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A general form of the weak maximum principle
and some applications

Guglielmo Albanese, Luis J. Aĺıas and Marco Rigoli

Abstract.The aim of this paper is to introduce new forms of the weak
and Omori–Yau maximum principles for linear operators, notably for trace
type operators, and show their usefulness, for instance, in the context of
PDEs and in the theory of hypersurfaces. In the final part of the paper we
consider a large class of nonlinear operators and we show that our previous
results can be appropriately generalized to this case.

1. Introduction

A well known result due to Omori [21] and Yau [27], [9], called from now on the
Omori–Yau maximum principle, states that on a complete Riemannian manifold
(M, 〈 , 〉) with Ricci tensor bounded from below, for any function u ∈ C2(M) with
u∗ = supM u < +∞ there exists a sequence {xk} ⊂M with the properties

(1.1) a) u(xk) > u∗ − 1

k
, b) Δu(xk) <

1

k
, and c) |∇u|(xk) < 1

k

for eack k ∈ N.
In 2002, Pigola, Rigoli and Setti [23] introduced what has been called the weak

maximum principle with the following definition: one says that the weak maximum
principle holds on a Riemannian manifold (M, 〈 , 〉) if for any function u ∈ C2(M)
with u∗ = supM u < +∞ there exists a sequence {xk} ⊂M with the properties a)
and b) in (1.1).

This seemingly simple-minded definition is in fact deep: it turns out to be
equivalent to the stochastic completeness of the Riemannian manifold (M, 〈 , 〉)
as was shown in [23]. This latter concept does not require the manifold to be
complete from the Riemannian point of view and a simple useful condition to
guarantee stochastic completeness is given by the Khas’minskĭı test [17], that is,
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by the existence of a function γ ∈ C2(M) such that

(1.2)

{
i) γ(x) → +∞ as x→ ∞,

ii) Δγ ≤ λγ outside a compact subset of M

for some positive constant λ > 0.
Thus, we do not necessarily require any curvature conditions to guarantee the

applicability of the principle. This observation applies to the Omori–Yaumaximum
principle too, as shown in Theorem 1.9 of [24]. We remark that, very recently, the
sufficient condition for stochastic completeness given by the Khas’minskĭı test has
been shown to be in fact also necessary [20].

This approach, based on the existence of some auxiliary function satisfying ap-
propriate conditions, has proved to be of great versatility in geometric applications;
for instance, in the geometry of submanifolds [2], [1], [3], [5], [6] and in the study
of soliton structures [12], [19], [22].

The purpose of this paper is to prove a weak maximum principle (Theorem A),
an Omori–Yau type maximum principle (Theorem B) and further related results
for a large class of linear differential operators of geometrical interest.

From now on (M, 〈 , 〉) will denote a connected, Riemannian manifold of dimen-
sionm ≥ 2. To describe our first result, let T be a symmetric positive semi-definite
(2, 0)-tensor field on M and let X be a vector field. We write L = LT,X to denote
the differential operator acting on u ∈ C2(M) by

(1.3) Lu = div(T (∇u, )�)− 〈X,∇u〉 = tr(T ◦Hess(u)) + div T (∇u)− 〈X,∇u〉,
where � : T ∗M → TM is the musical isomorphism. For instance, if T = 〈 , 〉 and X
is a vector field on M , for u ∈ C2(M) we have

(1.4) Lu = Δu− 〈X,∇u〉
and L coincides with the X-Laplacian, denoted by ΔX , used in the study of general
soliton structures, [19]; in particular if X = ∇f then L = Δf is the f -Laplacian,
appearing also as the natural symmetric diffusion operator in the study of the
weighted Riemannian manifold (M, 〈, 〉, e−fdvol), [16]. On the other hand, if T is
as above and X = (div T )�, then for u ∈ C2(M), Lu reduces to

(1.5) Lu = tr(T ◦Hess(u))
and it is a typical trace operator.

Theorem A. Let (M, 〈 , 〉) be a Riemannian manifold and L = LT,X as above.
Let q(x) ∈ C0(M), q(x) ≥ 0 and suppose that

(1.6) q(x) > 0 outside a compact set.

Let γ ∈ C2(M) be such that

(Γ)

{
i) γ(x) → +∞ as x→ ∞,

ii) q(x)Lγ(x) ≤ B outside a compact set
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for some constant B > 0. If u ∈ C2(M) and u∗ < +∞, then there exists a sequence
{xk} ⊂M with the properties

(1.7) a) u(xk) > u∗ − 1

k
, and b) q(xk)Lu(xk) <

1

k

for each k ∈ N.

If the conclusion of the theorem holds on (M, 〈 , 〉) we shall say that the q-weak
maximum principle for the operator L holds on (M, 〈 , 〉). If q ≡ 1 we shall say
that the weak maximum principle for the operator L holds on (M, 〈 , 〉). Obvi-
ously, if the q-weak maximum principle holds for L and 0 ≤ q̂(x) ≤ q(x), q̂(x)
satisfying (1.6), then the q̂-weak maximum principle also holds for the operator L.

Note that, if T = p(x)〈 , 〉 for some p ∈ C1(M), p > 0 on M , and X ≡ 0, then
q(x)L is (at least on the set where q is positive) a typical (nonsymmetric) diffusion
operator.

We stress that the Riemannian manifoldM is not assumed to be (geodesically)
complete. This matches with the fact that for L = Δ and q(x) ≡ 1, i), ii) of
condition (Γ) (see also Remark (1.1)) are exactly the Khas’minskĭı condition that
we have mentioned above.

Remark 1.1. As we shall show below, condition ii) in (Γ) can be replaced, for
instance, by

(Γ) ii)′ q(x)Lγ(x) ≤ G(γ(x)) outside a compact subset of M,

where G ∈ C1(R+) is nonnegative and satisfies

(1.8) i)
1

G
/∈ L1(+∞); ii) G′(t) ≥ −A(log t+ 1),

for t >> 1 and some constant A ≥ 0. For instance, the functions

G(t) = t, G(t) = t log t, t >> 1, G(t) = t log t log log t, t >> 1,

and so on, satisfy i) and (ii) in (1.8) with A = 0.

It seems worth to underline the following fact. In [23] the third author, jointly
with Pigola and Setti, proved that the weak maximum principle for Δ is equivalent
to the stochastic completeness of the manifold M via the known characterization
(see Grigor’yan [15] or [24]) that (M, 〈, 〉) is stochastically complete if and only if
for each λ > 0 the only non-negative bounded solution of Δu = λu is u ≡ 0. The
work of Mari and Valtorta [20] shows that the weak maximum principle implies the
existence of a function γ satisfying the Khas’minskĭı criterion (1.2). This latter
classically implies stochastic completeness (see [24] for a simple proof using the
equivalence mentioned above). Theorem A above provides a direct proof of the
weak maximum principle starting from the Kash’minski test.

The “Omori–Yau” type version of Theorem A is as follows.
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Theorem B. Let (M, 〈 , 〉) be a Riemannian manifold and let L be as above. Let
q(x) ∈ C0(M), q(x) ≥ 0, and suppose

(1.9) q(x) > 0 outside a compact set.

Let γ ∈ C2(M) be such that

(ΓB)

⎧⎪⎨⎪⎩
i) γ(x) → +∞ as x→ ∞,

ii) q(x)Lγ ≤ B outside a compact subset of M ,

iii) |∇γ| ≤ A outside a compact subset of M

for some constants A,B > 0. If u ∈ C2(M) and u∗ < +∞ then there exists a
sequence {xk} ⊂M with the properties

(1.10) a) u(xk) > u∗ − 1

k
, b) q(xk)Lu(xk) <

1

k
, and c) |∇u(xk)| < 1

k

for each k ∈ N.

Remark 1.2. In this case conditions ii) and iii) in (ΓB) can be replaced by the
apparently weaker conditions

(ΓB)

{
ii)

′
q(x)Lγ ≤ G(γ)

iii)′ |∇γ| ≤ G(γ)

outside a compact subset of M , where G ∈ C1(R+
0 ) is a positive function satisfy-

ing i) and ii) of (1.8) .

We observe that when (M, 〈 , 〉) is a complete, noncompact Riemannian man-
ifold a special candidate for γ, in both Theorems A and B, is the distance func-
tion r(x) from a fixed origin o ∈ M . Of course r(x) is smooth only outside
{o} ∪ cut(o), where cut(o) is the cut locus of o, but, as we shall show at the end
of the proof of Theorem B, this problem can be bypassed using an old trick of
Calabi [8]. Needless to say, the inequalities involving r(x) and the operator L
have to be understood in the weak-Lip sense. We underline that the arguments
we shall give below, via a comparison principle, also shows that if γ ∈ C1(M)
satisfies (ΓB) i), iii), and is a classical weak solution of (ΓB) ii), then Theorem B is
still valid. The same, of course, applies to Theorem A and to the regularity of u
(but in this case with the further assumption 1/q ∈ L1

loc(M) and the application
of Theorem 5.6 of [26] when proving that u∗ is not attained on M ; see the proof
of Theorem A′′).

On the other hand, given T andX as above we introduce the operatorH = HT,X

acting on C2(M) by

Hu = HT,Xu = T (hess(u)·, ·) + (divT −X�)⊗ du.

Observe that Lu = tr(Hu). Then, the above theorems admit the following gener-
alizations.
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Theorem A′. Let (M, 〈 , 〉) be a Riemannian manifold and let H = HT,X be as
above. Let q(x) ∈ C0(M), q(x) ≥ 0, and suppose that

(1.11) q(x) > 0 outside a compact set.

Let γ ∈ C2(M) be such that

(ΓC)

{
i) γ(x) → +∞ as x→ ∞,

ii) q(x)Hγ(x)(v, v) ≤ B|v|2,

for some constant B > 0 and for every x ∈ M \ K, for some compact K ⊂ M ,
and for every v ∈ TxM . If u ∈ C2(M) and u∗ < +∞, then there exists a sequence
{xk} ⊂M with the properties

(1.12) i) u(xk) > u∗ − 1

k
, and ii) q(xk)Hu(xk)(v, v) <

1

k
|v|2

for each k ∈ N and every v ∈ Txk
M, v �= 0.

Theorem B′. Let (M, 〈 , 〉) be a Riemannian manifold and let H = HT,X be as
above. Let q(x) ∈ C0(M), q(x) ≥ 0, and suppose that

(1.13) q(x) > 0 outside a compact set.

Let γ ∈ C2(M) be such that

(ΓD)

⎧⎪⎨⎪⎩
i) γ(x) → +∞ as x→ ∞,

ii) q(x)Hγ(x)(v, v) ≤ B|v|2,
iii) |∇γ(x)| ≤ A,

for some constants A,B > 0, for every x ∈ M \ K, for some compact K ⊂ M ,
and for every v ∈ TxM . If u ∈ C2(M) and u∗ < +∞, then there exists a sequence
{xk} ⊂M with the properties

(1.14) i) u(xk) > u∗− 1

k
, ii) q(xk)Hu(xk)(v, v) <

1

k
|v|2, and |∇u(xk)| < 1

k

for each k ∈ N and every v ∈ Txk
M, v �= 0.

In Section 6 below we generalize Theorems A and B to a large class of nonlinear
operators containing, for instance, the p-Laplacian, with p > 1, the mean curvature
operator and so on. Of course Theorems A′ and B′ admit similar generalizations
to the nonlinear case for C2-solutions. We leave the interested reader to state the
results and provide her/his own proofs following arguments similar to those of
Theorems A′′ and B′′.
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2. Proof of Theorem A and related results

In this section we give the proof of Theorems A and of some companion results.

Proof of Theorem A. We fix η > 0 and let

(2.1) Aη =
{
x ∈M : u(x) > u∗ − η

}
.

We claim that

(2.2) inf
Aη

{
q(x)Lu(x)

} ≤ 0.

Note that (2.2) is equivalent to conclusion (1.7) of Theorem A.
We reason by contradiction and we suppose that

(2.3) q(x)Lu(x) ≥ σ0 > 0 on Aη.

First we observe that u∗ cannot be attained at any point x0 ∈ M , for otherwise
x0 ∈ Aη, ∇u(x0) = 0, and Lu(x0) reduces to Lu(x0) = tr(T ◦ Hess(u))(x0), so
that, since T is positive semi-definite, q(x0)Lu(x0) ≤ 0 contradicting (2.3).

Next we let

(2.4) Ωt =
{
x ∈M : γ(x) > t

}
,

and define

(2.5) u∗t = sup
x∈Ωc

t

u(x).

Clearly Ωct is closed; we show that it is also compact. In fact, by (Γ) i) there exists
a compact set Kt such that γ(x) > t for every x /∈ Kt. In other words, Ωct ⊂ Kt

and hence it is also compact. In particular, u∗t = maxx∈Ωc
t
u(x).

Since u∗ is not attained in M and {Ωct} is a nested family exhausting M , we
find a divergent sequence {tj} ⊂ R

+
0 such that

(2.6) u∗tj → u∗ as j → +∞,

and we can choose T1 > 0 sufficiently large in such a way that

(2.7) u∗T1
> u∗ − η

2
.

Furthermore we can suppose chosen T1 sufficiently large that q(x) > 0 and (Γ) ii)
holds on ΩT1 . We choose α such that u∗T1

< α < u∗. Because of (2.6) we can find j
so large that

(2.8) T2 = tj > T1 and u∗T2
> α.

We select η > 0 small enough that

(2.9) α+ η < u∗T2
.

For σ ∈ (0, σ0) we define

(2.10) γσ(x) = α+ σ(γ − T1).
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We note that

(2.11) γσ(x) = α for every x ∈ ∂ΩT1 ,

and

(2.12) q(x)Lγσ(x) = σq(x)Lγ(x) ≤ σB < σ0 on ΩT1 ,

up to having chosen σ sufficiently small.
Since on ΩT1 \ ΩT2 we have

(2.13) α ≤ γσ(x) ≤ α+ σ(T2 − T1),

we can choose σ ∈ (0, σ0) sufficiently small, so that

(2.14) σ(T2 − T1) < η

and then

(2.15) α ≤ γσ(x) < α+ η on ΩT1 \ ΩT2 .

For any such σ, on ∂ΩT1 we have

(2.16) γσ(x) = α > u∗T1
≥ u(x),

so that

(2.17) (u − γσ)(x) < 0 on ∂ΩT1 .

Furthermore, if x ∈ ΩT1 \ ΩT2 is such that

u(x) = u∗T2
> α+ η

then
(u− γσ)(x) ≥ u∗T2

− α− σ(T2 − T1) > u∗T2
− α− η > 0

by (2.9) and (2.14). Finally, (Γ) i) and the fact that u∗ < +∞ imply

(2.18) (u − γσ)(x) < 0 on ΩT3

for T3 > T2 sufficiently large. Therefore,

m = sup
x∈ΩT1

(u− γσ)(x) > 0,

and in fact a positive maximum is attained at a certain point z0 in the compact
set ΩT1 \ ΩT3 . In particular, ∇(u − γσ)(z0) = 0 and L(u − γσ)(z0) reduces to
tr(T ◦Hess(u− γσ))(z0). Therefore, since T is positive semi-definite we have that
Lu(z0) ≤ Lγσ(z0).

By (2.17) we know that γ(z0) > T1. Therefore, at z0 we have

(2.19) u(z0) = γσ(z0) +m > γσ(z0) > α > u∗T1
> u∗ − η

2
,

and hence z0 ∈ Aη∩ΩT1 . In particular q(z0) > 0 and (Γ) ii) holds at z0. From (2.3)
we have

(2.20) 0 < σ0 ≤ q(z0)Lu(z0) ≤ q(z0)Lγσ(z0) ≤ σB < σ0,

which is a contradiction. �
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We observe that, in Theorem A, we can relax the assumption on the bound-
edness of the function u from above to control on u at infinity via the function γ.
This is the content of the next result.

Theorem Â. Let (M, 〈 , 〉) be a Riemannian manifold and let L = LT,X be as
above. Let q(x) ∈ C0(M), q(x) ≥ 0, and suppose that

(2.21) q(x) > 0 outside a compact set.

Let γ ∈ C2(M) be such that

(Γ)

{
i) γ(x) → +∞ as x→ ∞,

ii) q(x)Lγ(x) ≤ B outside a compact set

for some constant B > 0. If u ∈ C2(M) and

(2.22) u(x) = o(γ(x)) as x→ ∞,

then for each μ such that

Aμ =
{
x ∈M : u(x) > μ

} �= ∅
we have

inf
Aμ

{
q(x)Lu(x)

} ≤ 0.

Proof. Of course we consider here the case u∗ = +∞. We reason by contradiction
as in the proof of Theorem A and we suppose the validity of (2.3) on Aμ. Proceed
as in the above proof (obviously in this case u∗ is not attained on M) to arrive to
a modification of (2.6), that now takes the form

(2.23) u∗tj → +∞ as j → ∞,

and choose T1 > 0 sufficiently large in such a way that (2.7) becomes now

(2.24) u∗T1
> 2μ.

Furthermore we can suppose to have chosen T1 so large that q(x) > 0 and (Γ) ii)
holds on ΩT1 . We choose α such that α > u∗T1

. Because of (2.23) we can find j
sufficiently large that

(2.25) T2 = tj > T1 and u∗T2
> α.

Proceed now up to (2.18) which is now true on ΩT3 for T3 so large since

(u− γσ)(x) = γσ

( u

γσ
− 1

)
(x),

expression which becomes negative on ΩT3 , for T3 sufficiently large, because of
condition (2.22). The rest of the proof is as in that of Theorem A. �
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We now show the validity of Remark 1.1. Thus we assume (Γ) ii)’ with G as
in (1.8). We set

(2.26) ϕ(t) =

∫ t

t0

ds

G(s) +As log s

on [t0,+∞) for some t0 > 0. Note that, by (1.8) i), ϕ(t) → +∞ as t→ +∞. Thus,
defining γ̂ = ϕ(γ), (Γ) i) implies that

(2.27) γ̂(x) → +∞ as x→ ∞.

Next, using that
L(ϕ(u)) = ϕ′(u)Lu+ ϕ′′(u)T (∇u,∇u),

a computation gives

q(x)Lγ̂(x) =
q(x)Lγ(x)

G(γ(x)) +Aγ(x) log γ(x)

− G′(γ(x)) +A
(
1 + log γ(x)

)(
G(γ(x)) +Aγ(x) log γ(x)

)2 q(x)T (∇γ(x),∇γ(x))
outside a sufficiently large compact set. Since T (∇γ,∇γ) ≥ 0, q(x) ≥ 0 and (1.8) ii)
holds, we deduce

(2.28) q(x)Lγ̂(x) ≤ q(x)Lγ(x)

G(γ(x)) +Aγ(x) log γ(x)

if γ(x) is sufficiently large. Thus, from (Γ) ii)’ and G ≥ 0 we finally obtain

(2.29) q(x)Lγ̂(x) ≤ B

outside a compact set. Then (2.27) and (2.29) show the validity of (Γ) i), ii) for
the function γ̂.

This finishes the proof of Remark 1.1. Regarding Theorem Â, if we replace (Γ) ii)
with (Γ) ii)’, G satisfying (1.8), then condition (2.22) has to be replaced by

(2.30) u(x) = o
(∫ γ(x)

0

ds

G(s) +As log s

)
as x→ ∞.

Thus for instance if G(t) = t, so that we can choose A = 0, (Γ) ii)’ is q(x)Lγ(x) ≤
γ(x), but (2.30) becomes u(x) = o(log γ(x)) as x→ ∞, showing a balancing effect
between the two conditions.

Proof of Theorem A′. For the proof of Theorem A′ we proceed as in the proof of
Theorem A letting

(2.31) Aη =
{
x ∈M : u(x) > u∗ − η

}
.

We claim that for every ε > 0 there exists x ∈ Aη such that

q(x)Hu(x)(v, v) < ε
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for each v ∈ TxM with |v| = 1. Aiming for a contradiction, suppose that there
exists σ0 > 0 such that, for every x ∈ Aη there exists v̄ ∈ TxM , |v̄| = 1, such that

(2.32) q(x)Hu(x)(v̄, v̄) ≥ σ0.

Now we follow the argument of the proof of Theorem A up to equation (2.12),
which is now replaced by

(2.33) q(x)Hγσ(x)(v̄, v̄) = σq(x)Hγ(x)(v̄, v̄) ≤ σB < σ0 on ΩT1 ,

up to having chosen σ sufficiently small. We then proceed up to the existence of a
certain point z0 in the compact set ΩT1 \ΩT3 where the function u− γσ attains its
positive maximum. In particular, ∇(u− γσ)(z0) = 0 and H(u− γσ)(z0) reduces to

H(u− γσ)(z0)(v, v) = T (hess(u− γσ)(z0)v, v) for every v ∈ Tz0M.

Therefore, since T is positive semi-definite we have

Hu(z0)(v, v) ≤ Hγσ(z0)(v, v)

for every v ∈ Tz0M .

As in the proof of Theorem A, we have that z0 ∈ Aη ∩ ΩT1 . In particular
q(z0) > 0 and (Γ) ii)’ holds at z0. On the other hand, from (2.32) we have

(2.34) 0 < σ0 ≤ q(z0)Hu(z0)(v̄, v̄) ≤ q(z0)Hγσ(z0)(v̄, v̄) ≤ σB < σ0,

which is a contradiction. �

3. Proof of Theorem B and some related results

We use the notation of the previous section and give the proof of Theorem B.

Proof of Theorem B. We first observe that, although it is not required in the state-
ment, the two assumptions (ΓB) i) and iii) imply that the manifold M is geodesi-
cally complete. To see this, let ς : [0, �) →M be any divergent path parametrized
by arc-length. Here by divergent path we mean a path that eventually lies outside
any compact subset ofM . From (ΓB) iii) we have that |∇γ| ≤ A outside a compact
subset K of M . We set h(t) = γ(ς(t)) on [t0, �), where t0 has been chosen so that
ς(t) /∈ K for all t0 ≤ t < �. Then, for every t ∈ [t0, �) we have

|h(t)− h(t0)| =
∣∣∣ ∫ t

t0

h′(s)ds
∣∣∣ ≤ ∫ t

t0

|∇γ(ς(s))|ds ≤ A(t− t0).

Since ς is divergent, then ς(t) → ∞ as t → �−, so that h(t) → +∞ as t → �−

because of assumption (ΓB) i). Therefore, letting t → �− in the inequality above,
we conclude that � = +∞. This shows that divergent paths in M have infinite
length. In other words, the metric on M is complete.

As in the proof of Theorem A we fix η > 0 but, instead of the set Aη of (2.1),
we now consider the set

(3.1) Bη =
{
x ∈M : u(x) > u∗ − η and |∇u(x)| < η

}
.



A general form of the weak maximum principle 1447

Since the manifold is complete, by applying the Ekeland quasi-minimum prin-
ciple (see for instance [10]) we deduce that Bη �= ∅. We claim that

(3.2) inf
Bη

{
q(x)Lu(x)

} ≤ 0.

Note that (3.2) is equivalent to conclusion (1.10) of Theorem B. We reason by
contradiction and suppose that

(3.3) q(x)Lu(x) ≥ σ0 > 0 on Bη.

Now the proof follow the pattern of that of Theorem A with the choice of T1, such
that also (Γ) iii) holds on ΩT1 . We observe that in this case

(3.4) γσ(x) = α for every x ∈ ∂ΩT1 ,

(3.5) q(x)Lγσ(x) = σq(x)Lγ(x) ≤ σB < σ0 on ΩT1 ,

and

(3.6) |∇γσ(x)| = σ|∇γ(x)| ≤ σA < η on ΩT1 ,

up to having chosen σ sufficiently small.
Therefore, we find a point z0 ∈ ΩT1 \ ΩT3 where u − γσ attains a positive

absolute maximum m. As in the proof of Theorem A, z0 ∈ ΩT1 and at z0 we have

(3.7) u(z0) > γσ(z0) > α > u∗T1
> u∗ − η

2
> u∗ − η;

furthermore

(3.8) |∇u(z0)| = |∇γσ(z0)| = σ|∇γ(z0)| ≤ σA < η,

by our choice of σ. Thus z0 ∈ Bη ∩ ΩT1 and a contradiction is achieved as at the
end of the proof of Theorem A. �

We note that the validity of Remark 1.2 is immediate. Indeed defining γ̂ =
ϕ(γ) as in the previous subsection, conditions (ΓB) i), ii) are satisfied for γ̂; as for
condition (ΓB) iii), using (ΓB) iii)’ and G ≥ 0, we have

(3.9) |∇γ̂| = |∇γ|
G(γ) +Aγ log γ

≤ G(γ)

G(γ) +Aγ log γ
≤ 1

outside a compact set. Thus, we also have the validity of (ΓB) iii) for γ̂.

Remark 3.1. As mentioned in the Introduction, if (M, 〈 , 〉) is a complete, non-
compact Riemannian manifold then a natural candidate for γ(x) is r(x) (or a
composition of r(x) with an appropriate function). However, r(x) is not C2 in
C = {o} ∪ cut(o) and assumptions (Γ) ii) (in Theorem A) and (ΓB) ii) and iii) (in
Theorem B) have to be understood and assumed in the weak sense. Nevertheless
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the proof of Theorem A (and that of Theorem B) still works in this case, adding
in both the assumption 1/q ∈ L1

loc(M) (see Section 6 for more details). Indeed,
the only problem is at the end of the proof if the point z0 where u − γσ attains
its positive absolute maximum m > 0 is in C. However, u − γσ is now given by
f = u−α−σ(r−T1) and to avoid the problem we use a trick of Calabi [8] as follows.
Take any point z where the function f attains its positive absolute maximum. If
z /∈ C then

|∇u(z)| = σ|∇r(z)| = σ < η.

Otherwise, if z ∈ C, let ς be a minimizing geodesic, parametrized by arc-length,
and joining o to z. For ε > 0 suitably small let oε = ς(ε) and rε(x) = distM (x, oε).
Thus z /∈ cut(oε) and rε(x) is smooth around z. Consider the function

(3.10) fε = u− α− σ(rε + ε− T1).

Using the triangle inequality we have

(3.11) fε(x) − f(x) = σ(r(x) − rε(x) − ε) ≤ 0

in a neighborhood of z. But on ς |[ε,r(z)], fε = f since

r(ς(t)) = distM (o, oε) + distM (oε, ς(t)) = rε(x) + ε.

Therefore z is also a local maximum for fε which is C2 in a neighborhood of z.
Thus, at z

(3.12) |∇u(z)| = σ|∇rε(z)| = σ < η

up to having chosen σ sufficiently small.
To complete the proof of Theorem A in this case we proceed as follows. We let

(3.13) K =
{
x ∈ ΩT1 : (u− γσ)(x) = f(x) = m

}
,

where now Ωt = {x ∈M : r(x) > t}. For every x ∈ K we have

u(x) = α+ σ(r(x) − T1) +m > α > u∗ − η

2
,

so that K ⊂ Aη. Fix z0 ∈ K and choose 0 < μ < m sufficiently close to m that
the connected component Λz0 of the set

(3.14)
{
x ∈ ΩT1 : (u− γσ)(x) > μ

}
containing z0 is contained in Aη. Note that Λz0 is bounded by (2.18). From (2.3)
and (2.12), we have

(3.15) Lu(x) ≥ σ0
q(x)

> Lγσ(x)

on Aη ∩ ΩT1 in the weak sense. Moreover, u = γσ + μ on the boundary of Λz0 .
Applying Theorem 5.3 of [26] (the requirement v < δ is vacuous in our case) we
deduce that u ≤ γσ + μ on Λz0 . However, z0 ∈ Λz0, and from the above we
have m ≤ μ, contradiction.

As for completing the proof of Theorem B, we follow the same reasoning re-
placing Aη by Bη. To do it, simply observe that K ⊂ Bη by (3.12).
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We omit the details of the proof of Theorem B′, which follows similarly from
the proof of Theorem B.

A typical application of Theorem B is the following “a priori” estimate. Note
that condition (3.19) below coincides (for f = F ) with the Keller–Osserman con-
dition for the Laplace–Beltrami operator (see [13]) showing that in this type of
results what really matters is the structure, in this case linear, of the differential
operator.

Theorem 3.2. Assume the validity of the q-maximum principle for the operator
L = LT,X on (M, 〈 , 〉) and suppose that

(3.16) q(x)T (·, ·) ≤ C〈·, ·〉
for some C > 0. Let u ∈ C2(M) be a solution of the differential inequality

(3.17) q(x)Lu ≥ ϕ(u, |∇u|)
with ϕ(t, y) continuous in t, C2 in y and such that

(3.18)
∂2ϕ

∂y2
(t, y) ≥ 0.

Set f(t) = ϕ(t, 0). Then a condition sufficient to guarantee that

u∗ = sup
M

u < +∞

is the existence of a continuous function F positive on [a,+∞) for some a ∈ R,
and satisfying ( ∫ t

a
F (s)ds

)−1/2

∈ L1(+∞),(3.19)

lim sup
t→+∞

∫ t
a
F (s)ds

tF (t)
< +∞,(3.20)

lim inf
t→+∞

f(t)

F (t)
> 0,(3.21)

lim inf
t→+∞

( ∫ t
a
F (s)ds

)−1/2

F (t)

∂ϕ

∂y
(t, 0) > −∞.(3.22)

Furthermore, in this case, we have

(3.23) f(u∗) ≤ 0.

Proof. Following the proof of Theorem 1.31 in [24] we choose g ∈ C2(R) to be
increasing from 1 to 2 on (−∞, a+ 1) and defined by

g(t) =

∫ t

a+1

ds( ∫ s
a F (r)dr

)1/2 + 2 on [a+ 1,+∞).
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Observe that

(3.24) g′(t) =
( ∫ t

a

F (s)ds
)−1/2

and g′′(t) = −F (t)
2

g′(t)3 < 0

on (a + 1,+∞). We reason by contradiction and assume that u∗ = +∞. Since g
is increasing,

inf
M

1

g(u)
=

1

g(u∗)
=

1

g(+∞)
> 0.

By applying the q-maximum principle for L to 1/g, there exists a sequence {xk} ⊂
M such that

(3.25) lim
k→+∞

1

g(u(xk))
=

1

g(+∞)
,

or equivalently

(3.26) lim
k→+∞

u(xk) = +∞,

(3.27)
∣∣∇ 1

g(u)
(xk)

∣∣ = g′(u(xk))
g(u(xk))2

∣∣∇u(xk)∣∣ < 1

k

and finally

− 1

k
< q(xk)L

( 1

g(u)

)
(xk) = q(xk)

{
− g′(u(xk))
g(u(xk))2

Lu(xk)

+
(2g′(u(xk))2
g(u(xk))3

− g′′(u(xk))
g(u(xk))2

)
T
(∇u(xk),∇u(xk))}.(3.28)

Because of (3.26), we can suppose that the sequence {xk} satsifies u(xk) > a+ 1,
so that (3.24) holds along the sequence u(xk). Multiplying (3.28) by

g′(u(xk))2

−g(u(xk))2g′′(u(xk)) > 0

and using (3.17), we obtain

g′(u(xk))3

g(u(xk))4|g′′(u(xk))| ϕ
(
u(xk), |∇u(xk)|

) ≤ 1

k

g′(u(xk))2

g(u(xk))2|g′′(u(xk))|
+
( 2g′(u(xk))4

g(u(xk))5|g′′(u(xk))| +
g′(u(xk))2

g(u(xk))4

)
q(xk)T

(∇u(xk),∇u(xk)).(3.29)

Since g ≥ 1, then 1/g2 ≤ 1/g and

g′(u(xk))2

g(u(xk))2|g′′(u(xk))| ≤
g′(u(xk))2

g(u(xk))|g′′(u(xk))| .

On the other hand, by (3.16) we also have

q(xk)T
(∇u(xk),∇u(xk)) ≤ C|∇u(xk)|2.
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Using these two facts in (3.29), jointly with (3.27), yields

g′(u(xk))3

g(u(xk))4|g′′(u(xk))| ϕ
(
u(xk), |∇u(xk)|

) ≤ g′(u(xk))2

g(u(xk))|g′′(u(xk))|
(1
k
+

2C

k2

)
+
C

k2
.

Next, we use the Taylor formula with respect to y centered at (u(xk), 0) and (3.18)
to obtain

ϕ
(
u(xk), |∇u(xk)|

) ≥ f
(
u(xk)

)
+
∂ϕ

∂y

(
u(xk), 0

)∣∣∇u(xk)∣∣,
so that

(3.30)
g′(u(xk))3f(u(xk))
g(u(xk))4|g′′(u(xk))| +Ak ≤ g′(u(xk))2

g(u(xk))|g′′(u(xk))|
(1
k
+

2C

k2

)
+
C

k2
,

where

Ak := min
{
0,

1

k

∂ϕ

∂y

(
u(xk), 0

) g′(u(xk))2

g(u(xk))2|g′′(u(xk))|
}
.

In what follows, we always assume that t is taken sufficiently large. Observe that
we have

g′(t)2

g(t)|g′′(t)| = 2

( ∫ t
a F (s)ds

)1/2
g(t)F (t)

= 2

∫ t
a F (s)ds

g(t)
( ∫ t

a
F (s)ds

)1/2
F (t)

,

and

g(t) ≥ t− a− 1( ∫ t
a F (s)ds

)1/2 ,
so that

g′(t)2

g(t)|g′′(t)| ≤ c

∫ t
a
F (s)ds

tF (t)
, t� 1,

for some positive constant c. Therefore, using (3.20) we deduce

lim sup
k→+∞

g′(u(xk))2

g(u(xk))|g′′(u(xk))| < +∞,

and then

(3.31) lim sup
k→+∞

g′(u(xk))2

g(u(xk))|g′′(u(xk))|
(1
k
+

2C

k2

)
+
C

k2
= 0.

On the other hand,

g′(t)3 f(t)
g(t)4 |g′′(t)| =

2f(t)

g(t)4F (t)
≥ c,

f(t)

F (t)

for some c > 0, since supM g < +∞ by (3.19). Therefore, using (3.21) we have

(3.32) lim inf
k→+∞

g′(u(xk))3, f(u(xk))
g(u(xk))4 |g′′(u(xk))| > 0.
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Finally, observe that

∂ϕ

∂y
(t, 0)

g′(t)2

g(t)2 |g′′(t)| =
1

g(t)2

(∂ϕ
∂y

(t, 0)

( ∫ t
a
F (s)ds

)1/2
F (t)

)
whence, using supM g < +∞ and (3.22), we get

lim inf
t→+∞

(∂ϕ
∂y

(t, 0)
g′(t)2

g(t)2 |g′′(t)|
)
> −∞.

Thus,

(3.33) lim inf
k→+∞

Ak = 0.

Therefore, taking k → +∞ in (3.30) and using (3.31), (3.32) and (3.33) we obtain
the desired contradiction.

As for the conclusion f(u∗) ≤ 0, we note that if ϕ were continuous in both
variables, then to reach the desired conclusion it would be enough to apply the q-
maximum principle to u to get a sequence {yk} with limu(yk)=u

∗, lim |∇u(yk)|=0
and

1

k
> q(yk)Lu(yk) ≥ ϕ

(
u(yk), |∇u(yk)|

)
.

Taking the limit as k → +∞ we would get f(u∗) ≤ 0. On the other hand, with
our more general assumptions, we can argue in the following way. We redefine
the function g(t) at the very beginning of the proof in such a way that it changes
concavity only once at the point T = min{u∗, a}− 1. We emphasize that with this
choice g′′ < 0 on (T,+∞). We now proceed as in the proof of the first part of the
theorem, applying the q-maximum principle to the function 1/g(u), and get the
existence of a sequence {xk} as before, with g′′(u(xk)) < 0 if k is sufficiently large.
That is all we need to arrive at (3.30). Taking the limit as k → +∞ in this last
expression and using limk→+∞ u(xk) = u∗ < +∞, we conclude that f(u∗) ≤ 0. �

4. An application to hypersurfaces into non-degenerate Eucli-
dean cones

We begin with a general observation. Consider a complete, noncompact Rieman-
nian manifold (M, 〈 , 〉), let o ∈ M be a reference point, denote by r(x) the Rie-
mannian distance from o, and let Do = M \ cut(o) be the domain of the normal
geodesic coordinates centered at o. Assume that

Krad ≥ −G(r)2,
where Krad denotes the radial sectional curvature of M , and G ∈ C1(R+

0 ) satisfies

(4.1) i) G(0) > 0, ii) G′(t) ≥ 0, and iii)
1

G
/∈ L1(+∞)

Using the general Hessian comparison theorem of [25] one has

(4.2) Hess(r) ≤ g′(r)
g(r)

(〈, 〉 − dr ⊗ dr
)
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on Do, where g(t) is the (positive on R+) solution of the Cauchy problem

(4.3)

{
g′′(t)−G(t)2g(t) = 0,

g(0) = 0, g′(0) = 1.

Now let

(4.4) ψ(t) =
1

G(0)

(
e
∫

t
0
G(s)ds − 1

)
.

Then ψ(0) = 0, ψ′(0) = 1 and

(4.5) ψ′′(t)−G(t)2ψ(t) =
1

G(0)

(
G(t)2 +G′(t) e

∫ t
0
G(s)ds

)
≥ 0,

that is, ψ is a subsolution of (4.3). By the Sturm comparison theorem,

(4.6)
g′(t)
g(t)

≤ ψ′(t)
ψ(t)

≤ CG(t) ,

where the last inequality holds for a constant C > 0 and t sufficiently large. Hence,
from (4.2) and for r sufficiently large

(4.7) Hess(r) ≤ CG(r)〈 , 〉.
Thus, given the symmetric positive semi-definite (2, 0)-tensor T we have

(4.8) Lr = tr(T ◦Hess(r)) ≤ C(tr T )G(r) for r >> 1.

Assume that trT > 0 (equivalently, T �= 0) outside a compact set of M . Then

(4.9)
1

trT
Lr ≤ CG(r)

on Do for r sufficiently large. Since |∇r| = 1, if cut(o) = ∅ condition (ΓB) of
Theorem B is satisfied; otherwise we have to prove the validity of (4.9) weakly
outside a sufficiently large ball BR. Since

Lu = tr(T ◦Hess(u)) = div
(
T (∇u, )�)− div T (∇u),

we have to show that, for every ψ ∈ C∞
0 (M \BR), ψ ≥ 0,

−
∫
M\BR

(
T (∇r,∇ψ) + div T (∇r)ψ) ≤ C

∫
M\BR

trTG(r)ψ,

and this can be obtained as in the proof of Lemma 4.1 in [26] under the assumption
that

(4.10) T (∇r, ν) ≥ 0 in Ω,

for an exhaustion of M \ cut(o) by smooth bounded domains Ω, star-shaped with
respect to o, where ν denotes the outward unit normal along ∂Ω. We have thus
proved the validity of the following:
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Proposition 4.1. Let (M, 〈 , 〉) be a complete, noncompact Riemannian manifold
whose radial sectional curvature satisfies

(4.11) Krad ≥ −G(r)2

with G ∈ C1(R+) as in (4.1). Let T be a symmetric, positive semi-definite, (2, 0)-
tensor field such that T �= 0 outside a compact set of M . Assume that either
cut(o) = ∅ or otherwise that (4.10) holds. Then the q-Omori–Yau maximum prin-
ciple holds on M for the operator L = tr(T ◦Hess) with q = 1/ trT .

Now we shall apply Proposition 4.1 when T is the k-th Newton tensor of an
isometrically immersed oriented hypersurface into Euclidean space for which, from
now and till the end of this section, we assume the validity of cut(o) = ∅ or
otherwise that of (4.10).1 Note that for T = I (4.10) is automatically satisfied.
Let ϕ : Mm → R

m+1 denote such an immersion of a connected, m-dimensional
Riemannian manifold and assume that it is oriented by a globally defined normal
unit vector N . Let A denote the second fundamental form of the immersion with
respect to N . Then, the k-mean curvatures of the hypersurface are given by

Hk =
(m
k

)−1

Sk,

where S0 = 1 and, for k = 1, . . . ,m, Sk is the k-th elementary symmetric function
of the principal curvatures of the hypersurface. In particular, H1 = H is the mean
curvature, Hm is the Gauss–Kronecker curvature, and H2 is, up to a constant, the
scalar curvature of M .

The Newton tensors Pk : TM → TM associated to the immersion are defined
inductively by P0 = I and

Pk = SkI −APk−1, 1 ≤ k ≤ m.

Note, for further use, that

TrPk = (m− k)Sk = ckHk and TrAPk = (k + 1)Sk+1 = ckHk+1,

where
ck = (m− k)

(m
k

)
= (k + 1)

( m

k+1

)
.

Associated to each globally defined Newton tensor Pk : TM → TM , we may
consider the second order differential operator Lk : C2(M) → C(M) given by

Lk = Tr(Pk ◦Hess) = div
(
Pk(∇u, )�

)− 〈
divPk,∇u

〉
,

where divPk = Tr∇Pk. In particular, L0 is the Laplace–Beltrami operator Δ.
Observe that Lk is semi-elliptic (respectively, elliptic) if and only if Pk is positive
semi-definite (respectively, positive definite).

1Added in proof. After the completion of this paper we have been able to get rid of assump-
tion (4.10) in Proposition 4.1 (see Theorem 3 in [4]). Hence in Proposition 4.1 as well as in the
statements of the remaining results in this Section we can remove the assumption: “Assume that
either cut(o) = ∅ or otherwise that (4.10) holds.”
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Remark 4.2. In this respect, it is worth pointing out that the ellipticity of the
operator L1 is guaranteed by the assumption H2 > 0. Indeed, if this happens the
mean curvature does not vanish on M , because of the basic inequality H2

1 ≥ H2.
Therefore, we can choose the unit normal vector N on M so that H1 > 0. Fur-
thermore,

m2H2
1 =

m∑
j=1

κ2j +m(m− 1)H2 > κ2i

for every i = 1, . . . ,m, and then the eigenvalues of P1 satisfy μi,1 = mH1 − κi > 0
for every i (see, for instance, Lemma 3.10 in [11]). This shows ellipticity of L1.
Regarding the operator Lj when j ≥ 2, a natural hypothesis to guarantee ellipticity
is the existence an elliptic point in M , that is, a point x ∈ M at which the
second fundamental form A is positive definite (with respect to the appropriate
orientation). In fact, it follows from the proof of Proposition 3.2 in [7] that if M
has an elliptic point and Hk+1 �= 0 on M , then each Lj , 1 ≤ j ≤ k is elliptic.

Fix an origin o ∈ R
m+1 and a unit vector a ∈ Sm. For θ ∈ (0, π/2), we denote

by C = Co,a,θ the non-degenerate cone with vertex o, direction a and width θ,
that is,

C = Co,a,θ =
{
p ∈ R

m+1\{o} :
〈 p− o

|p− o| , a
〉
≥ cos θ

}
.

By non-degenerate we mean that it is strictly smaller than a half-space. We con-
sider here isometrically immersed hypersurfaces ϕ : Mm → R

m+1 with images
inside a non-degenerate cone of Rm+1 and, as an application of Proposition 4.1
and motivated by the results in [18], we provide a lower bound for the width of the
cone in terms of higher order mean curvatures of the hypersurface. Specifically, we
obtain the following result.

Theorem 4.3. Let ϕ : Mm → R
m+1 be an oriented isometric immersion of a

complete noncompact Riemannian manifold Mm whose radial sectional curvatures
satisfy

Krad ≥ −G(r)2
with G ∈ C1(R+) as in (4.1). Assume that Pk is positive semi-definite and Hk

does not vanish on M , and assume that either cut(o) = ∅ or otherwise that (4.10)
holds for T = Pk. If ϕ(M) is contained into a non-degenerate cone C = Co,a,θ as
above with vertex at o ∈ R

m+1\ϕ(M), then

(4.12) sup
( |Hk+1|

Hk

)
≥ A0

cos2 θ

d
(
Πa, ϕ(M)

) ,
where A0 = 6

√
3/(25

√
5) ≈ 0.186, Πa denote the hyperplane orthogonal to a pass-

ing through o and d(Πa, ϕ(M)) is the Euclidean distance between this hyperplane
and ϕ(M).

Proof. To prove the theorem we shall follow the ideas of and make use of some
computations performed in the proof of Theorem 1.4 in [18]. We may assume
without loss of generality that the vertex of the cone is the origin 0 ∈ R

m+1, so
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that there exists a ∈ Sm and 0 < θ < π/2 such that

(4.13)
〈 ϕ(x)

|ϕ(x)| , a
〉
≥ cos θ

for every x ∈M . Observe that

d
(
Πa, ϕ(M)

)
= inf

x∈M
〈ϕ(x), a〉.

We reason by contradiction and assume that (4.12) does not hold. Therefore, there
exists x0 ∈M such that

〈
ϕ(x0), a

〉
sup

( |Hk+1|
Hk

)
< A cos2 θ

for a positive constant A < A0. For ease of notation we set α = 〈ϕ(x0), a〉 > 0, let
β ∈ (0, 1) and define the function

u(x) =
√
α2 + β2 cos2 θ|ϕ(x)|2 − 〈ϕ(x), a〉

for every x ∈M . Note that, by construction, u(x0) > 0. We claim that

u(x) ≤ α

for every x ∈M . Indeed, an algebraic manipulation shows that this is equivalent to

〈ϕ(x), a〉2 + 2α〈ϕ(x), a〉 − β2 cos2 θ|ϕ(x)|2 ≥ 0,

which holds true by (4.13) since

〈ϕ(x), a〉2 + 2α〈ϕ(x), a〉 − β2 cos2 θ|ϕ(x)|2 ≥ 〈ϕ(x), a〉2 − cos2 θ|ϕ(x)|2 ≥ 0.

Next, we consider the closed nonempty set

Ω0 =
{
x ∈M : u(x) ≥ u(x0)

}
.

For every x ∈ Ω0, using (4.13) one has√
α2 + β2 cos2 θ |ϕ(x)|2 ≥ u(x0) + 〈ϕ(x), a〉 ≥ u(x0) + cos θ |ϕ(x)| > 0.

Squaring this inequality yields

(1− β2) cos2 θ |ϕ(x)|2 + 2u(x0) cos θ |ϕ(x)| + u(x0)
2 − α2 ≤ 0

for every x ∈ Ω0. The left half of the above inequality is a quadratic polynomial
in |ϕ(x)| with two distinct roots α− < 0 < α+ given by

α± =
±√

β2u(x0)2 + (1− β2)α2 − u(x0)

(1 − β2) cos θ
.
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Therefore, for every x ∈ Ω0, there holds

0 < |ϕ(x)| ≤ α+ =

√
β2u(x0)2 + (1− β2)α2 − u(x0)

(1− β2) cos θ
.

Using the elementary inequality
√
1 + t2 ≤ 1 + t for t ≥ 0, we have

α+ =
1

(1− β2) cos θ

(√
β2u(x0)2

(
1 +

(1 − β2)α2

β2u(x0)2

)
− u(x0)

)

=
βu(x0)

(1− β2) cos θ

√
1 +

(1− β2)α2

β2u(x0)2
− u(x0)

(1− β2) cos θ

≤ βu(x0)

(1− β2) cos θ

(
1 +

√
1− β2α

βu(x0)

)
− u(x0)

(1− β2) cos θ

=
α√

1− β2 cos θ
− u(x0)

(1 + β) cos θ
≤ α√

1− β2 cos θ
.

Therefore,

(4.14) |ϕ(x)| ≤ α√
1− β2 cos θ

on Ω0.

To compute Lku = tr(Pk ◦Hess u) when Pk is the k-th Newton tensor, we first
observe that

(4.15) ∇u = −a� +
β2 cos2 θ√

α2 + β2 cos2 θ |ϕ|2 ϕ
�,

where, as usual, � denotes the tangential component along the immersion ϕ. That is,

a = a� + 〈a,N〉N and ϕ = ϕ� + 〈ϕ,N〉N.

Using that

∇Xa
� = 〈a,N〉AX and ∇Xϕ

� = X + 〈ϕ,N〉AX

for every X ∈ TM , we get from (4.15) that

∇2u(X,Y ) = 〈∇X∇u, Y 〉 = β2 cos2 θ√
α2 + β2 cos2 θ |ϕ|2 〈X,Y 〉

+
〈 β2 cos2 θ√

α2 + β2 cos2 θ |ϕ|2 ϕ− a,N
〉
〈AX, Y 〉

+
−β4 cos4 θ

(α2 + β2 cos2 θ |ϕ|2)3/2 〈X,ϕ�〉〈Y, ϕ�〉,

(4.16)
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for every X,Y ∈ TM . Hence,

Lku =

m∑
i=1

∇2u(ei, P ei) =
〈 ξ

|ϕ| ϕ− a,N
〉
tr(A ◦ Pk) + ξ

|ϕ| tr(Pk)(4.17)

− ξ2

|ϕ|2
1√

α2 + β2 cos2 θ |ϕ|2
〈
Pkϕ

�, ϕ�〉,(4.18)

where

ξ(x) =
β2 cos2 θ |ϕ(x)|√

α2 + β2 cos2 θ |ϕ(x)|2 .

That is,

Lku = ck

〈 ξ

|ϕ| ϕ− a,N
〉
Hk+1 + ck

ξ

|ϕ|Hk(4.19)

− ξ2

|ϕ|2
1√

α2 + β2 cos2 θ |ϕ|2
〈
Pkϕ

�, ϕ�〉.
Observe that, by (4.13),

(4.20)
∣∣∣ ξ

|ϕ| ϕ− a
∣∣∣ 2 = ξ2 − 2ξ

〈ϕ, a〉
|ϕ| + 1 ≤ ξ2 − 2 cos θξ + 1 ≤ 1,

since 0 < ξ(x) < β cos θ for every x ∈ M . On the other hand, since Pk is positive
semi-definite we have

(4.21) 0 ≤ 〈Pkϕ�, ϕ�〉 ≤ tr(Pk)|ϕ�|2 ≤ ckHk|ϕ|2.
Since, by hypothesis, Hk > 0 on M , we obtain from here that

1

ckHk
Lku ≥ −|Hk+1|

Hk
+

ξ

|ϕ| −
ξ2√

α2 + β2 cos2 θ |ϕ|2

≥ − sup
|Hk+1|
Hk

+
α2β2 cos2 θ

(α2 + β2 cos2 θ |ϕ|2)3/2(4.22)

on M . Recall that, by our choice of x0, we have

sup
|Hk+1|
Hk

< A
cos2 θ

α

for a positive constant A < A0 = 6
√
3/(25

√
5). On the other hand, by (4.14) we

also have

(4.23) |ϕ|2 < α2

(1 − β2) cos2 θ

on Ω0. This yields

α2β2 cos2 θ

(α2 + β2 cos2 θ |ϕ|2)3/2 ≥ cos2 θ

α
β2(1 − β2)3/2



A general form of the weak maximum principle 1459

on Ω0. Choose β =
√
2/5. Then, β2(1 − β2)3/2 = A0 and

(4.24)
1

ckHk
Lku ≥ cos2 θ

α
(A0 −A) > 0 on Ω0.

There are now two possibilities:

i) x0 is an absolute maximum for u on M . Then, Lku(x0) ≤ 0, contradict-
ing (4.24).

ii) Ω0 = {x ∈ M : u(x) > u(x0)} �= ∅. In this case, since u(x) is bounded from
above on M , it is enough to evaluate inequality (4.24) along a sequence {xk}
realizing the 1/ckHk-weak maximum principle for the operator Lk onM . This
maximum principle applies because of Proposition 4.1 and the assumptions
of the theorem. We thus have u(xk) > u∗ − 1/k and therefore xk ∈ Ω0 for k
sufficiently large and

0 <
cos2 θ

α
(A0 −A) ≤ 1

ckHk
Lku(xk) <

1

k
.

By taking limk→∞ in this inequality we get a contradiction.

This completes the proof of the theorem. �

Corollary 4.4. Let ϕ : Mm → R
m+1 be an oriented isometric immersion of a

complete noncompact Riemannian manifold Mm whose radial sectional curvatures
satisfy

Krad ≥ −G(r)2
with G ∈ C1(R+) as in (4.1). Assume that Pk is positive semi-definite, and assume
that either cut(o) = ∅ or otherwise that (4.10) holds for T = Pk. If ϕ(M) is con-
tained in a non-degenerate cone C = Co,a,θ as above with vertex at o ∈ R

m+1\ϕ(M),
then

(4.25) sup |Hk+1| ≥ A0
cos2 θ

d(Πa, ϕ(M))
infHk,

where A0 = 6
√
3/(25

√
5) ≈ 0.186, Πa denote the hyperplane orthogonal to a pass-

ing through o, and d(Πa, ϕ(M)) is the Euclidean distance between this hyperplane
and ϕ(M).

For the proof of Corollary 4.4 observe that (4.25) holds trivially if infM Hk = 0.
If infM Hk > 0, then Hk > 0 everywhere and the result follows directly from
Theorem 4.3 since the estimate (4.25) is weaker than (4.12).

On the other hand, in the case of k = 1 we can slightly improve our Theorem 4.3
with respecto to both the condition on the ellipticity of P1 and the value of the
constant A0 in (4.12). Specifically we prove the following.

Corollary 4.5. Let ϕ : Mm → R
m+1 be an oriented isometric immersion of a

complete noncompact Riemannian manifold Mm whose radial sectional curvatures
satisfy

Krad ≥ −G(r)2
with G∈C1(R+) as in (4.1). Assume that either cut(o) = ∅ or otherwise that (4.10)
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holds for T = P1. If H2 > 0 (equivalently, the scalar curvature of M is positive)
and ϕ(M) is contained in a non-degenerate cone C = Co,a,θ as above with vertex
at o ∈ R

m+1\ϕ(M), then

(4.26) sup
√
H2 ≥ sup

(H2

H1

)
≥ Bm

cos2 θ

d
(
Πa, ϕ(M)

) ,
where B2 = B3 = A0 = 6

√
3/(25

√
5) ≈ 0.186, and, for m ≥ 4,

Bm = max
0<	<1

(
�2
√
1− �2

(
1− 3

m
�2
))

We emphasize thatBm>A0 andBm∼2/(3
√
3) ≈ 0.385 whenm goes to infinity.

Proof. According to Remark 4.2, the assumptions H2 > 0 and m2H2
1 − |A|2 =

m(m − 1)H2 > 0 guarantee that P1 is positive definite for an appropriate choice
of the unit normal N , so that H1 > 0 and mH1 − |A| > 0 on M .

By the Cauchy–Schwarz inequality,

H2
1 −H2 =

1

m(m− 1)

( m∑
i=1

κ2i −
1

m

( m∑
i=1

κi

)2)
≥ 0.

This immediately yields H2/H1 ≤ √
H2 and gives the first inequality in (4.26).

As for the second inequality in (4.26), arguing as in the proof of Theorem 4.3,
we reason by contradiction and assume that there exists a point x0 ∈M such that

(4.27) α sup
(H2

H1

)
< A cos2 θ

for a positive constant A < Bm, where α = 〈ϕ(x0), a〉. We then follow the proof
of Theorem 4.3 until we reach (4.19), which jointly with (4.20) yields

L1u ≥ −c1H2 + c1
ξ

|ϕ|H1 − ξ2

|ϕ|2
1√

α2 + β2 cos2 θ |ϕ|2
〈
P1ϕ

�, ϕ�〉.
The idea for improving the value of the constant A0 in (4.12) is to improve the
estimate (4.21) in the following way. Using that P1 = mH1I −A we have

(4.28) 〈P1ϕ
�, ϕ�〉 = mH1|ϕ�|2 − 〈Aϕ�, ϕ�〉 ≤ 2mH1|ϕ|2,

because of the fact that∣∣ 〈Aϕ�, ϕ�〉∣∣ ≤ |A| |ϕ�|2 ≤ mH1|ϕ|2.
Note that (4.28) gives a better estimate than (4.21) for k = 1 when m ≥ 4. In this
case, making use of (4.28) we obtain

1

c1H1
L1u ≥ −H2

H1
+

ξ

|ϕ| −
2

m− 1

ξ2√
α2 + β2 cos2 θ |ϕ|2

≥ − sup
H2

H1
+
α2β2 cos2 θ + m−3

m β4 cos4 θ |ϕ|2(
α2 + β2 cos2 θ |ϕ|2)3/2
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on M , instead of (4.22). It follows from (4.23) that

α2β2 cos2 θ + m−3
m β4 cos4 θ |ϕ|2(

α2 + β2 cos2 θ |ϕ|2)3/2 ≥ cos2 θ

α
β2

√
1− β2

(
1− 3

m
β2

)
on Ω0. Choose β ∈ (0, 1) to maximize �2

√
1− �2 (1− 3�2/m). That is,

β2 =
4 +m−√

(4 +m)2 − 40m/3

10

and

Bm = β2
√
1− β2

(
1− 3

m
β2

)
.

Then,

(4.29)
1

c1H1
L1u ≥ cos2 θ

α
(Bm −A) > 0 on Ω0.

The proof then finishes as for Theorem 4.3. �

For the case k ≥ 2 there is an inequality corresponding to the first one in (4.26),
given by

sup
M

k+1
√
Hk+1 ≥ sup

M

(Hk+1

Hk

)
.

However, to guarantee its validity ones needs to assume the existence of an elliptic
point (see [4] for details).

5. An application to PDEs

We give a typical application of Theorem A to PDEs in the following comparison
theorem. To this end, we make the following definition: a function f : R+ → R+

is said to be ζ-increasing if for every ζ > 1 and for every closed interval I ⊂ R+

there exists A = A(ζ, I) > 0 such that

(5.1)
f(ζt)

f(t)
≥ 1 +A

for every t ∈ I. Note that this implies that tf(t) is strictly increasing on R+.
Typical examples of ζ-increasing functions are f(t) = tσ loga(1 + t) with σ ≥ 1,
a ≥ 0, f(t) = tσeat with σ ≥ 0, a > 0, and so on.

Theorem 5.1. Let a(x), b(x) ∈ C0(M) and let f ∈ C1(R+) be a ζ-increasing
function. Assume that

(5.2) i) b(x) > 0 on M and ii) sup
M

a−
b
< +∞,

where, as usual, a− denotes the negative part of a.
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For L = LT,X as in our previous notation, let u, v ∈ C2(M) be non-negative
solutions of

(5.3) Lu+ a(x)u − b(x)uf(u) ≥ 0 ≥ Lv + a(x)v − b(x)vf(v)

on M satisfying

(5.4) i) v(x) ≥ C1, ii) u(x) ≤ C2

outside some compact set K ⊂M for some positive constants C1, C2. Then

u(x) ≤ v(x)

on M provided that the 1/b-weak maximum principle holds for L.

As an immediate consequence, we have:

Corollary 5.2. With the assumptions of Theorem 5.1, the equation

Lu+ a(x)u − b(x)uf(u) = 0

has at most one nonnegative, nontrivial, and bounded solution u with

lim inf
x→∞ u(x) > 0.

Proof of Theorem 5.1. We can assume that u �≡ 0, otherwise, there is nothing to
prove. Next, the differential inequality

Lv + a(x)v − b(x)vf(v) ≤ 0

and (5.4) i), together with the strong maximum principle (see the observation after
the proof of Theorem 3.5 on page 35 of [14]), imply v > 0 onM . This fact and (5.4)
tell us that

(5.5) ζ = sup
M

u

v

satisfies
0 < ζ < +∞.

If ζ ≤ 1 then u ≤ v on M . Aiming of a contradiction, let us assume that ζ > 1
and define

ϕ = u− ζv.

Note that ϕ ≤ 0 on M . It is not hard to see, using (5.4) and (5.5), that

(5.6) sup
M

ϕ = 0.

We now use (5.3) and the linearity of L to compute

(5.7) Lϕ ≥ −a(x)ϕ+ b(x)
[
uf(u)− ζvf(ζv)

]
+ b(x)ζv

[
f(ζv) − f(v)

]
.

Let

h(x) =

⎧⎪⎨⎪⎩
[
f(u) + uf ′(u)

]
(x) if u(x) = ζv(x)

1

u(x)− ζv(x)

∫ u(x)

ζv(x)

[
f(t) + tf ′(t)

]
dt if u(x) < ζv(x).
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Observe that h is continuous on M and non-negative, since

(tf(t))′ = f(t) + tf ′(t) ≥ 0 on R
+.

Furthermore, we can rewrite (5.7) in the form

Lϕ ≥ [− a(x) + b(x)h(x)
]
ϕ+ b(x)ζv

[
f(ζv) − f(v)

]
,

and using −a(x)ϕ ≥ a−(x)ϕ we get

(5.8) Lϕ ≥ [
a−(x) + b(x)h(x)

]
ϕ+ b(x)ζv

[
f(ζv)− f(v)

]
.

Let
Ω−1 =

{
x ∈M : ϕ(x) > −1

}
.

On Ω−1 we have

(5.9) v(x) =
1

ζ
(u(x) − ϕ(x)) ≤ 1

ζ
(C + 1)

for some positive constant C, since u is bounded from above on M . Using the
definition of h and the mean value theorem for integrals, we deduce

h(x) = f(y) + yf ′(y)

for some y = y(x) ∈ [u(x), ζv(x)]. Since u(x) and v(x) are bounded form above
on Ω−1,

(5.10) h(x) ≤ C

on Ω−1 for some constant C > 0.

Next we recall that b(x) > 0 on M to rewrite (5.8) in the form

1

b(x)
Lϕ ≥

[a−(x)
b(x)

+ h(x)
]
ϕ+ ζv

[
f(ζv) − f(v)

]
.

Since ϕ ≤ 0, (5.2) ii) and (5.10) imply[a−(x)
b(x)

+ h(x)
]
ϕ ≥ Cϕ

for some appropriate constant C > 0 on Ω−1. Thus

1

b(x)
Lϕ ≥ Cϕ+ ζv

[
f(ζv)− f(v)

]
on Ω−1. Since f is ζ-increasing, there exists A > 0 such that

ζv
[
f(ζv) − f(v)

] ≥ ζAvf(v) on Ω−1.

Now we use the fact that v, and hence vf(v), is bounded from below by a positive
constant to get

1

b(x)
Lϕ ≥ Cϕ+B on Ω−1,

for some positive constant B.
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Finally, we choose 0 < ε < 1 sufficiently small such that

Cϕ > −1

2
B

on Ω−ε =
{
x ∈M : ϕ(x) > −ε} ⊂ Ω−1. Therefore,

1

b(x)
Lϕ ≥ 1

2
B > 0 on Ω−ε.

Having assumed the validity of the 1/b-weak maximum principle for the operator L
on M , we immediately get a contradiction, proving that ζ ≤ 1. �

6. A glimpse at the nonlinear case

In this section we will introduce an extension of Theorems A and B to the nonlinear
case. Since solutions of PDEs involving the type of operators we shall consider are
not, in general, of class C2 even for constant coefficients, it will be more appropriate
to work, from the very beginning, in the weak setting. Think for instance of the
p-Laplace operator with p �= 2, p > 1.

We let A : R+→R and we define ϕ(t) = tA(t). The following assumptions will
be crucial for applying Theorems 5.3 and 5.6 of [26] and shall therefore be assumed
throughout this section:

(A1) A ∈ C1(R+).

(A2) i) ϕ′(t) > 0 on R
+, ii) ϕ(t)→0 as t→0+.

(A3) ϕ(t) ≤ Ctδ on (0, ω) for some ω,C, δ > 0.

(T1) T is a positive definite, symmetric, (2, 0)-tensor field on M .

(T2) For every x ∈M and for every ξ ∈ TxM , ξ �= 0, the bilinear form

A′(|ξ|)
|ξ| 〈ξ, ·〉 � T (ξ, ·) +A(|ξ|)T (·, ·)

is symmetric and positive definite. Here � denotes the symmetric tensor
product.

Note that the above requirements are not mutually independent. Indeed the
bilinear form in (T2) is automatically symmetric when T is. Furthermore, if (T2)
is written it in terms of ϕ, it becomes the condition that, for every x ∈M and for
every ξ, v ∈ TxM , ξ, v �= 0,

1

|ξ|2
(
ϕ′(|ξ|)− ϕ(|ξ|)

|ξ|
)
〈ξ, v〉T (ξ, v) + ϕ(|ξ|)

|ξ| T (v, v) > 0.

In particular, the choice v = ξ shows that

ϕ′(t) > 0 on R
+,

that is, requirement i) in (A2). Condition (T2) is in fact equivalent to i) in (A2)
in case T = t(x)〈, 〉 is a “pointwise conformal” deformation of the metric for some
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smooth function t(x) > 0 on M . Indeed, in this case (T2) reduces to

1

|ξ|2 ϕ
′(|ξ|)t(x)〈ξ, v〉2 + ϕ(|ξ|)

|ξ|3 t(x)
(|v|2|ξ|2 − 〈ξ, v〉2) > 0

for every x ∈M and for every ξ, v ∈ TxM , ξ, v �= 0.
Having fixed a vector field X on M , we define the operator L = LA,T,X acting

on C1(M) by
Lu = div

(
A(|∇u|)T (∇u, ·)�)− 〈X,∇u〉

for each u ∈ C1(M), where � : T ∗M→TM denotes the musical isomorphism. Of
course, the above operator L has to be understood in the appropriate weak sense.

Observe that sometimes we shall refer to ω,C and δ in (A3) as the structure
constants of the operator L.

L gives rise to various familiar operators. For instance, choosing T = 〈, 〉 and
X = 0 we have:

1. For ϕ(t) = tp−1, p > 1,

Lu = div
(|∇u|p−2∇u)

is the usual p-Laplacian. Note that for the structure constants we haveC = 1,
δ = p− 1 and ω = +∞. Of course the case p = 2 yields the usual Laplace–
Beltrami operator.

2. For ϕ(t) = t/
√
1 + t2 the operator

Lu = div
( ∇u√

1 + |∇u|2
)

is the usual mean curvature operator. Here C = 1, δ = 1 and ω = +∞;

and so on.

We let, as in the linear case, q(x) ∈ C0(M), q(x) ≥ 0, be such that, for some
compact K ⊂ M , q(x) > 0 on M \ K. However, since our setting now is that
of solutions in the weak sense, for technical reasons (see for instance (6.3) in the
proof of Theorem A′′ below) we need the local integrability of 1/q also inside K.
Thus, from now on we suppose

(Q)
1

q
∈ L1

loc(M).

This fact was also pointed out in Remark 3.1 for the linear case whenever we deal
with functions u on M which are merely of class C1.

Next, we introduce the following Khas’minskĭı type condition.

Definition 6.1. We say that the (q-SK) condition holds if there exists a tele-
scoping exhaustion of relatively compact open sets {Σj}j∈N such that K ⊂ Σ1,
Σj ⊂ Σj+1 for every j and, for any pair Ω1 = Σj1 , Ω2 = Σj2 , with j1 < j2, and for
each ε > 0, there exists γ ∈ C0(M \Ω1)∩C1(M \Ω1) with the following properties:

i) γ ≡ 0 on ∂Ω1,

ii) γ > 0 on M \ Ω1,
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iii) γ ≤ ε on Ω2 \ Ω1,

iv) γ(x)→+∞ when x→∞,

v) q(x)Lγ ≤ ε on M \ Ω1.

Since property v) has to be understood in the weak sense, we mean that

Lγ ≤ ε

q(x)
weakly on M \ Ω1.

That is, for all ψ ∈ C∞
0 (M \ Ω1), ψ ≥ 0,∫

M\Ω1

(
A(|∇γ|)T (∇γ,∇ψ) + 〈X,∇γ〉ψ +

ε

q
ψ
)
≥ 0.

Of course we expect the (q-SK) condition in Definition 6.1 to be equivalent in the
linear case to the weak form of (Γ) of Theorem A, which obviously reads as follows:

Definition 6.2. We say that the (q-KL) condition holds if there exist a compact
set H ⊃ K and a function γ̃ ∈ C1(M) with the following properties:

j) γ̃(x)→ +∞ when x→∞,

jj) q(x)Lγ̃ ≤ B on M \H for some constant B, in the weak sense.

Obviously, the (q-SK) condition implies the (q-KL) condition simply by choos-
ing H = Ω2, setting γ̃ = γ onM \Ω2 and extending it on Ω2 to be of class C1 onM .
We shall prove the equivalence of the two conditions in the linear case after the
proof of Theorem A′′. The point is that in the form (q-SK) the Khas’minskĭı type
condition is not only sufficient for the validity of the q-weak maximum principle
but indeed equivalent in many cases (see [20]). For a certain class of operators this
happens also in the nonlinear case as is shown in [20].

Before stating Theorem A′′ we recall that for an operator L, a function q(x) > 0
on an open set Ω ⊂M and u ∈ C1(Ω) the inequality

inf
Ω

{
q(x)Lu(x)

} ≤ 0

holds in the weak sense if for each ε > 0

−
∫
Ω

(
A(|∇u|)T (∇u,∇ψ) + 〈X,∇u〉ψ) ≤ ∫

Ω

ε

q
ψ

for each ψ ∈ C∞
0 (Ω), ψ ≥ 0.

We are now ready to state the nonlinear version of Theorem A.

Theorem A′′. Let (M, 〈, 〉) be a Riemannian manifold and let L be as above. Let
q(x) ∈ C0(M), q(x) ≥ 0, and suppose that q(x) > 0 outside some compact set
K ⊂ M and 1/q ∈ L1

loc(M). Assume the validity of (q-SK). If u ∈ C1(M) and
u∗ = supM u < +∞ then, for each η > 0,

(6.1) inf
Aη

{
q(x)Lu(x)

} ≤ 0

holds in the weak sense, where

(6.2) Aη =
{
x ∈M : u(x) > u∗ − η

}
.
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Proof. We argue by contradiction and suppose that for some η > 0 there ex-
ists ε0 > 0 such that

Lu ≥ ε0
q(x)

holds weakly on Aη, that is, for each ψ ∈ C∞
0 (Aη), ψ ≥ 0,

(6.3)

∫
Aη

(
A(|∇u|)T (∇u,∇ψ) + 〈X,∇u〉ψ +

ε0
q
ψ
) ≤ 0.

Note that, since in general Aη �⊂M \K, the assumption (Q) is essential.
First we observe that u∗ cannot be attained at any point x0 ∈ M . Otherwise

x0 ∈ Aη and, because of (6.3), on the open set Aη there holds weakly

(6.4) Lu ≥ 0.

Since, with our assumptions, the strong maximum principle given in Theorem 5.6
of [26] holds, we deduce that u ≡ u∗ on the connected component of Aη contain-
ing x0, which contradicts (6.3).

Next we let Σj be the telescoping sequence of relatively compact open domains
of condition (q-SK). Given u∗ − η

2 , there exists Σj1 such that

u∗j1 = sup
Σj1

u > u∗ − η

2
.

We set Ω1 = Σj1 and define
u∗1 = u∗j1 .

Note that, since u∗ is not attained on M ,

(6.5) u∗ − η

2
< u∗1 < u∗.

We can therefore fix α so that

(6.6) u∗1 < α < u∗.

Since α > u∗1, there exists Σj2 with j2 > j1 such that, setting Ω2 = Σj2 , u
∗
2 =

supΩ2
u = maxΩ̄2

u, we have

Ω1 ⊂ Ω2

and furthermore

(6.7) u∗1 < α < u∗2 < u∗.

We fix η̄ > 0 so small that

(6.8) α+ η̄ < u∗2

and

(6.9) η̄ < ε0.
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We apply the (q-SK) condition with the choice ε = η̄ and Ω1 and Ω2 as above to
obtain the existence of γ ∈ C0(M \Ω1)∩C1(M \Ω1) satisfying the properties listed
in Definition 6.1. Construct

(6.10) σ(x) = α+ γ(x).

Then

σ(x) = α on ∂Ω1,(6.11)

α < σ(x) ≤ α+ η̄ on Ω2 \ Ω̄1,(6.12)

σ(x) → +∞ as x→ ∞,(6.13)

and, since ∇σ = ∇γ, Lσ = Lγ and by v) of Definition 6.1

(6.14) q(x)Lσ ≤ η̄ in the weak sense on M \ Ω̄1.

Next, we consider the function u− σ. Because of (6.11) and (6.6), we have for
every x ∈ ∂Ω1,

(6.15) (u− σ)(x) = u(x)− α ≤ u∗1 − α < 0.

Since u∗2 = maxΩ̄2
u and Ω̄2 is compact, u∗2 is attained at some x̄ ∈ Ω̄2. Note that

x̄ /∈ Ω̄1, because otherwise
u∗1 ≥ u(x̄) = u∗2,

contradicting (6.7). Thus x̄ ∈ Ω̄2 \ Ω̄1. By (6.8) we have

u(x̄) > α+ η̄.

Thus, by (6.12) and (6.8), we have

(6.16) (u− σ)(x̄) = u∗2 − σ(x̄) ≥ u∗2 − α− η̄ > 0.

Finally, because of (6.13), there exists Σ�, � > j2, such that

(6.17) (u− σ)(x) < 0 on M \ Σ�.
Because of (6.15), (6.16) and (6.17) the function u − σ attains an absolute

maximum m > 0 at a certain point z0 ∈ Σ� \ Ω̄1 ⊂ M \ Ω̄1. At z0, by (6.6)
and (6.5), we have

u(z0) = σ(z0) +m > σ(z0) = α+ γ(z0) ≥ α > u∗1 > u∗ − η

2
,

an hence z0 ∈ Aη. It follows that

(6.18) Ξ =
{
x ∈M \ Ω̄1 : (u− σ)(x) = m

} ⊂ Aη.

Since Aη is open there exists a neighborhood UΞ of Ξ contained in Aη. Pick any
y ∈ Ξ, fix β ∈ (0,m) and call Ξβ,y the connected component of the set{

x ∈M \ Ω̄1 : (u− σ)(x) > β
}
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containing y. Since β > 0,

Ξβ,y ⊂ Σ̄� \ Ω̄1 ⊂M \ Ω̄1,

and we can also choose β sufficiently near to m so that Ξ̄β,y ⊂ Aη. Further-
more, Ξ̄β,y is compact. Because of (6.14), (6.9) and (6.3), on Ξβ,y we have

q(x)Lu(x) ≥ ε0 > q(x)Lγ(x)

in the weak sense. Furthermore,

u(x) = σ(x) + β on ∂Ξβ,y.

Hence by Theorem 5.3 of [26],

u(x) ≤ σ(x) + β on Ξβ,y.

This contradicts the fact that y ∈ Ξβ,y. Indeed,

u(y) = σ(y) +m > σ(y) + β

since m > β. This completes the proof of Theorem A′′. �

Suppose now that L is linear, that is, A(t) = 1 (and hence ϕ(t) = t). Once (T1)
is satisfied, assumptions (A1), (A2), (A3) and (T2) are also satisfied. Let q(x) ∈
C0(M), q(x) ≥ 0, be such that, for some compact K ⊂M , q(x) > 0 on M \K and
1/q ∈ L1

loc(M). Observe that in this case the (q-KL) condition and the linearity
of L imply the (q-SK) condition. Indeed, fix a strictly increasing divergent sequence
{Tj} ↗ +∞ and let

Σj =
{
x ∈M : γ̃(x) < Tj

}
.

Obviously, each Σj is open and because of j) in the (q-KL) condition one immedi-
ately verifies that Σ̄j = {x ∈ M : γ̃(x) ≤ Tj} is compact. For the same reason we
can suppose T1 chosen so large that K ⊂ H ⊂ Σ1. Furthermore Σ̄j ⊂ Σj+1 and
again by j) in the (q-KL) condition, {Σj} is a telescoping exhaustion. Consider
any pair

Ω1 = Σj1 =
{
x ∈M : γ̃(x) < Tj1

}
and Ω2 = Σj2 =

{
x ∈M : γ̃(x) < Tj2

}
with j2 > j1, and choose ε > 0. Let σ ∈ (0, σ0) and define γ :M \ Ω1 → R

+
0 by

γ(x) = σ(γ̃(x)− Tj1).

Then

i) γ(x) = 0 for every x ∈ ∂Ω1,

ii) γ(x) > 0 if x ∈M \ Ω1 = {x ∈M : γ̃(x) > Tj1},
iii) on Ω2 \ Ω1 = {x ∈ M : Tj1 ≤ γ̃(x) < Tj2} we have γ(x) < σ(Tj2 − Tj1) and

hence, up to having chosen σ0 sufficiently small, γ(x) ≤ ε on Ω2 \ Ω1,
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iv) γ(x)→+∞ when x→∞, because of j), and

v) on M \ Ω1 and by linearity of L,

q(x)Lγ = q(x)L(σ(γ̃ − Tj1)) = q(x)σLγ̃ ≤ σB ≤ ε

because of jj) and up to having chosen σ0 sufficiently small.

Remark 6.3. It is worth giving some examples where the (q-SK) condition is
satisfied. For the sake of simplicity we limit ourselves to the case T =〈, 〉 and X≡0.
Let (M, 〈, 〉) be a complete, noncompact Riemannian manifold of dimensionm ≥ 2.
Let o ∈ M be a fixed reference point, denote by r(x) the Riemannian distance
from o and suppose that

(6.19) Ric(∇r,∇r) ≥ −(m− 1)G(r)2

for some positive non-decreasing function G(r) ∈ C0(R+
0 ), G(r) > 0, with 1/G �∈

L1(+∞). Similarly to what has been done in Section 4 and for the same ψ defined
there (see (4.4)), by the Laplacian comparison theorem we have

(6.20) Δr ≤ (m− 1)
ψ′

ψ
(r)

weakly on M for r ≥ R0 > 0 sufficiently large.
Suppose now that the function q(x) ∈ C0(M), q(x) ≥ 0, satisfies

(6.21) q(x) ≤ Θ(r(x))

outside a compact set K ⊂ M , for some non-increasing continuous function Θ :
R

+
0 → R+ with the property that

(6.22) Θ(t) ≤ BGδ−1(t)

for t� 1 and some constant B > 0 (here δ is as in (A3)). Note that if δ ≥ 1, (6.22)
is automatically satisfied.

Fix σ > 0 and R ≥ R0 such that K ⊂ BR, BR being the geodesic ball of
radius R, and define the function

(6.23) χσ(r) =

∫ r

R

ϕ−1 (σh(t)) dt, r ∈ [R,+∞),

where

h(t) = ψ1−m(t)

∫ t

R

ψm−1(s)

Θ(s)
ds.

Since ϕ : R+
0 → [0, ϕ(+∞)) = I ⊆ R

+
0 increasingly, ϕ : I → R

+
0 . Therefore in order

that χσ be well defined when ϕ(+∞) < +∞, we need that, for every t ∈ [R,+∞),

(6.24) σh(t) ∈ I.
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To this end we note that

(6.25)
ψ′

ψ
(t) = G(t)

e
∫

t
0
G(s)ds

e
∫

t
0
G(s)ds − 1

∼ CG(t) as t→ +∞.

Then

(6.26) h(t) ≤ 1

Θ(t)
ψ1−m(t)

∫ t

R

ψm−1(s) ds ≤ C

Θ(t)G(t)

for t� 1 and some C > 0. The assumption

lim sup
r→+∞

1

Θ(r)G(r)
< +∞

is therefore enough to guarantee that h(t) is bounded above. By choosing σ suffi-
ciently small, say 0 < σ ≤ σ0, we obtain the validity of (6.24) so that (6.23) is well
defined on [R,+∞).

Define γ(x) = χσ(r(x)) for x ∈M \BR and note that

i) γ ≡ 0 on ∂BR,

ii) γ > 0 on M \BR,
Moreover, having fixed ε > 0 and a second geodesic ball BR̂ with R̂ > R,

since ϕ−1(t) → 0 as t → 0+, up to choosing σ > 0 sufficiently small we have also
χσ(r) ≤ ε if R ≤ r < R̂, so that

iii) γ ≤ ε on BR̂ \BR,
On the other hand, since 1/G �∈ L1(+∞), to prove that

iv) γ(x)→+∞ when x→∞
it suffices to show that

ϕ−1(σh(t)) ≥ Ĉ

G(t)
for t� 1

for some constant Ĉ > 0. Equivalently, that there exists a constant Ĉ > 0 such
that

(6.27)
h(t)

ϕ
(
Ĉ
G(t)

) ≥ 1

σ
for t� 1.

Without loss of generality we can suppose G(t) → +∞ as t → +∞. By the
structural condition (A3) on ϕ we have

ϕ
( Ĉ

G(t)

)
≤ C

Ĉδ

G(t)δ
,

so that
h(t)

ϕ
(
Ĉ/G(t)

) ≥ A(t)

B(t)
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with

A(t) = G(t)δ
∫ t

R

ψm−1(s)

Θ(s)
ds and B(t) = CĈδψm−1(t).

Note that both A(t) and B(t) diverge to +∞ as t→ +∞. Hence,

lim inf
t→+∞

A(t)

B(t)
≥ lim inf

t→+∞
A′(t)
B′(t)

.

A computation that uses G′ ≥ 0, Θ > 0 and (6.22) shows that

A′(t)
B′(t)

≥ G(t)

BCĈδ(m− 1)ψ
′(t)
ψ(t)

, t� 1,

and since ψ′(t)/ψ(t) ∼ G(t) as t → +∞, we can choose Ĉ > 0 sufficiently small
that

lim inf
t→+∞

A′(t)
B′(t)

≥ 1

σ
,

proving the validity of (6.27)

Clearly, by definition, χσ(t) is non-decreasing and satisfies χ′
σ(t) = ϕ−1(σh(t)),

that is, ϕ(χ′
σ(t)) = σh(t). Therefore

∇γ = χ′
σ(r)∇r, |∇γ| = χ′

σ(r) and ϕ(|∇γ|) = σh(r).

Since

h′(t) =
1

Θ(t)
− (m− 1)

ψ′

ψ
(t)h(t),

a computation using (6.20) and (6.21) gives

Lγ = div
(ϕ(|∇γ|)

|∇γ| ∇γ
)
= div

(
σh(r)∇r) = σh′(r)|∇r|2 + σh(r)Δr

=
σ

Θ(r)
+ σh(r)

(
Δr − (m− 1)

ψ′

ψ
(r)

)
≤ σ

Θ(r)
≤ σ

q(x)
(6.28)

if r ≥ R. That is,

v) q(x)Lγ ≤ σ on M \BR
outside the cut locus and weakly on all of M \BR as can be proved easily.

It is now clear how to satisfy the requirements of the (q-SK) condition in
Definition 6.1 by choosing a telescoping exhaustion {BR+j}j∈N.

Remark 6.4. Here we give another example where the (q-SK) condition is sat-
isfied with T = 〈, 〉 and arbitrary X . Let (M, 〈, 〉) be a complete, noncompact
Riemannian manifold of dimension m ≥ 2. Let o ∈ M be a fixed reference point,
denote by r(x) the Riemannian distance from o and suppose, as in the previous
example, that

(6.29) Ric(∇r,∇r) ≥ −(m− 1)G(r)2
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for some positive non-decreasing function G(r) ∈ C0(R+
0 ), G(r) > 0, with 1/G �∈

L1(+∞). We know that, for the same function ψ,

(6.30) Δr ≤ (m− 1)
ψ′

ψ
(r) ≤ CG(r)

weakly on M for r ≥ R0 > 0 sufficiently large and some C > 0.

Suppose now that the function q(x) ∈ C0(M), q(x) ≥ 0, satisfies

(6.31) q(x) ≤ 1

G(r(x)) + |X(x)|
outside a compact set K ⊂ M . Fix σ > 0 and R ≥ R0 such that K ⊂ BR, BR
being the geodesic ball of radius R centered at o, and define the function

(6.32) γ(x) = σ(r(x) −R) for x ∈M \BR.

Obviously,

i) γ ≡ 0 on ∂BR,

ii) γ > 0 on M \BR,
Moreover, having fixed ε > 0 and a second geodesic ball BR̂ with R̂ > R, up to
choosing σ > 0 sufficiently small we also have

iii) γ ≤ ε on BR̂ \BR,
On the other hand, since M is complete,

iv) γ(x)→+∞ when x→∞
Finally, a direct computation using (6.30) and (6.31) gives

Lγ = div
(ϕ(|∇γ|)

|∇γ| ∇γ
)
− 〈X,∇γ〉 = div

(
ϕ(σ)∇r) − σ〈X,∇r〉

= ϕ(σ)Δr − σ〈X,∇r〉 ≤ ϕ(σ)CG(r) + σ|X |
≤ ε(G(r) + |X |) ≤ ε

q(x)

if r ≥ R, up to choosing σ > 0 sufficiently small, since ϕ(σ) → 0 as σ → 0+.
That is,

v) q(x)Lγ ≤ ε on M \BR
outside the cut locus cut(o) and weakly on all ofM\BR as can be proved easily. It is
now clear how to satisfy the requirements of the (q-SK) condition in Definition 6.1
by choosing a telescoping exhaustion {BR+j}j∈N.

For the next result we define the (q-SK∇) condition as the (q-SK) condition
with the added requirement:

vi) |∇γ| < ε on M \ Ω1.
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Theorem B′′. Let (M, 〈, 〉) be a Riemannian manifold and let L be as above. Let
q(x) ∈ C0(M), q(x) ≥ 0, satisfy (Q). Assume the validity of (q-SK∇). If u ∈
C1(M) and u∗ = supM u < +∞ then, for each η > 0,

(6.33) inf
Bη

{
q(x)Lu(x)

} ≤ 0

holds in the weak sense, where

Bη =
{
x ∈M : u(x) > u∗ − η and |∇u(x)| < η

}
.

Proof. First of all note that the validity of (q-SK∇) implies, once we fix arbitrarily
a pair Ω1 ⊂ Ω2 , an ε > 0 and a corresponding γ, that the metric is geodesically
complete. Indeed, let ς : [0, �) → M be any divergent path parametrized by arc-
length. Thus ς lies eventually outside any compact subset ofM . From vi), |∇γ| ≤ ε
outside the compact subset Ω̄1. We set h(t) = γ(ς(t)) on [t0, �), where t0 has been
chosen so that ς(t) /∈ Ω̄1 for all t0 ≤ t < �. Then, for every t ∈ [t0, �) we have

|h(t)− h(t0)| =
∣∣∣ ∫ t

t0

h′(s)ds
∣∣∣ ≤ ∫ t

t0

∣∣∇γ(ς(s))∣∣ ds ≤ ε(t− t0).

Since ς is divergent, then ς(t) → ∞ as t → �−, so that h(t) → +∞ as t → �−

because of iv). Therefore, letting t→ �− in the inequality above, we conclude that
� = +∞. This shows that divergent paths in M have infinite length and in other
words, that the metric is complete.

Since the metric is complete, we can apply the Ekeland quasi-minimum princi-
ple to deduce that Bη �= ∅ and therefore that the infimum in (6.33) is meaningful.

Now we proceed as in the proof of Theorem A′′ replacing, as in the linear case,
the subset Aη with the smaller open set Bη. We need to show that the compact
set Ξ defined in (6.18) satisfies Ξ ⊂ Bη. Because of (6.8) it is enough to prove that
for every z ∈ Ξ,

(6.34) |∇u(z)| < η.

But z is a point of absolute maximum for (u−σ) and z ∈M \ Ω̄1. Hence, using vi)
of (q-SK∇),

|∇u(z)| = |∇σ(z)| = |∇γ(z)| < ε.

Thus Ξ ⊂ Bη and the rest of the proof is now exactly as at the end of Theorem A′′.
This finishes the proof of Theorem B′′. �

Suppose now that L is linear; we get an analogue of condition (q-KL), called
(q-KL∇), by adding the requirement

jjj) |∇γ̃| ≤ A on M \H , for some constant A > 0.

It is immediate to show that this condition and linearity of L imply (q-KS∇).
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[2] Aĺıas, L. J. and Dajczer, M.: Constant mean curvature hypersurfaces in warped
product spaces. Proc. Edinb. Math. Soc. (2) 50 (2007), no. 3, 511–526.

[3] Aĺıas, L. J. and Dajczer, M.: A mean curvature estimate for cylindrically
bounded submanifolds. Pacific J. Math. 254 (2011), no. 1, 1–9.
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[26] Pucci, P., Rigoli, M. and Serrin, J.: Qualitative properties for solutions of
singular elliptic inequalities on complete manifolds. J. Differential Equations 234
(2007), no. 2, 507–543.

[27] Yau, S.T.: Harmonic function on complete Riemannian manifolds. Comm. Pure
Appl. Math. 28 (1975), 201–228.

Received February 8, 2012; revised September 25, 2012.

Guglielmo Albanese: Dipartimento di Matematica, Università degli Studi di Mi-
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