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Ground states for pseudo-relativistic Hartree
equations of critical type

Vittorio Coti Zelati and Margherita Nolasco

Abstract. We study the existence of ground state solutions for a class
of nonlinear pseudo-relativistic Schrödinger equations with critical two-
body interactions. Such equations are characterized by a nonlocal pseudo-
differential operator closely related to the square root of the Laplacian.
We investigate this problem using variational methods after transforming
the problem to an elliptic equation with a nonlinear Neumann boundary
conditions.

1. Introduction

The relativistic Hamiltonian for N identical particles of mass m, position xi and
momentum pi interacting through the two-body potential αW (|xi − xj |) is given by

H =

N∑
i=1

(√
p2i c

2 +m2c4 −mc2
)
− α

∑
i�=j

W
( |xi − xj |

)
.

where c is the speed of light and α > 0 is a coupling constant.

According to the usual quantization rules the dynamics of the corresponding
system of N -identical quantum spinless particles (a Bose gas) is described by
the complex wave function ΨN = ΨN(t, x1, . . . , xN ) governed by the Schrödinger
equation

i�∂tΨN = HNΨN

where � is the Planck’s constant. Here HN : D ⊂ L2(R3)⊗sN → L2(R3)⊗sN is the
quantum mechanics Hamiltonian operator, obtained from the classical Hamilto-
nian via the usual quantization rule p �→ −i�∇, and defined in a suitable dense
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domain D. In the case of interest here, HN is

HN =
( N∑

j=1

√
−�2c2Δj +m2c4 −mc2

)
− α

N∑
i�=j

W
(|xi − xj |

)
,

where W is the multiplication operator corresponding to the two-body interaction
potential, (e.g., W (|x|) = |x|−1 for gravitational interactions).

The operator (from now on we will take � = 1 and c = 1)

(1.1)
√
−Δ+m2

can be defined for all f ∈ H1(RN ) as the inverse Fourier transform of the L2

function
√|k|2 +m2F [f ](k) (here F [f ] denotes the Fourier transform of f) and

it is also associated to the quadratic form

Q(f, g) =

∫
RN

√
|k|2 +m2 F [f ]F [g] dk

which can be extended to the space

H1/2(RN ) =
{
f ∈ L2(RN ) :

∫
RN

|k| |F [f ](k)|2 dk < +∞
}

(see, e.g., [10] for more details).
In the mean field limit approximation (i.e., αN � O(1) as N → +∞) of

a quantum relativistic Bose gas, one is lead to study the nonlinear mean field
equation – called the pseudo-relativistic Hartree equation – given by

(1.2) i∂tψ =
(√−Δ+m2 −m

)
ψ − (

W ∗ |ψ|2)ψ.
where ∗ denotes convolution. We will consider attractive two-body interaction,
and hence W will always be a nonnegative function.

See [11] for the study of this equation when W is the gravitational interaction,
and [4] for a rigorous derivation of the mean field equation (1.2) as an N → +∞
limit of the Schrödinger equation for N quantum particles, and [3] for more recent
developments for models involving the pseudo-relativistic operator

√−Δ+m2.
It has recently been proved that for Newton or Yukawa type two-body inter-

actions (i.e., W (|x|) = |x|−1
or |x|−1

e−|x| in R
3) such an equation is locally well

posed in Hs, s ≥ 1/2, and that the solution is global in time for small initial data
in L2 (see [8]). Blowup has been proved in [6] and [7].

Due to the focusing nature of the nonlinearity (attractive two-body interaction)
there exist solitary waves solutions given by

ψ(t, x) = eiμt ϕ(x) ,

where ϕ satisfies the nonlinear eigenvalue equation

(1.3)
√
−Δ+m2 ϕ−mϕ− (W ∗ |ϕ|2)ϕ = −μϕ.

In [11] the existence of such solutions (in the case W (x) = |x|−1
) was proved

provided that M < Mc, Mc being the Chandrasekhar limit mass.
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More precisely, the authors have shown the existence in H1/2(R3) of a radial,
real-valued nonnegative minimizer (ground state) of

(1.4) E [ψ] = 1

2

∫
R3

ψ̄
(√−Δ+m2 −m

)
ψ dx − 1

4

∫
R3

(|x|−1 ∗ |ψ|2)|ψ|2 dx.
with given fixed “mass-charge” M =

∫
R3 |ψ|2 dx < Mc. We call mass-critical the

potentials W whose associated functional E exhibits this kind of phenomenon.
More recently, in [5] it has been proved that the ground state solution is regular

(Hs(R3), for all s ≥ 1/2), strictly positive, and exponentially decaying. Moreover
the solution is unique, at least for small L2 norm ([9]).

Let us remark that these last results are heavily based on the specific form
(Newton or Yukawa type) of the two-body interactions in the Hartree nonlinearity.
Indeed in these cases the estimates of the nonlinearity rely on the following facts:

• for this class of potentials one has that

e−μ|x|

4π |x| ∗ f = (μ2 −Δ)−1f for f ∈ S(R3), μ ≥ 0;

• the use of a generalized Leibnitz rule for Riesz and Bessel potentials;

• there holds the estimate∥∥∥ 1

|x| ∗ |u|
2
∥∥∥
L∞

≤ π

2

∥∥(−Δ)1/4u
∥∥2
L2 .

In [2] there has been proved an existence and regularity result for the solutions
of (1.3) for a wider class of nonlinearities by exploiting the relation of equation (1.3)
with an elliptic equation on R

N+1
+ with a nonlinear Neumann boundary condition.

Such a relation has been recently used to study several problems involving frac-
tional powers of the Laplacian (see e.g. [1] and references therein) and it is based
on an alternative definition of the operator (1.1) that can be described as follows.
Given any function u ∈ S(RN ) there is a unique function v ∈ S(RN+1

+ ) (here

R
N+1
+ = { (x, y) ∈ R× R

N
∣∣ x > 0 }) such that

{
−Δv +m2v = 0 in R

N+1
+ ,

v(0, y) = u(y) for y ∈ R
N = ∂RN+1

+ .

Setting

Tu(y) = −∂v
∂x

(0, y),

we have that the equation{
−Δw +m2w = 0 in R

N+1
+ ,

w(0, y) = Tu(y) = − ∂v
∂x (0, y) for y ∈ R

N ,
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has the solution w(x, y) = − ∂v
∂x(x, y). From this we have that

T (Tu)(y) = −∂w
∂x

(0, y) =
∂2v

∂x2
(0, y) =

(−Δyv +m2v
)
(0, y)

and hence T 2 = (−Δy +m2).

In [2] we studied the equation

(1.5)
√
−Δ+m2 v = μv + ν |v|p−2

v + σ(W ∗ |v|2)v in R
N ,

where p ∈ (2, 2N/(N − 1)), μ < m is fixed , ν, σ ≥ 0 (but not both equal to 0),
W ∈ Lr(RN )+L∞(RN ), r > N/2,W ≥ 0, andW (x) =W (|x|) → 0 as |x| → +∞.

The results are obtained, following the approach outlined above, by studying
the equivalent elliptic problem with nonlinear boundary condition

(1.6)

{
−Δv +m2v = 0 in R

N+1
+ ,

− ∂v
∂x = μv + ν |v|p−2

v + σ
(
W ∗ |v|2 )v on R

N = ∂RN+1
+ ,

and the associated functional on H1(RN+1
+ ).

Let us point out that in [2] the L2 norm of the solution is not prescribed. In
such a case existence of a (positive, radially symmetric) solution can be proved
for a class of potentials W and exponents p which is larger than the one we deal
with here.

When the L2 norm is prescribed to be M (the most relevant problem from a

physical point of view), as in [11], then the Newtonian potential (|x|−1 in R
3) is

critical, in the sense that minimization of E given by (1.4) is possible only when
M <Mc (see Theorem 1.1).

The main purpose of this paper is to exploit this approach also for the problem
of finding minimizer of the static energy

(1.7) E [u]= 1

2

∫
RN

u
(√−Δ+m2−m)

u dx+
η

p

∫
RN

|u|p dx−σ
4

∫
RN

(
W ∗|u|2)|u|2 dx

with prescribed L2 norm, for a wider class of attractive two-body potential includ-
ing the critical case.

To be more precise, we consider a class of two-body potentials W ∈ Lq
w(R

N ),
with q ≥ N . We recall that Lq

w(R
N ), the weak Lq space, is the space of all

measurable functions f such that

sup
α>0

α
∣∣ {x ∣∣ |f(x)| > α

}∣∣ 1/q < +∞,

where |E| denotes the Lebesgue measure of a set E ⊂ R
N . Note thatW (x) = |x|−1

does not belong to any Lq-space but it belongs to LN
w (RN ). We say that a poten-

tial W is critical if W ∈ LN(RN ).

Our main result is the following.
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Theorem 1.1. LetW ∈ Lq
w(R

N ), where q ≥ N ≥ 2, andW (y) ≥ 0 for all y ∈ R
N ,

and suppose that

(1.8) W (λ−1y) ≥ λαW (y), for all λ ∈ (0, 1) and for some α > 0.

We also assume that W (x) =W (|x|) is rotationally symmetric and that W (r) → 0
as r → +∞.

Take η ≥ 0, σ > 0 and p ∈ (
2 + 2/q, 2 + 2/(N − 1) = 2N/(N − 1)

]
. Then:

• if η > 0 or η = 0 and q > N , then for all M > 0 there is a strictly positive
minimizer u ∈ H1/2(RN ) of E [u] such that

∫
RN u

2 =M ;

• (mass-critical case) if η = 0 and q = N , there is a critical value Mc > 0 such
that for all 0 < M < Mc there is a strictly positive minimizer u ∈ H1/2(RN )
of E [u] such that

∫
RN u

2 =M .

Moreover there exists μ > 0 such that u is a smooth, exponentially decaying at
infinity, solution of(√−Δ+m2 −m

)
u = −μu− η |u|p−2 u+ σ

(
W ∗ |u|2 )u in R

N ,

and u is radial if W =W (r) is a decreasing function of r > 0.

Remark 1.2. The nonlinear term |u|p−2
u is a defocusing nonlinearity, the convo-

lution term is a focusing nonlinearity. An open problem is to understand if solitons
exist also for other ranges of p, in particular for 2 < p ≤ 2 + 2/q and W ∈ Lq

w.

Remark 1.3. If W ∈ Lq
w and (1.8) holds for some α > 0, then necessarily α ∈

(0, N/q]. If W (x) = |x|−α
, then W ∈ Lq

w if and only if α = N/q.

Remark 1.4. μ is a Lagrange multiplier.

2. Preliminaries

Let (x, y) ∈ R×R
N . We have already introduced R

N+1
+ ={ (x, y) ∈ R

N+1
∣∣ x>0 }.

We will always denote the norm of u ∈ Lp(RN+1
+ ) by ‖u‖p, the norm of u ∈

H1(RN+1
+ ) by ‖u‖, and the norm of v ∈ Lp(RN ) by |v|p.

We recall that, for all v ∈ H1(RN+1) ∩ C∞
0 (RN+1),∫

RN

|v(0, y)|p dy =

∫
RN

dy

∫ 0

+∞

∂

∂x
|v(x, y)|p dx

≤ p

∫∫
R

N+1
+

|v(x, y)|p−1
∣∣∣ ∂v
∂x

(x, y)
∣∣∣ dx dy

≤ p
(∫∫

R
N+1
+

|v(x, y)|2(p−1)
dx dy

)1/2( ∫∫
R

N+1
+

∣∣∣ ∂v
∂x

(x, y)
∣∣∣ 2dx dy)1/2

.

That is,

(2.1) |v(0, ·)|pp ≤ p
∥∥v∥∥p−1

2(p−1)

∥∥∥∂v
∂x

∥∥∥
2
,
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which, by Sobolev embedding, is finite for all 2 ≤ 2(p− 1)≤2(N+1)/((N+1)− 2),
that is 2 ≤ p ≤ 2�, where we have set 2� = 2N/(N−1). By density of H1(RN+1)∩
C∞

0 (RN+1) in H1(RN+1
+ ) such an estimate allows us to define the trace γ(v) of v

for all v ∈ H1(RN+1
+ ). The inequality

(2.2) |γ(v)|pp ≤ p ‖v‖p−1
2(p−1)

∥∥∥∂v
∂x

∥∥∥
2
,

holds then for all v ∈ H1(RN+1
+ ).

It is known that the traces of functions in H1(RN+1
+ ) belong to H1/2(RN ) and

that every function inH1/2(RN ) is the trace of a function inH1(RN+1
+ ). Then (2.2)

is in fact equivalent to the well-known fact that γ(v) ∈ H1/2(RN ) ↪→ Lq(RN )
provided q ∈ [2, 2�]. Here we also recall that

‖w‖2H1/2 = inf
{‖u‖2 ∣∣ u ∈ H1(RN+1

+ ), γ(u) = w
}
=

∫
RN

(1 + |ξ|) |Fw(ξ)|2 dξ.

Let us also introduce the norm of the weak Lq-space as follows:

‖f‖q,w = sup
A

|A|−1/r

∫
A

|f(x)| dx

where 1/q + 1/r = 1 and A denotes any measurable set of finite measure |A|
(see, e.g., [10] for more details). Using this norm we can state the weak Young
inequality. If g ∈ Lq

w(R
N ), f ∈ Lp(RN ) and h ∈ Lr(RN ) where 1 < q, p, r < +∞

and 1/q + 1/p+ 1/r = 2, then

(2.3)

∫
RN

∫
RN

f(y) g(y − z)h(y) dy dz ≤ Cp,q,r ‖g‖q,w |f |p |h|r.

We consider the class of two-body interactions W ∈ Lq
w(R

N ) for q ≥ N . By
the weak Young inequality and the Hölder inequality we have for r = 4q/(2q − 1)
(∈ (2, 2�) since q ≥ N) and for all p ∈ (4q/(2q − 1), 2�],

(2.4)

∫
RN

(W ∗ |u|2) |w|2 dy ≤ C‖W‖q,w |w|4r ≤ C‖W‖q,w |w|4−
2p

q(p−2)

2 |w|
2p

q(p−2)
p .

For p = 2� we get

(2.5)

∫
RN

(
W ∗ |w|2 ) |w|2 dy ≤ C ‖W‖q,w |w|4−2N/q

2 |w|2N/q

2�
.

In the (critical) case q = N this gives

(2.6)

∫
RN

(
W ∗ |w|2 ) |w|2 dy ≤ C ‖W‖N,w |w|22 |w|22� .

We point out that one cannot deduce (2.6) from the weak Young’s inequality (2.3)

directly, and that it is not true, in general, that the L∞ norm of W ∗ |u|2 can be

bounded by the L2� norm of u if W ∈ LN
w .



Pseudo-relativistic Hartree equations of critical type 1427

For all v ∈ H1(RN+1
+ ), we consider the functional given by

I(v) = 1

2

(∫∫
R

N+1
+

( |∇v|2 +m2 |v|2 ) dx dy − ∫
RN

m |γ(v)|2 dy
)

+
η

p

∫
RN

|γ(v)|p dy − σ

4

∫
RN

(
W ∗ |γ(v)|2 ) |γ(v)|2 dy.

In view of (2.2) and (2.4), all the terms in the functional I are well defined if
p ∈ (2, 2�] and W ∈ Lq

w(R
N ) with q ≥ N .

Note that from (2.1), with p = 2, it follows that

(2.7) m

∫
RN

|γ(v)|2 dy ≤ 2(m‖v‖2)‖∇v‖2 ≤
∫∫

R
N+1
+

( |∇v|2 +m2 |v|2 ) dx dy,
showing that the quadratic part of the functional I is nonnegative.

Moreover the following property can be checked easily:

Lemma 2.1. For u ∈ H1(RN+1
+ ), let w = γ(u) ∈ H1/2(RN ), ŵ = F(w) and

v(x, y) = F−1(e−x
√

m2+|·|2ŵ) =
∫
RN

e−x
√

m2+|ξ|2ŵ(ξ)eiξy dξ.

Then v ∈ H1(RN+1
+ ), ‖v‖ = ‖w‖H1/2 , I(v) ≤ I(u) and I(v) = E [w].

3. Minimization problem

We consider the minimization problem

(3.1) I(M) = inf
{I(v) : v ∈ MM

}
,

where the manifold MM is given by

MM =
{
v ∈ H1(RN+1

+ ) :

∫
RN

|γ(v)|2 =M
}

Remark 3.1. The term m
∫
RN |γ(v)|2 in the functional I(v) is constant for all

v ∈ MM . The presence of such a term will allow us to show that the infimum of
the functional I on MM is negative.

Concerning the existence of a minimizer for problem (3.1) we start by proving,
in the following lemmas, boundedness from below on MM of the functional I, and
some properties of the infimum I(M).

Lemma 3.2. The functional I is bounded from below and coercive on MM ⊂
H1(RN+1

+ ) for all M > 0 if η > 0 or q > N and for all M small enough if η = 0
and q = N .
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Proof. First we examine first the convolution term. If η > 0, from (2.4) and

|γ(u)|22 =M we have

0 ≤
∫
RN

(
W ∗ |γ(u)|2 ) |γ(u)|2 ≤ C ‖W‖q,w |γ(u)|4−

2p
q(p−2)

2 |γ(u)|
2p

q(p−2)
p(3.2)

= C ‖W‖q,wM2− p
q(p−2) |γ(u)|

2p
q(p−2)
p .

Since by assumption 2p
q(p−2) < p, this is enough to prove coercivity if η > 0.

Indeed in such a case we have that

I(u) ≥ 1

2
‖u‖2 − 1

2
mM + C1 |γ(u)|pp − C2 |γ(u)|

2p
q(p−2)
p ≥ 1

2
‖u‖2 − C3.

In the case η = 0 we deduce from (2.6) and |γ(u)|2� ≤ C ‖u‖ that

I(u) ≥ ‖u‖2 −mM − C ‖W‖q,wM2−N/q ‖u‖2N/q.

It is then clear that the functional is bounded from below and coercive whenever
q > N and, when q = N , if ‖W‖N,wM is small enough. �

Lemma 3.3. I(M) < 0 for all M > 0.

Proof. Take any function u ∈ C∞
0 (RN ) such that |u|22 = M , and let w(x, y) =

e−mxu(y). Then,

I(M) = inf
v∈MM

I(v) ≤ I(w)

=
1

2

∫∫
R

N+1
+

(|∂xw|2 + |∇yw|2 +m2 |w|2) dx dy − m

2

∫
RN

|u|2 dy +G(u)

=
m

4

∫
RN

|u|2dy + 1

4m

∫
RN

|∇yu|2dy + m

4

∫
RN

|u|2dy − m

2

∫
RN

|u|2dy +G(u)

=
1

4m

∫
RN

|∇yu|2 dy +G(u),

where

G(u) =
η

p

∫
RN

|u|p dy − σ

4

∫
RN

(
W ∗ |u|2 ) |u|2 dy

For λ > 0 take uλ(y) = λN/2u(λy) and wλ(x, y) = e−mxuλ(y) ∈ MM . We find
that

I(M) ≤ inf
λ>0

I(wλ)

≤ inf
λ∈(0,1)

[ 1

4m

∫
RN

|∇yuλ|2 + η

p

∫
RN

|uλ|p − σ

4

∫
RN

(
W ∗ |uλ|2

) |uλ|2]

≤ inf
λ∈(0,1)

[ λ2

4m

∫
RN

|∇yu|2 + ηλN( p
2−1)

p

∫
RN

|u|p − σλα

4

∫
RN

(
W ∗ |u|2 ) |u|2],

and since α < N(p/2− 1) < 2, the infimum is negative. �
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Lemma 3.4. For all M > 0 and β ∈ (0,M) we have that I(M) < I(M−β)+I(β).
Moreover, I(M)/M is a concave function of M and hence I(M) is a continuous
function of M .

Proof. The subadditivity is a consequence of the fact that, for all θ > 1,

(3.3) I(θM) < θI(M), which implies
1

θ
I(M) < I(M/θ).

Indeed, taking θ1 =M/β and θ2 =M/(M − β), we have that

I(M) =
β

M
I(M) +

M − β

M
I(M) < I(β) + I(M − β).

To prove that (3.3) holds, we remark that for all v ∈ MM and λ = θ1/2 > 1 we
have, thanks to (2.7),

I(λv) = λ2

2

[∫∫
R

N+1
+

( |∇v|2 +m2 |v|2 ) dx dy −m

∫
RN

|γ(v)|2 dy
]

+
ηλp

p

∫
RN

|γ(v)|p dy − σλ4

4

∫
RN

(
W ∗ |γ(v)|2 ) |γ(v)|2 dy ≤ λ4 I(v).

Hence, since I(M) < 0,

I(θM) = inf
|γ(v)|22=θM

I(v) = inf
|γ(v)|2=M

I(θ1/2v) ≤ θ2 inf
|γ(v)|2=M

I(v)

= θ2I(M) < θI(M) < I(M).

To prove the concavity of I(M)/M , we remark that

I(M)

M
=

1

M
inf

u∈MM

I(u) = inf
u∈M1

I(√Mu)

M
.

We now show that, for all u ∈ M1, M �→ I(√Mu)/M is a concave function of M .
This will immediately prove that I(M)/M is a concave function. Since

I(√Mv)

M
=

1

2

(∫∫
R

N+1
+

( |∇v|2 +m2v2
)
dx dy −

∫
RN

m |γ(v)|2 dy
)

+
ηMp/2−1

p

∫
RN

|γ(v)|p dy − σM

4

∫
RN

(
W ∗ |γ(v)|2 ) |γ(v)|2 dy,

it is immediate to check that the second derivative with respect to the variable M
is negative for all M > 0 when p/2 < 2 and that the function is linear when p = 4
(namely the critical exponent for N = 2). �

We are now ready to prove the existence of a minimizer for the functional I
on MM .
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Proposition 3.5. For every M > 0 there is a function u ∈ H1(RN+1
+ ) such that⎧⎨

⎩
I(u) = I(M),∫
RN

|γ(u)|2 dy =M,

i.e., a minimizer for I in MM .

Proof. Let {un} ⊂ MM be a minimizing sequence. It follows from Lemma 2.1 that

vn(x, y) = F−1
(
e−x

√
m2+|·|2F(γ(un))

)
is also minimizing. From Lemma 3.2 we deduce that vn is bounded in H1(RN+1

+ )

and that wn ≡ γ(vn) = γ(un) is bounded in H1/2(RN ) and
∫
RN |wn|2 dy =M .

We will now use the concentration-compactness method of P. L. Lions [12].
Namely, one of the following cases must occur:

(vanishing) for all R > 0,

lim
n→+∞ sup

z∈RN

∫
z+BR

|wn|2 dy = 0;

(dichotomy) for a subsequence {nk},

lim
R→+∞

lim
k→+∞

sup
z∈RN

∫
z+BR

|wnk
|2 dy = α ∈ (0,M);

(compactness) for all ε > 0 there is R > 0, a sequence {yk} and a subse-
quence {wnk

} such that ∫
yk+BR

|wnk
|2 dy ≥M − ε.

Following the usual strategy we will show that the vanishing and dichotomy
cases cannot occur.

Lemma 3.6. If vanishing occurs, then∫
RN

(
W ∗ |wn|2

) |wn|2 dy → 0.

Proof. Take any δ > 0 and R > 0. Define Wδ =W I{W≥δ} and

WR
δ (|y|) = (

Wδ(|y|)−R
)+

I{|y|<R} +Wδ(|y|)I{|y|≥R},

where IA is the characteristic function of the set A . Then it easy to check that
W ∈ Lq

w(R
N ) implies that Wδ ∈ Ls(RN ) for any s ∈ [1, q) and moreover that

|WR
δ |s → 0 as R → +∞ for any δ > 0. Also define ΓR

δ = Wδ −WR
δ . It is clear

that
0 ≤ (W −Wδ)(|y|) ≤ δ, 0 ≤ ΓR

d (|y|) ≤ R ∀y ∈ R
N

Then, for any given δ > 0 and R > 0 and for some s ≥ N/2 (which implies that
2 < 4s/(2s−1) ≤ 2N/(N−1)), we get from the Young inequality (also taking into
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account that by the Sobolev embedding theorem the sequence {wn} is bounded
in Lp for p ∈ [2, 2N/(N − 1)]),∫

RN

(
W ∗ |wn|2

) |wn|2

≤
∫
RN

(
(W−Wδ) ∗ |wn|2

) |wn|2 +
∫
RN

(
WR

δ ∗ |wn|2
) |wn|2 +

∫
RN

(
ΓR
δ ∗ |wn|2

) |wn|2

≤ δ |wn|42 + |WR
δ |s|wn|44s/(2s−1) +R

∫∫
RN×RN

|wn(y)|2 |wn(z)|2 I|z−y|≤R dy dz

≤ δM2 + C|WR
δ |s +RM sup

z∈RN

∫
z+BR

|wn|2 dy.

Now, first letting n → +∞, then letting R → +∞, and finally letting δ → 0+, we
conclude the proof of the lemma. �

Lemma 3.7. If dichotomy occurs, then for any α ∈ (0,M) we have

I(M) ≥ I(α) + I(M − α).

Proof. If dichotomy occurs, then there is a sequence {nk} ⊂ N such that, for
any ε > 0, there exists R > 0 and a sequence {zk} ⊂ R

N such that

lim
k→+∞

∫
zk+BR

|wnk
|2 dy ∈ (α − ε, α+ ε).

Define w̃k = wnk
(·+ zk) and

ũk(x, y) = F−1
(
e−x

√
m2+|·|2F(w̃k)

)
,

so that {ũk} is a minimizing sequence for I on MM such that

lim
k→+∞

∫
BR

|γ(ũk)|2 dy ∈ (α− ε, α+ ε).

Since {ũk} is a bounded sequence in H1(RN+1
+ ), ũk → u weakly in H1(RN+1

+ )

and w̃k = γ(ũk) → w = γ(u) weakly in H1/2 and strongly in Lp
loc(R

N ) for p ∈[
2, 2N/(N − 1)

)
. Hence, for all ε > 0 there is R > 0 such that∫

BR

|γ(u)|2 dy = lim
k→+∞

∫
BR

|γ(ũk)|2 dy ∈ (α− ε, α+ ε)

and ∫
RN

|γ(u)|2 dy = lim
R→+∞

∫
BR

|γ(u)|2 dy = α.

We set vk = ũk − u and βk =
∫
RN |γ(vk)|2 dy. By weak convergence of the

sequence {γ(ũk)}in L2 we get limk→+∞ βk =M − α.
Now we claim that

I(M) = lim
k→+∞

I(ũk) = I(u) + lim
k→+∞

I(vk) ≥ I(α) + lim
k→+∞

I(βk).

Then, by the continuity of the function I, as stated in Lemma 3.4, the lemma
follows.
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Now we prove the claim. We will show that

lim
k→+∞

(I(ũk)− I(vk)) → I(u)

Indeed, by weak convergence in H1(RN+1
+ ), we immediately get

lim
k→+∞

( ∫∫
R

N+1
+

|∇ũk|2 −
∫∫

R
N+1
+

|∇vk|2
)
=

∫∫
R

N+1
+

|∇u|2

lim
k→+∞

( ∫∫
R

N+1
+

|ũk|2 −
∫∫

R
N+1
+

|vk|2
)
=

∫∫
R

N+1
+

|u|2

and by the Brezis–Lieb lemma

lim
k→+∞

(∫
RN

|γ(ũk)|p −
∫
RN

|γ(vk)|p
)
=

∫
RN

|γ(u)|p

for 2 ≤ p ≤ 2N/(N − 1). Hence we have to investigate the last nonlinear term.
We will show in Appendix A that

lim
k→+∞

(∫
RN

(W ∗ |w̃k|2) |w̃k|2 −
∫
RN

(W ∗ |γ(vk)|2) |γ(vk)|2
)
=

∫
RN

(W ∗ |w|2) |w|2,

from which the claim follows. �

Finally, since we have ruled out both vanishing and dichotomy, then we may
conclude that indeed compactness occurs, namely that for all ε > 0 there is R > 0,
a sequence {yk} and a subsequence {wnk

} such that∫
yk+BR

|wnk
|2 dy ≥M − ε.

Define as before w̃k = wnk
(· + yk) and ũk(x, y) = F−1

(
e−x

√
m2+|·|2F(w̃k)

)
. Then

ũk is a minimizing sequence for I on MM such that∫
BR

|γ(ũk)|2 ≥M − ε.

Since {ũk} is a bounded sequence in H1(RN+1
+ ), ũk → u weakly in H1(RN+1

+ )

and w̃k = γ(ũk) → w = γ(u) weakly in H1/2 and strongly in Lp
loc(R

N ) for p ∈[
2, 2N/(N − 1)

)
. As in the proof of Lemma 3.7 we deduce that

∫
RN |γ(u)|2 =M .

Moreover we claim that, as k → +∞,∫
RN

(
W ∗ |w̃k|2

) |w̃k|2 →
∫
RN

(W ∗ w2)w2.

Indeed, by the weak Young inequality and the Hölder inequality we have∣∣∣ ∫
RN

(W ∗ w̃2
k)w̃

2
k −

∫
RN

(W ∗ w2)w2
∣∣∣ ≤ ∫

RN

(W ∗ (w̃2
k + w2))|w̃2

k − w2|

≤ C‖W‖q,w|w̃2
k + w2|s|w̃2

k − w2|s ≤ C|w̃k − w|2s → 0

since 2 < 2s = 4q/(2q − 1) < 2N/(N − 1).
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Hence, finally, by the weakly lower semicontinuity of the H1 and Lp norms (the
positive terms of the functional I), we conclude that

I(u) ≤ lim inf
k→+∞

I(ũk) = I(M),

which implies the u is a minimizer for I in MM . �

Now we collect all the results obtained to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. By Proposition 3.5 there exists a function u ∈ H1(RN+1
+ )

which minimizes I in MM . Therefore u can always be assumed nonnegative and,
by Lemma 2.1, to have the form

u(x, y) = F−1
(
e−x

√
m2+|·|2F(w)

)
,

where w = γ(u) ∈ H1/2(RN ).
If W is a nonincreasing radial function, then w can be assumed to be a radial

nonincreasing function. Indeed let w∗ be the spherically symmetric decreasing
rearrangement of w and define

u∗(x, y) = F−1
(
e−x

√
m2+|·|2F(w∗)

)
.

Then I(u∗) = E [w∗] (this also follows from Lemma 2.1). We can then use the
properties of the spherically symmetric decreasing rearrangement, namely

(i) w∗ is a nonnegative, radial function;

(ii) w ∈ Lp(RN ) implies w∗ ∈ Lp(RN ) and |w∗|p = |w|p;
(iii) symmetric decreasing rearrangement decreases kinetic energy (Lemma 7.17

in [10]), that is,∫
RN

w∗(√−Δ+m2 −m
)
w∗ dy ≤

∫
RN

w
(√−Δ+m2 −m

)
w dy;

(iv) Riesz’s rearrangement inequality (see Theorem 3.7 in [10])),∫
RN

(
W ∗ |w∗|2)|w∗|2 dy ≥

∫
RN

(
W ∗ |w|2)|w|2 dy

if W (y) =W ∗(|y|) (in particular if W is radial and nonincreasing);

to deduce that
I(u∗) = E [w∗] ≤ E [w] = I(u) = I(M).

Moreover, by the theory of Lagrange multipliers, any minimizer u ∈ H1(RN+1
+ ) of

the functional I on MM is such that∫∫
RN+1

+

(∇u∇w +m2uw
)
dx dy −

∫
RN

mγ(u)γ(w) dy + μ

∫
RN

γ(u)γ(w) dy

+ η

∫
RN

|γ(u)|p−2
γ(u)γ(w) dy − σ

∫
RN

(
W ∗ |γ(u)|2 )γ(u)γ(w) dy = 0(3.4)
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for all w ∈ H1(RN+1
+ ), i.e., u is a weak solution of the nonlinear Neumann boundary

condition problem

(3.5)

{
−Δu+m2u = 0 in R

N+1
+ ,

−∂u
∂x + μu = mu− η |u|p−2 u+ σ(W ∗ |u|2)u on R

N = ∂RN+1
+ ,

for some Lagrange multiplier μ ∈ R. To prove that μ > 0 we take w = u in (3.4)
to get

0 =

∫∫
R

N+1
+

( |∇u|2 +m2 |u|2 ) dx dy − ∫
RN

m |γ(u)|2 dy + μ

∫
RN

|γ(u)|2 dy

+ η

∫
RN

|γ(u)|p dy − σ

∫
RN

(
W ∗ |γ(u)|2 ) |γ(u)|2 dy

= 2I(u) + μ

∫
RN

|γ(u)|2 dy + η
(
1− 2

p

)∫
RN

|γ(u)|p dy

− σ

2

∫
RN

(
W ∗ |γ(u)|2 ) |γ(u)|2 dy.

Since I(u) < 0, we have in particular that

η

p

∫
RN

|γ(u)|p dy < σ

4

∫
RN

(
W ∗ |γ(u)|2 ) |γ(u)|2 dy

and hence, since p ≤ 2N/(N − 1) ≤ 4, for N ≥ 2, we get

μ

∫
RN

|γ(u)|2 dy = −2I(u)− η
(
1− 2

p

)∫
RN

|γ(u)|p + σ

2

∫
RN

(
W ∗ |γ(u)|2 ) |γ(u)|2 dy

> η
(4
p
− 1

)∫
RN

|γ(u)|p dy ≥ 0.

Finally the regularity, the strictly positivity and the exponential decay at in-
finity of the weak nonnegative solutions of (3.5) follow straightforwardly from
Theorems 3.14 and 5.1 in [2]. �

4. Appendix A

We prove that∫
RN

∣∣(W ∗ wγ(vk)
)
wγ(vk)

∣∣+ ∫
RN

∣∣(W ∗ γ(vk)2
)
w2

∣∣+ ∫
RN

∣∣(W ∗ wγ(vk)
)
w2

∣∣
+

∫
RN

∣∣(W ∗ γ(vk)2
)
wγ(vk)

∣∣ → 0 as k → +∞,

as claimed in the proof of Lemma 3.7. Indeed we have the following result.
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Lemma 4.1. For any w ∈ H1/2(RN ) and for sequences {fn, gn, hn} bounded in
H1/2(RN ) and such that fn → 0 in L2

loc we have∫
RN

(
W ∗ |fngn|

)|whn| → 0 as n→ +∞.

Proof. It is convenient to introduce, for any given δ > 0 and R > 0, Wδ =W IW≥δ

and
WR

δ (y) = (Wδ −R)+I|y|<R +WδI|y|≥R.

Then for W ∈ Lq
w(R

N ) we have Wδ ∈ Lp(RN ) for any p ∈ [1, q) and moreover
that |WR

δ |p → 0 as R → +∞ for any δ > 0. Define again also ΓR
δ = Wδ −WR

δ .
Note that suppΓR

δ ⊂ BR and 0 ≤ ΓR
δ ≤ R.

From the Young inequality (with p = N/2, r = 2p/(2p− 1) = N/(N − 1)), the
Hölder inequality and the Sobolev embedding theorem we have∫

RN

(
W ∗ |fngn|

) |whn|
≤

∫
RN

(
(W −Wδ) ∗ |fngn|

) |whn|+
∫
RN

(
WR

δ ∗ |fngn|
) |whn|

+

∫
RN

(
ΓR
δ ∗ |fngn|

) |whn|
≤ δ |fngn|1 |whn|1 + |WR

δ |N/2 |fngn|r |whn|r +
∫
RN

(
ΓR
δ ∗ |fngn|

) |whn|
≤ C

(
δ + |WR

δ |N/2

)
+

∫
RN

(
ΓR
δ ∗ |fngn|

)|whn|.(4.1)

First we claim that∫
RN

(
ΓR
δ ∗ |fngn|

)|whn| → 0 as n→ +∞.

Indeed, for any ε > 0 we fix R1 > 0 such that |IRN\B1
w|2 < ε, where B1 = BR1 .

We define also R2 = R1+R and B2 = BR2 so that for any y ∈ B1 and z ∈ R
N \B2,

we have |z − y| ≥ R and hence ΓR
δ (z − y) = 0.

Now we estimate the term as follows:∫
RN

(
ΓR
δ ∗ |fngn|

)|whn| =
∫
B1

(
ΓR
δ ∗ (IB2 |fngn|)

)|whn|+
∫
RN\B1

(
ΓR
δ ∗ |fngn|

)|whn|
≤ R

∣∣ IB2fngn
∣∣
1

∣∣ IB1whn
∣∣
1
+
∣∣ΓR

δ ∗ (fngn)
∣∣
∞

∣∣ IRN\B1
hn

∣∣
2

∣∣ IRN\B1
w
∣∣
2

≤ R |gn|2 |hn|2
(∣∣ IB2fn

∣∣
2
|w|2 +R |fn|2

∣∣ IRN\B1
w
∣∣
2

)
≤ C R

(∣∣ IB2fn
∣∣
2
+
∣∣ IRN\B1

w
∣∣
2

)
.

Since fn → 0 as n→ +∞ in L2(B2), the claim is proved.
We conclude the proof of the lemma letting first n→ +∞ , then R → +∞ and

finally δ → 0 in (4.1). �
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[1] Cabré, X. and Solà-Morales, J.: Layer solutions in a half-space for boundary
reactions. Comm. Pure Appl. Math. 58 (2005), no. 12, 1678–1732.

[2] Coti-Zelati, V. and Nolasco, M.: Existence of ground states for nonlinear,
pseudo-relativistic Schrödinger equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat.
Natur. Rend. Lincei (9) Mat. Appl. 22 (2011), no. 1, 51–72.

[3] Dall’Acqua, A., Sørensen, T.Ø. and Stockmeyer, E.: Hartree–Fock theory
for pseudo-relativistic atoms. Ann. Henri Poincaré 9 (2008), no. 4, 711–742.
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