Rev. Mat. Iberoam. **29** (2013), no. 4, 1421–1436 DOI 10.4171/RMI/763 © European Mathematical Society

Ground states for pseudo-relativistic Hartree equations of critical type

Vittorio Coti Zelati and Margherita Nolasco

Abstract. We study the existence of ground state solutions for a class of nonlinear pseudo-relativistic Schrödinger equations with critical twobody interactions. Such equations are characterized by a nonlocal pseudodifferential operator closely related to the square root of the Laplacian. We investigate this problem using variational methods after transforming the problem to an elliptic equation with a nonlinear Neumann boundary conditions.

1. Introduction

The relativistic Hamiltonian for N identical particles of mass m, position x_i and momentum p_i interacting through the two-body potential $\alpha W(|x_i - x_j|)$ is given by

$$\mathcal{H} = \sum_{i=1}^{N} \left(\sqrt{p_i^2 c^2 + m^2 c^4} - mc^2 \right) - \alpha \sum_{i \neq j} W(|x_i - x_j|).$$

where c is the speed of light and $\alpha > 0$ is a coupling constant.

According to the usual quantization rules the dynamics of the corresponding system of N-identical quantum spinless particles (a Bose gas) is described by the complex wave function $\Psi_N = \Psi_N(t, x_1, \ldots, x_N)$ governed by the Schrödinger equation

$$i\hbar\partial_t\Psi_N=\mathcal{H}_N\Psi_N$$

where \hbar is the Planck's constant. Here $\mathcal{H}_N: \mathcal{D} \subset L^2(\mathbb{R}^3)^{\otimes_s N} \to L^2(\mathbb{R}^3)^{\otimes_s N}$ is the *quantum mechanics* Hamiltonian operator, obtained from the classical Hamiltonian via the usual quantization rule $p \mapsto -i\hbar\nabla$, and defined in a suitable dense

Mathematics Subject Classification (2010): Primary 35Q55; Secondary 35J61.

Keywords: Nonlinear Schrödinger equation, pseudo-relativistic Hartree approximation, solitary waves, ground states.

domain \mathcal{D} . In the case of interest here, \mathcal{H}_N is

$$\mathcal{H}_N = \left(\sum_{j=1}^N \sqrt{-\hbar^2 c^2 \Delta_j + m^2 c^4} - mc^2\right) - \alpha \sum_{i \neq j}^N W(|x_i - x_j|),$$

where W is the multiplication operator corresponding to the two-body interaction potential, (e.g., $W(|x|) = |x|^{-1}$ for gravitational interactions).

The operator (from now on we will take $\hbar = 1$ and c = 1)

(1.1)
$$\sqrt{-\Delta + m^2}$$

can be defined for all $f \in H^1(\mathbb{R}^N)$ as the inverse Fourier transform of the L^2 function $\sqrt{|k|^2 + m^2} \mathcal{F}[f](k)$ (here $\mathcal{F}[f]$ denotes the Fourier transform of f) and it is also associated to the quadratic form

$$\mathcal{Q}(f,g) = \int_{\mathbb{R}^N} \sqrt{|k|^2 + m^2} \,\mathcal{F}[f] \,\mathcal{F}[g] \,dk$$

which can be extended to the space

$$H^{1/2}(\mathbb{R}^N) = \left\{ f \in L^2(\mathbb{R}^N) : \int_{\mathbb{R}^N} |k| \, |\mathcal{F}[f](k)|^2 \, dk < +\infty \right\}$$

(see, e.g., [10] for more details).

In the mean field limit approximation (i.e., $\alpha N \simeq O(1)$ as $N \to +\infty$) of a quantum relativistic Bose gas, one is lead to study the nonlinear mean field equation – called *the pseudo-relativistic Hartree equation* – given by

(1.2)
$$i\partial_t \psi = \left(\sqrt{-\Delta + m^2} - m\right)\psi - \left(W * |\psi|^2\right)\psi.$$

where * denotes convolution. We will consider attractive two-body interaction, and hence W will always be a nonnegative function.

See [11] for the study of this equation when W is the gravitational interaction, and [4] for a rigorous derivation of the mean field equation (1.2) as an $N \to +\infty$ limit of the Schrödinger equation for N quantum particles, and [3] for more recent developments for models involving the pseudo-relativistic operator $\sqrt{-\Delta + m^2}$.

It has recently been proved that for Newton or Yukawa type two-body interactions (i.e., $W(|x|) = |x|^{-1}$ or $|x|^{-1} e^{-|x|}$ in \mathbb{R}^3) such an equation is locally well posed in H^s , $s \ge 1/2$, and that the solution is global in time for small initial data in L^2 (see [8]). Blowup has been proved in [6] and [7].

Due to the *focusing* nature of the nonlinearity (attractive two-body interaction) there exist *solitary waves* solutions given by

$$\psi(t,x) = \mathrm{e}^{i\mu t}\,\varphi(x)\,,$$

where φ satisfies the nonlinear eigenvalue equation

(1.3)
$$\sqrt{-\Delta + m^2} \varphi - m\varphi - (W * |\varphi|^2)\varphi = -\mu\varphi.$$

In [11] the existence of such solutions (in the case $W(x) = |x|^{-1}$) was proved provided that $M < M_c$, M_c being the *Chandrasekhar limit mass*.

1422

More precisely, the authors have shown the existence in $H^{1/2}(\mathbb{R}^3)$ of a radial, real-valued nonnegative minimizer (ground state) of

(1.4)
$$\mathcal{E}[\psi] = \frac{1}{2} \int_{\mathbb{R}^3} \bar{\psi} \left(\sqrt{-\Delta + m^2} - m \right) \psi \, dx - \frac{1}{4} \int_{\mathbb{R}^3} \left(|x|^{-1} * |\psi|^2 \right) |\psi|^2 \, dx.$$

with given fixed "mass-charge" $M = \int_{\mathbb{R}^3} |\psi|^2 dx < M_c$. We call mass-critical the potentials W whose associated functional \mathcal{E} exhibits this kind of phenomenon.

More recently, in [5] it has been proved that the ground state solution is regular $(H^s(\mathbb{R}^3))$, for all $s \geq 1/2$, strictly positive, and exponentially decaying. Moreover the solution is unique, at least for small L^2 norm ([9]).

Let us remark that these last results are heavily based on the specific form (Newton or Yukawa type) of the two-body interactions in the Hartree nonlinearity. Indeed in these cases the estimates of the nonlinearity rely on the following facts:

• for this class of potentials one has that

$$\frac{e^{-\mu|x|}}{4\pi |x|} * f = (\mu^2 - \Delta)^{-1} f \quad \text{for } f \in \mathcal{S}(\mathbb{R}^3), \ \mu \ge 0;$$

- the use of a generalized Leibnitz rule for Riesz and Bessel potentials;
- there holds the estimate

$$\left\|\frac{1}{|x|} * |u|^2\right\|_{L^{\infty}} \le \frac{\pi}{2} \left\|(-\Delta)^{1/4} u\right\|_{L^2}^2$$

In [2] there has been proved an existence and regularity result for the solutions of (1.3) for a wider class of nonlinearities by exploiting the relation of equation (1.3) with an elliptic equation on \mathbb{R}^{N+1}_+ with a nonlinear Neumann boundary condition. Such a relation has been recently used to study several problems involving fractional powers of the Laplacian (see e.g. [1] and references therein) and it is based on an alternative definition of the operator (1.1) that can be described as follows. Given any function $u \in \mathcal{S}(\mathbb{R}^N)$ there is a unique function $v \in \mathcal{S}(\mathbb{R}^{N+1}_+)$ (here $\mathbb{R}^{N+1}_+ = \{(x, y) \in \mathbb{R} \times \mathbb{R}^N \mid x > 0\}$) such that

$$\begin{cases} -\Delta v + m^2 v = 0 & \text{in } \mathbb{R}^{N+1}_+, \\ v(0, y) = u(y) & \text{for } y \in \mathbb{R}^N = \partial \mathbb{R}^{N+1}_+. \end{cases}$$

Setting

$$Tu(y) = -\frac{\partial v}{\partial x}(0, y),$$

we have that the equation

$$\begin{cases} -\Delta w + m^2 w = 0 & \text{in } \mathbb{R}^{N+1}_+, \\ w(0, y) = Tu(y) = -\frac{\partial v}{\partial x}(0, y) & \text{for } y \in \mathbb{R}^N, \end{cases}$$

has the solution $w(x,y) = -\frac{\partial v}{\partial x}(x,y)$. From this we have that

$$T(Tu)(y) = -\frac{\partial w}{\partial x}(0, y) = \frac{\partial^2 v}{\partial x^2}(0, y) = \left(-\Delta_y v + m^2 v\right)(0, y)$$

and hence $T^2 = (-\Delta_y + m^2)$.

In [2] we studied the equation

(1.5)
$$\sqrt{-\Delta + m^2} v = \mu v + \nu |v|^{p-2} v + \sigma (W * |v|^2) v \text{ in } \mathbb{R}^N,$$

where $p \in (2, 2N/(N-1))$, $\mu < m$ is fixed, $\nu, \sigma \ge 0$ (but not both equal to 0), $W \in L^r(\mathbb{R}^N) + L^\infty(\mathbb{R}^N)$, r > N/2, $W \ge 0$, and $W(x) = W(|x|) \to 0$ as $|x| \to +\infty$.

The results are obtained, following the approach outlined above, by studying the equivalent elliptic problem with nonlinear boundary condition

(1.6)
$$\begin{cases} -\Delta v + m^2 v = 0 & \text{in } \mathbb{R}^{N+1}_+, \\ -\frac{\partial v}{\partial x} = \mu v + \nu \left| v \right|^{p-2} v + \sigma \left(W * \left| v \right|^2 \right) v & \text{on } \mathbb{R}^N = \partial \mathbb{R}^{N+1}_+, \end{cases}$$

and the associated functional on $H^1(\mathbb{R}^{N+1}_+)$.

Let us point out that in [2] the L^2 norm of the solution is not prescribed. In such a case existence of a (positive, radially symmetric) solution can be proved for a class of potentials W and exponents p which is larger than the one we deal with here.

When the L^2 norm is prescribed to be M (the most relevant problem from a physical point of view), as in [11], then the Newtonian potential $(|x|^{-1} \text{ in } \mathbb{R}^3)$ is critical, in the sense that minimization of \mathcal{E} given by (1.4) is possible only when $M < M_c$ (see Theorem 1.1).

The main purpose of this paper is to exploit this approach also for the problem of finding minimizer of the static energy

$$(1.7) \ \mathcal{E}[u] = \frac{1}{2} \int_{\mathbb{R}^N} u \left(\sqrt{-\Delta + m^2} - m \right) u \, dx + \frac{\eta}{p} \int_{\mathbb{R}^N} |u|^p \, dx - \frac{\sigma}{4} \int_{\mathbb{R}^N} \left(W * |u|^2 \right) |u|^2 \, dx$$

with prescribed L^2 norm, for a wider class of attractive two-body potential including the critical case.

To be more precise, we consider a class of two-body potentials $W \in L^q_w(\mathbb{R}^N)$, with $q \geq N$. We recall that $L^q_w(\mathbb{R}^N)$, the weak L^q space, is the space of all measurable functions f such that

$$\sup_{\alpha>0} \alpha \big| \left\{ x \, \big| \, |f(x)| > \alpha \right\} \big|^{1/q} < +\infty,$$

where |E| denotes the Lebesgue measure of a set $E \subset \mathbb{R}^N$. Note that $W(x) = |x|^{-1}$ does not belong to any L^q -space but it belongs to $L^N_w(\mathbb{R}^N)$. We say that a potential W is *critical* if $W \in L^N(\mathbb{R}^N)$.

Our main result is the following.

Theorem 1.1. Let $W \in L^q_w(\mathbb{R}^N)$, where $q \ge N \ge 2$, and $W(y) \ge 0$ for all $y \in \mathbb{R}^N$, and suppose that

(1.8)
$$W(\lambda^{-1}y) \ge \lambda^{\alpha}W(y)$$
, for all $\lambda \in (0,1)$ and for some $\alpha > 0$.

We also assume that W(x) = W(|x|) is rotationally symmetric and that $W(r) \to 0$ as $r \to +\infty$.

- Take $\eta \ge 0$, $\sigma > 0$ and $p \in (2 + 2/q, 2 + 2/(N 1)) = 2N/(N 1)]$. Then:
- if η > 0 or η = 0 and q > N, then for all M > 0 there is a strictly positive minimizer u ∈ H^{1/2}(ℝ^N) of E[u] such that ∫_{ℝ^N} u² = M;
- (mass-critical case) if $\eta = 0$ and q = N, there is a critical value $M_c > 0$ such that for all $0 < M < M_c$ there is a strictly positive minimizer $u \in H^{1/2}(\mathbb{R}^N)$ of $\mathcal{E}[u]$ such that $\int_{\mathbb{R}^N} u^2 = M$.

Moreover there exists $\mu > 0$ such that u is a smooth, exponentially decaying at infinity, solution of

$$(\sqrt{-\Delta + m^2} - m)u = -\mu u - \eta |u|^{p-2} u + \sigma (W * |u|^2)u$$
 in \mathbb{R}^N ,

and u is radial if W = W(r) is a decreasing function of r > 0.

Remark 1.2. The nonlinear term $|u|^{p-2} u$ is a defocusing nonlinearity, the convolution term is a focusing nonlinearity. An open problem is to understand if solitons exist also for other ranges of p, in particular for $2 and <math>W \in L_w^q$.

Remark 1.3. If $W \in L^q_w$ and (1.8) holds for some $\alpha > 0$, then necessarily $\alpha \in (0, N/q]$. If $W(x) = |x|^{-\alpha}$, then $W \in L^q_w$ if and only if $\alpha = N/q$.

Remark 1.4. μ is a Lagrange multiplier.

2. Preliminaries

Let $(x, y) \in \mathbb{R} \times \mathbb{R}^N$. We have already introduced $\mathbb{R}^{N+1}_+ = \{ (x, y) \in \mathbb{R}^{N+1} \mid x > 0 \}$. We will always denote the norm of $u \in L^p(\mathbb{R}^{N+1}_+)$ by $||u||_p$, the norm of $u \in H^1(\mathbb{R}^{N+1}_+)$ by ||u||, and the norm of $v \in L^p(\mathbb{R}^N)$ by $|v|_p$.

We recall that, for all $v \in H^1(\mathbb{R}^{N+1}) \cap C_0^{\infty}(\mathbb{R}^{N+1})$,

$$\begin{split} \int_{\mathbb{R}^N} |v(0,y)|^p \, dy &= \int_{\mathbb{R}^N} dy \int_{+\infty}^0 \frac{\partial}{\partial x} |v(x,y)|^p \, dx \\ &\leq p \iint_{\mathbb{R}^{N+1}_+} |v(x,y)|^{p-1} \left| \frac{\partial v}{\partial x}(x,y) \right| \, dx \, dy \\ &\leq p \Big(\iint_{\mathbb{R}^{N+1}_+} |v(x,y)|^{2(p-1)} \, dx \, dy \Big)^{1/2} \Big(\iint_{\mathbb{R}^{N+1}_+} \left| \frac{\partial v}{\partial x}(x,y) \right|^2 \, dx \, dy \Big)^{1/2}. \end{split}$$

0

That is,

(2.1)
$$|v(0,\cdot)|_p^p \le p \left\|v\right\|_{2(p-1)}^{p-1} \left\|\frac{\partial v}{\partial x}\right\|_2,$$

which, by Sobolev embedding, is finite for all $2 \leq 2(p-1) \leq 2(N+1)/((N+1)-2)$, that is $2 \leq p \leq 2^{\sharp}$, where we have set $2^{\sharp} = 2N/(N-1)$. By density of $H^1(\mathbb{R}^{N+1}) \cap C_0^{\infty}(\mathbb{R}^{N+1})$ in $H^1(\mathbb{R}^{N+1}_+)$ such an estimate allows us to define the trace $\gamma(v)$ of v for all $v \in H^1(\mathbb{R}^{N+1}_+)$. The inequality

(2.2)
$$|\gamma(v)|_p^p \le p \left\|v\right\|_{2(p-1)}^{p-1} \left\|\frac{\partial v}{\partial x}\right\|_2,$$

holds then for all $v \in H^1(\mathbb{R}^{N+1}_+)$.

It is known that the traces of functions in $H^1(\mathbb{R}^{N+1}_+)$ belong to $H^{1/2}(\mathbb{R}^N)$ and that every function in $H^{1/2}(\mathbb{R}^N)$ is the trace of a function in $H^1(\mathbb{R}^{N+1}_+)$. Then (2.2) is in fact equivalent to the well-known fact that $\gamma(v) \in H^{1/2}(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$ provided $q \in [2, 2^{\sharp}]$. Here we also recall that

$$\|w\|_{H^{1/2}}^{2} = \inf\left\{\|u\|^{2} \mid u \in H^{1}(\mathbb{R}^{N+1}_{+}), \ \gamma(u) = w\right\} = \int_{\mathbb{R}^{N}} (1+|\xi|) \left|\mathcal{F}w(\xi)\right|^{2} d\xi$$

Let us also introduce the norm of the weak L^q -space as follows:

$$||f||_{q,w} = \sup_{A} |A|^{-1/r} \int_{A} |f(x)| dx$$

where 1/q + 1/r = 1 and A denotes any measurable set of finite measure |A| (see, e.g., [10] for more details). Using this norm we can state the *weak Young inequality*. If $g \in L^q_w(\mathbb{R}^N)$, $f \in L^p(\mathbb{R}^N)$ and $h \in L^r(\mathbb{R}^N)$ where $1 < q, p, r < +\infty$ and 1/q + 1/p + 1/r = 2, then

(2.3)
$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f(y) g(y-z) h(y) \, dy \, dz \le C_{p,q,r} \, \|g\|_{q,w} \, |f|_p \, |h|_r$$

We consider the class of two-body interactions $W \in L^q_w(\mathbb{R}^N)$ for $q \geq N$. By the weak Young inequality and the Hölder inequality we have for r = 4q/(2q-1) $(\in (2, 2^{\sharp})$ since $q \geq N)$ and for all $p \in (4q/(2q-1), 2^{\sharp}]$,

(2.4)
$$\int_{\mathbb{R}^N} (W * |u|^2) |w|^2 dy \le C ||W||_{q,w} |w|_r^4 \le C ||W||_{q,w} |w|_2^{4 - \frac{2p}{q(p-2)}} |w|_p^{\frac{2p}{q(p-2)}}.$$

For $p = 2^{\sharp}$ we get

(2.5)
$$\int_{\mathbb{R}^N} \left(W * |w|^2 \right) |w|^2 \, dy \le C \, \|W\|_{q,w} \, |w|_2^{4-2N/q} \, |w|_{2^{\sharp}}^{2N/q}$$

In the (critical) case q = N this gives

(2.6)
$$\int_{\mathbb{R}^N} \left(W * |w|^2 \right) |w|^2 \, dy \le C \, \|W\|_{N,w} \, |w|_2^2 \, |w|_{2^{\sharp}}^2$$

We point out that one cannot deduce (2.6) from the weak Young's inequality (2.3) directly, and that it is not true, in general, that the L^{∞} norm of $W * |u|^2$ can be bounded by the $L^{2^{\sharp}}$ norm of u if $W \in L^{W}_{w}$.

For all $v \in H^1(\mathbb{R}^{N+1}_+)$, we consider the functional given by

$$\begin{split} \mathcal{I}(v) &= \frac{1}{2} \Big(\iint_{\mathbb{R}^{N+1}_+} \left(\left| \nabla v \right|^2 + m^2 \left| v \right|^2 \right) dx \, dy - \int_{\mathbb{R}^N} m \left| \gamma(v) \right|^2 \, dy \Big) \\ &+ \frac{\eta}{p} \int_{\mathbb{R}^N} \left| \gamma(v) \right|^p \, dy - \frac{\sigma}{4} \int_{\mathbb{R}^N} \left(W * \left| \gamma(v) \right|^2 \right) \left| \gamma(v) \right|^2 \, dy. \end{split}$$

In view of (2.2) and (2.4), all the terms in the functional \mathcal{I} are well defined if $p \in (2, 2^{\sharp}]$ and $W \in L^q_w(\mathbb{R}^N)$ with $q \geq N$.

Note that from (2.1), with p = 2, it follows that

(2.7)
$$m \int_{\mathbb{R}^N} |\gamma(v)|^2 \, dy \le 2(m \|v\|_2) \|\nabla v\|_2 \le \iint_{\mathbb{R}^{N+1}_+} \left(\left|\nabla v\right|^2 + m^2 \left|v\right|^2 \right) \, dx \, dy,$$

showing that the quadratic part of the functional \mathcal{I} is nonnegative.

Moreover the following property can be checked easily:

Lemma 2.1. For $u \in H^1(\mathbb{R}^{N+1}_+)$, let $w = \gamma(u) \in H^{1/2}(\mathbb{R}^N)$, $\hat{w} = \mathcal{F}(w)$ and

$$v(x,y) = \mathcal{F}^{-1}(e^{-x\sqrt{m^2 + |\cdot|^2}}\hat{w}) = \int_{\mathbb{R}^N} e^{-x\sqrt{m^2 + |\xi|^2}}\hat{w}(\xi)e^{i\xi y} d\xi$$

Then $v \in H^1(\mathbb{R}^{N+1}_+)$, $\|v\| = \|w\|_{H^{1/2}}$, $\mathcal{I}(v) \leq \mathcal{I}(u)$ and $\mathcal{I}(v) = \mathcal{E}[w]$.

3. Minimization problem

We consider the minimization problem

(3.1)
$$I(M) = \inf \left\{ \mathcal{I}(v) : v \in \mathcal{M}_M \right\},$$

where the manifold \mathcal{M}_M is given by

$$\mathcal{M}_M = \left\{ v \in H^1(\mathbb{R}^{N+1}_+) : \int_{\mathbb{R}^N} |\gamma(v)|^2 = M \right\}$$

Remark 3.1. The term $m \int_{\mathbb{R}^N} |\gamma(v)|^2$ in the functional $\mathcal{I}(v)$ is constant for all $v \in \mathcal{M}_M$. The presence of such a term will allow us to show that the infimum of the functional \mathcal{I} on \mathcal{M}_M is negative.

Concerning the existence of a minimizer for problem (3.1) we start by proving, in the following lemmas, boundedness from below on \mathcal{M}_M of the functional \mathcal{I} , and some properties of the infimum I(M).

Lemma 3.2. The functional \mathcal{I} is bounded from below and coercive on $\mathcal{M}_M \subset H^1(\mathbb{R}^{N+1}_+)$ for all M > 0 if $\eta > 0$ or q > N and for all M small enough if $\eta = 0$ and q = N.

Proof. First we examine first the convolution term. If $\eta > 0$, from (2.4) and $|\gamma(u)|_2^2 = M$ we have

(3.2)
$$0 \leq \int_{\mathbb{R}^N} \left(W * |\gamma(u)|^2 \right) |\gamma(u)|^2 \leq C \left\| W \right\|_{q,w} \left| \gamma(u) \right|_2^{4 - \frac{2p}{q(p-2)}} \left| \gamma(u) \right|_p^{\frac{2p}{q(p-2)}} \\ = C \left\| W \right\|_{q,w} M^{2 - \frac{p}{q(p-2)}} \left| \gamma(u) \right|_p^{\frac{2p}{q(p-2)}}.$$

Since by assumption $\frac{2p}{q(p-2)} < p$, this is enough to prove coercivity if $\eta > 0$. Indeed in such a case we have that

$$\mathcal{I}(u) \ge \frac{1}{2} \|u\|^2 - \frac{1}{2} mM + C_1 |\gamma(u)|_p^p - C_2 |\gamma(u)|_p^{\frac{2p}{q(p-2)}} \ge \frac{1}{2} \|u\|^2 - C_3.$$

In the case $\eta = 0$ we deduce from (2.6) and $|\gamma(u)|_{2^{\sharp}} \leq C ||u||$ that

$$\mathcal{I}(u) \ge \|u\|^2 - mM - C \, \|W\|_{q,w} \, M^{2-N/q} \, \|u\|^{2N/q}.$$

It is then clear that the functional is bounded from below and coercive whenever q > N and, when q = N, if $||W||_{N,w}M$ is small enough.

Lemma 3.3. I(M) < 0 for all M > 0.

Proof. Take any function $u \in C_0^{\infty}(\mathbb{R}^N)$ such that $|u|_2^2 = M$, and let $w(x,y) = e^{-mx}u(y)$. Then,

$$\begin{split} I(M) &= \inf_{v \in \mathcal{M}_M} \mathcal{I}(v) \leq \mathcal{I}(w) \\ &= \frac{1}{2} \iint_{\mathbb{R}^{N+1}_+} \left(|\partial_x w|^2 + |\nabla_y w|^2 + m^2 |w|^2 \right) dx \, dy - \frac{m}{2} \int_{\mathbb{R}^N} |u|^2 \, dy + G(u) \\ &= \frac{m}{4} \int_{\mathbb{R}^N} |u|^2 dy + \frac{1}{4m} \int_{\mathbb{R}^N} |\nabla_y u|^2 dy + \frac{m}{4} \int_{\mathbb{R}^N} |u|^2 dy - \frac{m}{2} \int_{\mathbb{R}^N} |u|^2 dy + G(u) \\ &= \frac{1}{4m} \int_{\mathbb{R}^N} |\nabla_y u|^2 \, dy + G(u), \end{split}$$

where

$$G(u) = \frac{\eta}{p} \int_{\mathbb{R}^N} |u|^p \, dy - \frac{\sigma}{4} \int_{\mathbb{R}^N} \left(W * |u|^2 \right) |u|^2 \, dy$$

For $\lambda > 0$ take $u_{\lambda}(y) = \lambda^{N/2} u(\lambda y)$ and $w_{\lambda}(x, y) = e^{-mx} u_{\lambda}(y) \in \mathcal{M}_M$. We find that

$$I(M) \leq \inf_{\lambda > 0} \mathcal{I}(w_{\lambda})$$

$$\leq \inf_{\lambda \in (0,1)} \left[\frac{1}{4m} \int_{\mathbb{R}^{N}} |\nabla_{y} u_{\lambda}|^{2} + \frac{\eta}{p} \int_{\mathbb{R}^{N}} |u_{\lambda}|^{p} - \frac{\sigma}{4} \int_{\mathbb{R}^{N}} \left(W * |u_{\lambda}|^{2} \right) |u_{\lambda}|^{2} \right]$$

$$\leq \inf_{\lambda \in (0,1)} \left[\frac{\lambda^{2}}{4m} \int_{\mathbb{R}^{N}} |\nabla_{y} u|^{2} + \frac{\eta \lambda^{N(\frac{p}{2}-1)}}{p} \int_{\mathbb{R}^{N}} |u|^{p} - \frac{\sigma \lambda^{\alpha}}{4} \int_{\mathbb{R}^{N}} \left(W * |u|^{2} \right) |u|^{2} \right],$$

and since $\alpha < N(p/2 - 1) < 2$, the infimum is negative.

Lemma 3.4. For all M > 0 and $\beta \in (0, M)$ we have that $I(M) < I(M-\beta)+I(\beta)$. Moreover, I(M)/M is a concave function of M and hence I(M) is a continuous function of M.

Proof. The subadditivity is a consequence of the fact that, for all $\theta > 1$,

(3.3)
$$I(\theta M) < \theta I(M)$$
, which implies $\frac{1}{\theta} I(M) < I(M/\theta)$.

Indeed, taking $\theta_1 = M/\beta$ and $\theta_2 = M/(M-\beta)$, we have that

$$I(M) = \frac{\beta}{M}I(M) + \frac{M-\beta}{M}I(M) < I(\beta) + I(M-\beta).$$

To prove that (3.3) holds, we remark that for all $v \in \mathcal{M}_M$ and $\lambda = \theta^{1/2} > 1$ we have, thanks to (2.7),

$$\begin{aligned} \mathcal{I}(\lambda v) &= \frac{\lambda^2}{2} \Big[\iint_{\mathbb{R}^{N+1}} \left(\left| \nabla v \right|^2 + m^2 \left| v \right|^2 \right) dx \, dy - m \int_{\mathbb{R}^N} \left| \gamma(v) \right|^2 \, dy \Big] \\ &+ \frac{\eta \lambda^p}{p} \int_{\mathbb{R}^N} \left| \gamma(v) \right|^p \, dy - \frac{\sigma \lambda^4}{4} \int_{\mathbb{R}^N} \left(W * \left| \gamma(v) \right|^2 \right) \left| \gamma(v) \right|^2 \, dy \le \lambda^4 \, \mathcal{I}(v). \end{aligned}$$

Hence, since I(M) < 0,

$$\begin{split} I(\theta M) &= \inf_{|\gamma(v)|_2^2 = \theta M} \mathcal{I}(v) = \inf_{|\gamma(v)|_2 = M} \mathcal{I}(\theta^{1/2}v) \le \theta^2 \inf_{|\gamma(v)|_2 = M} \mathcal{I}(v) \\ &= \theta^2 I(M) < \theta I(M) < I(M). \end{split}$$

To prove the concavity of I(M)/M, we remark that

$$\frac{I(M)}{M} = \frac{1}{M} \inf_{u \in \mathcal{M}_M} \mathcal{I}(u) = \inf_{u \in \mathcal{M}_1} \frac{\mathcal{I}(\sqrt{M}u)}{M}.$$

We now show that, for all $u \in \mathcal{M}_1$, $M \mapsto \mathcal{I}(\sqrt{M}u)/M$ is a concave function of M. This will immediately prove that I(M)/M is a concave function. Since

$$\begin{aligned} \frac{\mathcal{I}(\sqrt{M}v)}{M} &= \frac{1}{2} \left(\iint_{\mathbb{R}^{N+1}} \left(\left| \nabla v \right|^2 + m^2 v^2 \right) dx \, dy - \int_{\mathbb{R}^N} m \left| \gamma(v) \right|^2 \, dy \right) \\ &+ \frac{\eta M^{p/2-1}}{p} \int_{\mathbb{R}^N} \left| \gamma(v) \right|^p \, dy - \frac{\sigma M}{4} \int_{\mathbb{R}^N} \left(W * \left| \gamma(v) \right|^2 \right) \left| \gamma(v) \right|^2 \, dy, \end{aligned}$$

it is immediate to check that the second derivative with respect to the variable M is negative for all M > 0 when p/2 < 2 and that the function is linear when p = 4 (namely the critical exponent for N = 2).

We are now ready to prove the existence of a minimizer for the functional \mathcal{I} on \mathcal{M}_M .

Proposition 3.5. For every M > 0 there is a function $u \in H^1(\mathbb{R}^{N+1}_+)$ such that

$$\begin{cases} \mathcal{I}(u) = I(M), \\ \int_{\mathbb{R}^N} |\gamma(u)|^2 \ dy = M, \end{cases}$$

i.e., a minimizer for \mathcal{I} in \mathcal{M}_M .

Proof. Let $\{u_n\} \subset \mathcal{M}_M$ be a minimizing sequence. It follows from Lemma 2.1 that

$$v_n(x,y) = \mathcal{F}^{-1}\left(e^{-x\sqrt{m^2 + |\cdot|^2}}\mathcal{F}(\gamma(u_n))\right)$$

is also minimizing. From Lemma 3.2 we deduce that v_n is bounded in $H^1(\mathbb{R}^{N+1}_+)$ and that $w_n \equiv \gamma(v_n) = \gamma(u_n)$ is bounded in $H^{1/2}(\mathbb{R}^N)$ and $\int_{\mathbb{R}^N} |w_n|^2 dy = M$.

We will now use the concentration-compactness method of P.L. Lions [12]. Namely, one of the following cases must occur:

(vanishing) for all R > 0,

$$\lim_{n \to +\infty} \sup_{z \in \mathbb{R}^N} \int_{z + B_R} |w_n|^2 \, dy = 0;$$

(dichotomy) for a subsequence $\{n_k\}$,

$$\lim_{R \to +\infty} \lim_{k \to +\infty} \sup_{z \in \mathbb{R}^N} \int_{z + B_R} |w_{n_k}|^2 \, dy = \alpha \in (0, M);$$

(compactness) for all $\epsilon > 0$ there is R > 0, a sequence $\{y_k\}$ and a subsequence $\{w_{n_k}\}$ such that

$$\int_{y_k+B_R} |w_{n_k}|^2 \, dy \ge M - \epsilon.$$

Following the usual strategy we will show that the vanishing and dichotomy cases cannot occur.

Lemma 3.6. If vanishing occurs, then

$$\int_{\mathbb{R}^N} \left(W * |w_n|^2 \right) |w_n|^2 \, dy \to 0.$$

Proof. Take any $\delta > 0$ and R > 0. Define $W_{\delta} = W\mathbb{I}_{\{W \ge \delta\}}$ and

$$W_{\delta}^{R}(|y|) = (W_{\delta}(|y|) - R)^{+} \mathbb{I}_{\{|y| < R\}} + W_{\delta}(|y|) \mathbb{I}_{\{|y| \ge R\}},$$

where \mathbb{I}_A is the characteristic function of the set A. Then it easy to check that $W \in L^q_w(\mathbb{R}^N)$ implies that $W_{\delta} \in L^s(\mathbb{R}^N)$ for any $s \in [1,q)$ and moreover that $|W^R_{\delta}|_s \to 0$ as $R \to +\infty$ for any $\delta > 0$. Also define $\Gamma^R_{\delta} = W_{\delta} - W^R_{\delta}$. It is clear that

$$0 \le (W - W_{\delta})(|y|) \le \delta, \quad 0 \le \Gamma_d^R(|y|) \le R \quad \forall y \in \mathbb{R}^N$$

Then, for any given $\delta > 0$ and R > 0 and for some $s \ge N/2$ (which implies that $2 < 4s/(2s-1) \le 2N/(N-1)$), we get from the Young inequality (also taking into

account that by the Sobolev embedding theorem the sequence $\{w_n\}$ is bounded in L^p for $p \in [2, 2N/(N-1)])$,

$$\begin{split} &\int_{\mathbb{R}^{N}} \left(W * |w_{n}|^{2} \right) |w_{n}|^{2} \\ &\leq \int_{\mathbb{R}^{N}} \left((W - W_{\delta}) * |w_{n}|^{2} \right) |w_{n}|^{2} + \int_{\mathbb{R}^{N}} \left(W_{\delta}^{R} * |w_{n}|^{2} \right) |w_{n}|^{2} + \int_{\mathbb{R}^{N}} \left(\Gamma_{\delta}^{R} * |w_{n}|^{2} \right) |w_{n}|^{2} \\ &\leq \delta |w_{n}|_{2}^{4} + |W_{\delta}^{R}|_{s} |w_{n}|_{4s/(2s-1)}^{4} + R \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} |w_{n}(y)|^{2} |w_{n}(z)|^{2} \mathbb{I}_{|z-y| \leq R} \, dy \, dz \\ &\leq \delta M^{2} + C |W_{\delta}^{R}|_{s} + RM \sup_{z \in \mathbb{R}^{N}} \int_{z+B_{R}} |w_{n}|^{2} \, dy. \end{split}$$

Now, first letting $n \to +\infty$, then letting $R \to +\infty$, and finally letting $\delta \to 0^+$, we conclude the proof of the lemma.

Lemma 3.7. If dichotomy occurs, then for any $\alpha \in (0, M)$ we have

 $I(M) \ge I(\alpha) + I(M - \alpha).$

Proof. If dichotomy occurs, then there is a sequence $\{n_k\} \subset \mathbb{N}$ such that, for any $\epsilon > 0$, there exists R > 0 and a sequence $\{z_k\} \subset \mathbb{R}^N$ such that

$$\lim_{k \to +\infty} \int_{z_k + B_R} |w_{n_k}|^2 \, dy \in (\alpha - \epsilon, \alpha + \epsilon).$$

Define $\tilde{w}_k = w_{n_k}(\cdot + z_k)$ and

$$\tilde{u}_k(x,y) = \mathcal{F}^{-1}\left(e^{-x\sqrt{m^2+|\cdot|^2}}\mathcal{F}(\tilde{w}_k)\right),$$

so that $\{\tilde{u}_k\}$ is a minimizing sequence for \mathcal{I} on \mathcal{M}_M such that

$$\lim_{k \to +\infty} \int_{B_R} |\gamma(\tilde{u}_k)|^2 \, dy \in (\alpha - \epsilon, \alpha + \epsilon).$$

Since $\{\tilde{u}_k\}$ is a bounded sequence in $H^1(\mathbb{R}^{N+1}_+)$, $\tilde{u}_k \to u$ weakly in $H^1(\mathbb{R}^{N+1}_+)$ and $\tilde{w}_k = \gamma(\tilde{u}_k) \to w = \gamma(u)$ weakly in $H^{1/2}$ and strongly in $L^p_{loc}(\mathbb{R}^N)$ for $p \in [2, 2N/(N-1))$. Hence, for all $\epsilon > 0$ there is R > 0 such that

$$\int_{B_R} |\gamma(u)|^2 \, dy = \lim_{k \to +\infty} \int_{B_R} |\gamma(\tilde{u}_k)|^2 \, dy \in (\alpha - \epsilon, \alpha + \epsilon)$$

and

$$\int_{\mathbb{R}^N} |\gamma(u)|^2 \, dy = \lim_{R \to +\infty} \int_{B_R} |\gamma(u)|^2 \, dy = \alpha.$$

We set $v_k = \tilde{u}_k - u$ and $\beta_k = \int_{\mathbb{R}^N} |\gamma(v_k)|^2 dy$. By weak convergence of the sequence $\{\gamma(\tilde{u}_k)\}$ in L^2 we get $\lim_{k \to +\infty} \beta_k = M - \alpha$.

Now we claim that

$$I(M) = \lim_{k \to +\infty} \mathcal{I}(\tilde{u}_k) = \mathcal{I}(u) + \lim_{k \to +\infty} \mathcal{I}(v_k) \ge I(\alpha) + \lim_{k \to +\infty} I(\beta_k).$$

Then, by the continuity of the function I, as stated in Lemma 3.4, the lemma follows.

Now we prove the claim. We will show that

$$\lim_{k \to +\infty} (\mathcal{I}(\tilde{u}_k) - \mathcal{I}(v_k)) \to \mathcal{I}(u)$$

Indeed, by weak convergence in $H^1(\mathbb{R}^{N+1}_+)$, we immediately get

$$\lim_{k \to +\infty} \left(\iint_{\mathbb{R}^{N+1}_{+}} |\nabla \tilde{u}_{k}|^{2} - \iint_{\mathbb{R}^{N+1}_{+}} |\nabla v_{k}|^{2} \right) = \iint_{\mathbb{R}^{N+1}_{+}} |\nabla u|^{2}$$
$$\lim_{k \to +\infty} \left(\iint_{\mathbb{R}^{N+1}_{+}} |\tilde{u}_{k}|^{2} - \iint_{\mathbb{R}^{N+1}_{+}} |v_{k}|^{2} \right) = \iint_{\mathbb{R}^{N+1}_{+}} |u|^{2}$$

and by the Brezis–Lieb lemma

$$\lim_{k \to +\infty} \left(\int_{\mathbb{R}^N} |\gamma(\tilde{u}_k)|^p - \int_{\mathbb{R}^N} |\gamma(v_k)|^p \right) = \int_{\mathbb{R}^N} |\gamma(u)|^p$$

for $2 \le p \le 2N/(N-1)$. Hence we have to investigate the last nonlinear term. We will show in Appendix A that

$$\lim_{k \to +\infty} \left(\int_{\mathbb{R}^N} (W * |\tilde{w}_k|^2) |\tilde{w}_k|^2 - \int_{\mathbb{R}^N} (W * |\gamma(v_k)|^2) |\gamma(v_k)|^2 \right) = \int_{\mathbb{R}^N} (W * |w|^2) |w|^2,$$
from which the claim follows

om which the claim follows.

Finally, since we have ruled out both vanishing and dichotomy, then we may conclude that indeed *compactness* occurs, namely that for all $\epsilon > 0$ there is R > 0, a sequence $\{y_k\}$ and a subsequence $\{w_{n_k}\}$ such that

$$\int_{y_k+B_R} \left|w_{n_k}\right|^2 \, dy \ge M - \epsilon.$$

Define as before $\tilde{w}_k = w_{n_k}(\cdot + y_k)$ and $\tilde{u}_k(x, y) = \mathcal{F}^{-1}\left(e^{-x\sqrt{m^2 + |\cdot|^2}}\mathcal{F}(\tilde{w}_k)\right)$. Then \tilde{u}_k is a minimizing sequence for \mathcal{I} on \mathcal{M}_M such that

$$\int_{B_R} \left| \gamma(\tilde{u}_k) \right|^2 \ge M - \epsilon.$$

Since $\{\tilde{u}_k\}$ is a bounded sequence in $H^1(\mathbb{R}^{N+1}_+)$, $\tilde{u}_k \to u$ weakly in $H^1(\mathbb{R}^{N+1}_+)$ and $\tilde{w}_k = \gamma(\tilde{u}_k) \to w = \gamma(u)$ weakly in $H^{1/2}$ and strongly in $L^p_{loc}(\mathbb{R}^N)$ for $p \in$ [2, 2N/(N-1)). As in the proof of Lemma 3.7 we deduce that $\int_{\mathbb{R}^N} |\gamma(u)|^2 = M$.

Moreover we claim that, as $k \to +\infty$,

$$\int_{\mathbb{R}^N} \left(W * |\tilde{w}_k|^2 \right) |\tilde{w}_k|^2 \to \int_{\mathbb{R}^N} (W * w^2) w^2$$

Indeed, by the weak Young inequality and the Hölder inequality we have

$$\left| \int_{\mathbb{R}^{N}} (W * \tilde{w}_{k}^{2}) \tilde{w}_{k}^{2} - \int_{\mathbb{R}^{N}} (W * w^{2}) w^{2} \right| \leq \int_{\mathbb{R}^{N}} (W * (\tilde{w}_{k}^{2} + w^{2})) |\tilde{w}_{k}^{2} - w^{2}|$$
$$\leq C \|W\|_{q,w} |\tilde{w}_{k}^{2} + w^{2}|_{s} |\tilde{w}_{k}^{2} - w^{2}|_{s} \leq C |\tilde{w}_{k} - w|_{2s} \to 0$$

since 2 < 2s = 4q/(2q-1) < 2N/(N-1).

Hence, finally, by the weakly lower semicontinuity of the H^1 and L^p norms (the positive terms of the functional \mathcal{I}), we conclude that

$$\mathcal{I}(u) \leq \liminf_{k \to +\infty} \mathcal{I}(\tilde{u}_k) = I(M),$$

which implies the u is a minimizer for \mathcal{I} in \mathcal{M}_M .

Now we collect all the results obtained to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. By Proposition 3.5 there exists a function $u \in H^1(\mathbb{R}^{N+1}_+)$ which minimizes \mathcal{I} in \mathcal{M}_M . Therefore u can always be assumed nonnegative and, by Lemma 2.1, to have the form

$$u(x,y) = \mathcal{F}^{-1}\left(e^{-x\sqrt{m^2+|\cdot|^2}}\mathcal{F}(w)\right),$$

where $w = \gamma(u) \in H^{1/2}(\mathbb{R}^N)$.

If W is a nonincreasing radial function, then w can be assumed to be a radial nonincreasing function. Indeed let w^* be the spherically symmetric decreasing rearrangement of w and define

$$u^{*}(x,y) = \mathcal{F}^{-1}(e^{-x\sqrt{m^{2}+|\cdot|^{2}}}\mathcal{F}(w^{*})).$$

Then $\mathcal{I}(u^*) = \mathcal{E}[w^*]$ (this also follows from Lemma 2.1). We can then use the properties of the spherically symmetric decreasing rearrangement, namely

- (i) w^* is a nonnegative, radial function;
- (ii) $w \in L^p(\mathbb{R}^N)$ implies $w^* \in L^p(\mathbb{R}^N)$ and $|w^*|_p = |w|_p$;
- (iii) symmetric decreasing rearrangement decreases kinetic energy (Lemma 7.17 in [10]), that is,

$$\int_{\mathbb{R}^N} w^* \left(\sqrt{-\Delta + m^2} - m \right) w^* \, dy \le \int_{\mathbb{R}^N} w \left(\sqrt{-\Delta + m^2} - m \right) w \, dy;$$

(iv) *Riesz's rearrangement inequality* (see Theorem 3.7 in [10])),

$$\int_{\mathbb{R}^N} \left(W * |w^*|^2 \right) |w^*|^2 \, dy \ge \int_{\mathbb{R}^N} \left(W * |w|^2 \right) |w|^2 \, dy$$

if $W(y) = W^*(|y|)$ (in particular if W is radial and nonincreasing);

to deduce that

$$\mathcal{I}(u^*) = \mathcal{E}[w^*] \le \mathcal{E}[w] = \mathcal{I}(u) = I(M).$$

Moreover, by the theory of Lagrange multipliers, any minimizer $u \in H^1(\mathbb{R}^{N+1}_+)$ of the functional \mathcal{I} on \mathcal{M}_M is such that

$$\iint_{R^{N+1}_{+}} \left(\nabla u \nabla w + m^2 u w \right) dx \, dy - \int_{\mathbb{R}^N} m \gamma(u) \gamma(w) \, dy + \mu \int_{\mathbb{R}^N} \gamma(u) \gamma(w) \, dy$$

(3.4)
$$+ \eta \int_{\mathbb{R}^N} |\gamma(u)|^{p-2} \gamma(u) \gamma(w) \, dy - \sigma \int_{\mathbb{R}^N} \left(W * |\gamma(u)|^2 \right) \gamma(u) \gamma(w) \, dy = 0$$

for all $w\in H^1(\mathbb{R}^{N+1}_+),$ i.e., u is a weak solution of the nonlinear Neumann boundary condition problem

(3.5)
$$\begin{cases} -\Delta u + m^2 u = 0 & \text{in } \mathbb{R}^{N+1}_+, \\ -\frac{\partial u}{\partial x} + \mu u = mu - \eta |u|^{p-2} u + \sigma (W * |u|^2) u & \text{on } \mathbb{R}^N = \partial \mathbb{R}^{N+1}_+, \end{cases}$$

for some Lagrange multiplier $\mu \in \mathbb{R}$. To prove that $\mu > 0$ we take w = u in (3.4) to get

$$\begin{split} 0 &= \iint_{\mathbb{R}^{N+1}} \left(\left| \nabla u \right|^2 + m^2 \left| u \right|^2 \right) dx \, dy - \int_{\mathbb{R}^N} m \left| \gamma(u) \right|^2 \, dy + \mu \int_{\mathbb{R}^N} \left| \gamma(u) \right|^2 \, dy \\ &+ \eta \int_{\mathbb{R}^N} \left| \gamma(u) \right|^p \, dy - \sigma \int_{\mathbb{R}^N} \left(W * \left| \gamma(u) \right|^2 \right) \left| \gamma(u) \right|^2 \, dy \\ &= 2\mathcal{I}(u) + \mu \int_{\mathbb{R}^N} \left| \gamma(u) \right|^2 \, dy + \eta \left(1 - \frac{2}{p} \right) \int_{\mathbb{R}^N} \left| \gamma(u) \right|^p \, dy \\ &- \frac{\sigma}{2} \int_{\mathbb{R}^N} \left(W * \left| \gamma(u) \right|^2 \right) \left| \gamma(u) \right|^2 \, dy. \end{split}$$

Since $\mathcal{I}(u) < 0$, we have in particular that

$$\frac{\eta}{p} \int_{\mathbb{R}^N} |\gamma(u)|^p \, dy < \frac{\sigma}{4} \int_{\mathbb{R}^N} \left(W * |\gamma(u)|^2 \right) |\gamma(u)|^2 \, dy$$

and hence, since $p \leq 2N/(N-1) \leq 4$, for $N \geq 2$, we get

$$\begin{split} \mu \int_{\mathbb{R}^N} |\gamma(u)|^2 \, dy &= -2\mathcal{I}(u) - \eta \Big(1 - \frac{2}{p}\Big) \int_{\mathbb{R}^N} |\gamma(u)|^p + \frac{\sigma}{2} \int_{\mathbb{R}^N} \left(W * |\gamma(u)|^2\right) \left|\gamma(u)\right|^2 dy \\ &> \eta \Big(\frac{4}{p} - 1\Big) \int_{\mathbb{R}^N} |\gamma(u)|^p \, dy \ge 0. \end{split}$$

Finally the regularity, the strictly positivity and the exponential decay at infinity of the weak nonnegative solutions of (3.5) follow straightforwardly from Theorems 3.14 and 5.1 in [2].

4. Appendix A

We prove that

$$\begin{split} \int_{\mathbb{R}^N} \left| \left(W * w \gamma(v_k) \right) w \gamma(v_k) \right| &+ \int_{\mathbb{R}^N} \left| \left(W * \gamma(v_k)^2 \right) w^2 \right| + \int_{\mathbb{R}^N} \left| \left(W * w \gamma(v_k) \right) w^2 \right| \\ &+ \int_{\mathbb{R}^N} \left| \left(W * \gamma(v_k)^2 \right) w \gamma(v_k) \right| \to 0 \quad \text{as } k \to +\infty, \end{split}$$

as claimed in the proof of Lemma 3.7. Indeed we have the following result.

Lemma 4.1. For any $w \in H^{1/2}(\mathbb{R}^N)$ and for sequences $\{f_n, g_n, h_n\}$ bounded in $H^{1/2}(\mathbb{R}^N)$ and such that $f_n \to 0$ in L^2_{loc} we have

$$\int_{\mathbb{R}^N} \left(W * |f_n g_n| \right) |wh_n| \to 0 \quad as \ n \to +\infty.$$

Proof. It is convenient to introduce, for any given $\delta > 0$ and R > 0, $W_{\delta} = W \mathbb{I}_{W \ge \delta}$ and

$$W_{\delta}^{R}(y) = (W_{\delta} - R)^{+} \mathbb{I}_{|y| < R} + W_{\delta} \mathbb{I}_{|y| \ge R}.$$

Then for $W \in L^q_w(\mathbb{R}^N)$ we have $W_{\delta} \in L^p(\mathbb{R}^N)$ for any $p \in [1, q)$ and moreover that $|W^R_{\delta}|_p \to 0$ as $R \to +\infty$ for any $\delta > 0$. Define again also $\Gamma^R_{\delta} = W_{\delta} - W^R_{\delta}$. Note that $\sup \Gamma^R_{\delta} \subset B_R$ and $0 \leq \Gamma^R_{\delta} \leq R$.

From the Young inequality (with p = N/2, r = 2p/(2p - 1) = N/(N - 1)), the Hölder inequality and the Sobolev embedding theorem we have

$$\int_{\mathbb{R}^{N}} \left(W * |f_{n}g_{n}| \right) |wh_{n}| \\
\leq \int_{\mathbb{R}^{N}} \left((W - W_{\delta}) * |f_{n}g_{n}| \right) |wh_{n}| + \int_{\mathbb{R}^{N}} (W_{\delta}^{R} * |f_{n}g_{n}|) |wh_{n}| \\
+ \int_{\mathbb{R}^{N}} \left(\Gamma_{\delta}^{R} * |f_{n}g_{n}| \right) |wh_{n}| \\
\leq \delta |f_{n}g_{n}|_{1} |wh_{n}|_{1} + |W_{\delta}^{R}|_{N/2} |f_{n}g_{n}|_{r} |wh_{n}|_{r} + \int_{\mathbb{R}^{N}} \left(\Gamma_{\delta}^{R} * |f_{n}g_{n}| \right) |wh_{n}| \\
(4.1) \leq C \left(\delta + |W_{\delta}^{R}|_{N/2} \right) + \int_{\mathbb{R}^{N}} \left(\Gamma_{\delta}^{R} * |f_{n}g_{n}| \right) |wh_{n}|.$$

First we claim that

$$\int_{\mathbb{R}^N} \left(\Gamma_{\delta}^R * |f_n g_n| \right) |wh_n| \to 0 \quad \text{as } n \to +\infty.$$

Indeed, for any $\epsilon > 0$ we fix $R_1 > 0$ such that $|\mathbb{I}_{\mathbb{R}^N \setminus B_1} w|_2 < \epsilon$, where $B_1 = B_{R_1}$. We define also $R_2 = R_1 + R$ and $B_2 = B_{R_2}$ so that for any $y \in B_1$ and $z \in \mathbb{R}^N \setminus B_2$, we have $|z - y| \ge R$ and hence $\Gamma_{\delta}^R(z - y) = 0$.

Now we estimate the term as follows:

$$\begin{split} \int_{\mathbb{R}^{N}} \left(\Gamma_{\delta}^{R} * |f_{n}g_{n}| \right) |wh_{n}| &= \int_{B_{1}} \left(\Gamma_{\delta}^{R} * \left(\mathbb{I}_{B_{2}}|f_{n}g_{n}| \right) \right) |wh_{n}| + \int_{\mathbb{R}^{N} \setminus B_{1}} \left(\Gamma_{\delta}^{R} * |f_{n}g_{n}| \right) |wh_{n}| \\ &\leq R \left| \left| \mathbb{I}_{B_{2}}f_{n}g_{n} \right|_{1} \left| \left| \mathbb{I}_{B_{1}}wh_{n} \right|_{1} + \left| \left| \Gamma_{\delta}^{R} * (f_{n}g_{n}) \right|_{\infty} \right| \left| \mathbb{I}_{\mathbb{R}^{N} \setminus B_{1}}h_{n} \right|_{2} \right| \left| \mathbb{I}_{\mathbb{R}^{N} \setminus B_{1}}w \right|_{2} \\ &\leq R \left| g_{n}|_{2} \left| h_{n}|_{2} \left(\left| \left| \mathbb{I}_{B_{2}}f_{n} \right|_{2} |w|_{2} + R \left| f_{n}|_{2} \right| \left| \mathbb{I}_{\mathbb{R}^{N} \setminus B_{1}}w \right|_{2} \right) \\ &\leq C R \left(\left| \left| \mathbb{I}_{B_{2}}f_{n} \right|_{2} + \left| \left| \mathbb{I}_{\mathbb{R}^{N} \setminus B_{1}}w \right|_{2} \right). \end{split}$$

Since $f_n \to 0$ as $n \to +\infty$ in $L^2(B_2)$, the claim is proved.

We conclude the proof of the lemma letting first $n \to +\infty$, then $R \to +\infty$ and finally $\delta \to 0$ in (4.1).

References

- CABRÉ, X. AND SOLÀ-MORALES, J.: Layer solutions in a half-space for boundary reactions. Comm. Pure Appl. Math. 58 (2005), no. 12, 1678–1732.
- [2] COTI-ZELATI, V. AND NOLASCO, M.: Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 22 (2011), no. 1, 51–72.
- [3] DALL'ACQUA, A., SØRENSEN, T.Ø. AND STOCKMEYER, E.: Hartree–Fock theory for pseudo-relativistic atoms. Ann. Henri Poincaré 9 (2008), no. 4, 711–742.
- [4] ELGART, A. AND SCHLEIN, B.: Mean field dynamics of boson stars. Comm. Pure Appl. Math. 60 (2007), no. 4, 500–545.
- [5] FRÖHLICH, J., JONSSON, B. L. G. AND LENZMANN, E.: Boson stars as solitary waves. Comm. Math. Phys. 274 (2007), no. 1, 1–30.
- [6] FRÖHLICH, J., JONSSON, B.L. G. AND LENZMANN, E.: Blowup for nonlinear wave equations describing boson stars. Comm. Pure Appl. Math. 60 (2007), no. 11, 1691–1705.
- [7] FRÖHLICH, J., JONSSON, B. L. G. AND LENZMANN, E.: Dynamical collapse of white dwarfs in Hartree and Hartree–Fock theory. *Comm. Math. Phys.* 274 (2007), no. 3, 737–750.
- [8] LENZMANN, E.: Well-posedness for semi-relativistic Hartree equations of critical type. Math. Phys. Anal. Geom. 10 (2007), no. 1, 43–64.
- [9] LENZMANN, E.: Uniqueness of ground states for pseudo-relativistic Hartree equations. Anal. PDE 2 (2009), no. 1, 1–27.
- [10] LIEB, E. H. AND LOSS, M.: Analysis. Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 1997.
- [11] LIEB E. H. AND YAU, H. T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phys. 112 (1987), no. 1, 147–174.
- [12] LIONS, P. L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145.

Received February 8, 2012.

VITTORIO COTI ZELATI: Dipartimento di Matematica Pura e Applicata "R. Caccioppoli", Università di Napoli "Federico II", Via Cintia, M.S. Angelo, 80126 Napoli, Italy.

E-mail: zelati@unina.it

MARGHERITA NOLASCO: Dipartimento di Matematica Pura e Applicata, Università dell'Aquila, Via Vetoio, Loc. Coppito, 67010 L'Aquila AQ, Italia. E-mail: nolasco@univaq.it

Work partially supported by the PRIN2009 grant "Critical Point Theory and Perturbative Methods for Nonlinear Differential Equations".