Rev. Mat. Iberoam. **29** (2013), no. 4, 1421[–1436](#page-15-0) doi 10.4171/rmi/763

-c European Mathematical Society

Ground states for pseudo-relativistic Hartree equations of critical type

Vittorio Coti Zelati and Margherita Nolasco

Abstract. We study the existence of ground state solutions for a class of nonlinear pseudo-relativistic Schrödinger equations with critical twobody interactions. Such equations are characterized by a nonlocal pseudodifferential operator closely related to the square root of the Laplacian. We investigate this problem using variational methods after transforming the problem to an elliptic equation with a nonlinear Neumann boundary conditions.

1. Introduction

The relativistic Hamiltonian for N identical particles of mass m , position x_i and momentum p_i interacting through the two-body potential $\alpha W(|x_i - x_j|)$ is given by

$$
\mathcal{H} = \sum_{i=1}^{N} \left(\sqrt{p_i^2 c^2 + m^2 c^4} - mc^2 \right) - \alpha \sum_{i \neq j} W(|x_i - x_j|).
$$

where c is the speed of light and $\alpha > 0$ is a coupling constant.

According to the usual quantization rules the dynamics of the corresponding system of N-identical quantum spinless particles (a *Bose gas*) is described by the complex wave function $\Psi_N = \Psi_N(t, x_1, \ldots, x_N)$ governed by the Schrödinger equation

$$
i\hbar\partial_t\Psi_N=\mathcal{H}_N\Psi_N
$$

where \hbar is the Planck's constant. Here $\mathcal{H}_N: \mathcal{D} \subset L^2(\mathbb{R}^3)^{\otimes_s N} \to L^2(\mathbb{R}^3)^{\otimes_s N}$ is the *quantum mechanics* Hamiltonian operator, obtained from the classical Hamiltonian via the usual quantization rule $p \mapsto -i\hbar \nabla$, and defined in a suitable dense

Mathematics Subject Classification (2010): Primary 35Q55; Secondary 35J61.

Keywords: Nonlinear Schrödinger equation, pseudo-relativistic Hartree approximation, solitary waves, ground states.

domain \mathcal{D} . In the case of interest here, \mathcal{H}_N is

$$
\mathcal{H}_N = \left(\sum_{j=1}^N \sqrt{-\hbar^2 c^2 \Delta_j + m^2 c^4} - mc^2\right) - \alpha \sum_{i \neq j}^N W(|x_i - x_j|),
$$

where W is the multiplication operator corresponding to the two-body interaction potential, (e.g., $W(|x|) = |x|^{-1}$ for gravitational interactions).

The operator (from now on we will take $\hbar = 1$ and $c = 1$)

$$
(1.1)\qquad \qquad \sqrt{-\Delta + m^2}
$$

can be defined for all $f \in H^1(\mathbb{R}^N)$ as the inverse Fourier transform of the L^2 function $\sqrt{|k|^2 + m^2} \mathcal{F}[f](k)$ (here $\mathcal{F}[f]$ denotes the Fourier transform of f) and it is also associated to the quadratic form

$$
\mathcal{Q}(f,g) = \int_{\mathbb{R}^N} \sqrt{|k|^2 + m^2} \, \mathcal{F}[f] \, \mathcal{F}[g] \, dk
$$

which can be extended to the space

$$
H^{1/2}(\mathbb{R}^N) = \left\{ f \in L^2(\mathbb{R}^N) : \int_{\mathbb{R}^N} |k| |\mathcal{F}[f](k)|^2 dk < +\infty \right\}
$$

(see, e.g., $[10]$ for more details).

In the mean field limit approximation (i.e., $\alpha N \simeq O(1)$ as $N \to +\infty$) of a quantum relativistic Bose gas, one is lead to study the nonlinear mean field equation – called *the pseudo-relativistic Hartree equation* – given by

(1.2)
$$
i\partial_t \psi = \left(\sqrt{-\Delta + m^2} - m\right) \psi - \left(W \ast |\psi|^2\right) \psi.
$$

where $*$ denotes convolution. We will consider attractive two-body interaction, and hence W will always be a nonnegative function.

See [\[11\]](#page-15-2) for the study of this equation when W is the gravitational interaction, and [\[4\]](#page-15-3) for a rigorous derivation of the mean field equation [\(1.2\)](#page-1-0) as an $N \to +\infty$ limit of the Schrödinger equation for N quantum particles, and $[3]$ for more recent developments for models involving the pseudo-relativistic operator $\sqrt{-\Delta+m^2}$.

It has recently been proved that for Newton or Yukawa type two-body interactions (i.e., $W(|x|) = |x|^{-1}$ or $|x|^{-1}e^{-|x|}$ in \mathbb{R}^3) such an equation is locally well posed in H^s , $s \geq 1/2$, and that the solution is global in time for small initial data in L^2 (see [\[8\]](#page-15-5)). Blowup has been proved in [\[6\]](#page-15-6) and [\[7\]](#page-15-7).

Due to the *focusing* nature of the nonlinearity (attractive two-body interaction) there exist *solitary waves* solutions given by

$$
\psi(t,x) = e^{i\mu t} \varphi(x) ,
$$

where φ satisfies the nonlinear eigenvalue equation

(1.3)
$$
\sqrt{-\Delta + m^2} \varphi - m\varphi - (W \ast |\varphi|^2) \varphi = -\mu \varphi.
$$

In [\[11\]](#page-15-2) the existence of such solutions (in the case $W(x) = |x|^{-1}$) was proved provided that $M < M_c$, M_c being the *Chandrasekhar limit mass.*

More precisely, the authors have shown the existence in $H^{1/2}(\mathbb{R}^3)$ of a radial, real-valued nonnegative minimizer (*ground state*) of

$$
(1.4) \qquad \mathcal{E}[\psi] = \frac{1}{2} \int_{\mathbb{R}^3} \bar{\psi} \left(\sqrt{-\Delta + m^2} - m \right) \psi \, dx - \frac{1}{4} \int_{\mathbb{R}^3} \left(|x|^{-1} * |\psi|^2 \right) |\psi|^2 \, dx.
$$

with given fixed "mass-charge" $M = \int_{\mathbb{R}^3} |\psi|^2 dx < M_c$. We call mass-critical the potentials W whose associated functional $\mathcal E$ exhibits this kind of phenomenon.

More recently, in [\[5\]](#page-15-8) it has been proved that the ground state solution is regular $(H^s(\mathbb{R}³),$ for all $s \ge 1/2)$, strictly positive, and exponentially decaying. Moreover the solution is unique, at least for small L^2 norm ([\[9\]](#page-15-9)).

Let us remark that these last results are heavily based on the specific form (Newton or Yukawa type) of the two-body interactions in the Hartree nonlinearity. Indeed in these cases the estimates of the nonlinearity rely on the following facts:

• for this class of potentials one has that

$$
\frac{e^{-\mu|x|}}{4\pi|x|} * f = (\mu^2 - \Delta)^{-1} f \quad \text{for } f \in \mathcal{S}(\mathbb{R}^3), \ \mu \ge 0;
$$

- the use of a generalized Leibnitz rule for Riesz and Bessel potentials;
- there holds the estimate

$$
\left\|\frac{1}{|x|} * |u|^2\right\|_{L^\infty} \le \frac{\pi}{2} \left\|(-\Delta)^{1/4} u\right\|_{L^2}^2.
$$

In [\[2\]](#page-15-10) there has been proved an existence and regularity result for the solutions of (1.3) for a wider class of nonlinearities by exploiting the relation of equation (1.3) with an elliptic equation on \mathbb{R}^{N+1}_+ with a nonlinear Neumann boundary condition. Such a relation has been recently used to study several problems involving fractional powers of the Laplacian (see e.g. [\[1\]](#page-15-11) and references therein) and it is based on an alternative definition of the operator [\(1.1\)](#page-1-2) that can be described as follows. Given any function $u \in \mathcal{S}(\mathbb{R}^N)$ there is a unique function $v \in \mathcal{S}(\mathbb{R}^{N+1}_+)$ (here $\mathbb{R}^{N+1}_{+} = \{ (x, y) \in \mathbb{R} \times \mathbb{R}^{N} \mid x > 0 \}$ such that

$$
\begin{cases}\n-\Delta v + m^2 v = 0 & \text{in } \mathbb{R}_+^{N+1}, \\
v(0, y) = u(y) & \text{for } y \in \mathbb{R}^N = \partial \mathbb{R}_+^{N+1}.\n\end{cases}
$$

Setting

$$
Tu(y) = -\frac{\partial v}{\partial x}(0, y),
$$

we have that the equation

$$
\begin{cases}\n-\Delta w + m^2 w = 0 & \text{in } \mathbb{R}_+^{N+1}, \\
w(0, y) = Tu(y) = -\frac{\partial v}{\partial x}(0, y) & \text{for } y \in \mathbb{R}^N,\n\end{cases}
$$

has the solution $w(x, y) = -\frac{\partial v}{\partial x}(x, y)$. From this we have that

$$
T(Tu)(y) = -\frac{\partial w}{\partial x}(0, y) = \frac{\partial^2 v}{\partial x^2}(0, y) = \left(-\Delta_y v + m^2 v\right)(0, y)
$$

and hence $T^2 = (-\Delta_y + m^2)$.

In [\[2\]](#page-15-10) we studied the equation

(1.5)
$$
\sqrt{-\Delta + m^2} v = \mu v + \nu |v|^{p-2} v + \sigma (W * |v|^2) v \text{ in } \mathbb{R}^N,
$$

where $p \in (2, 2N/(N-1)), \mu < m$ is fixed , $\nu, \sigma > 0$ (but not both equal to 0), $W \in L^r(\mathbb{R}^N) + L^{\infty}(\mathbb{R}^N), r > N/2, W \ge 0$, and $W(x) = W(|x|) \to 0$ as $|x| \to +\infty$.

The results are obtained, following the approach outlined above, by studying the equivalent elliptic problem with nonlinear boundary condition

(1.6)
$$
\begin{cases} -\Delta v + m^2 v = 0 & \text{in } \mathbb{R}^{N+1}_{+}, \\ -\frac{\partial v}{\partial x} = \mu v + \nu |v|^{p-2} v + \sigma (W * |v|^2) v & \text{on } \mathbb{R}^N = \partial \mathbb{R}^{N+1}_{+}, \end{cases}
$$

and the associated functional on $H^1(\mathbb{R}^{N+1}_+)$.

Let us point out that in $[2]$ the L^2 norm of the solution is not prescribed. In such a case existence of a (positive, radially symmetric) solution can be proved for a class of potentials W and exponents p which is larger than the one we deal with here.

When the L^2 norm is prescribed to be M (the most relevant problem from a physical point of view), as in [\[11\]](#page-15-2), then the Newtonian potential $(|x|^{-1}$ in $\mathbb{R}^3)$ is critical, in the sense that minimization of $\mathcal E$ given by [\(1.4\)](#page-2-0) is possible only when $M < M_c$ (see Theorem [1.1\)](#page-3-0).

The main purpose of this paper is to exploit this approach also for the problem of finding minimizer of the static energy

$$
(1.7) \ \mathcal{E}[u] = \frac{1}{2} \int_{\mathbb{R}^N} u\left(\sqrt{-\Delta + m^2} - m\right) u \, dx + \frac{\eta}{p} \int_{\mathbb{R}^N} |u|^p \, dx - \frac{\sigma}{4} \int_{\mathbb{R}^N} \left(W \ast |u|^2\right) |u|^2 \, dx
$$

with prescribed L^2 norm, for a wider class of attractive two-body potential including the critical case.

To be more precise, we consider a class of two-body potentials $W \in L^q_w(\mathbb{R}^N)$, with $q \geq N$. We recall that $L^q_w(\mathbb{R}^N)$, the weak L^q space, is the space of all measurable functions f such that

$$
\sup_{\alpha>0} \alpha \vert \left\{ x \vert \vert f(x) \vert > \alpha \right\} \vert^{1/q} < +\infty,
$$

where |E| denotes the Lebesgue measure of a set $E \subset \mathbb{R}^N$. Note that $W(x) = |x|^{-1}$ does not belong to any L^q -space but it belongs to $L_w^N(\mathbb{R}^N)$. We say that a potential W is *critical* if $W \in L^N(\mathbb{R}^N)$.

Our main result is the following.

Theorem 1.1. Let $W \in L_w^q(\mathbb{R}^N)$, where $q \ge N \ge 2$, and $W(y) \ge 0$ for all $y \in \mathbb{R}^N$, *and suppose that*

(1.8)
$$
W(\lambda^{-1}y) \ge \lambda^{\alpha}W(y)
$$
, for all $\lambda \in (0,1)$ and for some $\alpha > 0$.

We also assume that $W(x) = W(|x|)$ *is rotationally symmetric and that* $W(r) \rightarrow 0$ $as r \rightarrow +\infty$ *.*

 $Take \eta \geq 0, \sigma > 0 \text{ and } p \in (2 + 2/q, 2 + 2/(N - 1) = 2N/(N - 1)$. Then:

- *if* $\eta > 0$ *or* $\eta = 0$ *and* $q > N$ *, then for all* $M > 0$ *there is a strictly positive minimizer* $u \in H^{1/2}(\mathbb{R}^N)$ of $\mathcal{E}[u]$ such that $\int_{\mathbb{R}^N} u^2 = M$;
- (mass-critical case) *if* $\eta = 0$ *and* $q = N$ *, there is a critical value* $M_c > 0$ *such that for all* $0 < M < M_c$ *there is a strictly positive minimizer* $u \in H^{1/2}(\mathbb{R}^N)$ of $\mathcal{E}[u]$ such that $\int_{\mathbb{R}^N} u^2 = M$.

Moreover there exists μ > 0 *such that* u *is a smooth, exponentially decaying at infinity, solution of*

$$
(\sqrt{-\Delta + m^2} - m)u = -\mu u - \eta |u|^{p-2} u + \sigma (W * |u|^2) u \text{ in } \mathbb{R}^N,
$$

and *u is radial if* $W = W(r)$ *is a decreasing function of* $r > 0$ *.*

Remark 1.2. The nonlinear term $|u|^{p-2}u$ is a defocusing nonlinearity, the convolution term is a focusing nonlinearity. An open problem is to understand if solitons exist also for other ranges of p, in particular for $2 < p \leq 2 + 2/q$ and $W \in L^q_w$.

Remark 1.3. If $W \in L^q_w$ and [\(1.8\)](#page-4-0) holds for some $\alpha > 0$, then necessarily $\alpha \in$ $(0, N/q]$. If $W(x) = |x|^{-\alpha}$, then $W \in L^q_w$ if and only if $\alpha = N/q$.

Remark 1.4. μ is a Lagrange multiplier.

2. Preliminaries

Let $(x, y) \in \mathbb{R} \times \mathbb{R}^N$. We have already introduced $\mathbb{R}^{N+1}_{+} = \{ (x, y) \in \mathbb{R}^{N+1} \mid x > 0 \}$. We will always denote the norm of $u \in L^p(\mathbb{R}^{N+1}_+)$ by $||u||_p$, the norm of $u \in$ $H^1(\mathbb{R}^{N+1}_+)$ by $||u||$, and the norm of $v \in L^p(\mathbb{R}^N)$ by $|v|_p$.

We recall that, for all $v \in H^1(\mathbb{R}^{N+1}) \cap C_0^{\infty}(\mathbb{R}^{N+1}),$

$$
\int_{\mathbb{R}^N} |v(0,y)|^p dy = \int_{\mathbb{R}^N} dy \int_{+\infty}^0 \frac{\partial}{\partial x} |v(x,y)|^p dx
$$

\n
$$
\leq p \iint_{\mathbb{R}^{N+1}_+} |v(x,y)|^{p-1} \left| \frac{\partial v}{\partial x}(x,y) \right| dx dy
$$

\n
$$
\leq p \left(\iint_{\mathbb{R}^{N+1}_+} |v(x,y)|^{2(p-1)} dx dy \right)^{1/2} \left(\iint_{\mathbb{R}^{N+1}_+} \left| \frac{\partial v}{\partial x}(x,y) \right|^2 dx dy \right)^{1/2}.
$$

That is,

(2.1)
$$
|v(0, \cdot)|_p^p \le p \|v\|_{2(p-1)}^{p-1} \left\|\frac{\partial v}{\partial x}\right\|_2,
$$

which, by Sobolev embedding, is finite for all $2 \leq 2(p-1) \leq 2(N+1)/((N+1)-2)$, that is $2 \le p \le 2^{\sharp}$, where we have set $2^{\sharp} = 2N/(N-1)$. By density of $H^1(\mathbb{R}^{N+1}) \cap$ $C_0^{\infty}(\mathbb{R}^{N+1})$ in $H^1(\mathbb{R}^{N+1}_+)$ such an estimate allows us to define the trace $\gamma(v)$ of v for all $v \in H^1(\mathbb{R}^{N+1}_+)$. The inequality

(2.2)
$$
|\gamma(v)|_p^p \le p \|v\|_{2(p-1)}^{p-1} \left\|\frac{\partial v}{\partial x}\right\|_2,
$$

holds then for all $v \in H^1(\mathbb{R}^{N+1}_+)$.

It is known that the traces of functions in $H^1(\mathbb{R}^{N+1}_+)$ belong to $H^{1/2}(\mathbb{R}^N)$ and that every function in $H^{1/2}(\mathbb{R}^N)$ is the trace of a function in $H^1(\mathbb{R}^{N+1}_+)$. Then (2.2) is in fact equivalent to the well-known fact that $\gamma(v) \in H^{1/2}(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$ provided $q \in [2, 2^{\sharp}]$. Here we also recall that

$$
||w||_{H^{1/2}}^2 = \inf \{ ||u||^2 \, \big| \, u \in H^1(\mathbb{R}_+^{N+1}), \ \gamma(u) = w \} = \int_{\mathbb{R}^N} (1 + |\xi|) \, |\mathcal{F}w(\xi)|^2 \, d\xi.
$$

Let us also introduce the norm of the weak L^q -space as follows:

$$
||f||_{q,w} = \sup_{A} |A|^{-1/r} \int_{A} |f(x)| dx
$$

where $1/q + 1/r = 1$ and A denotes any measurable set of finite measure |A| (see, e.g., [\[10\]](#page-15-1) for more details). Using this norm we can state the *weak Young inequality.* If $g \in L_w^q(\mathbb{R}^N)$, $f \in L^p(\mathbb{R}^N)$ and $h \in L^r(\mathbb{R}^N)$ where $1 < q, p, r < +\infty$ and $1/q + 1/p + 1/r = 2$, then

(2.3)
$$
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} f(y) g(y-z) h(y) dy dz \leq C_{p,q,r} ||g||_{q,w} |f|_p |h|_r.
$$

We consider the class of two-body interactions $W \in L^q_w(\mathbb{R}^N)$ for $q \geq N$. By the weak Young inequality and the Hölder inequality we have for $r = \frac{4q}{2q - 1}$ (∈ $(2, 2^{\sharp})$ since $q \ge N$) and for all $p \in (4q/(2q-1), 2^{\sharp}],$

$$
(2.4) \quad \int_{\mathbb{R}^N} (W \ast |u|^2) |w|^2 \, dy \leq C \|W\|_{q,w} |w|_r^4 \leq C \|W\|_{q,w} |w|_2^{4 - \frac{2p}{q(p-2)}} |w|_p^{\frac{2p}{q(p-2)}}.
$$

For $p = 2^{\sharp}$ we get

$$
(2.5) \qquad \qquad \int_{\mathbb{R}^N} \left(W \ast |w|^2 \right) |w|^2 \ dy \leq C \, \|W\|_{q,w} \, |w|_2^{4-2N/q} \, |w|_{2^{\sharp}}^{2N/q} \, .
$$

In the (critical) case $q = N$ this gives

(2.6)
$$
\int_{\mathbb{R}^N} \left(W \ast |w|^2 \right) |w|^2 \ dy \leq C \left\| W \right\|_{N,w} |w|^2_2 |w|^2_{2^{\sharp}}.
$$

We point out that one cannot deduce (2.6) from the weak Young's inequality (2.3) directly, and that it is not true, in general, that the L^{∞} norm of $W * |u|^2$ can be bounded by the $L^{2^{\sharp}}$ norm of u if $W \in L^N_w$.

For all $v \in H^1(\mathbb{R}^{N+1}_+)$, we consider the functional given by

$$
\mathcal{I}(v) = \frac{1}{2} \Big(\iint_{\mathbb{R}_+^{N+1}} \left(|\nabla v|^2 + m^2 |v|^2 \right) dx \, dy - \int_{\mathbb{R}^N} m |\gamma(v)|^2 \, dy \Big) + \frac{\eta}{p} \int_{\mathbb{R}^N} |\gamma(v)|^p \, dy - \frac{\sigma}{4} \int_{\mathbb{R}^N} \left(W \ast |\gamma(v)|^2 \right) |\gamma(v)|^2 \, dy.
$$

In view of (2.2) and (2.4) , all the terms in the functional $\mathcal I$ are well defined if $p \in (2, 2^{\sharp}]$ and $W \in L^q_w(\mathbb{R}^N)$ with $q \geq N$.

Note that from (2.1) , with $p = 2$, it follows that

$$
(2.7) \t m \int_{\mathbb{R}^N} |\gamma(v)|^2 dy \le 2(m||v||_2) \|\nabla v\|_2 \le \iint_{\mathbb{R}^{N+1}_+} (|\nabla v|^2 + m^2 |v|^2) dx dy,
$$

showing that the quadratic part of the functional $\mathcal I$ is nonnegative.

Moreover the following property can be checked easily:

Lemma 2.1. For
$$
u \in H^1(\mathbb{R}^{N+1}_+)
$$
, let $w = \gamma(u) \in H^{1/2}(\mathbb{R}^N)$, $\hat{w} = \mathcal{F}(w)$ and

$$
v(x,y) = \mathcal{F}^{-1}(e^{-x\sqrt{m^2 + |\cdot|^2}}\hat{w}) = \int_{\mathbb{R}^N} e^{-x\sqrt{m^2 + |\xi|^2}} \hat{w}(\xi) e^{i\xi y} d\xi.
$$

Then $v \in H^1(\mathbb{R}^{N+1}_+)$, $||v|| = ||w||_{H^{1/2}}$, $\mathcal{I}(v) \leq \mathcal{I}(u)$ and $\mathcal{I}(v) = \mathcal{E}[w]$.

3. Minimization problem

We consider the minimization problem

$$
(3.1) \tI(M) = \inf \{ \mathcal{I}(v) : v \in \mathcal{M}_M \},
$$

where the manifold \mathcal{M}_M is given by

$$
\mathcal{M}_M = \left\{ v \in H^1(\mathbb{R}_+^{N+1}) \, : \, \int_{\mathbb{R}^N} |\gamma(v)|^2 = M \right\}
$$

Remark 3.1. The term $m \int_{\mathbb{R}^N} |\gamma(v)|^2$ in the functional $\mathcal{I}(v)$ is constant for all $v \in \mathcal{M}_M$. The presence of such a term will allow us to show that the infimum of the functional $\mathcal I$ on $\mathcal M_M$ is negative.

Concerning the existence of a minimizer for problem (3.1) we start by proving, in the following lemmas, boundedness from below on \mathcal{M}_M of the functional \mathcal{I} , and some properties of the infimum $I(M)$.

Lemma 3.2. *The functional* $\mathcal I$ *is bounded from below and coercive on* $\mathcal M_M$ $H^1(\mathbb{R}^{N+1}_+)$ *for all* $\dot{M} > 0$ *if* $\eta > 0$ *or* $q > N$ *and for all* M *small enough if* $\eta = 0$ and $q = N$.

Proof. First we examine first the convolution term. If $\eta > 0$, from [\(2.4\)](#page-5-3) and $|\gamma(u)|_2^2 = M$ we have

$$
(3.2) \qquad 0 \le \int_{\mathbb{R}^N} \left(W \ast |\gamma(u)|^2 \right) |\gamma(u)|^2 \le C \left\| W \right\|_{q,w} |\gamma(u)|_2^{4 - \frac{2p}{q(p-2)}} |\gamma(u)|_p^{\frac{2p}{q(p-2)}} = C \left\| W \right\|_{q,w} M^{2 - \frac{p}{q(p-2)}} |\gamma(u)|_p^{\frac{2p}{q(p-2)}}.
$$

Since by assumption $\frac{2p}{q(p-2)} < p$, this is enough to prove coercivity if $\eta > 0$. Indeed in such a case we have that

$$
\mathcal{I}(u) \ge \frac{1}{2}||u||^2 - \frac{1}{2}mM + C_1 |\gamma(u)|_p^p - C_2 |\gamma(u)|_p^{\frac{2p}{q(p-2)}} \ge \frac{1}{2}||u||^2 - C_3.
$$

In the case $\eta = 0$ we deduce from (2.6) and $|\gamma(u)|_{2^{\sharp}} \leq C ||u||$ that

$$
\mathcal{I}(u) \ge ||u||^2 - mM - C ||W||_{q,w} M^{2-N/q} ||u||^{2N/q}.
$$

It is then clear that the functional is bounded from below and coercive whenever $q > N$ and, when $q = N$, if $||W||_{N,w}M$ is small enough.

Lemma 3.3. $I(M) < 0$ *for all* $M > 0$ *.*

Proof. Take any function $u \in C_0^{\infty}(\mathbb{R}^N)$ such that $|u|^2 = M$, and let $w(x, y) =$ $e^{-mx}u(y)$. Then,

$$
I(M) = \inf_{v \in \mathcal{M}_M} \mathcal{I}(v) \le \mathcal{I}(w)
$$

= $\frac{1}{2} \iint_{\mathbb{R}_+^{N+1}} (|\partial_x w|^2 + |\nabla_y w|^2 + m^2 |w|^2) dx dy - \frac{m}{2} \int_{\mathbb{R}^N} |u|^2 dy + G(u)$
= $\frac{m}{4} \int_{\mathbb{R}^N} |u|^2 dy + \frac{1}{4m} \int_{\mathbb{R}^N} |\nabla_y u|^2 dy + \frac{m}{4} \int_{\mathbb{R}^N} |u|^2 dy - \frac{m}{2} \int_{\mathbb{R}^N} |u|^2 dy + G(u)$
= $\frac{1}{4m} \int_{\mathbb{R}^N} |\nabla_y u|^2 dy + G(u),$

where

$$
G(u) = \frac{\eta}{p} \int_{\mathbb{R}^N} |u|^p dy - \frac{\sigma}{4} \int_{\mathbb{R}^N} (W * |u|^2) |u|^2 dy
$$

For $\lambda > 0$ take $u_\lambda(y) = \lambda^{N/2} u(\lambda y)$ and $w_\lambda(x, y) = e^{-mx} u_\lambda(y) \in \mathcal{M}_M$. We find that

$$
I(M) \leq \inf_{\lambda>0} \mathcal{I}(w_{\lambda})
$$

\n
$$
\leq \inf_{\lambda\in(0,1)} \left[\frac{1}{4m} \int_{\mathbb{R}^N} |\nabla_y u_{\lambda}|^2 + \frac{\eta}{p} \int_{\mathbb{R}^N} |u_{\lambda}|^p - \frac{\sigma}{4} \int_{\mathbb{R}^N} (W * |u_{\lambda}|^2) |u_{\lambda}|^2 \right]
$$

\n
$$
\leq \inf_{\lambda\in(0,1)} \left[\frac{\lambda^2}{4m} \int_{\mathbb{R}^N} |\nabla_y u|^2 + \frac{\eta \lambda^N (\frac{p}{2}-1)}{p} \int_{\mathbb{R}^N} |u|^p - \frac{\sigma \lambda^{\alpha}}{4} \int_{\mathbb{R}^N} (W * |u|^2) |u|^2 \right],
$$

and since $\alpha < N(p/2 - 1) < 2$, the infimum is negative.

Lemma 3.4. *For all* $M > 0$ *and* $\beta \in (0, M)$ *we have that* $I(M) < I(M - \beta) + I(\beta)$ *. Moreover,* I(M)/M *is a concave function of* M *and hence* I(M) *is a continuous function of* M*.*

Proof. The subadditivity is a consequence of the fact that, for all $\theta > 1$,

(3.3)
$$
I(\theta M) < \theta I(M), \quad \text{which implies} \quad \frac{1}{\theta} I(M) < I(M/\theta).
$$

Indeed, taking $\theta_1 = M/\beta$ and $\theta_2 = M/(M - \beta)$, we have that

$$
I(M) = \frac{\beta}{M}I(M) + \frac{M-\beta}{M}I(M) < I(\beta) + I(M-\beta).
$$

To prove that [\(3.3\)](#page-8-0) holds, we remark that for all $v \in \mathcal{M}_M$ and $\lambda = \theta^{1/2} > 1$ we have, thanks to (2.7) ,

$$
\mathcal{I}(\lambda v) = \frac{\lambda^2}{2} \Biggl[\iint_{\mathbb{R}_+^{N+1}} \left(|\nabla v|^2 + m^2 |v|^2 \right) dx \, dy - m \int_{\mathbb{R}^N} |\gamma(v)|^2 \, dy \Biggr] + \frac{\eta \lambda^p}{p} \int_{\mathbb{R}^N} |\gamma(v)|^p \, dy - \frac{\sigma \lambda^4}{4} \int_{\mathbb{R}^N} \left(W \ast |\gamma(v)|^2 \right) |\gamma(v)|^2 \, dy \leq \lambda^4 \mathcal{I}(v).
$$

Hence, since $I(M) < 0$,

$$
I(\theta M) = \inf_{|\gamma(v)|_2^2 = \theta M} \mathcal{I}(v) = \inf_{|\gamma(v)|_2 = M} \mathcal{I}(\theta^{1/2} v) \le \theta^2 \inf_{|\gamma(v)|_2 = M} \mathcal{I}(v)
$$

= $\theta^2 I(M) < \theta I(M) < I(M)$.

To prove the concavity of $I(M)/M$, we remark that

$$
\frac{I(M)}{M} = \frac{1}{M} \inf_{u \in \mathcal{M}_M} \mathcal{I}(u) = \inf_{u \in \mathcal{M}_1} \frac{\mathcal{I}(\sqrt{M}u)}{M}.
$$

We now show that, for all $u \in \mathcal{M}_1, M \mapsto \mathcal{I}(\mathcal{M})$ √ $M(u)/M$ is a concave function of M. This will immediately prove that $I(M)/M$ is a concave function. Since

$$
\frac{\mathcal{I}(\sqrt{M}v)}{M} = \frac{1}{2} \Big(\iint_{\mathbb{R}_{+}^{N+1}} \left(|\nabla v|^2 + m^2 v^2 \right) dx dy - \int_{\mathbb{R}^N} m |\gamma(v)|^2 dy \Big) \n+ \frac{\eta M^{p/2-1}}{p} \int_{\mathbb{R}^N} |\gamma(v)|^p dy - \frac{\sigma M}{4} \int_{\mathbb{R}^N} \left(W \ast |\gamma(v)|^2 \right) |\gamma(v)|^2 dy,
$$

it is immediate to check that the second derivative with respect to the variable M is negative for all $M > 0$ when $p/2 < 2$ and that the function is linear when $p = 4$ (namely the critical exponent for $N = 2$).

We are now ready to prove the existence of a minimizer for the functional $\mathcal I$ on \mathcal{M}_M .

Proposition 3.5. For every $M > 0$ there is a function $u \in H^1(\mathbb{R}^{N+1}_+)$ such that

$$
\begin{cases} \mathcal{I}(u) = I(M), \\ \int_{\mathbb{R}^N} |\gamma(u)|^2 \ dy = M, \end{cases}
$$

i.e., a minimizer for $\mathcal I$ *in* $\mathcal M_M$ *.*

Proof. Let $\{u_n\} \subset \mathcal{M}_M$ be a minimizing sequence. It follows from Lemma [2.1](#page-6-2) that

$$
v_n(x,y) = \mathcal{F}^{-1}\big(e^{-x\sqrt{m^2+|\cdot|^2}}\mathcal{F}(\gamma(u_n))\big)
$$

is also minimizing. From Lemma [3.2](#page-6-3) we deduce that v_n is bounded in $H^1(\mathbb{R}^{N+1}_+)$ and that $w_n \equiv \gamma(v_n) = \gamma(u_n)$ is bounded in $H^{1/2}(\mathbb{R}^N)$ and $\int_{\mathbb{R}^N} |w_n|^2 dy = M$.

We will now use the concentration-compactness method of P.L. Lions [\[12\]](#page-15-12). Namely, one of the following cases must occur:

(vanishing) for all $R > 0$,

$$
\lim_{n \to +\infty} \sup_{z \in \mathbb{R}^N} \int_{z + B_R} |w_n|^2 \ dy = 0;
$$

(dichotomy) for a subsequence $\{n_k\}$,

$$
\lim_{R \to +\infty} \lim_{k \to +\infty} \sup_{z \in \mathbb{R}^N} \int_{z+B_R} |w_{n_k}|^2 dy = \alpha \in (0, M);
$$

(compactness) for all $\epsilon > 0$ there is $R > 0$, a sequence $\{y_k\}$ and a subsequence $\{w_{n_k}\}\$ such that

$$
\int_{y_k+B_R} |w_{n_k}|^2 dy \ge M - \epsilon.
$$

Following the usual strategy we will show that the vanishing and dichotomy cases cannot occur.

Lemma 3.6. *If vanishing occurs, then*

$$
\int_{\mathbb{R}^N} \left(W * |w_n|^2 \right) |w_n|^2 \ dy \to 0.
$$

Proof. Take any $\delta > 0$ and $R > 0$. Define $W_{\delta} = W\mathbb{I}_{\{W \geq \delta\}}$ and

$$
W_{\delta}^{R}(|y|) = (W_{\delta}(|y|) - R)^{+} \mathbb{I}_{\{|y| < R\}} + W_{\delta}(|y|) \mathbb{I}_{\{|y| \geq R\}},
$$

where \mathbb{I}_A is the characteristic function of the set A. Then it easy to check that $W \in L^q_w(\mathbb{R}^N)$ implies that $W_\delta \in L^s(\mathbb{R}^N)$ for any $s \in [1,q)$ and moreover that $|W_{\delta}^{R}|_{s} \to 0$ as $R \to +\infty$ for any $\delta > 0$. Also define $\Gamma_{\delta}^{R} = W_{\delta} - W_{\delta}^{R}$. It is clear that

$$
0 \le (W - W_\delta)(|y|) \le \delta, \quad 0 \le \Gamma_d^R(|y|) \le R \quad \forall y \in \mathbb{R}^N
$$

Then, for any given $\delta > 0$ and $R > 0$ and for some $s \geq N/2$ (which implies that $2 < 4s/(2s-1) \leq 2N/(N-1)$, we get from the Young inequality (also taking into account that by the Sobolev embedding theorem the sequence $\{w_n\}$ is bounded in L^p for $p \in [2, 2N/(N-1)]$,

$$
\int_{\mathbb{R}^N} \left(W \ast |w_n|^2 \right) |w_n|^2
$$
\n
$$
\leq \int_{\mathbb{R}^N} \left(\left(W - W_{\delta} \right) \ast |w_n|^2 \right) |w_n|^2 + \int_{\mathbb{R}^N} \left(W_{\delta}^R \ast |w_n|^2 \right) |w_n|^2 + \int_{\mathbb{R}^N} \left(\Gamma_{\delta}^R \ast |w_n|^2 \right) |w_n|^2
$$
\n
$$
\leq \delta |w_n|_2^4 + |W_{\delta}^R|_s |w_n|_{4s/(2s-1)}^4 + R \iint_{\mathbb{R}^N \times \mathbb{R}^N} |w_n(y)|^2 |w_n(z)|^2 \mathbb{I}_{|z-y| \leq R} dy \, dz
$$
\n
$$
\leq \delta M^2 + C |W_{\delta}^R|_s + RM \sup_{z \in \mathbb{R}^N} \int_{z + B_R} |w_n|^2 \, dy.
$$

Now, first letting $n \to +\infty$, then letting $R \to +\infty$, and finally letting $\delta \to 0^+$, we conclude the proof of the lemma.

Lemma 3.7. *If dichotomy occurs, then for any* $\alpha \in (0, M)$ *we have*

 $I(M) > I(\alpha) + I(M - \alpha).$

Proof. If dichotomy occurs, then there is a sequence ${n_k} \subset \mathbb{N}$ such that, for any $\epsilon > 0$, there exists $R > 0$ and a sequence $\{z_k\} \subset \mathbb{R}^N$ such that

$$
\lim_{k \to +\infty} \int_{z_k + B_R} |w_{n_k}|^2 dy \in (\alpha - \epsilon, \alpha + \epsilon).
$$

Define $\tilde{w}_k = w_{n_k}(\cdot + z_k)$ and

$$
\tilde{u}_k(x,y) = \mathcal{F}^{-1}\big(e^{-x\sqrt{m^2+|\cdot|^2}}\mathcal{F}(\tilde{w}_k)\big),
$$

so that $\{\tilde{u}_k\}$ is a minimizing sequence for $\mathcal I$ on $\mathcal M_M$ such that

$$
\lim_{k \to +\infty} \int_{B_R} |\gamma(\tilde{u}_k)|^2 \ dy \in (\alpha - \epsilon, \alpha + \epsilon).
$$

Since $\{\tilde{u}_k\}$ is a bounded sequence in $H^1(\mathbb{R}^{N+1}_+)$, $\tilde{u}_k \to u$ weakly in $H^1(\mathbb{R}^{N+1}_+)$ and $\tilde{w}_k = \gamma(\tilde{u}_k) \to w = \gamma(u)$ weakly in $H^{1/2}$ and strongly in $L_{loc}^p(\mathbb{R}^N)$ for $p \in$ $[2, 2N/(N-1))$. Hence, for all $\epsilon > 0$ there is $R > 0$ such that

$$
\int_{B_R} |\gamma(u)|^2 dy = \lim_{k \to +\infty} \int_{B_R} |\gamma(\tilde{u}_k)|^2 dy \in (\alpha - \epsilon, \alpha + \epsilon)
$$

and

$$
\int_{\mathbb{R}^N} |\gamma(u)|^2 dy = \lim_{R \to +\infty} \int_{B_R} |\gamma(u)|^2 dy = \alpha.
$$

We set $v_k = \tilde{u}_k - u$ and $\beta_k = \int_{\mathbb{R}^N} |\gamma(v_k)|^2 dy$. By weak convergence of the sequence $\{\gamma(\tilde{u}_k)\}\$ in L^2 we get $\lim_{k\to+\infty}\beta_k=M-\alpha$.

Now we claim that

$$
I(M) = \lim_{k \to +\infty} \mathcal{I}(\tilde{u}_k) = \mathcal{I}(u) + \lim_{k \to +\infty} \mathcal{I}(v_k) \ge I(\alpha) + \lim_{k \to +\infty} I(\beta_k).
$$

Then, by the continuity of the function I , as stated in Lemma [3.4,](#page-8-1) the lemma follows.

Now we prove the claim. We will show that

$$
\lim_{k \to +\infty} (\mathcal{I}(\tilde{u}_k) - \mathcal{I}(v_k)) \to \mathcal{I}(u)
$$

Indeed, by weak convergence in $H^1(\mathbb{R}^{N+1}_+)$, we immediately get

$$
\lim_{k \to +\infty} \left(\iint_{\mathbb{R}^{N+1}_+} |\nabla \tilde{u}_k|^2 - \iint_{\mathbb{R}^{N+1}_+} |\nabla v_k|^2 \right) = \iint_{\mathbb{R}^{N+1}_+} |\nabla u|^2
$$

$$
\lim_{k \to +\infty} \left(\iint_{\mathbb{R}^{N+1}_+} |\tilde{u}_k|^2 - \iint_{\mathbb{R}^{N+1}_+} |v_k|^2 \right) = \iint_{\mathbb{R}^{N+1}_+} |u|^2
$$

and by the Brezis–Lieb lemma

$$
\lim_{k \to +\infty} \left(\int_{\mathbb{R}^N} |\gamma(\tilde{u}_k)|^p - \int_{\mathbb{R}^N} |\gamma(v_k)|^p \right) = \int_{\mathbb{R}^N} |\gamma(u)|^p
$$

for $2 \leq p \leq 2N/(N-1)$. Hence we have to investigate the last nonlinear term. We will show in Appendix A that

$$
\lim_{k \to +\infty} \left(\int_{\mathbb{R}^N} (W \ast |\tilde{w}_k|^2) |\tilde{w}_k|^2 - \int_{\mathbb{R}^N} (W \ast |\gamma(v_k)|^2) |\gamma(v_k)|^2 \right) = \int_{\mathbb{R}^N} (W \ast |w|^2) |w|^2,
$$

from which the claim follows

rom which the claim follows.

Finally, since we have ruled out both vanishing and dichotomy, then we may conclude that indeed *compactness* occurs, namely that for all $\epsilon > 0$ there is $R > 0$, a sequence $\{y_k\}$ and a subsequence $\{w_{n_k}\}$ such that

$$
\int_{y_k + B_R} |w_{n_k}|^2 dy \ge M - \epsilon.
$$

Define as before $\tilde{w}_k = w_{n_k}(\cdot + y_k)$ and $\tilde{u}_k(x, y) = \mathcal{F}^{-1}(e^{-x\sqrt{m^2 + |\cdot|^2}} \mathcal{F}(\tilde{w}_k)).$ Then \tilde{u}_k is a minimizing sequence for $\mathcal I$ on $\mathcal M_M$ such that

$$
\int_{B_R} |\gamma(\tilde{u}_k)|^2 \ge M - \epsilon.
$$

Since $\{\tilde{u}_k\}$ is a bounded sequence in $H^1(\mathbb{R}^{N+1}_+)$, $\tilde{u}_k \to u$ weakly in $H^1(\mathbb{R}^{N+1}_+)$ and $\tilde{w}_k = \gamma(\tilde{u}_k) \to w = \gamma(u)$ weakly in $H^{1/2}$ and strongly in $L_{loc}^p(\mathbb{R}^N)$ for $p \in$ $[2, 2N/(N-1))$. As in the proof of Lemma [3.7](#page-10-0) we deduce that $\int_{\mathbb{R}^N} |\gamma(u)|^2 = M$.

Moreover we claim that, as $k \to +\infty$,

$$
\int_{\mathbb{R}^N} \left(W * |\tilde{w}_k|^2 \right) |\tilde{w}_k|^2 \to \int_{\mathbb{R}^N} (W * w^2) w^2.
$$

Indeed, by the weak Young inequality and the Hölder inequality we have

$$
\left| \int_{\mathbb{R}^N} (W * \tilde{w}_k^2) \tilde{w}_k^2 - \int_{\mathbb{R}^N} (W * w^2) w^2 \right| \leq \int_{\mathbb{R}^N} (W * (\tilde{w}_k^2 + w^2)) |\tilde{w}_k^2 - w^2|
$$

\n
$$
\leq C \|W\|_{q,w} |\tilde{w}_k^2 + w^2|_s |\tilde{w}_k^2 - w^2|_s \leq C |\tilde{w}_k - w|_{2s} \to 0
$$

since $2 < 2s = 4q/(2q-1) < 2N/(N-1)$.

Hence, finally, by the weakly lower semicontinuity of the H^1 and L^p norms (the positive terms of the functional \mathcal{I}), we conclude that

$$
\mathcal{I}(u) \le \liminf_{k \to +\infty} \mathcal{I}(\tilde{u}_k) = I(M),
$$

which implies the u is a minimizer for $\mathcal I$ in $\mathcal M_M$.

Now we collect all the results obtained to conclude the proof of Theorem [1.1.](#page-3-0)

Proof of Theorem [1.1](#page-3-0). By Proposition [3.5](#page-8-2) there exists a function $u \in H^1(\mathbb{R}^{N+1}_+)$ which minimizes \mathcal{I} in \mathcal{M}_M . Therefore u can always be assumed nonnegative and, by Lemma [2.1,](#page-6-2) to have the form

$$
u(x,y) = \mathcal{F}^{-1}\big(e^{-x\sqrt{m^2+|\cdot|^2}}\mathcal{F}(w)\big),\,
$$

where $w = \gamma(u) \in H^{1/2}(\mathbb{R}^N)$.

If W is a nonincreasing radial function, then w can be assumed to be a radial nonincreasing function. Indeed let w^* be the spherically symmetric decreasing rearrangement of w and define

$$
u^{*}(x, y) = \mathcal{F}^{-1}(e^{-x\sqrt{m^{2}+|\cdot|^{2}}}\mathcal{F}(w^{*}))
$$

Then $\mathcal{I}(u^*) = \mathcal{E}[w^*]$ (this also follows from Lemma [2.1\)](#page-6-2). We can then use the properties of the spherically symmetric decreasing rearrangement, namely

- (i) w[∗] is a nonnegative, radial function;
- (ii) $w \in L^p(\mathbb{R}^N)$ implies $w^* \in L^p(\mathbb{R}^N)$ and $|w^*|_p = |w|_p$;
- (iii) *symmetric decreasing rearrangement decreases kinetic energy* (Lemma 7.17 in $[10]$, that is,

$$
\int_{\mathbb{R}^N} w^* \left(\sqrt{-\Delta+m^2}-m\right) w^* dy \le \int_{\mathbb{R}^N} w \left(\sqrt{-\Delta+m^2}-m\right) w dy;
$$

(iv) *Riesz's rearrangement inequality* (see Theorem 3.7 in [\[10\]](#page-15-1))),

$$
\int_{\mathbb{R}^N} (W * |w^*|^2) |w^*|^2 dy \ge \int_{\mathbb{R}^N} (W * |w|^2) |w|^2 dy
$$

if $W(y) = W^*([y])$ (in particular if W is radial and nonincreasing);

to deduce that

$$
\mathcal{I}(u^*) = \mathcal{E}[w^*] \le \mathcal{E}[w] = \mathcal{I}(u) = I(M).
$$

Moreover, by the theory of Lagrange multipliers, any minimizer $u \in H^1(\mathbb{R}^{N+1}_+)$ of the functional $\mathcal I$ on $\mathcal M_M$ is such that

$$
\iint_{R^{N+1}_+} \left(\nabla u \nabla w + m^2 u w\right) dx dy - \int_{\mathbb{R}^N} m\gamma(u)\gamma(w) dy + \mu \int_{\mathbb{R}^N} \gamma(u)\gamma(w) dy
$$
\n
$$
(3.4) \qquad + \eta \int_{\mathbb{R}^N} |\gamma(u)|^{p-2} \gamma(u)\gamma(w) dy - \sigma \int_{\mathbb{R}^N} \left(W \ast |\gamma(u)|^2\right) \gamma(u)\gamma(w) dy = 0
$$

for all $w \in H^1(\mathbb{R}^{N+1}_+)$, i.e., u is a weak solution of the nonlinear Neumann boundary condition problem

(3.5)
$$
\begin{cases} -\Delta u + m^2 u = 0 & \text{in } \mathbb{R}^{N+1}_{+}, \\ -\frac{\partial u}{\partial x} + \mu u = mu - \eta |u|^{p-2} u + \sigma (W * |u|^2) u & \text{on } \mathbb{R}^N = \partial \mathbb{R}^{N+1}_{+}, \end{cases}
$$

for some Lagrange multiplier $\mu \in \mathbb{R}$. To prove that $\mu > 0$ we take $w = u$ in [\(3.4\)](#page-12-0) to get

$$
0 = \iint_{\mathbb{R}_{+}^{N+1}} \left(|\nabla u|^{2} + m^{2} |u|^{2} \right) dx dy - \int_{\mathbb{R}^{N}} m |\gamma(u)|^{2} dy + \mu \int_{\mathbb{R}^{N}} |\gamma(u)|^{2} dy
$$

+ $\eta \int_{\mathbb{R}^{N}} |\gamma(u)|^{p} dy - \sigma \int_{\mathbb{R}^{N}} \left(W \ast |\gamma(u)|^{2} \right) |\gamma(u)|^{2} dy$
= $2\mathcal{I}(u) + \mu \int_{\mathbb{R}^{N}} |\gamma(u)|^{2} dy + \eta \left(1 - \frac{2}{p} \right) \int_{\mathbb{R}^{N}} |\gamma(u)|^{p} dy$
- $\frac{\sigma}{2} \int_{\mathbb{R}^{N}} \left(W \ast |\gamma(u)|^{2} \right) |\gamma(u)|^{2} dy.$

Since $\mathcal{I}(u) < 0$, we have in particular that

$$
\frac{\eta}{p} \int_{\mathbb{R}^N} |\gamma(u)|^p dy < \frac{\sigma}{4} \int_{\mathbb{R}^N} \left(W \ast |\gamma(u)|^2 \right) |\gamma(u)|^2 dy
$$

and hence, since $p \leq 2N/(N-1) \leq 4$, for $N \geq 2$, we get

$$
\mu \int_{\mathbb{R}^N} |\gamma(u)|^2 dy = -2\mathcal{I}(u) - \eta \left(1 - \frac{2}{p}\right) \int_{\mathbb{R}^N} |\gamma(u)|^p + \frac{\sigma}{2} \int_{\mathbb{R}^N} \left(W \ast |\gamma(u)|^2\right) |\gamma(u)|^2 dy
$$

> $\eta \left(\frac{4}{p} - 1\right) \int_{\mathbb{R}^N} |\gamma(u)|^p dy \ge 0.$

Finally the regularity, the strictly positivity and the exponential decay at infinity of the weak nonnegative solutions of [\(3.5\)](#page-13-0) follow straightforwardly from Theorems 3.14 and 5.1 in [\[2\]](#page-15-10). \Box

4. Appendix A

We prove that

$$
\int_{\mathbb{R}^N} \left| \left(W * w \gamma(v_k) \right) w \gamma(v_k) \right| + \int_{\mathbb{R}^N} \left| \left(W * \gamma(v_k)^2 \right) w^2 \right| + \int_{\mathbb{R}^N} \left| \left(W * w \gamma(v_k) \right) w^2 \right|
$$

$$
+ \int_{\mathbb{R}^N} \left| \left(W * \gamma(v_k)^2 \right) w \gamma(v_k) \right| \to 0 \text{ as } k \to +\infty,
$$

as claimed in the proof of Lemma [3.7.](#page-10-0) Indeed we have the following result.

Lemma 4.1. *For any* $w \in H^{1/2}(\mathbb{R}^N)$ *and for sequences* $\{f_n, g_n, h_n\}$ *bounded in* $H^{1/2}(\mathbb{R}^N)$ and such that $f_n \to 0$ in L^2_{loc} we have

$$
\int_{\mathbb{R}^N} (W * |f_n g_n|) |wh_n| \to 0 \quad as \; n \to +\infty.
$$

Proof. It is convenient to introduce, for any given $\delta > 0$ and $R > 0$, $W_{\delta} = W \mathbb{I}_{W > \delta}$ and

$$
W^R_\delta(y) = (W_\delta - R)^+ \mathbb{I}_{|y| < R} + W_\delta \mathbb{I}_{|y| \ge R}.
$$

Then for $W \in L^q_w(\mathbb{R}^N)$ we have $W_\delta \in L^p(\mathbb{R}^N)$ for any $p \in [1, q)$ and moreover that $|W_{\delta}^{R}|_{p} \to 0$ as $R \to +\infty$ for any $\delta > 0$. Define again also $\Gamma_{\delta}^{R} = W_{\delta} - W_{\delta}^{R}$. Note that $\mathrm{supp}\,\Gamma_\delta^R\subset B_R$ and $0\leq \Gamma_\delta^R\leq R$.

From the Young inequality (with $p = N/2$, $r = 2p/(2p-1) = N/(N-1)$), the Hölder inequality and the Sobolev embedding theorem we have

$$
\int_{\mathbb{R}^N} (W * |f_n g_n|) |wh_n|
$$
\n
$$
\leq \int_{\mathbb{R}^N} ((W - W_{\delta}) * |f_n g_n|) |wh_n| + \int_{\mathbb{R}^N} (W_{\delta}^R * |f_n g_n|) |wh_n|
$$
\n
$$
+ \int_{\mathbb{R}^N} (\Gamma_{\delta}^R * |f_n g_n|) |wh_n|
$$
\n
$$
\leq \delta |f_n g_n|_1 |wh_n|_1 + |W_{\delta}^R|_{N/2} |f_n g_n|_r |wh_n|_r + \int_{\mathbb{R}^N} (\Gamma_{\delta}^R * |f_n g_n|) |wh_n|
$$
\n(4.1)
$$
\leq C(\delta + |W_{\delta}^R|_{N/2}) + \int_{\mathbb{R}^N} (\Gamma_{\delta}^R * |f_n g_n|) |wh_n|.
$$

First we claim that

$$
\int_{\mathbb{R}^N} \left(\Gamma_\delta^R * |f_n g_n| \right) |wh_n| \to 0 \quad \text{as } n \to +\infty.
$$

Indeed, for any $\epsilon > 0$ we fix $R_1 > 0$ such that $|\mathbb{I}_{\mathbb{R}^N \setminus B_1}w|_2 < \epsilon$, where $B_1 = B_{R_1}$. We define also $R_2 = R_1 + R$ and $B_2 = B_{R_2}$ so that for any $y \in B_1$ and $z \in \mathbb{R}^N \setminus B_2$, we have $|z-y| \geq R$ and hence $\Gamma_{\delta}^{R}(z-y) = 0$.

Now we estimate the term as follows:

$$
\int_{\mathbb{R}^N} \left(\Gamma_{\delta}^{R} * |f_n g_n| \right) |wh_n| = \int_{B_1} \left(\Gamma_{\delta}^{R} * (\mathbb{I}_{B_2} |f_n g_n|) \right) |wh_n| + \int_{\mathbb{R}^N \setminus B_1} \left(\Gamma_{\delta}^{R} * |f_n g_n| \right) |wh_n|
$$
\n
$$
\leq R \left| \mathbb{I}_{B_2} f_n g_n \right|_1 \left| \mathbb{I}_{B_1} wh_n \right|_1 + \left| \Gamma_{\delta}^{R} * (f_n g_n) \right|_{\infty} \left| \mathbb{I}_{\mathbb{R}^N \setminus B_1} h_n \right|_2 \left| \mathbb{I}_{\mathbb{R}^N \setminus B_1} w \right|_2
$$
\n
$$
\leq R \left| g_n \right|_2 |h_n|_2 \left(\left| \mathbb{I}_{B_2} f_n \right|_2 |w|_2 + R \left| f_n \right|_2 \left| \mathbb{I}_{\mathbb{R}^N \setminus B_1} w \right|_2 \right)
$$
\n
$$
\leq C R \left(\left| \mathbb{I}_{B_2} f_n \right|_2 + \left| \mathbb{I}_{\mathbb{R}^N \setminus B_1} w \right|_2 \right).
$$

Since $f_n \to 0$ as $n \to +\infty$ in $L^2(B_2)$, the claim is proved.

We conclude the proof of the lemma letting first $n \to +\infty$, then $R \to +\infty$ and finally $\delta \to 0$ in [\(4.1\)](#page-14-0).

References

- [1] CABRÉ, X. AND SOLÀ-MORALES, J.: Layer solutions in a half-space for boundary reactions. *Comm. Pure Appl. Math.* **58** (2005), no. 12, 1678–1732.
- [2] Coti-Zelati, V. and Nolasco, M.: Existence of ground states for nonlinear, pseudo-relativistic Schr¨odinger equations. *Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.* **22** (2011), no. 1, 51–72.
- [3] Dall'Acqua, A., Sørensen, T. Ø. and Stockmeyer, E.: Hartree–Fock theory for pseudo-relativistic atoms. *Ann. Henri Poincar´e* **9** (2008), no. 4, 711–742.
- [4] Elgart, A. and Schlein, B.: Mean field dynamics of boson stars. *Comm. Pure Appl. Math.* **60** (2007), no. 4, 500–545.
- [5] FRÖHLICH, J., JONSSON, B. L. G. AND LENZMANN, E.: Boson stars as solitary waves. *Comm. Math. Phys.* **274** (2007), no. 1, 1–30.
- [6] FRÖHLICH, J., JONSSON, B.L. G. AND LENZMANN, E.: Blowup for nonlinear wave equations describing boson stars. *Comm. Pure Appl. Math.* **60** (2007), no. 11, 1691–1705.
- [7] FRÖHLICH, J., JONSSON, B. L. G. AND LENZMANN, E.: Dynamical collapse of white dwarfs in Hartree and Hartree–Fock theory. *Comm. Math. Phys.* **274** (2007), no. 3, 737–750.
- [8] Lenzmann, E.: Well-posedness for semi-relativistic Hartree equations of critical type. *Math. Phys. Anal. Geom.* **10** (2007), no. 1, 43–64.
- [9] Lenzmann, E.: Uniqueness of ground states for pseudo-relativistic Hartree equations. *Anal. PDE* **2** (2009), no. 1, 1–27.
- [10] Lieb, E. H. and Loss, M.: *Analysis.* Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 1997.
- [11] Lieb E. H. and Yau, H. T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. *Comm. Math. Phys.* **112** (1987), no. 1, 147–174.
- [12] Lions, P. L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. *Ann. Inst. H. Poincaré Anal. Non Linéaire* 1 (1984), no. 2, 109–145.

Received February 8, 2012.

Vittorio Coti Zelati: Dipartimento di Matematica Pura e Applicata "R. Caccioppoli", Universit`a di Napoli "Federico II", Via Cintia, M. S. Angelo, 80126 Napoli, Italy.

E-mail: zelati@unina.it

MARGHERITA NOLASCO: Dipartimento di Matematica Pura e Applicata, Università dell'Aquila, Via Vetoio, Loc. Coppito, 67010 L'Aquila AQ, Italia. E-mail: nolasco@univaq.it

Work partially supported by the PRIN2009 grant "Critical Point Theory and Perturbative Methods for Nonlinear Differential Equations".