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Exponential growth of rank jumps for

A-hypergeometric systems

Maŕıa-Cruz Fernández-Fernández

Abstract. The dimension of the space of holomorphic solutions at non-
singular points (also called the holonomic rank) of an A-hypergeometric
system MA(β) is known to be bounded above by 22d vol(A), where d is the
rank of the matrix A and vol(A) is its normalized volume. This bound was
thought to be much too large because it is exponential in d. Indeed, all the
examples we have found in the literature satisfy rank(MA(β)) < 2vol(A).
We construct here, in a very elementary way, some families of matri-
ces A(d) ∈ Z

d×n and parameter vectors β(d) ∈ C
d, d ≥ 2, such that

rank(MA(d)
(β(d))) ≥ advol(A(d)) for some a > 1.

1. Introduction

Let A = (aij) = (a1 a2 . . . an) be a full rank matrix with columns aj ∈ Zd and
d ≤ n. Following Gel’fand, Graev, Kapranov and Zelevinsky (see [5] and [6]) we
define the A-hypergeometric system with parameter β ∈ Cd as the left ideal HA(β)
of the Weyl algebra D = C[x1, . . . , xn]〈∂1, . . . , ∂n〉 generated by the following set
of linear partial differential operators:

(1.1) �u :=
( ∏

i:ui>0

∂ui

i

)
−
( ∏

i:ui<0

∂−ui

i

)
for all u ∈ Z

n such that Au = 0

and

(1.2) Ei − βi :=

n∑
j=1

aijxj∂j − βi for i = 1, . . . , d

The operators given in (1.1) generate the so-called toric ideal IA ⊆ C[∂1, . . . , ∂n]
associated with A and the d operators given in (1.2) are called the Euler opera-
tors associated with the pair (A, β). The hypergeometric D-module associated
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with (A, β), namely the quotient MA(β) = D/DHA(β), is a holonomic D-module
(see [6], [1]). In particular, the space of holomorphic solutions of MA(β) at a non-
singular point has finite dimension. This dimension or, equivalently, the holonomic
rank of MA(β) equals the normalized volume volZA(A) of the matrix A (see (2.1))
when either IA is Cohen-Macaulay or β is generic (see [6], [1], [14]).

The first example of a pair (A, β) for which rank(MA(β)) > volZA(A) was
described in [15] (see Example 2.5). A complete description of the case d = 2
appears in [4], revealing that in this case the rank of MA(β) can be only volZA(A)
(the generic value) or volZA(A) + 1 (the exceptional value).

In general it is known that rank(MA(β)) ≥ volZA(A) for all β [14], [10]. In
fact, it is proved in [10] that the map β ∈ Cd �→ rank(MA(β)) is upper semicontin-
uous in the Zarisky topology and they also provide an explicit description of the
exceptional set

ε(A) =
{
β ∈ C

d : rank(MA(β)) > volZA(A)
}
,

that turns out to be an affine subspace arrangement with codimension at least 2.
Previous descriptions of the exceptional set in particular cases appear in [4], [7],
[13], [8], and [9].

If for a fixed matrix A we have that jA(β) = rank(MA(β)) − volZA(A) > 0
then it is said that the A-hypergeometric system has a rank jump of jA(β) at β or
that β is a rank jumping parameter for A.

The paper [11] provides the first family of hypergeometric systems with rank
jump greater than 2. Indeed, the authors of [11] construct a family of pairs
(A(d), β(d)) with A(d) ∈ Zd×2d and β(d) ∈ Cd such that jA(d)

(β(d)) = d−1. However,
for this family volZA(d)

(A(d)) = d+ 2 and thus

rank(MA(d)
(β(d)))

volZA(d)
(A(d))

= 2− 3

d+ 2
< 2.

More recently, in [2] a general combinatorial formula is given for the rank
jump jA(β) of the A-hypergeometric system at a given β. However, the for-
mula is very complicated and, in fact, all the examples included in [2] satisfy
rank(MA(β)) < 2volZA(A) as well. Previous computations of jA(β) in particular
cases appear for example in [4], [13], and [12].

In the case when the toric ideal is standard homogeneous, the following upper
bound for the holonomic rank of a hypergeometric system is proved in [14]:

rank
(
MA(β)

) ≤ 22dvolZA(A).

However, it is mentioned in page 159 of [14] that this upper bound is most
likely far from optimal and that it would be desirable to know whether the ratio
rank(MA(β))/volZA(A) can be bounded above by some polynomial function in d.
Here we provide a very elementary construction of some families of hypergeometric
systems for which the ratio rank(MA(β))/volZA(A) is exponential in d, giving a
negative answer to this last question.
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Moreover, for one of the families constructed the dimension of the space of
Laurent polynomial solutions is lower than the rank jump (see Remark 2.8). This
is in contrast with what occurs for the examples found in the literature (see for
example [4] and [11]).

I am grateful to Christine Berkesch for many helpful conversations about her
paper [2].

2. Construction of the examples

Recall that the normalized volume of a full rank matrix A ∈ Zd×n is given by

(2.1) volZA(A) = d!
volRd(ΔA)

[Zd : ZA]
,

where [Zd : ZA] is the index of the subgroup ZA :=
∑n

i=1 Zai ⊆ Zd, ΔA is the
convex hull of the columns of A and the origin in Rd, and volRd(ΔA) denotes the
Euclidean volume of the polytope ΔA.

Let us also recall that the direct sum of two matrices A1 ∈ Zd1×n1 , A2 ∈ Zd2×n2

is the (d1 + d2)× (n1 + n2) matrix

A1 ⊕A2 =

(
A1 0d1×n2

0d2×n1 A2

)
,

where 0d×n denotes the d× n zero matrix.
The following two lemmas are easy to prove.

Lemma 2.1. If A is the direct sum of two matrices A1 ∈ Zd1×n1 , A2 ∈ Zd2×n2

then volZA(A) = volZA1(A1) · volZA2(A2).

Lemma 2.2. Let Ai ∈ Zdi×ni be full rank matrices, di ≤ ni, and β(i) ∈ Cdi

for i = 1, 2. If A = A1 ⊕ A2 and β = (β(1), β(2)) then we have that HA(β) =
DHA1(β(1)) + DHA2(β(2)) where HA1(β(1)) is a left ideal of the Weyl Algebra
DA1 = C[x1, . . . , xn1 ]〈∂1, . . . , ∂n1〉 and HA2(β(2)) is a left ideal of the Weyl Al-
gebra DA2 = C[xn1+1, . . . , xn1+n2 ]〈∂n1+1, . . . , ∂n1+n2〉 (equivalently, MA(β) is the
exterior tensor product of MA1(β(1)) and MA2(β(2))).

The following corollary follows from Lemma 2.2 by general properties of the
exterior tensor product of holonomic D-modules.

Corollary 2.3. Under the assumptions of Lemma 2.2 we have:

i) rank(MA(β)) = rank(MA1(β(1))) · rank(MA2(β(2))).

ii) If Ωi is a basis for the space of holomorphic (respectively Laurent polynomial )
solutions of the hypergeometric system MAi(β(i)) at a point pi ∈ Cni , then
the set

Ω =
{
f1(x1, . . . , xn1) · f2(xn1+1, . . . , xn1+n2) : fi ∈ Ωi, i = 1, 2

}
is a basis for the space of holomorphic (respectively Laurent polynomial ) so-
lutions of MA(β) at p = (p1, p2) ∈ Cn1+n2 .
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In view of Corollary 2.3, we can already give a first type of families of hyper-
geometric systems for which the rank jump grows exponentially with d.

Theorem 2.4. Let A ∈ Zd×n and β ∈ Cd be such that MA(β) has a rank jump,
i.e., rank(MA(β))/volZA(A) = q > 1. Consider, for dr = rd with r ≥ 1, the
matrix Ar ∈ Z

dr×nr (nr = rn), defined as the direct sum of r copies of A, and the
parameter vector βr = (β, . . . , β) ∈ Cdr , defined by r copies of β. We have that
the family (Ar , βr) satisfies rank(MAr(βr))/volZAr(Ar) = adr , where a = d

√
q > 1.

Example 2.5. For d = 2 we will consider the first example of a hypergeometric
system with rank jump described in [15]. Consider the pair (A(2), β(2)), where

(2.2) A(2) =

(
1 1 1 1
0 1 3 4

)
and β(2) =

(
1
2

)
.

The toric ideal associated with A(2) is

IA(2)
=

(
∂1∂4 − ∂2∂3, ∂

2
1∂3 − ∂3

2 , ∂2∂
2
4 − ∂3

3 , ∂1∂
2
3 − ∂2

2∂4
)
,

and the Euler operators are E1 − β(2),1 = x1∂1 + x2∂2 + x3∂3 + x4∂4 − 1 and
E2 − β(2),2 = x2∂2 + 3x3∂3 + 4x4∂4 − 2.

For this example rank(MA(2)
(β)) = volZA(2)

(A(2)) = 4 for all β ∈ C2 \ {β(2)},
but rank(MA(2)

(β(2))) = 5. A basis of the space of solutions of MA(2)
(β(2)) can

also be found in [15]. Let us point out that this basis consists of the two Laurent
polynomials p1 = x2

2/x1, p2 = x2
3/x4, and three other functions that are not

Laurent polynomials.
Notice that if we apply Theorem 2.4 to this example we get a base a =

√
5/2

of the exponential in dr = 2r, r ≥ 1.

Example 2.6. For d = 3, we will consider the hypergeometric system of the family
{MA(d)

(β(d))}d≥2 described in [11]. It is the one associated with the pair

(2.3) A(3) =

⎛
⎝ 1 1 1 1 1 1

0 0 0 0 1 1
0 1 3 4 0 1

⎞
⎠ and β(3) =

⎛
⎝ 1

0
2

⎞
⎠ .

The volume of A(3) is d+2 = 5, while the rank ofMA(3)
(β(3)) is 2d+1 = 7. Thus, if

we apply Theorem 2.4 to this example we get a base a = 3
√
7/5 of the exponential

in dr = 3r, r ≥ 1. We remark that this base a = 3
√
7/5 is the maximum we

have found after computing the quantity d
√
rank(MA(β))/volZA(A) for many pairs

(A, β) with A a full rank integer d× n matrix, β ∈ Cd and d = 2, 3, 4.

In the sequel, we will first construct a family of examples similar to the ones
given by Theorem 2.4, but using direct sums of the two matrices A(2) and A(3).
After that, we will modify these examples in order to exhibit another family of
A-hypergeometric systems which are not exterior tensor products of smaller hy-
pergeometric systems, and whose holonomic ranks also grow exponentially in d.
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Example 2.7. For any d ≥ 4, let r, s ∈ N be such that 2r+3s = d. We will choose
s as high as possible in order to fix uniquely r, s ∈ N for each d (in particular
0 ≤ r ≤ 4).

We define A(d) ∈ Zd×2d to be the direct sum of r copies of the matrix A(2) and
s copies of the matrix A(3). By Lemma 2.1 and examples 2.5 and 2.6 we have that
volZA(d)

(A(d)) = 4r5s.

On the other hand, let β(d) ∈ Cd be the complex vector with coordinates:

β(d),2i−1 = 1 and β(d),2i = 2 for 1 ≤ i ≤ r,

β(d),2r+3j−2 = 1, β(d),2r+3j−1 = 0, β(d),2r+3j = 2 for 1 ≤ j ≤ s

(i.e., β(d) has a copy of β(2) for each copy of A(2) and a copy of β(3) for each
copy of A(3)). With this definition of (A(d), β(d)) and using Corollary 2.3 and
Examples 2.5 and 2.6 we have that rank(MA(d)

(β(d))) = 5r7s. Thus,

rank(MA(d)
(β(d)))/volZA(d)

(A(d)) = (5/4)r(7/5)s ≥ (
√
5/2)d.

Remark 2.8. Example 2.7 also shows that the rank jump jA(β) can be greater
than the dimension of the space of Laurent polynomial solutions of MA(β). In-
deed, since the space of Laurent polynomial solutions of MA(2)

(β(2)) has dimen-
sion 2 ([15]) and the space of Laurent polynomial solutions of MA(3)

(β(3)) has
dimension 4 (see [11]) then, by Corollary 2.3, the space of of Laurent polynomial
solutions of MA(d)

(β(d)) has dimension 2r4s < jA(d)
(β(d)) = 5r7s − 4r5s for all

d = 2r + 3s ≥ 4.

Let us see how to modify Example 2.7 in order to get hypergeometric systems
that are not exterior tensor products of smaller hypergeometric systems, and such
that the corresponding ratio rank(MA(β))/vol(A) is still exponential in d.

Consider the following matrices and parameters:

Â(2) =

(
1 2 2 2 2
0 0 1 3 4

)
and β̂(2) =

(
3
2

)
.(2.4)

Â(3) =

⎛
⎝ 1 2 2 2 2 2 2

0 0 0 0 0 1 1
0 0 1 3 4 0 1

⎞
⎠ and parameter β̂(3) =

⎛
⎝ 3

0
2

⎞
⎠(2.5)

Notice that Â(2) and Â(3) are obtained from A(2) and A(3) respectively by
multiplying the first row by 2 (this doesn’t change the hypergeometric system)
and then by adding a first column with its first coordinate equal to 1 and the other
coordinates equal to zero. After these modifications we get that vol

ZÂ(2)
(Â(2)) =

2 · 4 = 8 and that vol
ZÂ(3)

(Â(3)) = 2 · 5 = 10. However, since β̂(i) is a hole

in NÂ(i) (meaning that β̂(i) /∈ NÂ(i) but β̂(i) + (NÂ(i) \ {0}) ⊆ NÂ(i)) we have by

Remark 4.14 in [12] that rank(MÂ(i)
(β̂(i))) = vol

ZÂ(i)
(Â(i)) + (i− 1), i = 2, 3.

The following lemma follows from the results in [2].

Lemma 2.9. Let A ∈ Zd×n and B ∈ Zd×m be two matrices satisfying NA = NB
and ΔA = ΔB . Then rank(MA(β)) = rank(MB(β)) for all β ∈ Cd.
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For d = 2r + 3s ≥ 2, r, s ∈ N (with s as high as possible), let β̂(d) ∈ Cd be

the complex vector that is given by r copies of β̂(2) and s copies of β̂(3). The new

matrix Â(d) ∈ Zd×(6r+8s−1) is constructed as follows.

Let a1, a2, . . . , a5r+7s ∈ Zd be the columns of the matrix

Ar,s = Â(2)⊕
r︷︸︸︷· · · ⊕Â(2) ⊕ Â(3)

s︷︸︸︷· · · ⊕Â(3) ∈ Z
d×(5r+7s).

We will construct a matrix Â(d) by adding r + s − 1 column vectors to the
matrix Ar,s. These vectors will belong to both ΔAr,s and NAr,s. These conditions

guarantee that vol
ZÂ(d)

(Â(d)) = volZAr,s(Ar,s) = 8r10s and by Lemma 2.9, we will

also have that rank(MÂ(d)
(β)) = rank(MAr,s(β)) for all β ∈ Cd. In particular, for

β = β̂(d), we have rank(MÂ(d)
(β̂(d))) = 9r12s.

If r ≥ 2 then for 1 ≤ i ≤ r − 1 we define

a5r+7s+i = a1 + a5i+1 =
1

2
a2 +

1

2
a5i+2 ∈ NAr,s ∩ΔAr,s .

Notice that (a5r+7s+i)j equals 1 for j = 1 or j = 2i+ 1, and 0 otherwise.

If r, s ≥ 1 then for 1 ≤ i ≤ s we define

a5r+7s+r−1+i = a1 + a5r+7i+1 =
1

2
a2 +

1

2
a5r+7i+2 ∈ NAr,s ∩ΔAr,s .

If r = 0 and s ≥ 2 then for 1 ≤ i ≤ s− 1 we define

a7s+i = a1 + a7i+1 =
1

2
a2 +

1

2
a7i+2 ∈ NAr,s ∩ΔAr,s .

Let us define Âd = (a1 a2 . . . a6r+8s−1) and recall that β̂(d) ∈ Cd is given by r

copies of β̂(2) and s copies of β̂(3). The hypergeometric system MÂ(d)
(β̂(d)) is not

an exterior tensor product of smaller hypergeometric systems and we have proved
the following.

Theorem 2.10. With the notations above we have

rank(MÂ(d)
(β̂(d)))

vol
ZÂ(d)

(Â(d))
= (9/8)r(12/10)s ≥ (

√
9/8)d.

Remark 2.11. Notice that the toric ideal associated with Â(d) is not homoge-
neous. However, by Theorem 7.3 in [3], if we consider the associated homogeneous
matrix Âh

(d) (that is obtained by adding to the matrix Â(d) an initial column of

zeroes and, after that, an initial row of ones) and the parameter β̂h
(d) = (β0, β̂(d))

with β0 ∈ C then the rank of MÂh
(d)

(β̂(d)) equals the rank of MÂ(d)
(β̂(d)) if β0 ∈ C

is generic. This implies that for some particular β0 (for example β0 = 0) the rank
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of MÂh
(d)
(β̂h

(d)) will be greater than or equal to the rank of MÂ(d)
(β̂(d)) by the upper

semi-continuity of the rank [10]. Moreover,

volÂh
(d)

(Âh
(d)) = volÂ(d)

(Â(d)).

Thus, we also have that the ratio

rank(MÂh
(d)
(β̂(d)))/volZÂh

(d)
(Âh

(d))

is exponential in d.
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Maŕıa-Cruz Fernández-Fernández: Departamento de Álgebra, Universidad de
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grants FQM-5849 and FQM-333.

mailto:mcferfer@us.es

	Introduction
	Construction of the examples

