =
∑

I∈L Δ
I
b. Define also the for-

mal sum

(5.1) b̃0 :=
∑

I∈L\A0,fin
−∞

Δ
I
b

(note that b0 = b̃0 if A0,fin
−∞ ∩ L = ∅).

Theorem 5.3. Let p ∈ (1,∞) and let T be a strongly (p, ε,K) mixing martingale
transform, such that its blocks T

I
are uniformly bounded in Lp.2

If the commutator [T,Mb] is bounded in Lp, then b̃0 ∈ BMO = BMO2.
Moreover, for p = 2 it is sufficient to assume that T is a weakly (2, ε,K) mixing

martingale transform.
Finally, the norm ‖b̃0‖BMO can be estimated by a constant depending on p,

‖[Mb, T ]‖Lp→Lp , supI∈L ‖T
I
‖, and ε and K from Definition 5.2.

Proposition 5.4. Let p ∈ (1,∞) and let T be a (possibly unbounded ) strongly
(p, ε) mixing martingale transform (weakly (p, ε) mixing for p = 2).

If the commutator [Mb, T ] is bounded in Hp
2, then for any interval I ∈ L\A0,fin

−∞ ,
there holds the uniform estimate

(5.2)

 
I

( ∑
J∈L:J⊂I

|Δ
J
b|2

)p/2

dx ≤ C < ∞, C1/p = C1 ‖[Mb, T ]‖/ε.

where C1 = C1(p).

Proof of Proposition 5.4. The proof follows [8] directly. For an interval I, let I ′ be
its parent, so I∈child(I ′). We know that I is (p, ε) non-degenerate. Let h=hI′ ∈DI′

be the function from Definition 5.2 such that ‖h‖p = 1, h|I = 0 and ‖1
I
T
I′h‖p ≥ ε.

Note that ‖h‖p = ‖h‖Hp
2
.

2Note, that for p �= 2 this condition is weaker than the boundedness of T in Lp.
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Recall that the function Th = TI′h is constant on I, and let c be its value
there. The inequality ‖1ITI′h‖p ≥ ε means that |c| ≥ ε|I|−1/p.

We get that, on I,
MbTh = cb.

On the other hand, bh = 0 on I, so (Tbh)|I is a constant, so for J ⊂ I,

Δ
J

(
(MbT − TMb)h

)
= cΔ

J
b.

The fact that MbT − TMb is bounded in
◦
Hp

2 implies that

|c| ·
∥∥∥( ∑

J∈LJ⊂I

|Δ
J
b|2

)1/2∥∥∥
p
≤ C, C = ‖[Mb, T ]‖,

so taking into account that |c| ≥ ε|I|−1/p we get the conclusion of the proposition.
For p = 2, we can assume that T is weakly (p, ε) mixing, because if I is (p, ε)

non-degenerate for T ′, we can consider the adjoint of the commutator, to get the
same conclusion. This would not work for p �= 2, because in this case we get the
estimate with the exponent p′ instead of p. �

5.2.1. Proof of Theorem 5.3. To prove the theorem we need to show that
‖Δ

I
b‖∞ are uniformly bounded for all I ∈ L \ A0,fin

−∞ .

Consider an interval (let us call it I ′) belonging to L\A0,fin
−∞ . Notice that inequal-

ity (5.2) implies that ‖Δ
I′ b‖p ≤ C1/p|I ′|1/p < ∞. Assume that M := ‖Δ

I′ b‖∞ is

attained on I ∈ child(I ′).
We can assume that |I| < |I ′|/K, because otherwise

‖1
I
Δ

I′ b‖p∞ = |I|−1‖1
I
Δ

I′ b‖pp ≤ |I|−1‖Δ
I′ b‖pp ≤ |I|−1C|I ′| ≤ KC.

Define
g = 1

I
− γ1

I′\I ,

where the constant γ is chosen so
´
X gdx = 0. Let E ⊂ DI′ be the annihilator of g

in DI′ ,

E =
{
f ∈ DI′ :

ˆ
X
gfdx = 0

}
.

Note that E consist of all functions f ∈ DI′ supported outside of I. Indeed, any
such function annihilates g, and counting dimensions, we can conclude that these
are all the functions in the annihilator.

This structure for E implies thatˆ
X
f g dx = 0 ∀f ∈ E,

so E is the orthogonal complement of g in DI′ . Therefore, DI′ can be decomposed
as the direct sum of span{g} and E.

Let h = h
I′ be the function in Definition 5.2. We can decompose

(5.3) (Δ
I′ b)TI′h = αg + f + E

I′ [(ΔI′ b)(TI′h)], f ∈ E.
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By the assumption (iii) from Definition 5.2, |T
I′h| ≥ ε|I|−1/p on I. Therefore,

since f |I = 0 and g|I = 1, from (5.3) we get, by restricting to I and comparing Lp

norms (divided by |I|1/p), that
ε|I|−1/p‖Δ

I′ b‖∞ ≤ |α|+ ‖E
I′ [(ΔI′ b)(TI′h)]‖∞

≤ |α|+ |I ′|−1‖Δ
I′ b‖p′ ‖T

I′‖ ‖h‖p ≤ |α|+ C |I ′|−1 ‖Δ
I′ b‖p′ .(5.4)

So, to estimate ‖Δ
I′ b‖∞ we need to estimate both terms on the right side of (5.4).

We get the bound on |α| from the boundedness of the commutator. Namely,
since

b
∣∣
I′= E

I′ b+Δ
I′ b+

∑
J∈L:J�I′

Δ
J′ b =: E

I′ b+Δ
I′ b+ bI

′

and bI
′ ⊥ D

I′ , b
I′
D

I′ ⊥ D
I′ , we can write

〈MbTh, g〉 = 〈MbTI′h, g〉 =
〈
(Δ

I′ b)TI′h, g〉+ 〈(E
I′ b)TI′h, g

〉
,

〈TMbh, g〉 = 〈T
I′Mbh, g〉 =

〈
T
I′ (ΔI′ b)h, g〉+ 〈T

I′ (EI′ b)h, g
〉
.

Here we slightly abuse notation by treating T
I′ as an operator on all of Lp, i.e.,

as a martingale transform whose only nonzero block is T
I′ (we need to do that

because (Δ
I′ b)h does not generally belongs to D

I′ ). In this context T
I′ (ΔI′ b)h =

T
I′
[
(Δ

I′ b)h−E
I′ ((ΔI′ b)h)

]
, where T

I′ on the right side can be treated as a block
acting on D

I′ .

Using the fact that (E
I′ b)TI′h = T

I′ (EI′ b)h we conclude, abusing notation as

above, that, for the commutator [Mb, T ] = MbT − TMb,

(5.5)
〈
[Mb, T ]h, g

〉
=

〈
(Δ

I′ b)TI′h, g
〉− 〈

T
I′ (ΔI′ b)h, g

〉
.

We get from (5.3) that

(5.6)
∣∣〈(Δ

I′ b)TI′h, g
〉∣∣ = |α| · ‖g‖22 ≥ |α| · |I|.

By Lemma 4.7, ‖g‖p′ ≤ 21/p
′‖1

I
‖p′ = 21/p

′ |I|1/p′
. Using this estimate and the

assumption ‖h‖∞ ≤ K|I ′|−1/p, we get∣∣〈T
I′ (ΔI′ b)h, g

〉∣∣ ≤ ‖T
I′‖ · ‖h‖∞ ‖Δ

I′ b‖p ‖g‖p′

≤ C K |I ′|−1/p C |I ′|1/p 21/p |I|1/p′ ≤ C |I|1/p′
.

Using the above estimate together with the estimate∣∣〈[Mb, T ]h, g
〉∣∣ ≤ C ‖h‖p ‖g‖p′ ≤ C · 1 · |I|1/p′

we get from (5.5) and (5.6) that

|α| · |I| ≤ ∣∣〈(Δ
I′ b)TI′h, g

〉∣∣ ≤ ∣∣〈[Mb, T ]h, g
〉∣∣+ ∣∣〈T

I′ (ΔI′ b)h, g
〉∣∣

≤ C |I|1/p′
+ C |I|1/p′

= C |I|1/p′
,

so
|α| ≤ C|I|−1/p.
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Combining the last inequality with (5.4) we get

‖Δ
I′ b‖∞ ≤ |I|1/p

ε
|α|+ C

|I|1/p
ε

‖Δ
I′ b‖p′ |I ′|−1(5.7)

≤ C + C|I|1/p|I ′|−1‖Δ
I′ b‖p′ .

If p′ ≤ p, the Hölder inequality implies that

|I ′|−1/p′‖Δ
I′ b‖p′ ≤ |I ′|−1/p‖Δ

I′ b‖p ≤ C ,

so
‖Δ

I′ b‖∞ ≤ C + C|I|1/p|I ′|−1/p ≤ C′.

If p′ > p, Lemma 5.5 below implies that

‖Δ
I′ b‖p′ ≤ ‖Δ

I′ b‖p/p
′

p ‖Δ
I′ b‖1−p/p′

∞ ,

and we get, from (5.7),

‖Δ
I′ b‖∞ ≤ C + C |I|1/p |I ′|−1 ‖Δ

I′ b‖p/p
′

p ‖Δ
I′ b‖1−p/p′

∞(5.8)

≤ C + C |I|1/p |I ′|−1/p ‖Δ
I′ b‖1−p/p′

∞ ,

the last inequality being true because

|I ′|−1/p′‖Δ
I′ b‖p/p

′
p =

(|I ′|−1/p‖Δ
I′ b‖p

)p/p′
≤ Cp/p′ ≤ C′.

Since |I| ≤ |I ′|, (5.8) implies

‖Δ
I′ b‖∞ ≤ C + C‖Δ

I′ b‖1−p/p′
∞ ,

which gives us a bound ‖Δ
I′ b‖∞ ≤ C′. �

Lemma 5.5. Let f be a bounded measurable function on a measure space X. Then
for any q > p

‖f‖q ≤ ‖f‖p/qp ‖f‖1−p/q
∞ .

Proof.

‖f‖qq =
ˆ
X
|f |q dμ =

ˆ
X
|f |p |f |q−p dμ ≤ ‖f‖q−p

∞

ˆ
X
|f |p dμ = ‖f‖q−p

∞ ‖f‖pp ,

and raising this inequality to the power 1/q we get the conclusion of the lemma. �

5.3. Relaxing the sufficient condition

If L ∩ A0,fin
−∞ = ∅, we have b0 = b̃0, so b0 ∈ BMO is a necessary and sufficient

condition for the boundedness of the commutator [Mb, T ] (provided that T satisfies
the assumptions of Theorem 5.3).
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If L∩A0,fin
−∞ �= ∅ there is a gap between the necessary and sufficient conditions.

Notice, that the situation L ∩ A0,fin
−∞ �= ∅ is not an exotic one. For example, it

happens in the classical martingale situation, which in our notation means that
Lk = L0 = X for all k < 0 and |X| = 1.

To bridge the gap between the necessary and sufficient conditions in the case
L ∩ A0,fin

−∞ �= ∅, we can relax the sufficient conditions in Proposition 5.1.

Proposition 5.6. Let b be a locally integrable function, and let T be a martingale
transform bounded in Lp. Assume that

(i) b̃0 ∈ BMO, where b̃0 is defined by (5.1);

(ii) for any I ∈ L ∩A0,fin
−∞ ,

‖T
I
Δ

I
b‖p ≤ C1‖1I

‖p = C1|I|1/p, ‖T ∗
I
Δ

I
b‖p′ ≤ C1‖1I

‖p′ = C1|I|1/p′
;

(iii) for any I ∈ L ∩A0,fin
−∞ ,∥∥[(Λ1

b)I , TI

]∥∥
Lp→Lp ≤ C2 < ∞;

here (Λ1
b)I is the restriction of Λ1

b to D
I
.

Then the commutator [Mb, T ] is bounded in Lp, and∥∥[Mb, T ]
∥∥
Lp→Lp ≤ C

(‖T ‖Lp→Lp‖b̃0‖BMO + C1 + C2

)
,

where C = C(p), and C1 and C2 are the constants from (ii) and (iii).

The proof of the theorem is obvious, since for any I ∈ L∩A0,fin
−∞ conditions (ii)

and (iii) are necessary and sufficient for the boundedness of the commutator
[Mb0−˜b0

, T ] in Lp. The necessity here is quite easy: condition (ii) is obtained
by testing the commutator [Mb0−˜b0

, T ] and its adjoint on the function 1
I
. To get

condition (iii) one needs to restrict everything to the subspace D
I
.

Remark 5.7. As follows from the above discussion, if T satisfies the assump-
tions of Theorem 5.3, then conditions (i)–(iii) of Proposition 5.6 are necessary and
sufficient for the boundedness of the commutator [Mb, T ] in Lp.

5.4. Some examples and counterexamples

In this subsection we present examples which will show us that:

(i) Boundedness of the commutator [Mb, T ] does not imply any bounds on Δ
I
b

for I ∈ L ∩ A0,fin
−∞ .

(ii) If the martingale transform T is only strongly (p, ε) mixing (not strongly
(p, ε,K) mixing), then the boundedness of the commutator [Mb, T ] does not
imply any bounds on ‖Δ

I
b‖∞, I ∈ L. This means that the new condition (iv)

in Definition 5.2 is essential and cannot be skipped.

The main building block of our construction will be as follows. Let an interval I
be divided into two subintervals I1,2, |I1|/|I2| = δ > 0. Divide I1 into four equal
intervals Ik, 1 ≤ k ≤ 4 and I2 into four equal intervals Ik, 5 ≤ k ≤ 8.
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The intervals Ik will be the children of I. Define the “Haar functions” hk =
hk
I ∈ D

I
by

hk := 1
I2k

− 1
I2k−1

, 1 ≤ k ≤ 4.

Note, that the functions hk do not span the martingale difference subspace D
I
.

Define also a “Haar function” h = h
I
∈ D

I
by h = 1

I1 − δ1
I2 .

On D
I
, define a block T

I
by

T
I
h1 = h2, T

I
h2 = h1,

T
I
h3 = h4, T

I
h4 = h3, T

I

∣∣
span{hk:1≤k≤4}⊥= 0.

If Δ
I
b = αh

I
, then the block (Λ1

b)I of Λ1
b commutes with T

I
. This together

with the fact that T
I
h
I
= 0 implies that if I ∈ L ∩ A0,fin

−∞ and the block T
I
of a

martingale transform T is as described above, then multiplication operator MhI

commutes with T .
So, if we add to b any multiple of h

I
, we will not be able to detect it by looking

at the commutator [Mb, T ], which gives a example of the statement (i) above.

To give an example of statement (ii), take a finite interval I0 =: X, divide it
into 8 subintervals, as was described above (with δ = δ1) to get the “children”
of I0, then divide each child into 8 parts, and so on. We assume that in each step
we take δ = δn, δn → 0 as n → ∞. This will be our lattice L.

Let T be a martingale transform on L, where each block T
I
is as described

above. Notice, that T is strongly (p, ε) mixing (but not strongly (p, ε,K) mixing).
Notice also, that T is clearly bounded in L2.

Take an interval I ∈ L \ A0,fin
−∞ = L \ {I0}.

Take p = 2 and define h̃ = h̃
I
= δ−1/2h, where h = h

I
is the “Haar function”

defined above, h = 1
I1 − δ1

I2 .

By Lemma 4.7, ‖h̃‖2 ≤ 21/2|I|1/2. On the other hand, ‖h̃‖∞ = δ−1/2, so we

can pick I such that ‖h̃‖∞ is as large as we want.

Note that for b = h̃, the martingale transform T commutes with Λ1
b (and so

with Λb), so it is easy to check that the paraproducts πb and π∗
b , and so also the

commutator [Mb, T ], are bounded. However, as we discussed above, ‖b‖∞ = δ−1/2.

So, if we consider a collection C of disjoint intervals in L \ A0,fin
−∞ with δ → 0,

and define
b =

∑
I∈C

h̃
I

then the commutator [Mb, T ] is bounded. This can be seen, for example, by notic-
ing that Λ1

b commutes with T (one needs to treat each block separately, which

reduces it to the case b = h̃
I
), and the paraproducts πb and π∗

b are “direct sums”

of the paraproducts with b = h̃
I
, treated above.

So we constructed an example of b and a strongly (p, ε) mixing martingale trans-
form T such that the commutator [Mb, T ] is bounded in L2, but supI∈L ‖Δ

I
‖∞=∞.

An easy modification allows also to get an example for Lp.
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