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Defining functions for unbounded Cm domains

Phillip Harrington and Andrew Raich

Abstract. For a domain Ω ⊂ R
n, we introduce the concept of a uni-

formly Cm defining function. We characterize uniformly Cm defining func-
tions in terms of the signed distance function for the boundary and provide
a large class of examples of unbounded domains with uniformly Cm defin-
ing functions. Some of our results extend results from the bounded case.

1. Introduction

Let Ω ⊂ Rn be an open set. A Cm defining function, m ≥ 1, for Ω is a real-valued
Cm function ρ defined on a neighborhood U of ∂Ω such that {x ∈ U : ρ(x) < 0} =
Ω∩U and ∇ρ �= 0 on ∂Ω. If Ω has a Cm defining function, we say that Ω is a Cm

domain.
For many applications on unbounded domains, the preceding definition is in-

adequate. For example, to work in local coordinates that are adapted to the
boundary, it is necessary to work in a neighborhood whose size depends on the C2

norm of the defining function. If the C2 norm is not uniformly bounded, then such
neighborhoods may be arbitrarily small, which means that a partition of unity
subordinate to these neighborhoods might not have uniform bounds on the deriva-
tives. Problems may also arise in constructions which involve choosing a constant
large enough to bound quantities depending on derivatives of the defining function.
Typical results on Cm domains will require the following:

Definition 1.1. Let Ω ⊂ Rn, and let ρ be a Cm defining function for Ω defined
on a neighborhood U of ∂Ω such that

1) dist(∂Ω, ∂U) > 0,

2) ‖ρ‖Cm(U) < ∞,

3) infU |∇ρ| > 0.

We say that such a defining function is uniformly Cm. If ρ on U is uniformly Cm

for all m ∈ N, we say ρ is uniformly C∞.
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On bounded domains, compactness of the boundary implies that every boun-
ded Cm domain has a uniformly Cm defining function. On unbounded Cm domains
with noncompact boundaries, these properties may not hold. For example, consider
Ω ⊂ R3 defined by Ω =

{
z < xy2

}
. This is a C∞ domain, and any C2 defining

function ρ for Ω will take the form ρ(x, y, z) = h(x, y, z)(z−xy2) for a C1 function h
satisfying h > 0 on ∂Ω. If we restrict to the line � = {y = z = 0} ⊂ ∂Ω, we see

that |∇ρ||� = h and ∂2ρ
∂y2 |� = −2xh. If |∇ρ| > C1 > 0 on U then h > C1 on �, but

if ‖ρ‖C2(U) < C2 then 2 |x|h < C2. This is impossible if |x| ≥ C2/(2C1), so no

defining function for Ω is uniformly C2, even though the domain itself is C∞.
A natural choice for a defining function is the signed distance function. For

Ω ⊂ Rn with Cm boundary, define the signed distance function for Ω by

δ̃(x) =

{
d(x, ∂Ω) x /∈ Ω,

−d(x, ∂Ω) x ∈ Ω.

Note that the distance function δ(x) := d(x, ∂Ω) equals |δ̃(x)| for any x ∈ Rn. Let

Unp(∂Ω) =
{
x ∈ R

n : there is a unique point y ∈ ∂Ω such that δ(x) = |y − x|}.
The following concepts were introduced in [2].

Definition 1.2. If y ∈ ∂Ω, then define the reach of ∂Ω at y by

Reach(∂Ω, y) = sup
{
r ≥ 0 : B(y, r) ⊂ Unp(∂Ω)

}
and the reach of ∂Ω to be

Reach(∂Ω) = inf
{
Reach(∂Ω, y) : y ∈ ∂Ω

}
.

Our main result is the following:

Theorem 1.3. Let Ω ⊂ Rn be a Cm domain, m ≥ 2. Then the following are
equivalent:

1. Ω has a uniformly Cm defining function.

2. ∂Ω has positive reach, and for any 0 < ε < Reach(∂Ω), the signed distance
function satisfies ‖δ̃‖Cm(Uε) < ∞ on Uε = {x ∈ Rn : δ(x) < ε}.

3. There exists a Cm defining function ρ for Ω and a constant C > 0 such
that for every point p ∈ ∂Ω with local coordinates {y1, . . . , yn} satisfying
∂ρ/∂yj(p) = 0 for 1 ≤ j ≤ n− 1, we have

|∇ρ(p)|−1
∣∣∣∂kρ(p)

∂yI

∣∣∣ < C

where I is a multi-index of length k, 2 ≤ k ≤ m, and 0 ≤ In ≤ min{m−k, k}.



Defining functions for unbounded Cm
domains 1407

Remark 1.4. An important consequence of this theorem is that our definition of
uniformly C∞ is not too strong. If for every m ∈ N there exists a defining func-
tion ρm on Um such that ρm is uniformly Cm on Um, then there exists a uniformly
C∞ defining function ρ, and we can take ρ to be the signed distance function.

Remark 1.5. In [9], Krantz and Parks show that if Ω is a Cm domain, m ≥ 2, then
there exists a neighborhood U ⊃ ∂Ω on which δ̃ is Cm. Part (2) of Theorem 1.3
extends their result by showing that δ̃ is Cm up to Reach(∂Ω).

Proof. That (2) implies (1) and (1) implies (3) are immediate from the definitions.
That (3) implies (2) will follow from Lemmas 2.1 and 2.4, proved in Section 2. �

When studying the asymptotic behavior of a domain, it is natural to consider
the domain after embedding Rn ⊂ RP

n, and we will do so in Section 3. Our
theorem will make it easy to check that any Cm domain in Rn which can be
extended to a Cm domain in RP

n under this embedding will have a uniformly Cm

defining function. However, we will also show that there are examples which are
not even C1 in RP

n but still have uniformly Cm defining functions.

We conclude the paper in Section 4 with two specific applications of uni-
formly Cm defining functions. The first is the construction of weighted Sobolev
spaces on unbounded domains, and the second is a brief example from several
complex variables to illustrate the advantages of uniformly Cm defining functions
in generalizing some well-known constructions.

Over the course of several papers, we will study domains Ω that admit a uni-
formly Cm defining function, build weighted Sobolev spaces on them, and de-
velop the elliptic theory associated to the Sobolev spaces [8]. We will then be
in a position to investigate the ∂̄-Neumann and ∂̄b-problems in weighted L2 on
Ω ⊂ Cn. Gansberger has obtained compactness results for the ∂̄-Neumann oper-
ator in weighted L2 [4], but (at the time) there was available neither the elliptic
theory nor a Sobolev space theory suitable for studying the ∂̄-Neumann problem
in Hs or to facilitate the passage from the ∂̄-Neumann operator at the Sobolev
scale s = 1/2 to the complex Green operator on ∂Ω in weighted L2. There are
other results about solution operators for ∂̄ in the unbounded setting but for the
case Ω = Cn, rendering any boundary discussion moot [6], [3].

2. Basic results

A multi-index is an ordered n-tuple of nonnegative integers. For I = (I1, . . . , In),
we define |I| = ∑n

j=1 Ij . We say that a multi-index I has length k if |I| = k and
let Ik be the space of all multi-indices of length k. Denote the jth component of
a multi-index I by Ij so that, for example, ∂|I|/∂xI = ∂I1/∂xI1

1 · · · ∂In/∂xIn
n . We

equip the space of all multi-indices with the partial ordering J ≤ I if Jj ≤ Ij for
every 1 ≤ j ≤ n. For J ≤ I, the difference I − J is also a multi-index. In order to
apply the product rule, we define

(
I
J

)
=

∏n
j=1

(
Ij
Jj

)
.
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Below, we will take the Ck norm of a function on ∂Ω. We take an extrinsic
view, and for a Ck function f defined on a neighborhood of ∂Ω, we set

‖f‖2Ck(∂Ω) = sup
p∈∂Ω

k∑
j=0

∑
I∈Ij

∣∣∣∂jf(p)

∂xI

∣∣∣2 = inf
U⊃∂Ω

‖f‖2Ck(U) .

The intrinsic Ck norm of a defining function (defined in terms of tangential deriva-
tives on the boundary) is always zero, hence our use of the extrinsic norm.

For p ∈ ∂Ω, let en = ∇δ̃(p), and let {e1, . . . , en−1} be an orthonormal basis
for the orthogonal complement of en (ordered to preserve orientation). In our
given coordinate system (x1, . . . , xn) we can write ej = (e1j , . . . , e

n
j ). The matrix

E =
(
ekj
)
is orthogonal, so we can define orthonormal coordinates (y1, . . . , yn)

by yj =
∑n

k=1 e
k
j (xk − pk). Then in these new coordinates we can write p = 0

and ∇y δ̃(p) = (0, . . . , 0, 1). Throughout this paper, we will use (x1, . . . , xn) for
our given coordinate system and (y1, . . . , yn) for the special coordinate system
satisfying ∇y δ̃(p) = (0, . . . , 0, 1) and p = 0 for a point p ∈ ∂Ω.

For functions f defined in a neighborhood of p, we define a family of special Ck

norms that is adapted to the boundary. For any integer k ≥ 0, define

|f |2Ck
b (p)

=
k∑

k′=0

∑
I∈I

k′
In≤min{k−k′,k′}

∣∣∣∂k′
f(p)

∂yI

∣∣∣2.
The Ck

b norms provide a balance between computability (derivatives are only with
respect to {yj}) and theoretical elegance (intrinsic tangential derivatives and the
normal). In particular, terms in the Ck

b norm agree with terms in the expansion
of a k-fold composition of tangential differential operators with respect to local
coordinates. For the purposes of induction, we also define, for any integers k ≥ 1
and k ≥ 2j ≥ 0,

|f |2Ck,j
b

(p) = |f |2Ck−1
b (p) +

�k/2�∑
j′=j

∑
I∈Ik−j′
In=j

∣∣∣∂k−j′f(p)

∂yI

∣∣∣2.

The Ck,j
b are intermediate norms between Ck

b and Ck−1
b . In particular, |f |2Ck,0

b (p) =

|f |2Ck
b
(p). Also, when k is even,

|f |2
C

k,k/2
b (p)

= |f |2Ck−1
b (p) +

∣∣∣∂k/2f(p)

∂y
k/2
n

∣∣∣2,
and when k is odd,

|f |2
C

k,(k−1)/2
b (p)

= |f |2Ck−1
b (p) +

n−1∑
�=1

∣∣∣ ∂(k+1)/2f(p)

∂y�∂y
(k−1)/2
n

∣∣∣2.
In general, if I is a multi-index, then

(2.1)
∣∣∣∂|I|f(p)

∂yI

∣∣∣ ≤ |f |
C

|I|+In,In
b (p)

≤ |f |
C

|I|+In
b (p)

.
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The utility of this norm can be seen from the following lemma.

Lemma 2.1. Let Ω ⊂ Rn have Cm boundary, m ≥ 2. Let ρ be a Cm defining
function for Ω and let h be the positive Cm−1 function defined in a neighborhood
of ∂Ω by δ̃ = hρ. Then

sup
p∈∂Ω

|ρ|Cm
b

(p)

|∇ρ(p)| < ∞

if and only if

‖δ̃‖Cm(∂Ω) < ∞ and sup
p∈∂Ω

|h|Cm−2
b (p)

h(p)
< ∞.

Remark 2.2. When m = 2 the statement about h is trivial, so the conditions
on ρ and δ̃ are equivalent. We will see in (2.9) that something stronger is true in
this case.

Proof. Let (x1, . . . , xn) be arbitrary coordinates on R
n. Since |∇δ̃|2 = 1 on a

neighborhood of ∂Ω (see [9] and Theorem 4.8 (3) in [2]), for I ∈ Ik with 1 ≤ k ≤
m− 1, we can apply ∂k/∂xI to this equality to obtain

n∑
j=1

∑
J≤I

( I

J

) ∂

∂xj

(∂|J|δ̃
∂xJ

) ∂

∂xj

(∂k−|J|δ̃
∂xI−J

)
= 0

on ∂Ω (note that this method is also used with k = 1 in Corollary 5.3 of [7]).
For fixed p ∈ ∂Ω, choose coordinates (y1, . . . , yn) so that p = 0 and ∇y δ̃(p) =
(0, . . . , 0, 1). In these coordinates,

(2.2)
n∑

j=1

∑
J �=0,J<I

( I

J

) ∂

∂yj

(∂|J|δ̃
∂yJ

) ∂

∂yj

(∂k−|J|δ̃
∂yI−J

)
(p) + 2

∂

∂yn

(∂k δ̃

∂yI

)
(p) = 0.

From this, we conclude that

(2.3)
∣∣∣ ∂

∂yn

(∂kδ̃

∂yI

)
(p)

∣∣∣ ≤ C1‖δ̃‖2Ck(∂Ω)

for some constant C1 > 0 and for any I ∈ Ik with 1 ≤ k ≤ m− 1.
Since h is Cm−1, we may apply ∂k/∂xI , for I ∈ Ik, to δ̃ = hρ in a neighborhood

of ∂Ω to obtain
∂kδ̃

∂xI
=

∑
J≤I

( I

J

)∂|J|h
∂xJ

∂k−|J|ρ
∂xI−J

.

This can not be differentiated directly again if k = m− 1 because h is only Cm−1,
but we may form a difference quotient at p ∈ ∂Ω and take the limit to obtain

(2.4)
∂k+1δ̃(p)

∂xI
=

∑
J<I

( I

J

)∂|J|h(p)
∂xJ

∂k+1−|J|ρ(p)
∂xI−J
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for any I ∈ Ik+1, since ρ(p) = 0. Switching from generic coordinates (x1, . . . , xn)
to our special coordinates (y1, . . . , yn), we have ∂ρ/∂yj(p) = 0 if j �= n, so if In = 0
in these coordinates, all of the terms with first derivatives of ρ will also vanish,
leaving us with

(2.5)
∣∣∣∂k+1δ̃(p)

∂yI

∣∣∣ ≤ C2 |h|Ck−1
b (p) |ρ|Ck+1

b (p)

for some constant C2 > 0.
For 0 ≤ k′ ≤ m and I ′ ∈ Ik′ , we obtain from (2.4) the equation

∂|I′|δ̃(p)
∂yI′ =

∑
J<I′

Jn<I′n

(I ′
J

)∂|J|h(p)
∂yJ

∂|I′|−|J|ρ(p)
∂yI′−J

+
∑
J<I′

Jn=I′n

(I ′
J

)∂|J|h(p)
∂yJ

∂|I′|−|J|ρ(p)
∂yI′−J

.

Subtracting the terms of highest order in h (with respect to the Ck
b norm) and

setting ej to be the jth standard basis vector in R
n with respect to {y1, . . . , yn},

we can use (2.1) to estimate the remainder by∣∣∣∣ ∂|I′|δ̃(p)
∂yI′ − I ′n

∂|I′|−1h(p)

∂yI′−en

∂ρ(p)

∂yn
−

∑
J<I′,Jn=I′n
|J|=|I′|−2

(I ′
J

)∂|I′|−2h(p)

∂yJ
∂2ρ(p)

∂yI′−J

∣∣∣∣
≤ C3 |h|

C
|I′|+I′n−3

b (p)
|ρ|

C
|I′|+I′n
b (p)

.

for some constant C3 > 0. If I ′n = |I ′| or I ′n = |I ′| − 1, we have simply∣∣∣∣ ∂|I′|δ̃(p)
∂yI′ − I ′n

∂|I′|−1h(p)

∂yI′−en

∂ρ(p)

∂yn

∣∣∣∣ ≤ C3 |h|
C

|I′|+I′n−3

b (p)
|ρ|

C
|I′|+I′n
b (p)

.

Suppose that 0 ≤ j ≤ (k − 1)/2 and that I ∈ Ik−j−1 satisfies In = j. Note that

∂ρ/∂yn(p) = |∇ρ(p)| and ∂δ̃/∂yn(p) = 1, so by (2.4) with k = 0 we have

(2.6) h(p)|∇ρ(p)| = 1.

If we let I ′ = I + en, it follows that

(j + 1)
∣∣∣ ∂k−j−1h(p)

∂yI

∣∣∣ h(p)−1 ≤
∣∣∣ ∂k−j δ̃(p)

∂yI∂yn

∣∣∣
+

∑
J<I+en,Jn=j+1

|J|=k−j−2

(I + en
J

)∣∣∣ ∂k−j−2h(p)

∂yJ
∂2ρ(p)

∂yI−J∂yn

∣∣∣
+ C3 |h|Ck−2

b (p) |ρ|Ck+1
b (p)(2.7)

if k ≥ 2j + 3, and

(2.8) (j + 1)
∣∣∣ ∂k−j−1h(p)

∂yI

∣∣∣ h(p)−1 ≤
∣∣∣ ∂k−j δ̃(p)

∂yI∂yn

∣∣∣+ C3 |h|Ck−2
b

(p) |ρ|Ck+1
b

(p) .

if k < 2j + 3.
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We now proceed by induction on k. Assume supp∈∂Ω |ρ|Cm
b (p)/|∇ρ(p)| < ∞.

Suppose that for some m−1 ≥ k ≥ 1, ‖δ̃‖Ck(∂Ω) < ∞ and supp∈∂Ω |h|Ck−2
b (p)/h(p)

< ∞. When k = 1, this is clear since ‖δ̃‖C1(∂Ω) = 1 and the condition on h is
vacuous. Using j = �(k − 1)/2
 with (2.8) and the induction hypothesis we can
show that supp∈∂Ω |h|

C
k−1,�(k−1)/2�
b (p)

/h(p) < ∞. Suppose that for some 0 ≤ j ≤
(k − 3)/2 we know that supp∈∂Ω |h|Ck−1,j+1

b (p)/h(p) < ∞. Using (2.7), we know

now that supp∈∂Ω |h|Ck−1,j
b (p)/h(p) < ∞ since

|h|Ck−1,j
b (p) = |h|Ck−1,j+1

b (p) +
∑

I∈Ik−j−1
In=j

∣∣∣ ∂k−j−1h(p)

∂yI

∣∣∣ .
Proceeding by downward induction on j we have supp∈∂Ω |h|Ck−1

b (p)/h(p) < ∞.

Using (2.3) and (2.5), we conclude ‖δ̃‖Ck+1(∂Ω) < ∞. The result follows by
induction on k.

For the converse, we simply subtract the term of highest degree in ρ from (2.4)
with I ∈ Ik′+1 for 0 ≤ k′ ≤ m− 1 to obtain

∣∣∣ ∂k′+1δ̃(p)

∂yI
− h(p)

∂k′+1ρ(p)

∂yI

∣∣∣ ≤ C4 |h|Ck′+In−1
b (p)

|ρ|
Ck′+In

b (p)
,

for some constant C4 > 0. For any 0 ≤ j ≤ (k + 1)/2 and I ∈ Ik−j+1 with In = j,
if we set k′ = k − j then we have

|∇ρ(p)|−1
∣∣∣ ∂k−j+1ρ(p)

∂yI

∣∣∣ ≤ ∣∣∣ ∂k−j+1 δ̃(p)

∂yI

∣∣∣ + C4 |h|Ck−1
b (p) |ρ|Ck

b (p)
.

The result follows by induction on k. �

Although Lemma 2.1 may not apply to all Cm defining functions, it will suffice
to prove the main theorem. However, the inductive procedure used to prove this
lemma may also be used to construct a system of boundary invariants for any
defining function. We illustrate this by considering the m = 2 and m = 3 cases.
By (2.3), it will suffice to consider derivatives in tangential directions. Fix 1 ≤
j, k, � ≤ n − 1. In the special coordinates of Lemma 2.1 at p we apply (2.4)
repeatedly to obtain

1 = h(p)|∇ρ(p)|; ∂2δ̃(p)

∂yj∂yk
= h(p)

∂2ρ(p)

∂yj∂yk
;

∂2δ̃(p)

∂yj∂yn
= h(p)

∂2ρ(p)

∂yj∂yn
+

∂h(p)

∂yj
|∇ρ(p)|;

∂3δ̃(p)

∂yj∂yk∂y�
= h(p)

∂3ρ(p)

∂yj∂yk∂y�
+

∂h(p)

∂yj

∂2ρ(p)

∂yk∂y�
+

∂h(p)

∂yk

∂2ρ(p)

∂yj∂y�
+

∂h(p)

∂y�

∂2ρ(p)

∂yj∂yk
.

By (2.2), ∂2δ̃(p)/∂yj∂yn = 0, so we may use (2.6) and the previous equalities to
conclude

(2.9)
∂2δ̃(p)

∂yj∂yk
= |∇ρ|−1 ∂

2ρ(p)

∂yj∂yk
,
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and

(2.10)
∂3δ̃(p)

∂yj∂yk∂y�
= |∇ρ|−1 ∂3ρ(p)

∂yj∂yk∂y�

− |∇ρ|−2
( ∂2ρ(p)

∂yj∂yn

∂2ρ(p)

∂yk∂y�
+

∂2ρ(p)

∂yk∂yn

∂2ρ(p)

∂yj∂y�
+

∂2ρ(p)

∂y�∂yn

∂2ρ(p)

∂yj∂yk

)
.

Once we have completed the proof of the main theorem, we can derive necessary
and sufficient conditions for the existence of uniformly C2 (resp. C3) defining func-
tions by checking the boundedness of (2.9) (resp. (2.9) and (2.10)). Higher order
conditions can be derived as well, but these will be progressively more complicated.
We note that (2.9) also follows from Remark 4.2 (i) of [7], as does the observation
that successive differentiations can be used to obtain higher order equalities.

To facilitate formulas without special coordinates, we define

Tp(∂Ω) =
{
t ∈ R

n :

n∑
j=1

tj
∂δ̃

∂xj
(p) = 0

}
.

We also use the notation y = (y′, yn) for y′ ∈ Rn−1 and yn ∈ R.

Lemma 2.3. Let Ω ⊂ Rn have a C2 boundary. Then for any C2 defining func-
tion ρ we have

(2.11) sup
p∈∂Ω

sup
t∈Tp(∂Ω)

|t|=1

|∇ρ|−1
∣∣∣ n∑
j,k=1

tj
∂2ρ

∂xj∂xk
(p)tk

∣∣∣ < ∞

if and only if ∂Ω has positive reach, and

(2.12) Reach(∂Ω) =
(

sup
p∈∂Ω

sup
t∈Tp(∂Ω)

|t|=1

|∇ρ|−1
∣∣∣ n∑
j,k=1

tj
∂2ρ

∂xj∂xk
(p)tk

∣∣∣)−1

.

Proof. For p ∈ ∂Ω, choose local coordinates (y1, . . . , yn) so that p = 0 and ∇δ̃(p) =
(0′, 1). Suppose that for some r > 0, B((0′, r), r) ⊂ Ωc and B((0′,−r), r) ⊂ Ω.

Then for q ∈ ∂Ω, |q − (0′,±r)|2 ≥ r2, so |q|2 ∓ 2qnr ≥ 0. Hence |q|2/(2r) ≥ |qn|.
By Theorem 4.18 in [2], this can be accomplished at every p ∈ ∂Ω if and only if
Reach(∂Ω) ≥ r.

In our special coordinates, note that for s ∈ R
n−1 we have

n−1∑
j,k=1

sj
∂2δ̃(0)

∂yj∂yk
sk = lim

h→0

2δ̃(hs, 0)

h2
.

If |q|2/(2r) ≥ |qn| for all q ∈ ∂Ω, then by comparing (hs, 0) to the boundary point

which shares its first n−1 coordinates with hs we see that δ(hs, 0) ≤ |hs|2/(2r), so

(2.13)

n−1∑
j,k=1

∣∣∣sj ∂2δ̃(0)

∂yj∂yk
sk

∣∣∣ ≤ |s|2
r

.
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On the other hand, Taylor’s theorem implies that if (2.13) holds in a neighborhood

of 0, then |δ̃(q)− qn| ≤ |q|2/(2r) for q sufficiently close to 0. Thus, if q ∈ ∂Ω, then

|q|2/(2r) ≥ |qn|.
Converting (2.13) to generic coordinates (x1, . . . , xn), we see that Reach(∂Ω)≥ r

if and only if
n∑

j,k=1

∣∣∣tj ∂2δ̃(p)

∂xj∂xk
tk

∣∣∣ ≤ |t|2
r

on ∂Ω for any vector t ∈ Tp(∂Ω). By (2.9), this is equivalent to

|∇ρ|−1
∣∣∣ n∑
j,k=1

tj
∂2ρ(p)

∂xj∂xk
tk

∣∣∣ ≤ |t|2
r

for all p ∈ ∂Ω and t ∈ Tp(∂Ω). If we take the supremum over all possible r > 0
satisfying these inequalities, the result follows. �

For m = 2, the following result follows from computations ((2.14) and (2.15))
that can be found in several sources (see in particular [10], Lemma 14.17 in [5],
and Section 5 in [7]). In (2.16) and (2.17) we generalize these to m ≥ 2.

Lemma 2.4. Let Ω ⊂ Rn have a Cm boundary for some m ≥ 2 and suppose
that the signed distance function for Ω satisfies ‖δ̃‖Cm(∂Ω) < ∞. Then for any

0 < ε < Reach(∂Ω) the signed distance function satisfies ‖δ̃‖Cm(U) < ∞ on Uε =
{x ∈ Rn : δ(x) < ε}.
Proof. By the previous lemma, ∂Ω has positive reach, so δ̃ is a Cm function on a
neighborhood U ′ ⊃ ∂Ω [9]. Note that the result of Krantz and Parks is essentially
local, so it is possible that dist(∂U ′, ∂Ω) = 0 if ∂Ω is not compact. Set

U =
{
x ∈ R

n : δ(x) < Reach(∂Ω)
}
.

By Theorem 4.8 (3) and (5) in [2], for any x ∈ U we have∇δ̃(x) = ∇δ̃(π(x)), where
π(x) = x − δ̃(x)∇δ̃(x) ∈ ∂Ω is the unique boundary point nearest to x. This is
differentiable, and solving the derivative for ∇2δ̃ gives us

(2.14)
∂2δ̃(x)

∂xj∂x�
=

n∑
�′=1

∂2δ̃(π(x))

∂xj∂x�′

(
Id+ δ̃(x)∇2δ̃(π(x))

)−1

�′�

for x ∈ U , where Id is the identity matrix (see [10] and [7]; see also (2.15) below).
Note that Id + δ̃(x)∇2 δ̃(x) is invertible on U by (2.9) and (2.12). This formula
shows that δ̃ is C2 on U (we already know that δ̃ is C2 near ∂Ω and π(x) ∈ ∂Ω).
Since this formula relates derivatives away from ∂Ω to derivatives on ∂Ω (which
exist since ∂Ω ⊂ U ′), we may continue to differentiate and use induction to show
that δ̃ is Cm on U .

Fix p ∈ ∂Ω and choose new coordinates (y1, . . . , yn) so that p = 0, ∇δ̃(p) =
(0′, 1), and ∇2δ̃(p) is diagonalized with eigenvalues κ1(0), . . . , κn(0). By Theo-
rem 4.8 (3) in [2], when y′ = 0′ and |yn| < Reach(∂Ω), we have δ̃(y) = yn and
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∇δ̃(y) = (0′, 1). Differentiating |∇δ̃|2 = 1 once demonstrates that κn = 0. For
m ≥ 3, differentiating |∇δ̃|2 = 1 twice yields

2

n∑
�=1

( ∂δ̃

∂x�

∂3δ̃

∂x�∂xj∂xk
+

∂2δ̃

∂x�∂xj

∂2δ̃

∂x�∂xk

)
= 0

on U . From (2.14), we can see that eigenvectors of ∇2δ̃ are preserved along the
normal direction. Rewriting the above equation in our y-coordinates, when j = k
and y′ = 0′, we have 2(∂κj/∂yn + κ2

j)(y) = 0 on U . The unique solution to this
equation is given by

(2.15) κj(y) =
κj(0)

1 + ynκj(0)

(see also Lemma 14.17 in [5], but with the opposite sign convention). Since

Reach(∂Ω) ≤ |κj(0)|−1
(see (2.9) and (2.12)) for all 1 ≤ j ≤ n−1 with κj �= 0, κj is

uniformly bounded on Uε.
For 3 ≤ k ≤ m− 1, let I ∈ Ik. Then differentiating |∇δ̃|2 = 1 gives us

n∑
j=1

∑
J≤I

( I

J

) ∂

∂xj

(∂|J|δ̃
∂xJ

) ∂

∂xj

(∂k−|J|δ̃
∂xI−J

)
= 0.

on U . In our diagonalized coordinates, we can evaluate terms involving only first
or second derivatives separately to obtain

2
∂k+1δ̃

∂yn∂yI
+ 2

( n∑
j=1

Ijκj

)∂k δ̃

∂yI

+
n∑

j=1

∑
J<I

2≤|J|≤k−2

( I

J

) ∂

∂yj

(∂|J|δ̃
∂yJ

) ∂

∂yj

(∂k−|J|δ̃
∂yI−J

)
= 0

on U when y′ = 0′ (when k = 3 the final sum can be omitted). If we set

μI(yn) =

n∏
j=1

(
1 + ynκj(0)

)Ij
,

then by (2.15), μI(yn) solves the initial value problem

∂μI

∂yn
(yn) = μI(yn)

n∑
j=1

Ijκj(0
′, yn) and μI(0) = 1,

so

2
∂

∂yn

(
μI

∂kδ̃

∂yI

)
+ μI

n∑
j=1

∑
J<I

2≤|J|≤k−2

( I

J

) ∂

∂yj

(∂|J|δ̃
∂yJ

) ∂

∂yj

(∂k−|J|δ̃
∂yI−J

)
= 0
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on U when y′ = 0′. Hence, we may integrate to obtain

∂k δ̃

∂yI
(0′, yn) =

1

μI(yn)

∂kδ̃

∂yI
(0)

− 1

2μI(yn)

∫ yn

0

μI(t)

n∑
j=1

∑
J<I

2≤|J|≤k−2

( I

J

) ∂

∂yj

(∂|J|δ̃
∂yJ

) ∂

∂yj

(∂k−|J|δ̃
∂yI−J

)
(0′, t)dt.(2.16)

When k = 3 the integrated sum is omitted, so we have the formula

(2.17)
∂3δ̃

∂yI
(0′, yn) =

1

μI(yn)

∂3δ̃

∂yI
(0).

Since μI(yn) is uniformly bounded below on Uε and the terms in the integral are
differentiated at most k − 1 times, we may use induction on k to obtain uniform
bounds on ∂k δ̃/∂yI on Uε for all I with 3 ≤ k ≤ m− 1.

Now, we wish to differentiate our formulas for k = m − 1 to show that they
also hold for k = m. By differentiating (2.14), we can obtain formulas for the
first m derivatives of δ̃ on U in terms of derivatives restricted to ∂Ω. By formal
manipulations, these must be equivalent to those obtained in (2.16) and (2.17),
and hence the first m derivatives remain uniformly bounded on Uε. �

3. Examples in projective space

A large class of examples of domains with uniformly Cm defining functions can
be found by considering Rn ⊂ RP

n. Recall that RP
n = (Rn\ {0})/ ∼ under the

equivalence relation x ∼ y if x = λy for λ ∈ R\ {0}. If we denote coordinates
on RP

n by [x1 : . . . : xn+1], the canonical embedding of R
n in RP

n is given
by (x1, . . . , xn) �→ [x1 : . . . : xn : 1]. Every unbounded domain Ω in Rn can be
extended to a bounded domain Ω̃ in RP

n with respect to this embedding, although
smooth unbounded domains will generally not embed as smooth domains in RP

n.
Conversely, from a domain Ω̃ ⊂ RPn, we can canonically produce a (possibly
unbounded) domain Ω ⊂ Rn under the mapping [x1 : . . . : xn : 1] �→ (x1, . . . , xn).

Corollary 3.1. Let Ω̃ ⊂ RP
n be a Cm domain. Then the domain Ω ⊂ Rn ob-

tained by pulling back along the canonical embedding has a uniformly Cm defining
function.

Proof. For Sn ⊂ R
n+1, we can define Ω̃ by a Cm defining function ρ̃ : Sn → R such

that ρ̃(−x̃) = ρ̃(x̃). Extend ρ̃ to all of Rn+1\ {0} by ρ̃(x̃) = ρ̃
(
x̃/|x̃|). Since we

have ρ̃(x̃) = ρ̃(λx̃) for any λ ∈ R\ {0}, we also obtain ∇kρ̃(x̃) = λk(∇kρ̃)(λx̃). If
we assume that

∣∣∇kρ̃
∣∣ < Ck and |∇ρ̃| > C0 on ∂Ω̃ ∩ Sn for any integer 1 ≤ k ≤ m

and some constants C0, Ck > 0, then substituting λ = 1/|x̃| we have in general∣∣∇kρ̃(x̃)
∣∣ < Ck |x̃|−k and |∇ρ̃(x̃)| > C0 |x̃|−1 whenever ρ̃(x̃) = 0.

A defining function ρ for the domain Ω ⊂ Rn can now be obtained by con-
sidering ρ(x1, . . . , xn) = ρ̃(x1, . . . , xn, 1). Since we are using x̃ = (x1, . . . , xn, 1),
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we have |x̃| = (1 + |x|2)1/2. Thus
∣∣∇kρ(x)

∣∣ < Ck(1 + |x|2)−k/2 and |∇ρ(x)| >

C0(1 + |x|2)−1/2 on ∂Ω, so∣∣∇kρ
∣∣

|∇ρ| (x) <
Ck

C0(1 + |x|2)(k−1)/2

on ∂Ω for all 1 ≤ k ≤ m. By our main theorem, this implies that Ω has a
uniformly Cm defining function. �

Note that this proof can still be used if ρ̃ is Cm when xn+1 �= 0 and
∣∣∇kρ̃(x)

∣∣ <
Ckx

1−k
n+1 for x ∈ Sn with xn+1 �= 0, so a uniformly Cm defining function in Rn

covers a much larger class of examples than those given by Cm domains in RP
n.

For example, consider the domain Ω1 ⊂ R2 defined by

Ω1 =
{
y < x−1 sinx, x �= 0

} ∪ {
y < 1, x = 0

}
.

Then Ω1 is a C∞ domain. Let ρ1(x, y) = y − x−1 sinx when x �= 0 and ρ1(0, y) =
y − 1. By considering the Maclaurin series of sinx we can see that ρ1 is real-
analytic (hence smooth) in a neighborhood of the set where x = 0. When x �= 0,
we have ∇ρ1 = (x−2 sinx−x−1 cosx, 1), so |∇ρ1| is uniformly bounded from above
and away from zero. Differentiating m times, we have |∂mρ1/∂x

m| ≤ O(x−1), so
this is also uniformly bounded. Hence ρ1 is a uniformly Cm defining function for
any integer m. In RP

2, this defining function can be written ρ1([x : y : z]) =
y/z − z/x sin(x/z). On the coordinate patch where x �= 0, this can be written
ρ1(y, z) = y/z − z sin(1/z). To normalize this near z = 0, we use ρ̃1(y, z) =
y − z2 sin(1/z). Note that for fixed y this is a classic example of a function which
is differentiable at z = 0 but not C1 in a neighborhood of z = 0. We conclude that
Ω̃1 ⊂ RP

2 is not a C1 domain.
On the other hand, consider Ω2 ⊂ R2 defined by

Ω2 =
{
y < x−2 sinx2, x �= 0

} ∪ {
y < 1, x = 0

}
.

Let ρ2(x, y) = y−x−2 sinx2 when x �= 0 and ρ2(0, y) = y−1. Again, the Maclaurin
series will show that all derivatives are uniformly bounded near x = 0, so we focus
on x �= 0. Since ∇ρ2 = (2x−3 sinx2 − 2x−1 cosx2, 1), we define

D1 =
1

|∇ρ2|
∂

∂x
− 2x−3 sinx2 − 2x−1 cosx2

|∇ρ2|
∂

∂y

and D2 =
2x−3 sinx2 − 2x−1 cosx2

|∇ρ2|
∂

∂x
+

1

|∇ρ2|
∂

∂y

to represent the directions tangent and normal to the boundary. Since ∂2ρ2/∂x
2 =

4 sinx2 +O(x−2), ρ2 is a uniformly C2 defining function for Ω, and hence ∂Ω has
positive reach. However, ∂3ρ2/∂x

3 = 8x cosx2 + O(x−1). If we fix p = (px, py) ∈
∂Ω with px �= 0, then (2.10) tells us that

(D1|p)3δ̃(p) = |∇ρ2|−1
(D1|p)3ρ2(p)− 3 |∇ρ2|−2(

(D1|p)(D2|p)ρ2(p)
)(
(D1|p)2ρ2(p)

)
= 8x cosx2 +O(x−1).
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This is not uniformly bounded, so there does not exist a uniformly C3 defining
function for ∂Ω. Hence, positive reach does not suffice to extend Cm defining
functions as uniformly Cm defining functions.

Finally, let h(x, y) = ex
2

. Then sup |h|C1
b
/h = ∞ with respect to either

of the previous two examples (since ∂/∂x is asymptotically the tangential di-
rection in these examples). By Lemma 2.1, the defining function ρh1 (x, y) =
(y − x−1 sinx)h(x, y) fails to satisfy sup

∣∣ρh1 ∣∣C3
b

/
∣∣∇ρh1

∣∣ < ∞ even though this de-

fines a domain with a uniformly C3 defining function. Hence, not all defining
functions need satisfy the conditions of Lemma 2.1. Turning to our other example,
ρh2 (x, y) = (y − x−2 sinx2)h(x, y) still satisfies sup

∣∣ρh2 ∣∣C2
b

/
∣∣∇ρh2

∣∣ < ∞ even though

‖ρh2‖C2(∂Ω) = ∞. Thus, it is helpful to consider the special Ck
b norm in place of

the standard extrinsic Ck norm.

4. Applications of uniformly Cm defining functions

In [8], we define weighted Sobolev spaces on the boundaries of unbounded domains.
From the standpoint of the present paper, the weight function is irrelevant. How-
ever, it seems difficult to obtain elliptic regularity results without a weight, so for
the sake of defining a meaningful space of functions we will include the weight.
The weight functions that we use satisfy a number of technical hypotheses (similar
to those in [6], [4], and [3]) all satisfied by ϕt(x) = t|x|2, t ∈ R \ {0}. Let Ω ⊂ Rn

have a Cm boundary, m ≥ 2, that admits a uniformly Cm defining function. We
define weighted Sobolev spaces both on the boundary and near the boundary.

Suppose Ω ⊂ Rn admits a uniformly C2 defining function. By Theorem 1.3,
∂Ω has positive reach, so for 1

2 Reach(∂Ω) > ε > 0 we set

Ωε =
{
x ∈ Ω : δ(x) < ε

}
.

Since ‖δ̃‖C2(Ω2ε) < ∞, there exists a radius 1
4 Reach(∂Ω) > r > 0 such that

whenever B(p, r) ∩ Ωε �= ∅, there exist coordinates on B(p, r) such that the level
curves of δ̃ can be written as graphs. Hence, there exists an orthonormal basis
L1, . . . , Ln−1 of the tangent space to the level curves of δ̃ on B(p, r). We also let
Ln = ν be the unit outward normal to the level curves of δ̃. For 1 ≤ j ≤ n, set

Tj = Lj − Lj(ϕt).

We call a first order differential operator T tangential if the first order component
of T is tangential. Note that we use Tj instead of Lj for technical reasons involving
integration by parts in weighted norms, but these are not relevant for the present
paper.

Let {pj} be an enumeration of all points in Rn whose coordinates are integral

multiples of r/
√
n. Then {B(pj , r/2)} is a locally finite cover of Rn, with a uniform

upper bound on the number of sets covering each point. If χ ∈ C∞
0 (B(0, r))

satisfies χ = 1 on B(0, r/2) and 1 ≥ χ ≥ 0, we can construct a partition of unity
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subordinate to {B(pj , r)} by using χj(x) = χ(x − pj)/ (
∑

k χ(x− pk)). Because
there is a uniform upper bound on the number of nonzero terms in the denominator,
we have a uniform bound on ‖χj‖Cm for any m ≥ 0.

Let {Uj} be a restriction of this cover to include only those sets covering Ωε,
with the corresponding modification to χj . For any distribution v on Ωε, we set
vj = vχj , so v =

∑∞
j=1 vj . If Ω admits a uniformly Cm defining function, m ≥ 2,

we define the weighted Sobolev space W k,p(Ωε, ϕt,∇ϕt), 0 ≤ k ≤ m, as the space
of distributions v on Ωε whose partial derivatives up to order k agree with functions
and for which the norm

|‖v|‖p
Wk,p(Ωε,ϕt,∇ϕt)

=

∞∑
j=1

∑
|α|≤k

‖Tαvj‖pLp(Ωε,ϕt)

is finite, where Tj = Lj − Lj(ϕt) is well defined on Uj and the composition Tα is
defined by Tα = Tα1 · · ·Tα|α| .

For the boundary Sobolev space, set

W k,p(∂Ω, ϕt,∇ϕt) =
{
f ∈ Lp(∂Ω, ϕt) : T

αf ∈ Lp(∂Ω, ϕt), |α| ≤ k

and Tαj is tangential for 1 ≤ j ≤ |α|}.
Choosing uniform neighborhoods with good local coordinates only makes sense

on domains with positive reach, and compositions of derivatives would be extremely
difficult to control without a uniformly Cm defining function. When p = 2, we de-
fine fractional Sobolev spaces via interpolation and can prove many of the standard
Sobolev space results.

We also provide an example from several complex variables. The following
theorem is well known in the bounded case (see for example Theorem 3.4.4 in [1]).

Theorem 4.1. Let Ω ⊂ C
n be a domain with a C2 defining function r and a

constant C > 0 satisfying

(4.1)

n∑
j,k=1

∂2r

∂zj∂z̄k
tj t̄k ≥ C |∇r|

n∑
j=1

|tj |2

on ∂Ω for t ∈ Tp(∂Ω).

1. If Ω admits a uniformly C2 defining function, then there exists a defining
function which is strictly plurisubharmonic on ∂Ω.

2. If Ω admits a uniformly C3 defining function, then there exists a defining
function which is plurisubharmonic on Ω and strictly plurisubharmonic on
{z ∈ Ω : δ(z) < ε} for some ε > 0.

Remark 4.2. The assumption (4.1) implies that Ω is strictly pseudoconvex, but
the uniform lower bound on the Levi form is not true for all strictly pseudoconvex
domains in the unbounded case. For an example that satisfies our condition,
consider the tube in Cn defined by the defining function r(z) = |z′|2+(Im zn)

2−1.
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Remark 4.3. The second statement is not sharp in the bounded case, where (4.1)
alone (without the C3 assumption) guarantees the existence of a strictly pluri-
subharmonic defining function. We require C3 to govern the decay rate of (4.1)
off of ∂Ω, and our resulting function is merely plurisubharmonic because we can
not use |z|2 to obtain strict plurisubharmonicity in the interior (it is no longer a
bounded function).

Proof. Since (4.1) is independent of the choice of defining function, it will be
satisfied by the signed distance function. For λ > 0 to be determined later, define

ρ(z) = eλδ̃(z) − 1

for z in a small neighborhood of ∂Ω. For v : Ωε → Cn, we may decompose

v = τ + ν, where
∑n

j=1
∂δ̃
∂zj

τj = 0 and ν is a scalar multiple of
(

∂δ̃
∂z̄1

, . . . , ∂δ̃
∂z̄n

)
.

Then since
∣∣∑n

j=1
∂δ̃
∂zj

vj
∣∣ = 1

2

(∑n
j=1 |νj |2

)1/2
we have

n∑
j,k=1

∂2ρ

∂zj∂z̄k
vj v̄k = λeλδ̃

n∑
j,k=1

∂2δ̃

∂zj∂z̄k
vj v̄k + λ2eλδ̃

1

4

n∑
j=1

|νj |2 .

Since δ̃ satisfies (4.1) on ∂Ω, we have

n∑
j,k=1

∂2ρ

∂zj∂z̄k
vj v̄k ≥ λC

n∑
j=1

|τj |2 + λ

n∑
j,k=1

2Re
( ∂2δ̃

∂zj∂z̄k
τj ν̄k

)

+ λ
n∑

j,k=1

∂2δ̃

∂zj∂z̄k
νj ν̄k + λ2 1

4

n∑
j=1

|νj |2

on ∂Ω. Since δ̃ is uniformly C2, there exists a constant C2 > 0 such that
∣∣ ∂2 δ̃
∂zj∂z̄k

∣∣ ≤
C2 on ∂Ω. Hence, the Cauchy–Schwarz inequality gives us

n∑
j,k=1

∂2ρ

∂zj∂z̄k
vj v̄k ≥ λC |τ |2 − 2λC2 |τ | |ν| − λC2 |ν|2 + λ2 1

4
|ν|2 .

This is strictly positive provided that C
(
1
4λ− C2

)
> 4C2

2 . Hence, we may choose λ
sufficiently large so that ρ is strictly plurisubharmonic on ∂Ω.

If we assume that δ̃ is uniformly C3, then from (4.1) there exists some uniform
neighborhood U of ∂Ω on which

n∑
j,k=1

∂2δ̃

∂zj∂z̄k
τj τ̄k ≥ 1

2
C

n∑
j=1

|τj |2 .

We may assume |∂2δ̃/∂zj∂z̄k| ≤ C2 on U , so that

n∑
j,k=1

∂2ρ

∂zj∂z̄k
vj v̄k ≥ λ eλδ̃

1

2
C |τ |2 + 2λ eλδ̃ C2 |τ | |ν|+ λ eλδ̃ C2 |ν|2 + λ2 eλδ̃

1

4
|ν|2 .

This is positive provided that 1
2C

(
1
4λ− C2

) ≥ 4C2
2 , so we may again choose λ

sufficiently large so that ρ is plurisubharmonic on ∂Ω.
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To extend ρ to all of Ω, let A = supΩ\U δ̃. Since we were able to choose a uniform
neighborhood U , A < 0. ρ̂ = max {ρ,A} will be a Lipschitz plurisubharmonic
defining function for Ω, and a smooth convex approximation to max can be used
to obtain a smooth plurisubharmonic defining function for Ω. �
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