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Normalisers of operator algebras and tensor

product formulas

Martin McGarvey, Lina Oliveira and Ivan G. Todorov

Abstract. We establish a tensor product formula for bimodules over ma-
ximal abelian self-adjoint algebras and their supports. We use this formula
to show that if A is the tensor product of finitely many continuous nest
algebras, B is a CSL algebra and A and B have the same normaliser
semigroup then either A = B or A∗ = B. We show that the result does
not hold without the assumption that the nests be continuous, answering
in the negative a question previously raised in the literature.

1. Introduction

Normalisers of self-adjoint operator algebras were introduced by Murray and von
Neumann in the 1930s and have played an important role in operator algebra the-
ory since then. They are used in the study of a number of fundamental classes of
operator algebras such as crossed products [30] and limit algebras [23]. Normalis-
ers of tensor products of von Neumann algebras were considered in [4], [12], [26]
and [27]. The study of the normalisers of non-self-adjoint operator algebras, namely
of nest algebras, was initiated in the 1990s (see [1], [5] and [7]). In [17] the notion
of a normaliser was generalised and studied in the context of reflexive algebras, a
non-self-adjoint generalisation of von Neumann algebras. It was shown that nor-
malisers are closely related to ternary rings of operators, a class of spaces studied
independently in operator space theory (see [3]). This connection provided the
basis in [8] for the introduction of an equivalence relation for non-self-adjoint op-
erator algebras, which later lead to the study of a Morita-type equivalence for dual
operator algebras [9], [10].

If A is an operator algebra acting on a Hilbert space H, a normaliser of A is
a bounded linear operator T on H such that

T ∗AT ⊆ A and TAT ∗ ⊆ A.
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Let N(A) be the set of all normalisers of an operator algebra A. It is obvious
that N(A) is a self-adjoint semigroup of operators containing the diagonal A∩A∗

of A (here and in the sequel we let A∗ = {A∗ : A ∈ A}). The question of to
what extent N(A) determines A was considered in [28], where A was taken from
the class of CSL algebras introduced by Arveson in his seminal work [2]. It is
trivial that for any operator algebra A we have that N(A) = N(A∗). In the
converse direction, easy examples, in which the atomic and the continuous parts of
the invariant subspace lattices of the algebras are both nontrivial, show that the
equality N(A) = N(B) does not necessarily imply that B is either equal to A or
to A∗. However, it was shown in [28] that N(A) determines A up to adjoints in
the class of totally atomic CSL algebras and in that of continuous nest algebras.
The following question was thus raised in [28]: let A and B be continuous CSL
algebras.

(1.1) Does N(A) = N(B) imply that A = B or A∗ = B?

Within the classes of operator algebras which admit an affirmative answer to the
above question, one is able to recover (up to adjoints) non-self-adjoint operator
algebras by using self-adjoint objects, namely the normaliser semigroups.

It was shown in [21] that question (1.1) has an affirmative answer if A is the
tensor product of finitely many continuous nest algebras and B is a CDCSL algebra.
In this paper, we extend this result by showing that the answer to question (1.1)
is affirmative if B is any CSL algebra (while A is still the tensor product of finitely
many continuous nest algebras). We show that the assumption on the continuity
of the nest algebras cannot be omitted, settling in this way question (1.1) in the
negative. After dropping the condition that B is a CDCSL algebra, we cannot
assume the presence of enough Hilbert–Schmidt operators in B, which was the
main ingredient in the proofs in [21]. Instead, the main tool we use here is a tensor
product formula for bimodules over maximal abelian self-adjoint algebras (masas)
which we believe is interesting in its own right.

Tensor product formulas for operator algebras are abundant in the literature.
Roughly speaking, given a map F defined on a class of operator algebras (or sub-
spaces) closed under tensoring, and taking values in a class of objects, canonically
associated with the operator algebras, one asks whether F(A⊗B) is a suitable kind
of a product of F(A) and F(B). The motivating example is Tomita’s commutation
theorem where, for a von Neumann algebra A, one sets F(A) to be equal to the
commutant A′ of A. In the case F(A) = LatA is the invariant subspace lattice
of A, one arrives at the lattice tensor product formula [15], which asks whether
Lat(A⊗ B) coincides with LatA⊗ LatB. This formula is known to hold when A
and B are von Neumann algebras, one of which is injective [24], as well as when A
and B are Arveson algebras (that is, weak* closed algebras containing a masa) [29].
Weak* closed masa-bimodules, a natural generalisation of Arveson algebras, were
examined in [2], [6], [8], [11], [17], and [25]. Their importance is partly due to
the fact that they are precisely the weak* closed subspaces invariant under Schur
multipliers, a class of maps widely used in various contexts (see e.g. [22]). Here we
show that if U and V are masa-bimodules then, up to a natural transposition of
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variables, we have that supp(U ⊗V) = suppU ×suppV , where suppM denotes the
support of a masa-bimodule M introduced in [11] as a subset of the direct product
of the coordinate measure spaces corresponding to the two masas. Thus our result
can be viewed as a measure-theoretic version of the lattice tensor product formula.

The paper is organised as follows. In Section 2 we collect some definitions
and preliminary background. Section 3 is devoted to the tensor product formula
for supports. In Section 4 we prove the affirmative result for tensor products of
nest algebras stated above, and in Section 5 we give the example showing that the
answer to (1.1) is in general negative.

2. Preliminaries

All Hilbert spaces in this paper will be assumed to be separable. If H , H1 and H2

are Hilbert spaces, we denote by B(H1, H2) the space of all bounded linear op-
erators from H1 into H2, and set B(H) = B(H,H). Let (X,μ) and (Y, ν) be
standard measure spaces, that is, the measures μ and ν are regular Borel measures
with respect to some Borel structures on X and Y arising from complete metriz-
able topologies. Let H1 = L2(X,μ), H2 = L2(Y, ν), and D1 (respectively, D2) be
the algebra of all multiplication operators on H1 (respectively, H2) by functions
from L∞(X,μ) (resp. L∞(Y, ν)). It is well known that D1 and D2 are maximal
abelian self-adjoint subalgebras (masas) of B(H1) and B(H2), respectively. A sub-
space U ⊆ B(H1, H2) will be called a D2,D1-bimodule (or a masa-bimodule if D1

and D2 are understood from the context) if BTA ∈ U whenever A ∈ D1, B ∈ D2

and T ∈ U .
We will need several facts and notions from the theory of masa-bimodules

(see [2], [11] and [25]). Given a subspace U ⊆ B(H1, H2), we let

BilU =
{
(P,Q) ∈ D1 ×D2 : P,Q projections with QUP = {0}

}
and define, following [20] the reflexive hull of U by

(2.1) Ref U =
{
T ∈ B(H1, H2) : Tξ ∈ Uξ, for all ξ ∈ H1

}
.

The space U is called reflexive [20] if U = Ref U .
We equip the direct product X×Y with the product measure (defined on the σ-

algebra generated by the rectangles α×β, where α ⊆ X and β ⊆ Y are measurable).
A subset E ⊆ X × Y is called marginally null if E ⊆ (X0 × Y ) ∪ (X × Y0), where
μ(X0) = ν(Y0) = 0. We call two subsets E,F ⊆ X × Y marginally equivalent (and
write E ∼= F ) if the symmetric difference of E and F is marginally null. A set
κ ⊆ X × Y is called ω-open if it is marginally equivalent to a (countable) union
of the form ∪∞

i=1αi × βi, where αi ⊆ X and βi ⊆ Y are measurable, i ∈ N. The
complements of ω-open sets are called ω-closed. An operator T ∈ B(H1, H2) is
said to be supported on κ if, for all rectangles α× β with (α× β)∩ κ � ∅, we have
that P (β)TP (α) = 0. (Here P (γ) stands for the projection of multiplication by
the characteristic function of the measurable subset γ.) If κ is an ω-closed set, let

Mmax(κ) =
{
T ∈ B(H1, H2) : T is supported on κ

}
.
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The space Mmax(κ) is a reflexive masa-bimodule; conversely, every reflexive
masa-bimodule is of this form for a unique, up to marginal equivalence, ω-closed
set κ, [11]. Given a masa-bimodule U , its support is the ω-closed set κ such that
Ref U = Mmax(κ).

A subspace lattice on a Hilbert space H is a lattice of (orthogonal) projections
on H closed in the strong operator topology. Given a subspace lattice L, we let

AlgL =
{
A ∈ B(H) : (I − L)AL = 0, for each L ∈ L

}
be the algebra of all operators on H leaving every projection of L invariant. Obvi-
ously, AlgL contains the identity operator, and it is trivial to check that it is closed
in the weak operator topology. Conversely, given a unital subalgebra A ⊆ B(H),
we let

LatA =
{
L ∈ P(H) : (I − L)AL = 0, for each A ∈ A

}
be the lattice of all projections on H invariant under every operator in A. (Here
P(H) is the lattice of all orthogonal projections on H.) The set L is easily seen to
be a subspace lattice. If A ⊆ B(H) is a unital subalgebra then RefA = Alg LatA;
thus, A is reflexive if and only if A = Alg LatA. By virtue of von Neumann’s
bicommutant theorem, the class of reflexive algebras contains all von Neumann
algebras.

A commutative subspace lattice (CSL) [2] on H is a subspace lattice L with the
property that PQ = QP whenever P,Q ∈ L. An atom of a CSL L is a non-zero
projection E on H such that for every L ∈ L, either E ≤ L or EL = 0. A CSL
is called continuous if it has no atoms. A CSL algebra is a reflexive algebra A of
the form A = AlgL for some CSL L; equivalently, CSL algebras are the reflexive
operator algebras containing a masa.

A nest is a totally ordered CSL, and a nest algebra is an operator algebra
A ⊆ B(H) of the form A = AlgL, for some nest L. If L is a nest, let L⊥ =
{L⊥ : L ∈ L}, where for a projection P we have set P⊥ = I − P ; we have that
AlgL⊥ = (AlgL)∗.

Throughout the paper, I will denote the interval [0, 1], H will denote the Hilbert
space L2(I) of square integrable functions on I equipped with the Lebesgue mea-
sure, and D will denote the multiplication masa of L∞(I). Let Nt, for each t ∈ I,
be the projection onto the subspace {f ∈ L2(I) : f(s) = 0, for a.e. s < t}.
The nest Nv = {Nt : 0 ≤ t ≤ 1} is known as the Volterra nest, and the alge-
bra Av = AlgNv is called the Volterra nest algebra. The von Neumann alge-
bra N ′′

v generated by Nv coincides with D and, in particular, is a masa. Nests
with this property are called multiplicity free. (Here, and in the sequel, for a sub-
set S ⊆ B(H), we let S ′ = {T ∈ B(H) : TS = ST, ∀ S ∈ S} be the commutant
of S and S ′′ = (S ′)′ be its second commutant). We refer the reader to [6] for the
theory of nest algebras.

If H1 and H2 are Hilbert spaces, we denote by H1 ⊗H2 their Hilbertian tensor
product. If A ⊆ B(H1, H̃1) and B ⊆ B(H2, H̃2) are subspaces, we let A⊗B denote
the weak* closed subspace of B(H1 ⊗H2, H̃1 ⊗ H̃2) generated by the elementary
tensors A ⊗ B, where A ∈ A and B ∈ B. Tensor products of nest algebras were
studied in detail in [13] where it was shown that if Ni is a nest and Ai = AlgNi,
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with i = 1, . . . , n, then A1 ⊗ · · ·⊗An = Alg(N1 ⊗ · · ·⊗Nn); here, if L1 and L2 are
subspace lattices, L1⊗L2 denotes the subspace lattice generated by the projections
of the form P1 ⊗ P2, with P1 ∈ L1 and P2 ∈ L2.

3. The tensor product formula for supports

In this section, we prove a tensor product formula for supports of masa-bimodules.
Let (Xi, μi) and (Yi, νi), i = 1, 2, be standard measure spaces, and let H1 =

L2(X1, μ1), H2 = L2(X2, μ2), H̃1 = L2(Y1, ν1) and H̃2 = L2(Y2, ν2). We also

let Di (respectively, D̃i) be the multiplication masa of L∞(Xi, μi) (respectively,

L∞(Yi, νi)), i = 1, 2. If U1 ⊆ B(H1, H̃1) is a weak* closed D̃1,D1-bimodule and

U2 ⊆ B(H2, H̃2) is a weak* closed D̃2,D2-bimodule, then U1 ⊗ U2 is easily seen to

be a D̃1 ⊗ D̃2,D1 ⊗D2-bimodule. Let

θ : (X1 ×X2)× (Y1 × Y2) → (X1 × Y1)× (X2 × Y2)

be the map given by

θ
(
(x1, x2), (y1, y2)

)
=

(
(x1, y1), (x2, y2)

)
.

Lemma 3.1. Let U1 ⊆ B(H1, H̃1) be a D̃1,D1-bimodule and U2 ⊆ B(H2, H̃2) be a

D̃2,D2-bimodule. Then
(i) the support of U1 ⊗ B(H2, H̃2) is marginally equivalent to θ−1(suppU1 ×

(X2 × Y2)), and

(ii) the support of B(H1, H̃1)⊗U2 is marginally equivalent to θ−1((X1 × Y1)×
suppU2).

Proof. We only prove (i); part (ii) can be shown similarly. Let V = U1⊗B(H2, H̃2).

Then (D̃1 ⊗ B(H̃2))V(D1 ⊗ B(H2)) ⊆ V . Let P ∈ D1 ⊗ D2 and Q ∈ D̃1 ⊗ D̃2 be
projections with QVP = {0}. Let P̂ be the projection onto the closed hull of

(D1 ⊗ B(H2))P (H1 ⊗H2) and Q̂ be the projection onto the closed hull of (D̃1 ⊗
B(H̃2))Q(H̃1 ⊗ H̃2). Fix ξ ∈ H1 ⊗ H2 and η ∈ H̃1 ⊗ H̃2. For any V ∈ V ,
C1 ∈ D1 ⊗ B(H2) and C2 ∈ D̃1 ⊗ B(H̃2), we have that C2V C1 ∈ V , and therefore〈
V C1Pξ, C∗

2Qη
〉
=

〈
C2V C1Pξ,Qη

〉
= 0. It follows that Q̂VP̂ = {0}. Since P̂ is

invariant under D1⊗B(H2), we have that P̂ = P0⊗I for some projection P0 in D1.

Similarly, Q̂ = Q0 ⊗ I for some projection Q0 in D̃1. It follows that

(Q0U1P0)⊗ B(H2, H̃2) = {0}
and, consequently, Q0U1P0 = {0}; in other words, (P0, Q0) ∈ BilU1.

Let {(Ei, Fi)}i∈N be a strongly dense subset of BilV and αi ⊆ X1 and βi ⊆ Y1

be measurable sets such that P (αi)⊗ I = Êi and P (βi)⊗ I = F̂i. It follows from
the construction given in the proof of Theorem 4.2 in [11] that the support of V is
marginally equivalent to ( ∞⋃

i=1

(αi ×X2)× (βi × Y2)
)c

.
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On the other hand,

θ
(( ∞⋃

i=1

(αi ×X2)× (βi × Y2)
)c)

=
( ∞⋃

i=1

(αi × βi)
)c

×
(
X2 × Y2

)
while, as above, (∪∞

i=1(αi × βi))
c is (marginally equivalent to) the support of U1.

The proof is complete. �

Lemma 3.2. Let U ⊆ B(H1, H̃1) be a D̃1,D1-bimodule and let L be the subspace

lattice on (H̃1 ⊗ H̃2)⊕ (H1 ⊗H2) defined by

L =
{(

P̃⊥ ⊗ I 0
0 P ⊗ I

)
: (P, P̃ ) ∈ BilU

}
.

Then

AlgL =
( D̃1 ⊗ B(H̃2) (Ref U)⊗ B(H2, H̃2)

0 D1 ⊗ B(H2)

)
.

Proof. Since

Ref U =
{
T ∈ B(H1, H̃1) : QTP = 0, for all (P,Q) ∈ BilU

}
,

the right-hand side of the desired identity is trivially contained in its left-hand
side. Fix T =

(
A B
C D

)
∈ AlgL. Then(

P̃ ⊗ I 0
0 P⊥ ⊗ I

)( A B
C D

)(
P̃⊥ ⊗ I 0

0 P ⊗ I

)
= 0

for every (P, P̃ ) ∈ BilU . This implies

(P̃ ⊗ I)A(P̃⊥ ⊗ I) = 0,(3.1)

(P⊥ ⊗ I)D(P ⊗ I) = 0,(3.2)

(P⊥ ⊗ I)C(P̃⊥ ⊗ I) = 0,(3.3)

(P̃ ⊗ I)B(P ⊗ I) = 0(3.4)

for all (P, P̃ ) ∈ BilU . By (3.1), we have that A ∈ D̃1 ⊗ B(H̃2). Similarly, (3.2)

implies that D ∈ D1 ⊗ B(H2). In (3.3), letting P = 0 and P̃ = 0, we obtain
that C = 0.

Given τ ∈ B(H2, H̃2)∗, let

Lτ : B(H1 ⊗H2, H̃1 ⊗ H̃2) → B(H1, H̃1)

be the Tomiyama left slice map, that is, the (unique) weak* continuous bounded

linear map such that Lτ (A⊗B) = τ(B)A for allA ∈ B(H1, H̃1) andB ∈ B(H2, H̃2).

Identity (3.4) implies that Lτ ((P̃ ⊗ I)B(P ⊗ I)) = 0 for all τ ∈ B(H2, H̃2)∗ and

all (P, P̃ ) ∈ BilU . It easily follows that P̃Lτ (B)P = 0 for all τ ∈ B(H2, H̃2)∗
and all (P, P̃ ) ∈ BilU (see (1.3) in [18]). Therefore, Lτ (B) ∈ Ref U for every

τ ∈ B(H2, H̃2)∗. It follows from a subspace version of Theorem 1.9 in [18] that

B ∈ Ref U ⊗ B(H2, H̃2), and the proof is complete. �
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Lemma 3.3. Let H be a Hilbert space, let A ⊆ B(H) be a weak* closed algebra
containing a masa, let L = LatA, and let E be a projection that commutes with L.
Then Lat (EA|EH) = L|EH.

Proof. Set AE = EA|EH, B = Ref A, BE = EB|EH and LE = L|EH. We first
prove that Ref AE = BE. Note that, by Lemma 1.1 (i) in [28],

(3.5) BE = AlgLE

and hence BE is a reflexive operator algebra acting on EH. Since AE ⊆ BE, we
have that RefAE ⊆ BE . Suppose that T ∈ BE . Then T = ES|EH for some S ∈ B.
Since B = RefA, we have that Sx ∈ Ax, for every x ∈ H. It follows that, for
every x ∈ EH, the image ESx lies in EAx and, therefore, T ∈ RefAE . Hence
BE ⊆ Ref AE and, thus, Ref AE coincides with BE .

We claim that LE is a CSL; since it is clearly a lattice of pairwise commuting
projections, we need only to show that LE is closed in the strong operator topology.
Suppose that (Li)i∈N ⊆ L is a sequence such that LiE → Q for some projection Q.
Let (Lik)k∈N be a subsequence such that Lik → T weakly, for some operator T .
Then (Lik)k∈N converges semi-strongly to the projection M onto the kernel of
the operator I − T . (We refer the reader to [14] for the definition of semi-strong
convergence and for the result we use; this notion will not be used in the rest of the
paper.) It follows from the definition of semi-strong convergence that LikE → ME
semi-strongly. On the other hand, by Proposition 3.1 in [24], M ∈ L. Since strong
convergence implies semi-strong convergence, [14], we have that Q = ME ∈ LE .

We have showed that LE is a CSL; by Arveson’s theorem [2], it is reflexive.
By (3.5), LE = LatBE. By the previous paragraph, Alg LatAE = BE and this
implies that

LatAE = LatAlg LatAE = LatBE = LE . �

The next theorem is the main result of this section. It can be viewed as a
“support” version of the lattice tensor product formula Lat(A⊗B) = LatA⊗LatB,
valid for all Arveson algebras [29].

Theorem 3.4. Let U1⊆B(H1, H̃1) be a D̃1,D1-bimodule and U2⊆B(H2, H̃2) be a

D̃2,D2-bimodule. Then, up to marginal equivalence,

supp(U1 ⊗ U2) = θ−1(suppU1 × suppU2).

Proof. Let κi = suppUi, i = 1, 2. Set

AU1 =
{(

D̃ T
0 D

)
: D ∈ D1, D̃ ∈ D̃1, T ∈ U1

}
⊆ B(H̃1 ⊕H1),

AU2 =
{(

C̃ S
0 C

)
: C ∈ D2, C̃ ∈ D̃2, S ∈ U2

}
⊆ B(H̃2 ⊕H2)

and

AU1⊗U2 =
{(

Ẽ R
0 E

)
: E ∈ D1 ⊗D2, Ẽ ∈ D̃1 ⊗ D̃2, R ∈ U1 ⊗ U2

}
,
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so that AU1⊗U2 ⊆ B
(
(H̃1 ⊗ H̃2) ⊕ (H1 ⊗ H2)

)
. Using (2.1), one can easily check

that

(3.6) Ref AU1⊗U2 =
( D̃1 ⊗ D̃2 Ref(U1 ⊗ U2)

0 D1 ⊗D2

)
.

The algebra AU1 ⊗AU2 acts on the Hilbert space H defined by

H = (H̃1 ⊕H1)⊗ (H̃2 ⊕H2)

� (H̃1 ⊗ H̃2)⊕ (H̃1 ⊗H2)⊕ (H1 ⊗ H̃2)⊕ (H1 ⊗H2)

and, with respect to this decomposition, AU1 ⊗AU2 has the matrix form⎛⎜⎜⎝
D̃1 ⊗ D̃2 D̃1 ⊗ U2 U1 ⊗ D̃2 U1 ⊗ U2

0 D̃1 ⊗D2 0 U1 ⊗D2

0 0 D1 ⊗ D̃2 D1 ⊗ U2

0 0 0 D1 ⊗D2

⎞⎟⎟⎠ .

Let

E =

⎛⎜⎜⎝
I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

⎞⎟⎟⎠ ∈ B(H).

Clearly, E belongs to the diagonal of AU1 ⊗ AU2 , and hence commutes with its
invariant subspace lattice. Moreover, E(AU1 ⊗AU2)|EH = AU1⊗U2 . It follows from
Lemma 3.3 that

(3.7) LatAU1⊗U2 =
(
Lat(AU1 ⊗AU2)

)
|EH.

By Theorem 4.2 in [29],

Lat(AU1 ⊗AU2) = LatAU1 ⊗ LatAU2 .

It now follows from (3.7) that LatAU1⊗U2 is generated as a subspace lattice by the
projections of the form (F ⊗G)|EH, where F ∈ LatAU1 and G ∈ LatAU2 .

If F ∈ LatAU1 and G ∈ LatAU2 then, by Theorem 3.1 in [25], F =
(

˜P⊥ 0
0 P

)
and G =

(
˜Q⊥ 0
0 Q

)
for some (P, P̃ ) ∈ BilU1 and (Q, Q̃) ∈ BilU2. Thus,

F ⊗G =

⎛⎜⎜⎝
P̃⊥ ⊗ Q̃⊥ 0 0 0

0 P̃⊥ ⊗Q 0 0

0 0 P ⊗ Q̃⊥ 0
0 0 0 P ⊗Q

⎞⎟⎟⎠
and (F ⊗ G)|EH =

(
˜P⊥⊗ ˜Q⊥ 0

0 P⊗Q

)
. It follows that LatAU1⊗U2 is generated as a

subspace lattice by the projections of the form(
I ⊗ Q̃⊥ 0

0 I ⊗Q

)
,
(

P̃⊥ ⊗ I 0
0 P ⊗ I

)
,
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where (P, P̃ ) ∈ BilU1 and (Q, Q̃) ∈ BilU2. Thus, Alg LatAU1⊗U2 is equal to

Alg
{(

˜P⊥⊗I 0
0 P⊗I

)
: (P, P̃ ) ∈ BilU1

}⋂
Alg

{(
I⊗ ˜Q⊥ 0

0 I⊗Q

)
: (Q, Q̃) ∈ BilU2

}
;

by Lemma 3.2,

Alg LatAU1⊗U2 =
(

˜D1⊗B( ˜H2) Ref U1⊗B(H2, ˜H2)
0 D1⊗B(H2)

)⋂(
B( ˜H1)⊗ ˜D2 B(H1, ˜H1)⊗Ref U2

0 B(H1)⊗D2

)
.

Now (3.6) implies that

Ref(U1 ⊗ U2) =
(
B(H1, H̃1)⊗ Ref U2

)
∩
(
Ref U1 ⊗ B(H2, H̃2)

)
.

By the definition of the support, we have that supp(U1⊗U2) = suppRef(U1⊗U2).
On the other hand, if M1 and M2 are reflexive masa-bimodules, then it is easy to
see that supp(M1 ∩M2) = suppM1 ∩ suppM2. It follows that, up to marginal
equivalence,

supp(U1 ⊗ U2) = supp
(
B(H1, H̃1)⊗ Ref U2

)
∩ supp

(
Ref U1 ⊗ B(H2, H̃2)

)
.

By Lemma 3.1, supp(U1 ⊗U2) is marginally equivalent to θ−1(suppU1 × suppU2).
�

Let (Xi, μi) and (Yi, νi), i = 1, . . . , n be standard measure spaces. Set Hi =

L2(Xi, μi) and H̃i = L2(Yi, νi), i = 1, . . . , n, and let Di and D̃i be the multiplica-
tion masas of L∞(Xi, μi) and L∞(Yi, νi) respectively, for i = 1, . . . , n. Let

ρ : (X1 × · · · ×Xn)× (Y1 × · · · × Yn) → (X1 × Y1)× · · · × (Xn × Yn)

be given by

ρ
(
(x1, x2, . . . , xn, y1, y2, . . . , yn)

)
= (x1, y1, x2, y2, . . . , xn, yn).

An inductive application of Theorem 3.4 yields the following corollary.

Corollary 3.5. Let Ui ⊆ B(Hi, H̃i) be a D̃i,Di-bimodule for i = 1, . . . , n. Then,
up to marginal equivalence,

supp(U1 ⊗ · · · ⊗ Un) = ρ−1(suppU1 × · · · × suppUn).

4. Tensor products of continuous nest algebras

Our aim in this section is to establish Theorem 4.11 which shows that tensor
products of continuous nest algebras are determined (up to adjoints) by their
normaliser semigroups within the class of all CSL algebras. We will need several
technical lemmas.
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Let B be a reflexive operator algebra and let B be an operator in B. The orbit
of B with respect to N(B) is the set

OrbN(B)(B) = [TBT ∗ : T ∈ N(B)]w∗
,

where we denote by [T ] the linear span of a subset T ⊆ V of a linear space V .
For operator algebras Ai, with i = 1, . . . , n, let A = A1 ⊗ · · · ⊗ An and let

Ne(A) = {T1 ⊗ · · · ⊗ Tn : Ti ∈ N(Ai), i = 1, . . . , n}. If P = P1 ⊗ · · · ⊗ Pn, where
for all i = 1, . . . , n, Pi is a projection in LatAi, then let

NP (A) =
{
(V1 ⊗ · · · ⊗ Vn) + (W1 ⊗ · · · ⊗Wn) : Vi,Wi ∈ N(Ai),

Vi = PiViPi,Wi = P⊥
i WiP

⊥
i , ∀i = 1, . . . , n

}
.

The following two lemmas were established in [21].

Lemma 4.1. Let Hi be a Hilbert space, let Ni be a continuous nest on Hi and let
Ai = AlgNi, with i = 1, . . . , n. Let H = H1⊗ · · ·⊗Hn and let A = A1⊗ · · ·⊗An.
Then the linear span [Ne(A)] of Ne(A) is weak∗ dense in B(H).

Lemma 4.2. Let Hi be a Hilbert space, let Ai be a nest algebra acting on Hi,
with i = 1, . . . , n, and let A = A1 ⊗ · · · ⊗ An. For all i = 1, . . . , n, let Ci be either
equal to Ai or to A∗

i , let C = C1 ⊗ · · · ⊗ Cn, let Pi be a projection in Lat Ci and let
P = P1 ⊗ · · · ⊗ Pn. Then NP (C) ⊆ N(A).

It is easy to show that Lemma 4.1 implies the following fact, whose proof we
omit.

Lemma 4.3. Let Hi be a Hilbert space, let Ni be a continuous multiplicity free
nest on Hi and let Ai = AlgNi, with i = 1, . . . , n. Let H = H1 ⊗ · · · ⊗ Hn, let
A = A1 ⊗ · · · ⊗ An and let A be a non-zero operator in B(H). Then

(4.1) [V AW : V,W ∈ Ne(A)]
w∗

= B(H).

Let H = L2(I) (where the unit interval I is equipped with Lebesgue measure)
and, for any given positive integer n, let Δ+,n be the set defined by

Δ+,n =
{
(x1, . . . , xn, y1, . . . , yn) ∈ I

n × I
n : xi < yi, i = 1, . . . , n

}
.

In the sequel, the set Δ+,1 will be denoted by Δ+.

Lemma 4.4. Let H = H ⊗ · · · ⊗H︸ ︷︷ ︸
n

and let κ be an ω-closed subset of In× I
n such

that κ ∩Δ+,n �� ∅. Then there exist projections Pi lying in the Volterra nest Nv,
with i = 1, . . . , n, and a non-zero operator A supported on the set κ such that
A = (P1 ⊗ · · · ⊗ Pn)A(P

⊥
1 ⊗ · · · ⊗ P⊥

n ).
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Proof. Let 0 and 1 be the elements of In respectively defined by 0 = (0, . . . , 0) and
1 = (1, . . . , 1). For an element r = (r1, . . . , rn) in I

n, write

[r,1] =
{
(s1, . . . , sn) ∈ I

n : ri ≤ si ≤ 1, i = 1, . . . , n
}

and
[0, r) =

{
(s1, . . . , sn) ∈ I

n : 0 ≤ si < ri, i = 1, . . . , n
}
.

Let {tj}j∈N be a dense subset of In and, for all j ∈ N, suppose that

κ
⋂(

[0, tj)× [tj ,1]
)
� ∅.

Since the union of countably many marginally null sets is marginally null, this
implies that

κ ∩Δ+,n =

∞⋃
j=1

(
κ ∩ ([0, tj)× [tj ,1])

)
� ∅,

yielding a contradiction. Hence, κ ∩ ([0, tj)× [tj ,1]) �� ∅ for some j ∈ N. Since
the set κ ∩ ([0, tj)× [tj ,1]) is ω-closed, Arveson’s null set theorem (see Theo-
rem 1.4.3 in [2]) implies that there exists a non-zero operator A supported on κ ∩
([0, tj)× [tj ,1]). Clearly, A is supported on the set κ and A = P ([tj ,1])AP ([0, tj ])
The conclusion follows from the fact that Lj = P1⊗· · ·⊗Pn and Mj = P⊥

1 ⊗· · ·⊗
P⊥
n , where, if tj = (t1j , . . . , t

n
j ), we have set Pi = P ([tij , 1]), i = 1, . . . , n. �

Lemma 4.5. Let E and F be projections in the Volterra nest Nv such that 0 <
E < I and 0 < F < I. Then there exists a unitary operator W lying in N(Av)
with WEW ∗ = F .

Proof. Let s and t be real numbers with 0 < s, t < 1 and such that E is the
projection onto the space L2(s, 1) and F is the projection onto the space L2(t, 1).
Let NE and NF be the nests defined by NE = Nv|EH and NF = Nv|FH . The
nests NE and NF are continuous and multiplicity free; it follows that there exists
a unitary operator U : L2(s, 1) → L2(t, 1) such that UNEU

∗ = NF (see [6]). After
identifying U with the operator U ⊕ 0 acting on H , we have that UEU∗ = F .

Similarly, the nests NE⊥ and NF⊥ , defined by NE⊥ = Nv|E⊥H and NF⊥ =
Nv|F⊥H , are unitarily equivalent. Hence there exists a unitary operator V :
L2(0, s) → L2(0, t) such that VNE⊥V ∗ = NF⊥ . After identifying V with the
operator 0⊕ V acting on H , we have that V E⊥V ∗ = F⊥.

It is clear that the operator W , defined by W = U + V , is a unitary operator
on H and that WEW ∗ = UEU∗ = F. Let A be an operator in the Volterra nest
algebra Av. Then

WAW ∗ = UAU∗ + UAV ∗ + V AU∗ + V AV ∗

and, since U, V ∈ N(Av), we have that UAU∗, V AV ∗ ∈ Av. A direct verification
shows that V AU∗ = 0.

If L is a projection lying in Nv, then there exists w ∈ [0, 1] such that LH =
L2(w, 1). Since the initial space of V ∗ is L2(0, t), if there exists ξ∈LH with V ∗ξ �= 0,
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then the inequality w < t must hold. Therefore L2(t, 1) is a subspace of LH , yield-
ing that

UAV ∗ξ ∈ L2(t, 1) ⊆ LH.

Hence the operator UAV ∗ lies in Av, and it follows that W is a normaliser of Av.
�

The next theorem shows that the normalisers of the tensor product of finitely
many copies of the Volterra nest algebra act “transitively” on certain non-zero
operators.

Theorem 4.6. Let Hi be a Hilbert space, let Ni be a continuous multiplicity free
nest acting on Hi and let Ai = AlgNi, with i = 1, . . . , n. Let H = H1 ⊗ · · · ⊗Hn

and let A = A1 ⊗ · · · ⊗ An. Let A be a non-zero operator lying in A such that
A = (P1 ⊗ · · · ⊗ Pn)A(P

⊥
1 ⊗ · · · ⊗ P⊥

n ) for some Pi ∈ Ni, with i = 1, . . . , n. Then

the sets [(ST )A(ST )∗ : S ∈ Ne(A), T ∈ NP (A)]
w∗

, A and OrbN(A)(A) coincide.

Proof. In the conditions of the theorem, let P = P1⊗· · ·⊗Pn, letQ = P⊥
1 ⊗· · ·⊗P⊥

n ,
and, for all i = 1, . . . , n, let Vi and Wi be normalisers of Ai such that Vi = PiViPi

and Wi = P⊥
i WiP

⊥
i . Define the operators V = V1 ⊗ · · · ⊗Vn, W = W1 ⊗ · · · ⊗Wn

and T = V +W . Since A = PAQ, we have that

(4.2) TAT ∗ = (TP )A(QT ∗) = V AW ∗.

Let Ci = PiAi|PiHi and let Bi = P⊥
i Ai|P⊥

i Hi
, with i = 1, . . . , n, and suppose

that all operators S (resp. R) acting on PiHi (resp. P⊥
i Hi) are identified with

S ⊕ 0 (resp. 0 ⊕ R) acting on Hi. Since, by Lemma 1.1 (ii) in [28], the equality
N(EAi|EHi) = EN(Ai)|EHi holds for every projection E ∈ Ni, it now follows
from (4.2) that{

TAT ∗ : T ∈ NP (A)
}
=

{
V AW : V = V1 ⊗ · · · ⊗ Vn,W = W1 ⊗ · · · ⊗Wn,

Vi ∈ N(Ci),Wi ∈ N(Bi), i = 1, . . . , n
}
.

The algebras Ci and Bi are continuous multiplicity free nest algebras, and hence
each one of them is unitarily equivalent to Av. Lemma 4.3 now implies that

PB(H)Q ⊆ [TAT ∗ : T ∈ NP (A)]
w∗

.

For all i = 1, . . . , n, let Ei be a projection in Ni satisfying 0 < Ei < I.
By Lemma 4.5, for all i = 1, . . . , n, there exists a unitary operator Ui ∈ N(Ai)
such that UiPiU

∗
i = Ei. Thus, if we define the operators E = E1 ⊗ · · · ⊗ En,

F = E⊥
1 ⊗ · · · ⊗E⊥

n and U = U1 ⊗ · · · ⊗Un, then U ∈ Ne(A) and UPB(H)QU∗ =
EB(H)F . Hence,

EB(H)F ⊆ [(ST )A(ST )∗ : S ∈ Ne(A), T ∈ NP (A)]
w∗

.

It follows from Lemma 3.1 in [21] that the span of the spaces of the form EB(H)F
is weak* dense in A, and hence

A ⊆ [(ST )A(ST )∗ : S ∈ Ne(A), T ∈ NP (A)]
w∗

.
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By Lemma 4.2, we have that the set on the right-hand side is contained in
OrbN(A)(A). On the other hand, since A ∈ A, we have that OrbN(A)(A) ⊆ A,
and the proof is complete. �

Remark. It can be shown, using similar arguments to the ones given above, that,
in the notation of Theorem 4.6, if the operator A lies in the Schatten Cp-class,
1 ≤ p ≤ ∞, then

[TAT ∗ : T ∈ N(A)]
‖·‖p

= A ∩ Cp(H).

Here, as usual, C∞ is the ideal of compact operators.

The following lemma can be established easily using elementary slice map tech-
niques, and we omit its proof.

Lemma 4.7. Let A1 and A2 be reflexive operator subalgebras of B(H1) and B(H2),
respectively, and let S⊗T ∈ N(A1⊗A2). If T �= 0, then S ∈ N(A1) and if S �= 0,
then T ∈ N(A2).

Lemma 4.8. Let H1 and H2 be Hilbert spaces and let A1 and B1 (resp. A2 and
B2) be reflexive operator algebras acting on H1 (resp. H2). If N(A1 ⊗ A2) =
N(B1 ⊗ B2), then N(A1) = N(B1) and N(A2) = N(B2).

Proof. Suppose that N(A1 ⊗A2) coincides with N(B1 ⊗ B2). If S ∈ N(A1), then
S ⊗ I ∈ N(A1 ⊗ A2) and therefore S ⊗ I ∈ N(B1 ⊗ B2). Hence, by Lemma 4.7,
the operator S lies in N(B1). It follows that N(A1) ⊆ N(B1), and, by symmetry,
N(A1) = N(B1). Similarly we can show that N(A2) = N(B2). �

Lemma 4.9. Let A = Av ⊗ · · · ⊗ Av︸ ︷︷ ︸
n

and let B = B1 ⊗ · · · ⊗ Bn, where, for all

i = 1, . . . , n, Bi coincides either with Av or with A∗
v. Then N(A) = N(B) if and

only if A = B or A∗ = B.

Proof. First, suppose that n = 2 and that B = Av ⊗A∗
v. We show that N(A) �=

N(B). Let W in B(H ⊗H) be the unitary operator defined, for all ξ, η ∈ H , by
W (ξ⊗η) = η⊗ξ. If P1 and P2 are projections lying on H , then W (P1H⊗P2H) =
P2H ⊗ P1H . Hence, given projections P1, P2 ∈ Nv, for all operators A lying in A,

W ∗AW (P1H ⊗ P2H) = W ∗A(P2H ⊗ P1H) ⊆ W ∗(P2H ⊗ P1H) = P1H ⊗ P2H.

Consequently, W ∗AW ⊆ A. Since W = W ∗, it follows that W ∈ N(A).
On the other hand, W �∈ N(B). In fact, let P1 and P2 be any nontrivial

projections in Nv and let V be a partial isometry with initial space P1H and final
space P⊥

1 H . Then V lies in A∗
v. However,

W ∗(I ⊗ V )W (P1H ⊗ P⊥
2 H) = W ∗(I ⊗ V )(P⊥

2 H ⊗ P1H)

= W ∗(P⊥
2 H ⊗ P⊥

1 H) = P⊥
1 H ⊗ P⊥

2 H,

which shows that W ∗(I ⊗ V )W �∈ B.
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Now suppose that n > 2. If A �= B and A∗ �= B then there exist finite (possibly
empty) tensor products A1 and A2 of copies of the Volterra nest algebra such that,
up to a permutation of the factors in the tensor products,

A = (Av ⊗Av)⊗A1 ⊗A2 and B = (Av ⊗A∗
v)⊗A1 ⊗A∗

2.

Reasoning similar to that above shows that the operator T = W ⊗ I ⊗ I lies in
N(A). If, additionally, T ∈ N(B), then, by Lemma 4.7, the operator W lies in
N(Av ⊗A∗

v), yielding a contradiction. �

Lemma 4.10. Let (X,μ) and (Y, ν) be standard measure spaces, let λ ⊆ X ×X
be a measurable subset, and let

κ =
{
(x1, t, x2, t) : (x1, x2) ∈ λ, t ∈ Y

}
.

Then:

(i) λ is marginally null if and only if κ is marginally null in (X×Y )× (X×Y );

(ii) λ is ω-closed if and only if κ is ω-closed in (X × Y )× (X × Y ).

Proof. For a subset A ⊆ X × Y and t ∈ Y , let At = {x ∈ X : (x, t) ∈ A}. If A
belongs to the product σ-algebra of X × Y , we have that At is measurable for
all t ∈ Y .

(i) Suppose that λ ⊆ (M ×X) ∪ (X ×M) for some null set M ⊆ X . Then

κ ⊆
(
(M × Y )× (X × Y )

)
∪
(
(X × Y )× (M × Y )

)
is a marginally null set in (X × Y )× (X × Y ).

Conversely, suppose that κ ⊆ (N × (X × Y )) ∪ ((X × Y ) ×N), for some null
set N ⊆ X×Y . Since N is null, we have that N t is null for almost all t ∈ Y . Pick
such a t. Since λ ⊆ (N t ×X) ∪ (X ×N t), we have that λ is marginally null.

(ii) Suppose that κc is marginally equivalent to a subset of the form E =
∪∞
i=1Ai × Bi, where Ai, Bi ⊆ X × Y are measurable. There exists a null set

N ⊆ X × Y such that(
κ ∩ E

)
∪
(
κc ∩ Ec

)
⊆

(
N × (X × Y )

)
∪
(
(X × Y )×N

)
.

Fix t ∈ Y and let E(t) = ∪∞
i=1A

t
i ×Bt

i . We claim that(
λ ∩ E(t)

)
∪
(
λc ∩ E(t)c

)
⊆

(
N t ×X

)
∪
(
X ×N t

)
.

Suppose that (x, y) ∈ λ∩E(t). Then (x, t, y, t) ∈ κ∩E and hence either (x, t) ∈ N ,
in which case x ∈ N t, or (y, t) ∈ N , in which case y ∈ N t. Suppose, on the other
hand, that (x, y) ∈ λc ∩ E(t)c. Then (x, t, y, t) ∈ κc ∩ Ec; indeed, if (x, t, y, t) ∈ E
then (x, y) ∈ At

i ×Bt
i for some i and hence (x, y) ∈ E(t), contrary to our assump-

tion. It follows that (x, t, y, t) ∈ (N × (X × Y )) ∪ ((X × Y ) × N), and as before
(x, y) ∈ (N t ×X) ∪ (X ×N t). It follows that λ is ω-closed.

For the converse direction, suppose that λc is marginally equivalent to a subset
of the form Ω = ∪∞

i=1αi × βi, where αi and βi are measurable, i ∈ N, and let
M ⊆ X be a null set with(

λ ∩ Ω
)
∪
(
λc ∩Ωc

)
⊆

(
M ×X

)
∪
(
X ×M

)
.
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Since κ is the intersection of the sets κ1 = {(x, s, y, t) : (x, y) ∈ λ, s, t ∈ Y } and
κ2 = {(x, t, y, t) : x, y ∈ X, t ∈ Y }, it suffices to prove that both κ1 and κ2 are
ω-closed. However, κc

2 = ∪∞
j=1(X × γj) × (X × γc

j ), where {γj}j∈N is a countable
family generating the σ-algebra of Y and is hence ω-closed. On the other hand, if
Ω̃ = ∪∞

i=1(αi × Y )× (βi × Y ) then(
κ1 ∩ Ω̃

)
∪
(
κc
1 ∩ Ω̃c

)
⊆

(
M × Y ×X × Y

)
∪
(
X × Y ×M × Y

)
which shows that κ1 is ω-closed. �

We are now ready to prove the main result of the present section.

Theorem 4.11. For all i = 1, . . . , n, let Hi be a Hilbert space and let Ai be a
continuous nest algebra acting on Hi. Let H = H1⊗· · ·⊗Hn, let A = A1⊗· · ·⊗An

and let B be a CSL algebra contained in B(H). Then N(A) = N(B) if and only if
A = B or A∗ = B.

Proof. As in the proof of Proposition 4.4 in [28], we may assume that A ∩ A∗ is
a masa, i.e., A = Alg(N1 ⊗ · · · ⊗ Nn) for some continuous multiplicity free nests
N1, . . . ,Nn acting on H1, . . . , Hn, respectively. Suppose that the statement holds
if Ai = Av, for each i = 1, . . . , n. There exists a unitary operator Ui : H → Hi

such that UiAvU
∗
i = Ai, i = 1, . . . , n. Let U = U1 ⊗ · · · ⊗ Un, let B0 = U∗BU

and let A0 = Av ⊗ · · · ⊗ Av︸ ︷︷ ︸
n

. We have that U∗AU = A0, and it is easy to see that

the condition N(A) = N(B) implies N(A0) = N(B0). By assumption, A0 = B0 or
A0 = B∗

0 , and hence A = B or A = B∗. Hence, it suffices to establish the statement
in the case Ai = Av for each i = 1, . . . , n.

We identify H with L2(In). By Lemma 4.1 in [28], N(A) = N(B) implies that
A ∩A∗ = B ∩ B∗. We let κ = suppB ⊆ I

n × I
n; note that κ is an ω-closed set.

Recall that Δ+ = {(x, y) ∈ I× I : x < y} and let Δ− = {(x, y) ∈ I× I : x > y}
and δ = {(x, x) : x ∈ I}. Let ρ : In × I

n → (I× I)n be the mapping given by

ρ
(
(x1, . . . , xn, y1, . . . , yn)

)
=

(
(x1, y1), . . . , (xn, yn)

)
.

For subsets F ⊆ G ⊆ {1, . . . , n}, let ΓF,G = λ1 × · · · × λn ⊆ (I× I)n, where

λi =

⎧⎪⎨⎪⎩
Δ+ if i ∈ F,

Δ− if i ∈ G \ F,
δ if i �∈ G.

Let also EF,G = E1 ⊗ · · · ⊗ En, where

Ei =

⎧⎪⎨⎪⎩
Av if i ∈ F,

A∗
v if i ∈ G \ F,

D if i �∈ G.

By Corollary 3.5, supp EF,G = ρ−1(ΓF,G) (here, and for the rest of this proof, M

denotes the topological closure of the set M). Set δ̃ = Γ∅,∅; clearly, ρ−1
n (δ̃) is the

support of the masa D ⊗ · · · ⊗ D︸ ︷︷ ︸
n

.
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If F ⊆ G are as above and k is the cardinality of G, let ΔF,G = λ1 × · · · × λk

where

λi =

{
Δ+ if i ∈ F,

Δ− if i ∈ G \ F ;

thus, ΔF,G ⊆ (I× I)k. Let CF,G = C1 ⊗ · · · ⊗ Ck where

Ci =
{
Av if i ∈ F,

A∗
v if i ∈ G \ F.

We have that

(4.3) (I× I)n =
⋃{

ΓF,G : F ⊆ G ⊆ {1, . . . , n}
}
.

We establish the following

Claim. Suppose that κ∩ρ−1(ΓF,G) ��∅ for some F ⊆G⊆{1, . . . , n}. Then EF,G⊆B.

Proof of the claim. It is clear that Γ∅,∅ = δ̃, so E∅,∅ = D ⊗ · · · ⊗ D︸ ︷︷ ︸
n

. Since B∩B∗ =

E∅,∅, the claim is proved in the case F = G = ∅.
Suppose that G �= ∅. We may assume, after permuting the terms if necessary,

that there exist k and l ≤ k such that G = {1, . . . , k} and, if F �= ∅, then F =
{1, . . . , l}. Let κ0 = (κ ∩ ρ−1(ΓF,G)) ⊆ I

n × I
n. Then there exists λ ⊆ ΔF,G such

that κ0 = ρ−1
n (λ× δ × · · · × δ︸ ︷︷ ︸

n−k times

). By Corollary 3.5, we have that

supp
(
Mmax(ρ

−1
k (λ))⊗D ⊗ · · · ⊗ D︸ ︷︷ ︸

n−k

)
⊆ κ.

Since B is reflexive, it follows that

(4.4) Mmax

(
ρ−1
k (λ)

)
⊗D ⊗ · · · ⊗ D︸ ︷︷ ︸

n−k

⊆ B.

We claim that ρ−1
k (λ∩ΔF,G) �� ∅. To see this, suppose that ρ−1

k (λ∩ΔF,G) � ∅.
By Lemma 4.10 (i), we have that

κ ∩ ρ−1(ΓF,G) = ρ−1
2

(
ρ−1
k (λ ∩ΔF,G)× ρ−1

n−k(δ × · · · × δ)
)

is marginally null, a contradiction. By Lemma 4.10 (ii), it follows that ρ−1
k (λ ∩

ΔF,G) is ω-closed. Lemma 4.4 and the fact that every continuous multiplicity free
nest is unitarily equivalent to the Volterra nest imply that there exist Pi ∈ Lat Ci,
i = 1, . . . , k, and a non-zero operator A supported on λ such that

A = (P1 ⊗ · · · ⊗ Pk)A(P
⊥
1 ⊗ · · · ⊗ P⊥

k ).

By (4.4), letting In−k denote the identity operator on Hk+1 ⊗ · · · ⊗Hn, it follows
that A ⊗ In−k ∈ B. We claim that A ∈ CF,G. To show this, let Li ∈ Lat Ci,
i = 1, . . . , k. If Li ≤ Pi for some i then

(L1 ⊗ · · · ⊗ Lk)(P
⊥
1 ⊗ · · · ⊗ P⊥

k ) = 0.
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If Pi ≤ Li for each i then P1 ⊗ · · · ⊗ Pk ≤ L1 ⊗ · · · ⊗ Lk and hence

(P1 ⊗ · · · ⊗ Pk)(L1 ⊗ · · · ⊗ Lk)
⊥ = 0.

Thus, in both cases, (L1 ⊗ · · · ⊗ Lk)
⊥A(L1 ⊗ · · · ⊗ Lk) = 0 and hence A ∈ CF,G.

By Theorem 4.6,

CF,G = [(ST )A(ST )∗ : S ∈ Ne(CF,G), T ∈ NP (CF,G)]
w∗

,

where P = P1 ⊗ · · ·⊗Pk. Let A0
k = Av ⊗ · · · ⊗ Av︸ ︷︷ ︸

k

. Using Lemma 4.2 and the fact

that Ne(A0
k) = Ne(CF,G), we conclude that

CF,G ⊗ In−k ⊆ [(V ⊗ In−k)(A ⊗ In−k)(V ⊗ In−k)∗ : V ∈ N(A0
k)]

w∗

⊆ [W (A⊗ In−k)W ∗ : W ∈ N(B)]w
∗
⊆ B.

Since D ⊗ · · · ⊗ D︸ ︷︷ ︸
n

⊆ B, this implies that EF,G ⊆ B. The claim is proved. �

We now finish the proof of the theorem. Suppose that κ ∩ ρ−1(ΓF1,G1) and
κ ∩ ρ−1(ΓF2,G2), where F1 ⊆ G1 ⊆ {1, . . . , n} and F2 ⊆ G2 ⊆ {1, . . . , n}, are both
not marginally null. Suppose, moreover, that there exists

i ∈
(
F2 ∩ (G1 \ F1)

)⋃(
F1 ∩ (G2 \ F2)

)
.

Let F1 (respectively, F2) denote the tensor product of length n whose jth term
is equal to D if j �= i and to Av (respectively, A∗

v) if j = i. From the Claim,
we have that F1 + F2 ⊆ B. Let F3 denote the tensor product of length n whose
jth term is equal to D if j �= i and to B(H) if j = i. By Corollary 4.2.5 in [19],

Av +A∗
v

w∗
= B(H) and it follows that F3 ⊆ B. However, this contradicts the fact

that the diagonal of B is a masa.
It follows that if κ intersects in a non-marginally null set the subsets ρ−1(ΓF1,G1)

and ρ−1(ΓF2,G2), where F1 ⊆ G1 ⊆ {1, . . . , n} and F2 ⊆ G2 ⊆ {1, . . . , n}, then(
F2 ∩ (G1 \ F1)

)
= ∅ and

(
F1 ∩ (G2 \ F2)

)
= ∅.

Thus, (
F1 ∪ F2

)
∩
(
(G1 \ F1) ∪ (G2 \ F2)

)
= ∅

and hence ΓF1,G1 ∪ ΓF2,G2 = ΓF3,G3 , where F3 = F1 ∪ F2 and G3 = G1 ∪ G2.
Therefore, there exist F ⊆ G ⊆ {1, . . . , n} such that if κ ∩ ρ−1(ΓJ,K) �� ∅ then
ΓJ,K ⊆ ΓF,G.

Since κ is non-marginally null, (4.3) implies that there exist J ⊆ K ⊆ {1, . . . , n}
such that κ ∩ ρ−1(ΓJ,K) �� ∅. By the Claim and Corollary 3.5, ρ−1(ΓJ,K) ⊆ κ. It
follows that there exist F ⊆ G ⊆ {1, . . . , n} such that ρ−1(ΓF,G) = κ and hence
κ = supp EF,G. Therefore, B = EF,G. If G �= {1, . . . , n} then Lemma 4.8 would
imply that N(D) = N(Av), a contradiction. Hence G = {1, . . . , n}. Lemma 4.9
now implies that either A = B or A∗ = B. �
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We include an immediate consequence of Theorem 4.11, generalising Proposi-
tion 4.4 in [28].

Corollary 4.12. Let H be a Hilbert space, let A be a continuous nest algebra
acting on H and let B be a CSL algebra contained in B(H). If N(A) = N(B), then
either A = B or A∗ = B.

5. An example

In this section, we give an example which shows that Theorem 4.11 does not hold
without the assumption that the nest algebras Ai be continuous. This example
settles, simultaneously, question (1.1) in the negative.

We will need some facts from [2] and [28] which we now recall. Let (X,μ)
be a standard measure space. A quasi-order ≤ on X is called standard if there
exist measurable functions fn : X → R, n ∈ N, such that x ≤ y if and only if
fn(x) ≤ fn(y) for all n ∈ N. If (Y,�, ν) is another standard quasi-ordered measure
space, a function f : X0 → Y (where X0 ⊆ X is measurable) is called almost
increasing if there exists a null set N ⊆ X such that x, y ∈ X0 \ N , x ≤ y imply
that f(x) � f(y). A subset E ⊆ X is called almost increasing if χE : X → R is
an almost increasing function, where R is equipped with its standard order.

Let L(X,≤, μ) be the collection of all projections acting on L2(X,μ) that are
multiplication by characteristic functions of almost increasing sets; then L(X,≤, μ)
is a CSL. Arveson showed [2] that every separably acting CSL is unitarily equivalent
to L(X,≤, μ) for some standard quasi-ordered measure space (X,≤, μ). It was
shown in [13] that L(X,≤, μ) ⊗ L(Y,�, ν) is unitarily equivalent to L(X × Y,≤
× �, μ× ν), where ≤ × � is the product order on X × Y .

Let (X,≤, μ) and (Y,�, ν) be standard quasi-ordered measure spaces. A mea-
surable mapping f : X0 → Y , defined on a measurable subset X0 of X , is called a
partial Borel isomorphism if

(i) there exists a null set N ⊆ X0 such that the restriction of f to X0 \ N is
injective;

(ii) the inverse mapping f−1 : f(X0 \N) → X0 is measurable, and

(iii) f and f−1 are null set preserving.

If, furthermore, N can be chosen such that for all x and z in X0 \N ,

(iv) x ≤ z ⇐⇒ f(x) � f(z),

then f is said to be a partial order isomorphism. It was shown in [28] that, if ≤
is a partial order (equivalently, if L(X,≤, μ) is multiplicity free), then an operator
T ∈ B(L2(X,μ)) is a normaliser of AlgL(X,≤, μ) if and only if T is supported
on a set of the form {(x, f(x)) : x ∈ X0}, where f : X0 → X is a partial order
isomorphism. Consequently, two multiplicity free CSL algebras AlgL(X,≤, μ) and
AlgL(X,�, μ) have the same normaliser semigroups if and only if the partial orders
≤ and � have the same partial order isomorphisms.
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Let H0 be a complex Hilbert space, let E be the identity on H0, let Nv be the
Volterra nest acting on H = L2(I), and let

N1 = {0⊕Nt : 0 ≤ t ≤ 1} ∪ {I} and N2 = {0} ∪ {E ⊕Nt : 0 ≤ t ≤ 1};

note that N1 and N2 are nests acting on H0 ⊕H .
Let X = ({p} ∪ I)× I, equipped with the product measure μ, where the space

{p} ∪ I is the disjoint sum of the counting measure on {p} and Lebesgue measure
on I (here p is an arbitrary element not belonging to I). Equip {p} ∪ I with the
total orders �1 and �2 both of which coincide with the usual order on I, and p �1 t
(resp. t �2 p) for all t ∈ I. Let ≤1 (resp. ≤2) be the product order on X , where
{p} ∪ I is equipped with �1 (resp. �2), while I is equipped with the usual order.
It follows from [13] that N1 ⊗Nv = L(X,≤1, μ) and N2 ⊗Nv = L(X,≤2, μ). Let

A1 = Alg(N1 ⊗Nv) and A2 = Alg(N2 ⊗Nv).

Lemma 5.1. Let f : X0 → X be a partial order isomorphism of (X,≤1, μ) or of
(X,≤2, μ). Then there exists a set Λ ⊆ I of full Lebesgue measure such that the
set X0 ∩ ({p} × Λ) is mapped into {p} × I.

Proof. Let N ⊆ X be a null set such that conditions (i)-(iv) from the definition of
a partial order isomorphism hold, and let Np ⊆ I be the set with N ∩ ({p} × I) =
{p} ×Np; clearly, Np is null. Further, let M ⊆ I be the (measurable) subset with
the property that (X0 \N) ∩ ({p} × I) = {p} ×M. We may assume that M is not
null for otherwise we can set Λ = (M ∪ Np)

c. Let J = f({p} ×M) ∩ (I × I). For
each x ∈ I, let Jx = {y : (x, y) ∈ J} ⊆ I be the vertical section of J corresponding
to x. Let Q = {x ∈ I : Jx is not null}. Since f−1 is null set preserving and strictly
increasing on J (when the latter is equipped with the product order), we have that
{f−1(Jx) : x ∈ Q} is a family of non-null pairwise disjoint subsets of I; hence, Q
is countable. It follows that Jx is null for almost all x; this means that J is null.
Let R ⊆ I be the (measurable) subset such that {p} ×R = f−1(J); then R is null
since f−1 is null set preserving. To complete the proof, let Λ = I \ (R ∪Np). �

Let X0 ⊆ X be a measurable set and f : X0 → X be a partial Borel isomor-
phism. Let f1 : X0 → {p}∪I and f2 : X0 → I be the functions given by the identity
f(x, y) = (f1(x, y), f2(x, y)), (x, y) ∈ X0. Clearly, f1 and f2 are measurable.

Let f be a partial ≤1-order isomorphism (respectively, a partial ≤2-order iso-
morphism) and let N ⊆ X . For all t ∈ {s : ∃x with (x, s) ∈ X0 \ N}, let ΩN

t be
the open (possibly empty) interval defined by

ΩN
t =

(
inf

(x,t)∈X0\N
f2(x, t), sup

(x,t)∈X0\N
f2(x, t)

)
.

Lemma 5.2. Let f : X0 → X be a partial order isomorphism of (X,≤1, μ) (re-
spectively, of (X,≤2, μ)). Let Λ ⊆ I be the set from Lemma 5.1 and let N ⊆ X be
a null set containing {p}×Λc which satisfies conditions (i)–(iv) from the definition
of a partial order isomorphism with respect to ≤1 (respectively, ≤2). If t and s are
distinct elements lying in the set {r : (p, r) ∈ X0 \N}, then ΩN

s ∩ ΩN
t = ∅.
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Proof. Set Ωs = ΩN
s and Ωt = ΩN

t , and suppose that s < t while Ωs ∩ Ωt �= ∅.
Assume first that f is a partial order isomorphism of (X,≤1, μ). We have that

Ωt =
(
f2(p, t), sup

(x,t)∈X0\N
f2(x, t)

)
.

Then there exists (a, s) ∈ X0 \N such that f2(a, s) > f2(p, t). Since f1(p, t) = p
(recall the definition of N), we have that f(p, t) ≤1 f(a, s). Thus, (p, t) ≤ (a, s),
which implies that t ≤ s, a contradiction.

Now suppose that f is a partial order isomorphism of (X,≤2, μ). Then

Ωs =
(

inf
(x,s)∈X0\N

f2(x, s), f2(p, s)
)
.

Then there exists (a, t) ∈ X0 \N such that f(a, t) ≤2 f(p, s) with (a, t) �≤2 (p, s),
contradicting the fact that, for all (x, y) ∈ X0 \N ,

(x, y) ≤2 (z, w) ⇐ f(x, y) ≤2 f(z, w). �

Proposition 5.3. Let f : X0 → X be a partial Borel isomorphism defined on a
subset X0 of X. Then, f is a partial order isomorphism of (X,≤1, μ) if and only
if f is a partial order isomorphism of (X,≤2, μ).

Proof. Suppose that f is a partial order isomorphism of (X,≤1, μ). By the defini-
tion of partial order isomorphism and Lemma 5.1, there exists a null subset N of
the set X such that, for all (x, y) and (z, w) in X0 \N ,

(5.1) (x, y) ≤1 (z, w) ⇐⇒ f(x, y) ≤1 f(z, w),

f
(
(X0 \ N) ∩ ({p} × I)

)
⊆ {p} × I and f

(
(X0 \ N) ∩ (I × I)

)
⊆ I × I. (The last

inclusion can be ensured by considering f−1 in place of f in Lemma 5.1.) Since
the partial orders ≤1 and ≤2 coincide on {p}× I and on I× I, we have that for all
(p, s), (p, t) ∈ X0 \N ,

(p, s) ≤2 (p, t) ⇐⇒ f(p, s) ≤2 f(p, t)

and for all (x, y), (z, w) ∈ (X0 \N) ∩ (I× I),

(x, y) ≤2 (z, w) ⇐⇒ f(x, y) ≤2 f(z, w).

Define the sets Xa and Xb, respectively, by

Xa =
{
(p, t) ∈ X0 \N : ∃(x, y) ∈ (X0 \N) ∩ (I× I) :

(x, y) ≤2 (p, t) and f(x, y) �≤2 f(p, t)
}

and

Xb =
{
(p, t) ∈ X0 \N : ∃(x, y) ∈ (X0 \N) ∩ (I× I) :

(x, y) �≤2 (p, t) and f(x, y) ≤2 f(p, t)
}
.
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First, observe that Xb = ∅. In fact, if (p, t) lies in Xb, then there exists (x, y) ∈
(X0 \N)∩(I×I) such that t < y and f(x, y) ≤2 f(p, t). Since f(p, t) lies in {p}×I,
we have that f2(x, y) ≤ f2(p, t). It follows that (p, t) ≤1 (p, y) ≤1 (x, y) and, since f
is a partial order isomorphism of (X,≤1, μ), we have f(p, t) ≤1 f(p, y) ≤1 f(x, y).
Hence, by the definition of ≤1,

f2(p, t) ≤ f2(p, y) ≤ f2(x, y).

Since, as previously seen, f2(x, y) ≤ f2(p, t), it follows that f2(p, t) = f2(p, y).
Therefore f(p, t) = f(p, y) and (p, t) �= (p, y), contradicting the fact that f is
injective on X0 \N . Consequently, the set Xb is empty.

Suppose now that (p, t) is an element of Xa. In this case, y ≤ t and f2(p, t) <
f2(x, y) (for if f2(x, y) ≤ f2(p, t) then, since f1(p, t) = p, by the definition of the
order ≤2, we would have that f(x, y) ≤2 f(p, t)). It follows that f(p, t) ≤1 f(x, y).
Therefore, if y < t then (p, t) �≤1 (x, y) and f(p, t) ≤1 f(x, y), which contradicts
the fact that f satisfies condition (5.1) on X0 \N . Consequently, if (p, t) lies in Xa

and (x, y) is an element of (X0\N)∩(I×I) satisfying the condition in the definition
of the set Xa, then y = t.

Let Z be the subset of I defined by

Z =
{
t ∈ I : (p, t) ∈ Xa

}
.

Recall that, if t ∈ Z then there exists x ∈ I such that f2(p, t) < f2(x, t). It follows
from Lemma 5.2 that the sets ΩN

t , t ∈ Z, are nontrivial pairwise disjoint open
subintervals of I; thus, Z is countable. Consequently, M = I × Z is a null set.
Moreover, if x, y ∈ X0 \ (N ∪ M), then x ≤2 y if and only if f(x) ≤2 f(y). It
follows that f is a partial order isomorphism of (X,≤2, μ).

We have shown that every partial order isomorphism of (X,≤1, μ) is a partial
order isomorphism of (X,≤2, μ). Similar reasoning shows that the converse is also
true, and the proof is complete. �

Corollary 5.4. The algebras A1 and A2 are continuous CSL algebras such that
A1 �= A2, A∗

1 �= A2 and N(A1) = N(A2).

Proof. By Theorem 2.2 in [28] and Proposition 5.3, N(A1) = N(A2). The inequal-
ities are straightforward. �
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