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Optimal regularizing effect

for scalar conservation laws

François Golse and Benôıt Perthame

Abstract. We investigate the regularity of bounded weak solutions of
scalar conservation laws with uniformly convex flux in space dimension
one, satisfying an entropy condition with entropy production term that
is a signed Radon measure. We prove that all such solutions belong to
the Besov space B

1/3,3
∞,loc. Since C. de Lellis and M. Westdickenberg [11]

have proved the existence of such solutions that do not belong to Bs,p
q,loc

if either s > 1/max(p, 3) or s = 1/3 and 1 ≤ q < p < 3 or s = 1/p with
p ≥ 3 and q < ∞, this regularizing effect is optimal. The proof is based on
the kinetic formulation of scalar conservation laws and on an interaction
estimate in physical space.

1. Introduction

Consider the Cauchy problem for the free transport equation with unknown u ≡
u(t, x) ∈ R,

(1.1)

{
∂tu+ c ∂xu = 0 , x ∈ R , t > 0 ,

u|t=0 = uin ,

where c ∈ R is a constant. It is well known that

u(t, x) = uin(x− c t) ,

so that u(t, ·) has exactly the same level of regularity as uin.
If the speed of propagation c depends on the unknown u, the situation is comple-

tely different. Consider the scalar conservation law with unknown u ≡ u(t, x)∈R

and flux a : R → R of class C2

(1.2)

{
∂tu+ ∂xa(u) = 0 , x ∈ R , t > 0 ,

u|t=0 = uin .
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If u is of class C1, the scalar conservation law (1.2) is equivalent to the free
transport equation (1.1) with c = a′(u). But even if uin ∈ C1(R), it may happen
that the solution u of (1.2) loses the C1 regularity in finite time. (This was already
known to Riemann; see [34].) More precisely, if a is strictly convex, and if uin is
decreasing on an open interval, there exists T ∈ R

∗
+ such that (1.2) cannot have a

C1 solution defined on (0, T ′)×R for any T ′ > T . However, (1.2) has global weak
solutions whose restrictions to (T,∞)× R contains jump discontinuities.

If a′′(v) ≥ α > 0 for each v ∈ R, for each uin ∈ L1(R), there exists a unique
weak solution u ∈ L∞(R+;L

1(R)) of (1.2) satisfying in addition the differential
inequality, referred to as the entropy condition

(1.3) ∂tη(u) + ∂xq(u) ≤ 0

for each convex C1 function η, referred to as the entropy, where

(1.4) q(v) =

∫ v

η′(w) a′(w) dw ,

referred to as the entropy flux associated to η.

This solution satisfies u(t, ·) ∈ BVloc ∩L∞(R) for each t > 0 – see formula (4.9)
in chapter 4 of [26] for the L∞ bound, and chapter 16 §A in [37] for the BVloc bound.
Thus, if uin ∈ C1(R), since u(t, ·) ∈ BVloc(R) may contain jump discontinuities,
the effect of the nonlinearity a is a loss of regularity in the solution. Yet, if
uin ∈ L1(R), the fact that u(t, ·) ∈ BVloc(R) for each t > 0 can be viewed as a
(limited) regularizing effect.

The purpose of the present paper is to study the optimal regularizing effect for
weak solutions of (1.2) satisfying the weaker entropy condition

(1.5) ∂tη(u) + ∂xq(u) = −μ

for each entropy-entropy flux pair (η, q) as above, i.e., satisfying (1.4), where μ is a
signed Radon measure on R

∗
+ × R (instead of a positive measure). Such solutions

may contain jump discontinuities that would dissipate instead of create entropy and
therefore would be considered as unphysical by analogy with gas dynamics. Yet,
such solutions are relevant for other physical applications, such as micromagnetism;
see for instance [35] and the references therein.

Another motivation for considering the entropy condition (1.5) with entropy
production μ of indefinite sign can be found in the work of Hwang and Tzavaras [21].
In this work, the authors show that two different strategies for approximating so-
lutions of scalar conservation laws, the relaxation approximation à la Jin-Xin [24]
and the diffusion-dispersion approximation à la Schonbek [36], may lead to kinetic
formulations involving entropy production measures that may in general fail to be
positive.

The regularizing effect for this type of solutions of (1.2) has been studied so
far by using a kinetic formulation of the scalar conservation law: see [27] for the
original contribution, [22] for an improved regularity result, and [32] for a detailed
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presentation of kinetic formulations and their properties. The tool for establishing
the regularizing effect for kinetic formulations is a class of results known as velocity
averaging, introduced independently in [1] and [19], with subsequent generaliza-
tions and improvements described for instance in chapter 1 of [7]; see also the list
of references given in Section 3.

The best result obtained by this method is that u ∈ W s,r
loc (R

∗
+×R) for all s < 1/3

and 1 ≤ r < 3/2 (see [22]) – in the earlier result [27], the integrability exponent was
restricted to r < 5/3. On the other hand, it is possible to construct such solutions

that do not belong to any Besov space (see [40]) “better than” B
1/3,3
∞,loc(R

∗
+ × R);

see Section 4 for a more precise statement of this optimality result and [11] for the
proof.

In the present paper, we prove that solutions of (1.2) with entropy production
that is a signed Radon measure for each convex entropy does indeed satisfy a

(local) B
1/3,3
∞ estimate provided that the flux function is uniformly convex. With

the result in [11], this shows that the optimal regularity space for such solutions is

indeed B
1/3,3
∞,loc(R

∗
+ × R).

Theorem 1.1. Assume that a ∈ C2(R) satisfies a′′ ≥ α0 > 0 on R, and let
uin ∈ L∞(R). Any bounded weak solution of (1.2) satisfying (1.5) for each convex
entropy η, with an entropy production μ that is a signed Radon measure on R+×R,

belongs to B
1/3,3
∞,loc(R

∗
+ × R).

Our proof of this result relies on a method completely different from veloci-
ty averaging. At variance with velocity averaging, this method does not use any
argument from harmonic analysis (Fourier transform, Littlewood–Paley decom-
positions, . . . ), but is based on an “interaction identity” presented in Section 2.
After recalling an earlier, weaker regularizing effect obtained in [15], [16] for so-
lutions of (1.2) subject to a weaker entropy condition (Theorem 5.1 in Section 5)
the optimal regularizing effect is stated as Theorem 4.1. As a warm-up, we use
our method based on the interaction identity to establish a new velocity averaging
result (Theorem 3.1 in Section 3). Unlike in all velocity averaging theorems known
to this date, the regularity of velocity averages of the solution of the transport
equation obtained in this result is independent of the regularity of the source term
in the velocity variable. The tradeoff is that the kinetic solution must satisfy a
seemingly unnatural monotonicity condition – see condition (3.3) below– which
however turns out to be satisfied precisely in the context of the kinetic formulation
of scalar conservation laws.

This new method is reminiscent of some tools from compensated compact-
ness [28], [39], see Section 2 below and the comments in Section 2 of [15]. A short-
coming of this method is that, unlike velocity averaging, it seems confined to the
case of one space dimension, at least at the time of this writing. In the case of
space dimension higher than one, some regularizing effect in the time variable of
special classes of nonlinear fluxes (that are in particular power-like at infinity) has
been established in [30] – an earlier result of same type in the case of homogeneous
nonlinearities can be found in [3].
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2. The interaction identity

Consider the system of partial differential relations

(2.1)

{
∂tA+ ∂xB = C ,

∂tD + ∂xE = F ,

where A, B, C, D, E and F are real-valued functions of t ≥ 0 and x ∈ R.
We henceforth assume that the functions A,B,C,D,E, F have compact support
in R

∗
+ × R, and are extended by 0 to R× R.

The quantity

I1(t) :=

∫∫
x<y

A(t, x)D(t, y) dx dv

has been introduced by S.R. S. Varadhan – see Lemma 22.1 in [41] – in the context
of discrete velocity models in kinetic theory, and used by several authors since then
(J.-M. Bony [5], C. Cercignani [8], S.-Y. Ha [20]). It is also reminiscent of Glimm’s
interaction functional used in the theory of hyperbolic systems of conservation laws
in space dimension 1; see [14].

Differentiating under the integral sign and using both equations in (2.1), one
obtains the following interaction identity

dI1
dt

(t) =

∫∫
x<y

(C(t, x)D(t, y) +A(t, x)F (t, y)) dx dy

−
∫∫

x<y

(∂xB(t, x)D(t, y) +A(t, x) ∂yE(t, y)) dx dy

=

∫∫
x<y

(C(t, x)D(t, y) +A(t, x)F (t, y)) dx dy

+

∫
R

(AE −DB)(t, z) dz .

Integrating further in the time variable and observing that I1 is compactly sup-
ported in t ∈ R

∗
+, we arrive at the identity

(2.2)

∫∫
R×R

(AE −DB)(t, z) dz dt = −
∫∫

R×R

C(t, x)
( ∫ ∞

x

D(t, y) dy
)
dx dt

−
∫∫

R×R

F (t, y)
( ∫ y

−∞
A(t, x) dx

)
dy dt .

Exchanging the roles of the time and space variables in the computation above,
one can consider the quantity

I2(z) :=

∫∫
s<t

B(s, z)E(t, z) ds dt
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instead of I1. Proceeding as above, one sees that

dI2
dz

(z) =

∫∫
s<t

(
C(s, z)E(t, z) +B(s, z)F (t, z)

)
ds dt

−
∫∫

s<t

(
∂sA(s, z)E(t, z) +B(s, z) ∂tD(t, z)

)
ds dt

=

∫∫
s<t

(
C(s, z)E(t, z) +B(s, z)F (t, z)

)
ds dt

−
∫
R

(AE −DB)(t, z) dt .

Integrating further in z and observing that I2 is compactly supported in z ∈ R,
we obtain

(2.3)

∫∫
R×R

(AE −DB)(t, z) dt dz =

∫∫
R×R

C(s, z)
(∫ ∞

s

E(t, z) dt
)
dz ds

+

∫∫
R×R

F (t, z)
(∫ t

−∞
B(s, z) ds

)
dz dt .

In his proof of the interaction identity on page 182 of his book [41], L. Tartar
observes that the structure of this identity is reminiscent of compensated compact-
ness [28], [39]. Indeed, introducing the vector fields

U(t, x, y) := (A(t, x), B(t, x), 0) , V (t, x, y) = (E(t, x),−B(t, x), 0)

we see that the system (2.1) takes the form{
div U = C ,

curlV = (0, 0,−F ) .
While the left hand side of (2.2) involves the inner product U · V , the right hand
side involves integrands in the form of binary products where one of the terms is
integrated – and therefore gains one order of regularity– in the space variable. The
same is true of (2.3), by which one can hope to gain one order of regularity in the
time variable.

In view of this observation, the idea of using the interaction identities (2.2)
and (2.3) for the purpose of establishing a regularization result appears fairly
natural, and will be used systematically in the sequel.

3. Velocity averaging in physical space

Let f ≡ f(t, x, v) satisfy

(3.1)
(
∂t + a′(v)∂x

)
f = ∂γvm

where a is a smooth function while m is a bounded, signed Radon measure on
R+ × R× R, and γ ∈ N.
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Transport equations of this type naturally appear in the kinetic formulation
of hyperbolic systems of conservation laws: see for instance [32]. A fundamental
question in the context of kinetic models is to investigate the local regularity of
moments in the velocity variable v of the function f . Systematic investigations
on this class of questions began with our work with R. Sentis [19] (see also the
independent study by V. Agoshkov [1]) and in a series of subsequent contributions
by several authors where more and more general classes of functions f and right
hand sides are considered: see in particular [17], [13], [6], [12], [33], [18], [38], [22],
[23], [4], [2].

All these works use at some point tools from harmonic analysis: Fourier trans-
form, Hardy–Littlewood decomposition, Radon transform. Moreover, in all these
results, the regularity of moments in v of the function f depends on γ.

In this section, we give an example of velocity averaging result where the reg-
ularity of the moments in v of f is independent of γ, at the expense of an extra
assumption on the dependence of v on f . Also, the proof of this result is based
on the interaction identities (2.2)–(2.3) and uses only elementary techniques in
physical space.

Theorem 3.1. Let a ∈ C1(R); assume that there exists β ≥ 1 such that, for each
M > 0, there exists αM > 0 for which

(3.2) a′(v)− a′(w) ≥ αM (v − w)β , −M ≤ w < v ≤M .

Let γ ∈ N and let m be a signed Radon measure on R+ × R× R.
Assume that f ∈ L∞(R+ ×R×R) satisfies (3.1) and that, for each y ∈ R and

each s ≥ 0,

(3.3)

(
f(t+ s, x+ y, v)− f(t, x, v)

)(
f(t+ s, x+ y, w)− f(t, x, w)

) ≥ 0

for a.e. (t, x, v, w) ∈ R+ × R× R× R .

Then, for each nonnegative ψ ∈ C∞
c (R), one has∫

R

fψ(v) dv ∈ Br,2
∞,loc(R

∗
+ × R) with r =

1

4 + 2β
.

We recall that, in the context of velocity averaging, the gain of regularity
obtained on averages of the form∫

|ξ|≤M

f(t, x, ξ) dξ

of solutions of the transport equation(
∂t + V (ξ) · ∇x

)
f(t, x, ξ) = g(t, x, ξ)

involves

sup
ω2+|k|2=1

∣∣ {ξ ∈ R
N s.t. |ξ| ≤M and |ω + V (ξ) · k| ≤ ε

}∣∣ ,
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where, for each measurable A ⊂ R
N , the Lebesgue measure of A is designated

by |A|; see condition (2.1) in [17]. Equivalently, whenever k �= 0,∣∣ {ξ ∈ R
N s.t. |ξ| ≤M and |ω + V (ξ) · k| ≤ ε

}∣∣
=

∣∣∣ {ξ ∈ R
N s.t. |ξ| ≤M and V (ξ) · k|k| ∈

[
− ω + ε

|k| ,
ε− ω

|k|
]}∣∣∣ .

On the other hand, (3.2) implies that a is strictly convex and is equivalent to the
condition∣∣ {v ∈ R s.t. |v| ≤M and a′(v) ∈ [A,B]

}∣∣ = a′−1(B)− a′−1(A) ≤
(B −A

αM

)1/β

for each A and B such that a′(−M) ≤ A < B ≤ a′(M). Therefore, (3.2) is a
condition of the same type as the classical condition used in velocity averaging.

A typical sufficient condition under which a satisfies (3.2) is as follows. Assume
that a ∈ C2n(R) is convex and and that, for some n ∈ N

∗ and z ∈ (−M,M), one
has

a′′(z) = · · · = a(2n−1)(z) = 0 , and a(2n)(z) > 0 .

(An example of this situation is

a(v) :=
1

2n
v2n ,

with z = 0.) By continuity of a(2n), there exists ρ > 0 such that [z − ρ, z + ρ] ⊂
(−M,M) and λ > 0 such that

a(2n)(t) ≥ λ > 0 for each t ∈ [z − ρ, z + ρ] .

By Taylor’s formula, whenever z − ρ ≤ w ≤ v ≤ z + ρ, one has

a′(v)− a′(w) =
∫ v

w

1

(2n− 2)!

(
(v − t)2n−2 1t>z + (t− w)2n−2 1t<z

)
a(2n)(t)dt

≥ λ

(2n− 1)!

(
(v − z)2n−1 + (z − w)2n−1

)
≥ λ

(2n− 1)!
max

(
(v − z)2n−1, (z − w)2n−1

)
≥ λ

22n−1(2n− 1)!
(v − w)2n−1 .

On the other hand, whenever −M ≤ w < z − ρ < z + ρ < v ≤M , one has

a′(v)− a′(w) = a′(v)− a′(z + ρ) + a′(z + ρ)− a′(z − ρ) + a′(z − ρ)− a′(w)
≥ a′(z + ρ)− a′(z − ρ)

≥ λ

22n−1(2n− 1)!
(2ρ)2n−1

≥ λ

22n−1(2n− 1)!

( ρ

M

)2n−1

(v − w)2n−1 ,

where the first inequality follows from the convexity of a, while the second is a
consequence of the previous estimate in the case v = z + ρ and w = z − ρ.
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Therefore a satisfies (3.2) with

β = 2n− 1 and αM =
λ

22n−1(2n− 1)!

( ρ

M

)2n−1

.

This situation is essentially the same as the one described in assumption (H) before
Theorem 2.2 in [15].

The assumption (3.3) may seem somewhat unnatural; however, as we shall see
below, it is relevant in the context of conservation laws. A typical example of a
function f satisfying (3.3) is as follows.

Let ρ ∈ L∞(R+ ×R), and let W : R → R be a nondecreasing or nonincreasing
function; then the function f defined by the formula

f(t, x, v) =W (ρ(t, x) − v)

satisfies (3.3). Indeed, for each t, s ≥ 0 and each x, y ∈ R such that ρ(t, x) and
ρ(s, y) are defined

f(t, x, v)− f(s, y, v) =

∫ ρ(t,x)

ρ(s,y)

W ′(u− v) du

so that, assuming without loss of generality that W is nondecreasing, we see that

ρ(t, x) ≥ ρ(s, y) ⇒ f(t, x, v) ≥ f(s, y, v) for each v ∈ R .

Equivalently,

f(t, x, v) > f(s, y, v) for some v ∈ R ⇒ ρ(t, x) > ρ(s, y)

⇒ f(t, x, w) ≥ f(s, y, w) for all w ∈ R .

Therefore,(
f(t, x, v)− f(s, y, v)

)(
f(t, x, w) − f(s, y, w)

) ≥ 0 for each v, w ∈ R

for all t, s ∈ R+ and all x, y ∈ R such that ρ(t, x) and ρ(s, y) are defined, which
means that assumption (3.3) is satisfied in this example.

We do not claim that the Bs,2
∞,loc regularity obtained in Theorem 3.1 is optimal.

Since Theorem 3.1 is not the main result in the present paper, but rather an
illustration of how to use the interaction identities (2.2)-(2.3) for the purpose of
obtaining a velocity averaging theorem where the regularity index s = 1/(4 + 2β)
is independent of the number γ of derivatives in v in the source term, we have left
this question aside.

Proof. For h ∈ R, define the operators Dh
t and Dh

x by the formulas

(3.4)

{
Dh

t φ(t, x) := φ(t+ h, x)− φ(t, x) ,

Dh
xφ(t, x) := φ(t, x+ h)− φ(t, x) .

Pick χ ∈ C∞
c (R∗

+ × R). One seeks to estimate∫∫
χ(t, x)2

∣∣∣Dh
x

∫
f(t, x, v)ψ(v) dv

∣∣∣ 2dx dt .
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This quantity is decomposed as∫∫
χ(t, x)2

∣∣∣Dh
x

∫
f(t, x, v)ψ(v)dv

∣∣∣ 2dx dt
=

∫∫ ∫∫
χ(t, x)2 Dh

xf(t, x, v)Dh
xf(t, x, w)ψ(v)ψ(w) dv dw dx dt

=

∫∫ ∫∫
(1 − φε(w − v))χ(t, x)2 Dh

xf(t, x, v)Dh
xf(t, x, w)ψ(v)ψ(w) dv dw dx dt

+

∫∫ ∫∫
φε(w − v)χ(t, x)2 Dh

xf(t, x, v)Dh
xf(t, x, w)ψ(v)ψ(w) dv dw dx dt

= J1 + J2 ,

where φε(z) = Φ(z/ε) and Φ ∈ C∞(R) satisfies

0 ≤ Φ(z) ≤ 1 , Φ(z) = 1 if |z| ≥ 2 and Φ(z) = 0 if |z| ≤ 1 .

By assumption (3.3), the integral J1 is estimated as follows:

|J1| ≤
∫∫ ∫∫

|v−w|≤2ε

χ(t, x)2 Dh
xf(t, x, v)Dh

xf(t, x, w)ψ(v)ψ(w) dv dw dx dt

≤ 4 ‖χ2‖L1 ‖f‖2L∞

∫∫
|v−w|≤2ε

ψ(v)ψ(w) dv dw ≤ C0ε ,(3.5)

where
C0 := 16‖χ2‖L1 ‖f‖2L∞ ‖ψ‖L1 ‖ψ‖L∞ .

As for the integral J2, using again assumption (3.3) shows that

|J2| ≤ cε J3

where, by (3.2),

cε = sup
−V≤w<v≤V

φε(w − v)

(v − w)(a′(v) − a′(w))
≤ 1

αV ε1+β
,

assuming without loss of generality that supp(ψ) ⊂ [−V, V ], and

J3=

∫∫∫∫
(v−w)(a′(v)−a′(w))χ(t, x)2Dh

xf(t,x,v)Dh
xf(t,x,w)ψ(v)ψ(w) dv dw dx dt.

The integral J3 is now estimated by the interaction identity (2.2). Set

A(t, x, v) := χ(t, x)Dh
xf(t, x, v) , D(t, x, w) := χ(t, x)Dh

xf(t, x, w) .

Since f ≡ f(t, x, v) satisfies (3.1), the functions A and D defined above satisfy (2.1)
with

B(t, x, v) := a′(v)χ(t, x)Dh
xf(t, x, v) , E(t, x, w) := a′(w)χ(t, x)Dh

xf(t, x, w) ,
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and {
C(t, x, v) := χ(t, x) ∂γvDh

xm(t, x, v) +X(t, x, v)Dh
xf(t, x, v) ,

F (t, x, w) := χ(t, x) ∂γwDh
xm(t, x, w) +X(t, x, w)Dh

xf(t, x, w) ,

with the notation
X(t, x, v) = (∂tχ+ a′(v)∂xχ)(t, x) .

(We have abused notation writing m(t, x, v) as if the signed Radon measure m was
a function.)

At this point, we apply the interaction identity (2.2). After multiplying both
sides of this identity by (v − w)ψ(v)ψ(w) and integrating in v, w, one obtains

J3 = −
∫∫

(v − w)ψ(v)ψ(w)

∫∫
C(t, x, v)

( ∫ ∞

x

D(t, y, w) dy
)
dx dt dv dw

−
∫∫

(v − w)ψ(v)ψ(w)

∫∫
F (t, y, w)

( ∫ y

−∞
A(t, x, v) dx

)
dy dt dv dw .(3.6)

Each integral on the right hand side of J3 involves two different kinds of terms.
One is

J31 =

∫∫
(v − w)ψ(v)ψ(w)

·
∫∫

X(t, x, v)Dh
xf(t, x, v)

( ∫ ∞

x

D(t, y, w) dy
)
dx dt dv dw ,(3.7)

the other being

J32 =

∫∫
(v − w)ψ(v)ψ(w)

·
∫∫

χ(t, x) ∂γv Dh
xm(t, x, v)

( ∫ ∞

x

D(t, y, w) dy
)
dx dt dv dw .(3.8)

In both expressions, the inner integral is put in the form∫ ∞

x

D(t, y, w)dy =

∫ ∞

x

Dh
y (χ(t, y) f(t, y, w)) dy −

∫ ∞

x

f(t, y + h,w)Dh
yχ(t, y) dy

= −
∫ x+h

x

χ(t, y)f(t, y, w)dy −
∫ ∞

x

f(t, y + h,w)
( ∫ h

0

∂xχ(t, y + z)dz
)
dy ,

so that

(3.9)
∣∣∣ ∫ ∞

x

D(t, y, w)dy
∣∣∣ ≤ ‖f‖L∞(‖χ‖L∞ + ‖∂xχ‖L1) |h| .

Thus
|J31| ≤ C1 |h| ,

with

C1 = 2 ‖f‖2L∞
(‖χ‖L∞ + ‖∂xχ‖L1

) (‖vXψ‖L1 ‖ψ‖L1 + ‖Xψ‖L1 ‖vψ‖L1

)
.
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In J32, we first integrate by parts and bring the v derivatives to bear on the
weight (v − w)ψ(v):

J32 = (−1)γ
∫∫

∂γv ((v − w)ψ(v))ψ(w)

∫∫
χ(t, x)Dh

xm(t, x, v)

·
(∫ ∞

x

D(t, y, w) dy
)
dx dt dv dw .

Assuming without loss of generality that supp(χ) ⊂ [0, T ]× [−R,R] and recalling
that supp(ψ) ⊂ [−V, V ] while |h| ≤ 1, one obtains

|J32| ≤ C2 |h|
with

C2 = 2 ‖f‖L∞
(‖∂γ(vψ)‖L∞ ‖ψ‖L1 + ‖∂γψ‖L∞ ‖vψ‖L1

)
· (‖χ‖L∞ + ‖∂xχ‖L1

)‖χ‖L∞

∫ T

0

∫ R+1

−R−1

∫ V

−V

|m| .

In conclusion,
|J3| ≤ 2 (C1 + C2) |h| .

Therefore,∫∫
χ(t, x)2

∣∣∣Dh
x

∫
f(t, x, v)ψ(v) dv

∣∣∣ 2 dx dt ≤ C0 ε+
2

αV
(C1 + C2)

|h|
ε1+β

,

and choosing ε = |h|1/(2+β), we find that

(3.10)

∫∫
χ(t, x)2

∣∣∣Dh
x

∫
f(t, x, v)ψ(v)dv

∣∣∣ 2dx dt≤(
C0+

2
αV

(C1+C2)
)
|h|1/(2+β) .

As for the time regularity, it is obtained similarly, exchanging the roles of the
variables t and x. We briefly sketch the argument below. One seeks to estimate,
for each h > 0, the quantity∫∫

χ(t, x)2
∣∣∣Dh

t

∫
f(t, x, v)ψ(v) dv

∣∣∣ 2 dx dt
that is decomposed as∫∫

χ(t, x)2
∣∣∣Dh

t

∫
f(t, x, v)ψ(v)dv

∣∣∣ 2dx dt
=

∫∫ ∫∫
χ(t, x)2 Dh

t f(t, x, v)Dh
t f(t, x, w)ψ(v)ψ(w) dv dw dx dt

=

∫∫ ∫∫
(1− φε(w − v))χ(t, x)2 Dh

t f(t, x, v)Dh
t f(t, x, w)ψ(v)ψ(w) dv dw dx dt

+

∫∫ ∫∫
φε(w − v)χ(t, x)2 Dh

t f(t, x, v)Dh
t f(t, x, w)ψ(v)ψ(w) dv dw dx dt

= K1 +K2 .
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The term K1 is obviously estimated exactly as J1:

(3.11) |K1| ≤ 4 ‖χ2‖L1 ‖f‖2L∞

∫∫
|v−w|≤2ε

ψ(v)ψ(w) dv dw dx dt ≤ C0 ε .

As in the case of J2, one has

|K2| ≤ cεK3,

where

K3 =

∫∫ ∫∫
(v − w)(a′(v)− a′(w))χ(t, x)2 Dh

t f(t, x, v)

· Dh
t f(t, x, w)ψ(v)ψ(w) dv dw dx dt.

This last integral is estimated by using the interaction identity (2.3), with a slightly
different definition of A,B,C,D,E and F :

A(t, x, v) := χ(t, x)Dh
t f(t, x, v) , D(t, x, w) := χ(t, x)Dh

t f(t, x, w) ,

while

B(t, x, v) := a′(v)χ(t, x)Dh
t f(t, x, v) , E(t, x, w) := a′(w)χ(t, x)Dh

t f(t, x, w)

and {
C(t, x, v) = χ(t, x) ∂γvDh

tm(t, x, v) +X(t, x, v)Dh
t f(t, x, v) ,

F (t, x, w) = χ(t, x) ∂γwDh
tm(t, x, w) +X(t, x, w)Dh

t f(t, x, w) .

Apply the interaction identity (2.3) after multiplying both sides of this identity
by (v − w)ψ(v)ψ(w) and integrating in v, w, to obtain

K3 = −
∫∫

(v − w)ψ(v)ψ(w)

∫∫
C(s, x, v)

( ∫ ∞

s

E(t, x, w) dt
)
dx ds dv dw

−
∫∫

(v − w)ψ(v)ψ(w)

∫∫
F (t, x, w)

( ∫ t

−∞
B(s, x, v) ds

)
dx dt dv dw .(3.12)

As in the case of J3, the right hand side of K3 involves two different kinds of terms:

K31 =

∫∫
(v − w)ψ(v)ψ(w)

∫∫
X(s, x, v)Dh

s f(s, x, v)

·
(∫ ∞

s

E(t, x, w) dt
)
dx ds dv dw(3.13)

and

K32 =

∫∫
(v − w)ψ(v)ψ(w)

∫∫
χ(s, x) ∂γv Dh

sm(s, x, v)

·
( ∫ ∞

s

E(t, x, w) dt
)
dx ds dv dw .(3.14)
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The inner integral can be put in the form∫ ∞

s

E(t, x, w) dt

=

∫ ∞

s

Dh
t

(
χ(t, x)a′(w)f(t, x, w)

)
dy −

∫ ∞

s

a′(w) f(t + h, x, w)Dh
t χ(t, x) dt

= −
∫ s+h

s

χ(t, x)a′(w)f(t, x, w)dt −
∫ ∞

s

a′(w)f(t+ h, x, w)
( ∫ h

0

∂tχ(t+ τ, x)dτ
)
dt,

so that

(3.15)
∣∣∣ ∫ ∞

s

E(t, x, w)dt
∣∣∣ ≤ |a′(w)| ‖f‖L∞

(‖χ‖L∞ + ‖∂tχ‖L1

)
h .

Thus,
|K13| ≤ C3 h ,

with

C3 = 2 ‖f‖2L∞
(‖χ‖L∞ + ‖∂tχ‖L1

)(‖vXψ‖L1 ‖a′ψ‖L1 + ‖Xψ‖L1 ‖va′ψ‖L1

)
.

Next,

K32 = (−1)γ
∫∫

∂γv
(
(v − w)ψ(v)

)
ψ(w)

∫∫
χ(s, x)Dh

sm(s, x, v)

·
( ∫ ∞

s

E(t, x, w) dt
)
dx ds dv dw .

Assuming, without loss of generality, that supp(χ) ⊂ [0, T ]×[−R,R] while supp(ψ) ⊂
[−V, V ], and that 0 < h ≤ 1, one obtains

|K32| ≤ C4 h

with
C4 = 2 ‖f‖L∞

(‖∂γ(vψ)‖L∞ ‖a′ψ‖L1 + ‖∂γψ‖L∞ ‖va′ψ‖L1

)
× (‖χ‖L∞ + ‖∂tχ‖L1

)‖χ‖L∞

∫ T+1

0

∫ R

−R

∫ V

−V

|m| .
In conclusion,

|K3| ≤ 2 (C3 + C4) |h| ,
so that∫∫

χ(t, x)2
∣∣∣Dh

t

∫
f(t, x, v)ψ(v) dv

∣∣∣ 2 dx dt ≤ C0 ε+
2

αV
(C3 + C4)

h

ε1+β
,

and choosing ε = h1/(2+β), we find that

(3.16)

∫∫
χ(t, x)2

∣∣∣Dh
t

∫
f(t, x, v)ψ(v) dv

∣∣∣ 2dx dt ≤ (
C0 +

2
α (C3 + C4)

)
h1/(2+β) .

Putting together (3.16) and (3.10), we conclude that∫
fψ(v) dv ∈ Bs,2

∞,loc(R
∗
+ × R) with s =

1

4 + 2β
. �
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4. Optimal regularizing effect for scalar conservation laws in
space dimension one

Consider the scalar conservation law

(4.1)

{
∂tu+ ∂xa(u) = 0 , x ∈ R , t > 0 ,

u
∣∣
t=0

= uin .

Assume that u is a weak solution whose entropy production rate is a signed Radon
measure. Specifically, we mean that, for each convex entropy η ∈ C1(R), one has

∂tη(u) + ∂xq(u) = −
∫
R

η′′(v) dm(·, ·, v) ,

where m is a signed Radon measure on R+ ×R×R (with compact support in the
variable v) and the entropy flux q is defined by (1.4).

Equivalently (see for instance §6.7 in [9]), u satisfies the following kinetic for-
mulation of (4.1):

(4.2)

{
∂tf + a′(v)∂xf = ∂vm, x, v ∈ R , t > 0 ,

f
∣∣
t=0

= f in ,

where

(4.3) f(t, x, v) :=

{
+1[0,u(t,x)](v) if u(t, x) ≥ 0 ,

−1[u(t,x),0](v) if u(t, x) < 0 ,

while

(4.4) f in(x, v) :=

{
+1[0,uin(x)](v) if uin(x) ≥ 0 ,

−1[uin(x),0](v) if uin(x) < 0 .

Theorem 4.1. Let a ∈ C2(R) satisfy (3.2), and let m be a signed Radon measure
on R+ × R× R. Let uin ∈ L∞(R) and let u ∈ L∞([0, T ]× R) satisfy (4.2). Then

u ∈ B
1/p,p
∞,loc(R

∗
+ × R) with p = 2 + β .

More precisely, for all ε > 0 and all ξ ∈ [−ε, ε], one has

αU β
2

(β + 1)(β + 2)

∫ T

0

∫
R

χ(t, x)2
∣∣u(t, x+ ξ)− u(t, x)

∣∣ 2+β
dx dt

≤ 2 |ξ| (‖χ‖L∞ + ‖∂xχ‖L1

)(
2U ‖X‖L1 + ‖χ‖L∞

∫ T

0

∫ R+ε

−R−ε

∫ U

−U

d|m|
)
,

and, for all 0 < τ < ε

αU β
2

(β + 1)(β + 2)

∫ T

0

∫
R

χ(t, x)2
∣∣u(t+ τ, x)− u(t, x)

∣∣ 2+β
dx dt

≤ 2 τ
(‖χ‖L∞ + ‖∂xχ‖L1

)(‖a′‖L1(−U,U)‖X‖L1 + ‖χ‖L∞

∫ T+ε

0

∫ R

−R

∫ U

−U

|a′| d|m|
)
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where U := ‖u‖L∞ while X(t, x, v) := (∂t + a′(v)∂x)χ(t, x) and T,R > 0 are such
that supp(χ) ⊂ [0, T ]× [−R,R].

The following statement is an obvious consequence of this theorem.

Corollary 4.2. Under the same assumptions as in Theorem 4.1, one has also

u ∈ B
1/p,p
∞,loc(R+ × R) for each p ≥ 2 + β .

Proof. Pick χ ∈ C∞
c (R∗

+×R), and extend χu by 0 to R
2. Then, for each p > 2+β

and τ, ξ ∈ R, one has∫∫ ∣∣χu(t+ τ, x+ ξ)− χu(t, x)
∣∣ pdx dt

≤ (
2‖χu‖L∞

)p−2−β
∫∫ ∣∣χu(t+ τ, x+ ξ)− χu(t, x)

∣∣ 2+β
dx dt ≤ C

(|τ |+ |ξ|)

since χu ∈ L∞(R2) ∩B1/(2+β),2+β
∞,loc (R2). �

Before giving the proof of Theorem 4.1, a few remarks are in order.
First, the exponent β in (3.2) can be viewed as a measure of the nonlinearity

in (4.1). Indeed, if a is linear, a′ is a constant so that (3.2) holds (for |w− v| < 1)
with β = +∞, and there is no regularizing effect. In other words, the regularizing
effect predicted in Theorem 4.1 is a consequence of the nonlinearity.

In the case where a satisfies

(4.5) a ∈ C2(R) with a′′(v) ≥ α > 0 , v ∈ R ,

P. Lax [25] and O. Oleinik [29] have proved that, for each initial data uin ∈ L1(R),
the Cauchy problem (4.1) has a unique entropy solution, i.e., a weak solution
satisfying

∂tη(u) + ∂xq(u) ≤ 0

for each convex η ∈ C1(R) and q defined by (1.4), and that this solution u satisfies
u(t, ·) ∈ L∞(R) for each t > 0, together with the one-sided bound

∂xu(t, x) ≤ 1

αt
, t > 0 , x ∈ R .

A consequence of this one-sided bound is that u ∈ BVloc(R+ × R).
In the case where a(v) = v2/2, for each p ∈ [1,∞] and each σ > 1/max(3, p),

C. de Lellis and M. Westdickenberg [11] have proved the existence of weak solutions
u of (4.1) satisfying the entropy relation (5.1) for each convex η ∈ C2(R) with q
defined as in (1.4) and an entropy production rate μ that is a signed Radon measure
on R+ × R, such that

u /∈ Bσ,p
∞,loc(R

∗
+ × R) .

Of course, the condition (4.5) implies that (3.2) is satisfied with αM = α for
each M > 0 and β = 1. In this case, Theorem 4.1 predicts that weak solutions u
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of (4.1) satisfying the entropy relation (5.1) for each convex η ∈ C2(R) with q
defined as in (1.4) and an entropy production rate μ that is a signed Radon measure

on R+ × R belong to the Besov space B
1/3,3
∞,loc(R

∗
+ × R). According to the result of

C. de Lellis and M. Westdickenberg [11], this regularity is optimal.

A key argument in the proof of Theorem 4.1 is the following inequality.

Lemma 4.3. Assume that a ∈ C1(R) satisfies assumption (3.2). For all u ∈ R,
define

Mu(v) :=

{
+1[0,u](v) if u ≥ 0 ,

−1[u,0](v) if u < 0 ,

and

Δ(u, ū) :=

∫∫
1R+(v−w)

(
a′(v)−a′(w))(Mu(v)−Mū(v)

)(Mu(w)−Mū(w)
)
dvdw .

Then, for each V > 0 and ū, u ∈ [−V, V ], one has

Δ(u, ū) ≥ αV β
2

(β + 1) (β + 2)
|u− ū|2+β .

The proof of this inequality is deferred until after the proof of Theorem 4.1.

Proof of Theorem 4.1. Pick χ ∈ C∞
c (R+ × R), with support in (0, T ) × [−R,R],

and let U = ‖u‖L∞([0,T ]×R).
We first establish the regularity in the space variable x. As in the proof of

Theorem 3.1, set

A(t, x, v) := χ(t, x)Dh
xf(t, x, v) , D(t, x, w) := χ(t, x)Dh

xf(t, x, w) .

Since f ≡ f(t, x, v) satisfies (3.1), the functions A and D defined above satisfy (2.1)
with

B(t, x, v) := a′(v)χ(t, x)Dh
xf(t, x, v) , E(t, x, w) := a′(w)χ(t, x)Dh

xf(t, x, w)

and {
C(t, x, v) := χ(t, x) ∂vDh

xm(t, x, v) +X(t, x, v)Dh
xf(t, x, v) ,

F (t, x, w) := χ(t, x) ∂wDh
xm(t, x, w) +X(t, x, w)Dh

xf(t, x, w) ,

with the notation

X(t, x, v) := ∂tχ(t, x) + a′(v)∂xχ(t, x) .

Multiplying each side of the interaction identity (2.2) by 1R+(v −w) and inte-
grating both sides of the resulting equality in the variables v and w yields

Q :=

∫∫
R×R

1R+(v−w)
∫∫

R×R

(
A(t, x, v)E(t, x, w)−B(t, x, v)D(t, x, w)

)
dx dt dv dw

= −
∫∫

R×R

1R+(v − w)

∫∫
R×R

C(t, x, v)
( ∫ ∞

x

D(t, y, w)dy
)
dx dt dv dw

−
∫∫

R×R

1R+(v − w)

∫∫
R×R

F (t, y, w)
( ∫ y

−∞
A(t, x, v)dx

)
dydt dv dw .(4.6)
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The right-hand side of this identity involves essentially terms of two different kinds:

Q1 =

∫∫
1R+(v − w)

∫∫
R×R

X(t, x, v)Dh
xf(t, x, v)

·
( ∫ ∞

x

D(t, y, w) dy
)
dx dt dv dw ,(4.7)

the other being

Q2 =

∫∫
1R+(v − w)

∫∫
R×R

χ(t, x) ∂vDh
xm(t, x, v)

·
(∫ ∞

x

D(t, y, w) dy
)
dx dt dv dw .(4.8)

Proceeding as in the proof of Theorem 3.1, we put the inner integral in the
form∫ ∞

x

D(t, y, w)dy =

∫ ∞

y

Dh
y

(
χ(t, y)f(t, y, w)

)
dy −

∫ ∞

x

f(t, y + h,w)Dh
yχ(t, y) dy

= −
∫ x+h

x

χ(t, y)f(t, y, w) dy −
∫ ∞

x

f(t, y + h,w)
( ∫ h

0

∂xχ(t, y + z) dz
)
dy ,

so that

(4.9)
∣∣∣ ∫ ∞

x

D(t, y, w) dy
∣∣∣ ≤ (‖χ‖L∞ + ‖∂xχ‖L1

) |h|1[−U,U ](w) .

Thus
|Q1| ≤ K1|h| ,

with

(‖χ‖L∞ + ‖∂xχ‖L1

) ∫∫ ‖X(·, ·, v)‖L1 1[−U,U ](v)1[−U,U ](w) dv dw

≤ 2U(‖χ‖L∞ + ‖∂xχ‖L1) ‖X‖L1 =: K1 .

On the other hand, for each h ∈ [−ε, ε],

Q2 =

∫∫
1R+(v − w)

∫∫
R×R

χ(t, x) ∂v Dh
xm(t, x, v)

( ∫ ∞

x

D(t, y, w)dy
)
dx dt dv dw

= −
∫
R

∫∫
R×R

χ(t, x)Dh
xm(t, x, w)

( ∫ ∞

x

D(t, y, w) dy
)
dx dt dw ,

so that
|Q2| ≤ K2 |h| ,

with

K2 := 2
(‖χ‖L∞ + ‖∂xχ‖L1

)‖χ‖L∞

∫ T

0

∫ R+ε

−R−ε

∫ U

−U

|m| .
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In conclusion, one has, by the same argument as in the proof of Theorem 3.1,

(4.10) |Q| ≤ 2 (K1 +K2) |h| .

On the other hand, according to Lemma 4.3,

(4.11)

Q =

∫ T

0

∫
R

χ(t, x)2Δ
(
u(t, x), u(t, x+ h)

)
dx dt

≥ αUβ
2

(β + 1)(β + 2)

∫ T

0

∫
R

χ(t, x)2
∣∣Dh

xu(t, x)
∣∣ 2+β

dx dt .

Putting together (4.11) and (4.10) shows that

u ∈ L2+β
loc

(
R

∗
+;B

1/(2+β),2+β
∞,loc (R)

)
.

Now for the time regularity. Following the proof of Theorem 3.1, pick 0 < h < ε
and set

A(t, x, v) := χ(t, x)Dh
t f(t, x, v) , D(t, x, w) := χ(t, x)Dh

t f(t, x, w) .

Since f ≡ f(t, x, v) satisfies (3.1), the functions A and D defined above satisfy (2.1)
with

B(t, x, v) := a′(v)χ(t, x)Dh
t f(t, x, v) , E(t, x, w) := a′(w)χ(t, x)Dh

t f(t, x, w) ,

and {
C(t, x, v) := χ(t, x) ∂vDh

tm(t, x, v) +X(t, x, v)Dh
t f(t, x, v) ,

F (t, x, w) := χ(t, x) ∂wDh
t m(t, x, w) +X(t, x, w)Dh

t f(t, x, w) .

Multiplying each side of the interaction identity (2.3) by 1R+(v −w) and inte-
grating both sides of the resulting equality in the variables v and w yields

S :=

∫∫
1R+(v − w)

∫∫
R×R

(A(t, x, v)E(t, x, w) −B(t, x, v)D(t, x, w)) dx dt dv dw

=

∫∫
1R+(v − w)

∫∫
R×R

C(s, x, v)
( ∫ ∞

s

E(t, x, w) dt
)
dx ds dv dw(4.12)

+

∫∫
1R+(v − w)

∫∫
R×R

F (t, x, w)
( ∫ t

−∞
B(s, x, v) ds

)
dx dt dv dw .

As before, the right-hand side of this identity involves terms of two different kinds:

S1 =

∫∫
1R+(v − w)

∫∫
R×R

X(s, x, v)Dh
s f(s, x, v)

·
( ∫ ∞

s

E(t, x, w) dt
)
dx ds dv dw ,(4.13)
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the other being

S2 =

∫∫
1R+(v − w)

∫∫
R×R

χ(s, x) ∂vDh
sm(s, x, v)

·
( ∫ ∞

s

E(t, x, w) dt
)
dx ds dv dw .(4.14)

The inner integral can be put in the form∫ ∞

s

E(t, x, w) dt

=

∫ ∞

s

Dh
s

(
χ(t, x)a′(w)f(t, x, w)

)
dt−

∫ ∞

x

a′(w) f(t+ h, x, w)Dh
t χ(t, x) dt

=

∫ s+h

s

χ(t, y)a′(w)f(t, y, w) dy −
∫ ∞

s

a′(w)f(t+ h, x, w)
( ∫ h

0

∂xχ(t+ τ, x)dτ
)
dt,

so that

(4.15)
∣∣∣ ∫ ∞

s

E(t, x, w) dt
∣∣∣ ≤ (‖χ‖L∞ + ‖∂tχ‖L1

)
h |a′(w)|1[−U,U ](w) .

Thus,

|S1| ≤ L1 h ,

with

(‖χ‖L∞ + ‖∂tχ‖L1

) ∫∫ ‖X(·, ·, v) ‖L1 |a′(w)|1[−U,U ](v)1[−U,U ](w) dv dw

≤ (‖χ‖L∞ + ‖∂tχ‖L1

) ‖X‖L1 ‖a′‖L1(−U,U) =: L1 .

Moreover,

S2 =

∫∫
1R+(v − w)

∫∫
R×R

χ(s, x) ∂vDh
sm(s, x, v)

( ∫ ∞

s

E(t, x, w) dt
)
dx ds dv dw

= −
∫
R

∫∫
R×R

χ(t, x)Dh
sm(s, x, w)

( ∫ ∞

s

E(t, x, w) dt
)
dx ds dw ,

so that

|S2| ≤ L2 h

with

L2 := 2
(‖χ‖L∞ + ‖∂tχ‖L1

) ‖χ‖L∞

∫ T+ε

0

∫ R

−R

∫ U

−U

|a′| |m| .

Collecting the bounds on S1 and S2, one has

(4.16) |S| ≤ 2 (L1 + L2)h .
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On the other hand, according to Lemma 4.3,

(4.17)

S =

∫ T

0

∫
R

χ(t, x)2Δ
(
u(t, x), u(t+ h, x)

)
dx dt

≥ αU β
2

(β + 1) (β + 2)

∫ T

0

∫
R

χ(t, x)2 |Dh
t u(t, x)|2+β dx dt .

Putting together (4.17) and (4.16) shows that

u ∈ L2+β
loc (R;B

1/(2+β),2+β
∞,loc (R∗

+)) ,

which concludes the proof. �

Proof of Lemma 4.3. Assume that ū ≤ u. Then

Mu(v)−Mū(v) =

⎧⎪⎨
⎪⎩
1(ū,u](v) if u ≥ ū ≥ 0 ,

1[ū,u](v) + 10(v) if u ≥ 0 > ū ,

1[ū,u)(v) if 0 > u ≥ ū .

Therefore, if −V ≤ ū < u ≤ V , one has

Δ(u, ū) =

∫∫
1R+(v − w)

(
a′(v)− a′(w)

)
1(ū,u)(v)1(ū,u)(w) dv dw

=

∫ u

ū

( ∫ u

w

(a′(v) − a′(w)) dv
)
dw

≥ αV

∫ u

ū

∫ u

w

(v − w)β dv dw ≥ αV β

β + 1

∫ u

ū

(u− w)β+1 dw

=
αV β

2

(β + 1)(β + 2)
(u− ū)β+2 ,

which is the claimed lower bound when ū < u.
On the other hand,(Mu(v)−Mū(v)

)(Mu(w)−Mū(w)
)
=

(Mū(v)−Mu(v)
)(Mū(w) −Mu(w)

)
for all u, ū, v, w ∈ R, so that

Δ(u, ū) = Δ(ū, u) .

With the previous inequality, this establishes the claimed lower bound for all
u, ū ∈ R. �

Observe that, for all u, ū ∈ R(Mu(v)−Mū(v)
)(Mu(w)−Mū(w)

)
≥ 1(inf(ū,u),sup(ū,u))(v)1(inf(ū,u),sup(ū,u))(w) ≥ 0

for all v, w ∈ R, so that Mu is an example of function satisfying the assump-
tion (3.3) above.
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5. Regularizing effect with one convex entropy

In the case where the entropy condition is known to hold for one convex entropy,
and with an entropy production rate that is a Radon measure with possibly indef-
inite sign, the following result was obtained by the first author:

Theorem 5.1 ([15], [16]). Let a ∈ C1(R) satisfy (3.2), and let μ be a signed Radon
measure on R+ ×R. Assume that the Cauchy problem for the scalar conservation
law (4.1) has a weak solution u ∈ L∞(R+ × R) satisfying

(5.1) ∂tη(u) + ∂xq(u) = −μ

for some η ∈ C1(R) such that there exists β′ ≥ 1 for which, given any V > 0, there
exists η0V > 0 such that

(5.2) η′(v)− η′(w) ≥ η0,V (v − w)β
′
, whenever − V ≤ w < v ≤ V ,

with q defined by (1.4). Then

u ∈ B
1/p,p
∞,loc(R

∗
+ × R) with p = β + β′ + 2 .

More precisely, for all ε > 0 and each ξ ∈ [−ε, ε],
αU η0U (β + β′)

(β + β′ + 1) (β + β′ + 2)

∫∫
R×R

χ(t, z)2|u(t, x+ ξ)− u(t, x)|β+β′+2 dx dt

≤
(
M1 +M2 + 2U‖χ‖L∞

(‖χ‖L∞ + ‖∂xχ‖L1

) ∫ T

0

∫ R+ε

−R−ε

d|μ|
)
|ξ|,

and, for each τ ∈ [0, ε],

αU η0U (β + β′)
(β + β′ + 1) (β + β′ + 2)

∫∫
R×R

χ(t, z)2 |u(t+ τ, x) − u(t, x)|β+β′+2 dx dt

≤
(
N1 +N2 + 2U‖χ‖L∞(‖χ‖L∞ + ‖∂tχ‖L1)

∫ T+ε

0

∫ R

−R

d|μ|
)
τ,

where U = ‖χ‖L∞, while M1, M2, N1, and N2 are defined in (5.3), (5.4), (5.6)
and (5.7) respectively, and T,R > 0 are chosen so that supp(χ) ⊂ [0, T ]× [−R,R].

The proof of this result in [15], [16] is based on an argument that is reminiscent
of Tartar’s compensated compactness method for proving the convergence of the
vanishing viscosity method for scalar conservation laws, [39].

Whenever a, η ∈ C2(R) satisfy

a′′(v) ≥ α > 0 and η′′(v) ≥ η0 > 0 for all v ∈ R ,

one can take β = β′ = 1 in (3.2) and (5.2), and Theorem 5.1 predicts that u ∈
B

1/4,4
∞,loc(R

∗
+ × R).
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In any case, the regularity obtained in Theorem 5.1 in the case where the weak
solution u satisfies only one entropy relation with entropy production rate that is
a signed Radon measure also belongs to the de Lellis–Westdickenberg [11] optimal

regularity class – i.e., the spaces B
1/p,p
∞,loc for p ≥ 3.

A remarkable result due to Panov [31] states that, if u ∈ L∞(R+ × R) is a
weak solution of (4.1) with a ∈ C2(R) such that a′′ > 0 satisfying an entropy
condition (5.1) with η ∈ C2(R) such that η′′ > 0 and μ ≥ 0, then it is the unique
entropy solution of (4.1). In particular, it satisfies (5.1) for all η ∈ C2(R) such that
η′′ > 0, with nonnegative entropy production μ. Panov’s result was subsequently
somewhat generalized by de Lellis, Otto and Westdickenberg [10]. However, we
do not know whether any weak solution of (4.1) with a ∈ C2(R) such that a′′ > 0
satisfying an entropy condition (5.1) with η ∈ C2(R) such that η′′ > 0 and μ is
a signed Radon measure must satisfy (5.1) for all convex entropies, i.e., whether
such a solution satisfies the assumptions of Theorem 4.1. Therefore, Theorem 5.1
seems to be of independent interest.

Below, we give a new proof of Theorem 5.1 based on the interaction identity of
Section 2 instead of the variant of compensated compactness used in [15], [16].

Lemma 5.2. Assuming that the functions a, η and q belong to C1(R) and satis-
fy (3.2) and (5.2), while q′ = a′η′, one has, for each V > 0,

(w − v)
(
q(w) − q(v)

)−(
a(w) − a(v)

)(
η(w) − η(v)

)
≥ αV η0V (β + β′)

(β + β′ + 1) (β + β′ + 2)
|w − v|β+β′+2 ,

whenever v, w ∈ [−V, V ].

In the most general case where a and η are C1 convex functions, the inequality

(w − v)
(
q(w) − q(v)

)− (
a(w) − a(v)

)(
η(w) − η(v)

) ≥ 0 , v, w ∈ R .

is stated without proof by L. Tartar; see Remark 30 in [39].

For a proof in the case where a, η ∈ C2(R) with

η′′(v) ≥ η0 > 0 and a′′(v) ≥ α > 0 for all v ∈ R ,

corresponding to the assumptions (3.2) and (5.2) with β = β′ = 1, see Lemma 2.3
in [15].

Proof. One has

(w − v)
(
q(w) − q(v)

)− (
a(w) − a(v)

)(
η(w) − η(v)

)
=

∫ w

v

∫ w

v

η′(ζ)
(
a′(ζ)− a′(ξ)

)
dξdζ =

1

2

∫ w

v

∫ w

v

(
η′(ζ) − η′(ξ)

)(
a′(ζ) − a′(ξ)

)
dξdζ

≥ 1

2
η0V αV

∫ w

v

∫ w

v

(ζ − ξ)β+β′
dξdζ =

αV η0V (β + β′)
(β + β′ + 1)(β + β′ + 2)

∣∣w − v
∣∣ β+β′+2

.

�
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Proof of Theorem 5.1. Pick χ ∈ C∞
c (R+ × R), with support in (0, T ] × [−R,R],

and let U := ‖u‖L∞(R+×R).

As above, we first establish the regularity in the space variable x. Set

A(t, x) := χ(t, x)Dh
xu(t, x) , D(t, x) := χ(t, x)Dh

xη(u)(t, x) .

Since u ≡ f(t, x) satisfies (4.1)–(5.1), the functions A and D defined above satis-
fy (2.1) with

B(t, x) := χ(t, x)Dh
xa(u)(t, x) , E(t, x) := χ(t, x)Dh

xq(u)(t, x) ,

and {
C(t, x) := Dh

xu(t, x)∂tχ(t, x) +Dh
xa(u)(t, x)∂xχ(t, x) ,

F (t, x) := Dh
xη(u)(t, x)∂tχ(t, x) +Dh

xq(u)(t, x)∂xχ(t, x)− χ(t, x)Dh
xμ .

Using the identity (2.2) shows that∫∫
R×R

χ(t, z)2
(Dh

xuDh
xq(u)−Dh

xa(u)Dh
x η(u)

)
(t, z) dz dt

= −
∫∫

R×R

C(t, x)
( ∫ ∞

x

D(t, y)dy
)
dx dt−

∫∫
R×R

F (t, y)
( ∫ y

−∞
A(t, x)dx

)
dy dt .

Proceeding as in the proof of Theorem 4.1, we see that∫ y

−∞
A(t, x)dx =

∫ y

−∞
Dh

x(χu)(t, x) dx −
∫ y

−∞
u(t, x+ h)Dh

xχ(t, x) dx

=

∫ y+h

y

χu(t, x) dx −
∫ y

−∞
u(t, x+ h)

(∫ h

0

∂xχ(t, x+ z) dz
)
dx ,

so that ∣∣∣ ∫ y

−∞
A(t, x) dx

∣∣∣ ≤ ‖u‖L∞
(‖χ‖L∞ + ‖∂xχ‖L1

) |h| .
Likewise ∣∣∣ ∫ ∞

x

D(t, y) dy
∣∣∣ ≤ ‖η(u)‖L∞

(‖χ‖L∞ + ‖∂xχ‖L1

) |h| .
Therefore, assuming that |h| ≤ ε, one has

∣∣∣ ∫∫
R×R

C(t, x)
( ∫ ∞

x

D(t, y) dy
)
dx dt

∣∣∣ ≤M1 |h| ,

with

(5.3) M1 :=
(
2‖u‖L∞‖∂tχ‖L1+‖a(u)‖L∞‖∂xχ‖L1

)‖η(u)‖L∞
(‖χ‖L∞+‖∂xχ‖L1

)
,

while ∣∣∣ ∫∫
R×R

F (t, y)
(∫ y

−∞
A(t, x) dx

)
dy dt

∣∣∣ ≤ (M2 +M3) |h| ,
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with

(5.4) M2 :=
(
2‖η(u)‖L∞‖∂tχ‖L1 + ‖q(u)‖L∞‖∂xχ‖L1

)‖u‖L∞
(‖χ‖L∞ + ‖∂xχ‖L1

)
and

M3 := 2‖u‖L∞
(‖χ‖L∞ + ‖∂xχ‖L1

)‖χ‖L∞

∫ T

0

∫ R+ε

−R−ε

|μ| .

Thus∣∣∣ ∫∫
R×R

χ(t, z)2(Dh
xuDh

xq(u)−Dh
xa(u)Dh

xη(u))(t, z) dz dt
∣∣∣ ≤ (M1 +M2 +M3) |h| .

On the other hand, by Lemma 5.2,

(5.5)
(Dh

xuDh
xq(u)−Dh

xa(u)Dh
xη(u)

) ≥ αU η0U (β + β′)
(β + β′ + 1) (β + β′ + 2)

|Dh
xu|β+β′+2 ,

so that the inequality above entails the estimate∫∫
R×R

χ(t, z)2
∣∣Dh

xu
∣∣β+β′+2

(t, z) dz dt

≤ (β + β′ + 1) (β + β′ + 2)

αU η0U (β + β′)
(
M1 +M2 +M3

) |h| ,

showing that

u ∈ Lβ+β′+2
loc

(
R

∗
+;B

1/(β+β′+2),β+β′+2
∞,loc (R)

)
.

As for the time regularity, pick h ∈ [0, ε] and set

A(t, x) := χ(t, x)Dh
t u(t, x) , D(t, x) := χ(t, x)Dh

t η(u)(t, x) .

Since u ≡ u(t, x) satisfies (4.1)–(5.1), the functions A and D defined above satis-
fy (2.1) with

B(t, x) := χ(t, x)Dh
t a(u)(t, x) , E(t, x) := χ(t, x)Dh

t q(u)(t, x) ,

and {
C(t, x) := Dh

t u(t, x) ∂tχ(t, x) +Dh
t a(u)(t, x) ∂xχ(t, x) ,

F (t, x) := Dh
t η(u)(t, x) ∂tχ(t, x) +Dh

t q(u)(t, x) ∂xχ(t, x)− χ(t, x)Dh
t μ .

At this point, we use the identity (2.3) which shows that∫∫
R×R

χ(t, z)2
(Dh

t uDh
t q(u)−Dh

t a(u)Dh
t η(u)

)
(t, z) dz dt

=

∫∫
R×R

C(s, x)
( ∫ ∞

s

E(t, x) dt
)
dx ds+

∫∫
R×R

F (t, x)
( ∫ t

−∞
B(s, x) ds

)
dx dt .
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As above,

∫ t

−∞
B(s, x) ds =

∫ t

−∞
Dh

x(χa(u))(s, x) ds −
∫ t

−∞
a(u)(s+ h, x)Dh

t χ(s, x) ds

=

∫ t+h

t

χa(u)(s, x) ds−
∫ t

−∞
a(u)(s+ h, x)

( ∫ h

0

∂xχ(s+ τ, x) dτ
)
ds ,

so that ∣∣∣ ∫ t

−∞
B(s, x) ds

∣∣∣ ≤ ‖a(u)‖L∞
(‖χ‖L∞ + ‖∂tχ‖L1

)
h .

Likewise, ∣∣∣ ∫ ∞

s

E(t, x) dt
∣∣∣ ≤ ‖q(u)‖L∞

(‖χ‖L∞ + ‖∂tχ‖L∞
)
h .

Therefore,

∣∣∣ ∫∫
R×R

C(s, x)
( ∫ ∞

s

E(t, x) ds
)
dx dt

∣∣∣ ≤ N1 |h|

with

(5.6) N1 :=
(
2‖u‖L∞‖∂tχ‖L1 + ‖a(u)‖L∞‖∂xχ‖L1

)‖q(u)‖L∞
(‖χ‖L∞ + ‖∂tχ‖L1

)
,

while ∣∣∣ ∫∫
R×R

F (t, x)
( ∫ t

−∞
B(s, x) ds

)
dx dt

∣∣∣ ≤ (M2 +M3) |h| ,

with

(5.7) N2 :=
(
2‖η(u)‖L∞‖∂tχ‖L1+‖q(u)‖L∞‖∂xχ‖L1

)‖a(u)‖L∞
(‖χ‖L∞+‖∂tχ‖L1

)
and

N3 := 2 ‖a(u)‖L∞
(‖χ‖L∞ + ‖∂tχ‖L1

)‖χ‖L∞

∫ T+ε

0

∫ R

−R

|μ| .

Using the inequality (5.5), we conclude that∫∫
R×R

χ(t, z)2
∣∣Dh

t u
∣∣β+β′+2

(t, z) dz dt

≤ (β + β′ + 1) (β + β′ + 2)

αU η0U (β + β′)
(N1 +N2 +N3)h ,

so that

u ∈ Lβ+β′+2
loc

(
R;B

1/(β+β′+2),β+β′+2
∞,loc (R∗

+)
)
,

which concludes the proof. �
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