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A graph counterexample to Davies’ conjecture

Gady Kozma

Abstract. There exists a graph with two vertices x and y such that the
ratio of the heat kernels p(x, x; t)/p(y, y; t) does not converge as t → ∞.

1. Introduction

This paper is concerned with a conjecture of Brian Davies from 1997 on the heat
kernel of Riemannian manifolds, see [4], §5. We will not disprove the conjecture as
stated, but rather transform it to the realm of graphs using a well-known (though
informal) “dictionary” between these two categories, and build a graph that will
serve as a counterexample. We will make some remarks on how the construction
might be carried over back to the category of manifolds, but we will not give all
the details. The bulk of this paper is about graphs.

We start by describing the conjecture in its original setting. Let M be a con-
nected Riemannian manifold, and let p be the heat kernel associated with the
Laplace–Beltrami operator on M . Then Davies’ conjecture states that for any M
and any 3 points x, y, z ∈ M the limit

(1) lim
t→∞

p(x, y; t)

p(z, z; t)

exists and is positive. Here p(x, y; t) is the value of the heat kernel at time t and
at points x and y. This property is known as the “strong ratio limit property”
(where the “weak” version is an averaged result due to Döblin, [5]) or SRLP for
short. So Davies’ conjecture is that in these settings SRLP always holds. SRLP
holds for manifolds with one end [3], and for strongly Liouville manifolds (i.e.,
manifolds where any positive harmonic function is constant), see Corollary 2.7
of [1], which also makes interesting connections between these properties and the
infinite Brownian loop.

Ratio limit properties were considered for Markov chains even earlier. If M is
any Markov chain on a countable state space, then we say that M satisfies SRLP
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if (1) holds for any three states x, y and z, where p(x, y; t) is the probability that
the Markov chain started at x will be at y at time t. For general Markov chains
there are a few examples where SRLP does not hold. Clearly it does not hold
when the Markov chain has some kind of periodicity. F. J. Dyson constructed an
example of an aperiodic recurrent Markov chain which does not satisfy SRLP,
see [2], part I, § 10. That example utilizes long chains of states with only one
outgoing edge, which the walker must traverse sequentially. In particular it is
not reversible.

Now, the Laplace–Beltrami operator is self-adjoint so a proper analog of Davies
conjecture needs to assume that the Markov chain is reversible. Reversible Markov
chains are also known as random walks on weighted graphs. The issue of periodicity
can be dealt with by looking at random walk in continuous time or at lazy random
walk. Lazy random walk is a walk where the walker, at every step, chooses with
probability 1/2 to stay where it is, and with probability 1/2 moves to one of the
neighbours (with probability proportional to the weights).

The main result in this paper is:

Theorem. There exists a connected graph G with bounded weights and vertices
x, y ∈ G such that the heat kernel of the lazy random walk satisfies

(2)
p(x, x; t)

p(y, y; t)
� as t → ∞.

Let us remark on the “bounded weights” clause. When making analogies be-
tween manifolds and graphs, it is often assumed that the manifold has bounded
geometry and the graph has bounded weights. Davies, however, explicitly does
not assume bounded geometry. Thus one might wonder what exactly the graph
analog is. All this is moot, of course, since the counterexample does have bounded
weights (and hence a manifold example constructed along the same line should
have bounded geometry).

It is easy to see that in this setting (reversible, irreducible, lazy) this ratio must
be bounded between two constants independent of t. Hence if it does not converge
then it must fluctuate between two values. The proof constructs a graph with
two halves, denoted He and Ho (e and o standing for even and odd, H standing
for half), which are connected by one edge, (x, y). On the “odd scales”, He will
“look like Z

22” while Ho will “look like Z
3”. This means that to get from x to x

(where x is on the He side), the most beneficial strategy is to move to y as fast as
possible, spend most of your time on the Ho side and return to the He side only
at the last minute. Clearly this would mean that p(x, x; t) is smaller than p(y, y; t)
as the random walk starting from y can stay on its side at all time, not losing
the constant that x needs for the maneuver. For the “even scales” the picture is
reversed and y is at a disadvantage. See Figure 1 – drawing in 22 dimensions might
have distracted the reader, so the figure demonstrates the construction in 1 and 2
dimensions. The smaller two braces in the figure are the first scale, in which Ho

is really one dimensional and He is really two-dimensional. The larger two braces
indicate the second scale. This time Ho is a network of lines so it should be
thought of as two-dimensional, while He is a thick column, so it should be thought
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Figure 1. The graphs Ho and He.

of as one-dimensional. The third scale is only hinted at in this figure, but one
can imagine that Ho now becomes a thick band, so it is again one-dimensional,
while He becomes a network of these thick columns and bands, so it is back to
being two-dimensional.

As one might expect, the numbers 3 and 22 have no particular significance.
They both must be greater than 2, since otherwise our graph would be recurrent
and recurrent graphs always satisfy SRLP, see [10], Theorem 3. And of course
they have to be different. We took here the large value 22 in order to be able to
be wasteful at various points (sum over times and such stuff), but the proof could
proceed with any value larger than 3.

This paper was first written in 2006. I wish to take this opportunity to apologize
to all those who have had to wait so long for it to appear, with no real reason.
My intentions were good but my time management was abysmal. I wish to thank
Yehuda Pinchover for telling me about the problem and for reading early drafts.
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2. Proof

The construction uses Zd-like graphs as building blocks, so we start by quoting a
few results about these. We first recall the notion of rough isometry, [8].

Definition. Let X and Y be metric spaces. We say that X and Y are roughly
isometric if there is a constant C and a map ϕ : X → Y with the following prop-
erties:

i) For all x and y in X ,

1

C
d(x, y)− C ≤ d(ϕ(x), ϕ(y)) ≤ C d(x, y) + C

ii) The image of ϕ is roughly dense, that is, for all y ∈ Y there is an x ∈ X such
that d(y, ϕ(x)) ≤ C

If G and H are graphs we say that they are roughly isometric if they are roughly
isometric when considered with the metric d being the graph distance, namely
d(x, y) is the length of the shortest path between x and y, or ∞ if no such path
exists.

With this definition we can state the following standard result, essentially due
to Delmotte.

Lemma 1. Let G be a graph roughly isometric to Z
d. Then the heat kernel p for

the lazy walk on G satisfies, for all t ≥ 1,

c t−d/2 ≤ p(x, x; t) ≤ C t−d/2.

Here G is a simple graph (we do not allow weights or multiple edges), and C
and c are constants which do not depend on t. In general we will use c for constants
which are small enough and C for constants which are large enough, and different
appearances of c and C can refer to different constants.

Proof. By Delmotte’s theorem, [7], any G which satisfies volume doubling and the
Poincaré inequality, satisfies

p(x, x; t) ≈ 1

|B(x,
√
t)| ,

where B(x, r) is the ball around x with radius r (again with the graph distance),
and |B(x, r)| is the sum of the degrees of the vertices in B. The notation X ≈ Y
is short for cY ≤ X ≤ CY . The fact that G is roughly isometric to Z

d gives

(3) |B(x, r)| ≈ rd ,

so we would get p(x, x; t) ≈ t−d/2, as needed. So we need only show that G satisfies
volume doubling and the Poincaré inequality.
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Now, the definition of volume doubling is that, for every vertex x of G and
every r ≥ 1,

|B(x, 2r)| ≤ C|B(x, r)|,
and this follows immediately from (3). The Poincaré inequality is not much more
complicated. The definition is that, for every vertex x, for every r and for every
function f : B(x, 2r) → R,

(4)
∑

y∈B(x,r)

deg(y) |f(y)− f |2 ≤ C r2
∑

(y,z)∈E(B(x,2r))

(f(y)− f(z))2,

where

f =
1

|B(x, r)|
∑

y∈B(x,r)

deg(y)f(y),

deg(y) is the degree of y, and E(B) is the set of edges both whose vertices are
in B. Now, Zd satisfies the Poincaré inequality (see e.g. [11], §4.1.1). It is well
known and not difficult to see that the Poincaré inequality is preserved by rough
isometries (this uses the fact that

∑
deg(y)|f(y)− a|2 is minimized when a = f).

This finishes the proof. �

Lemma 2. Let G be a graph roughly isometric to Z
d, d ≥ 3, and let x be some

vertex. Let p be the probability that lazy random walk starting from x returns to x
for the first time at time t. Then p ≥ c t−d/2.

Proof. Let p1 be the same probability but without the restriction that this is the
first return to x. This is exactly p(x, x; t) and by Lemma 1 we have p1 ≥ ct−d/2.
Fix some K and examine the event that the random walk returns to x at t and also
at some time s ∈ [K, t −K]. Let p2 be its probability. Using the other direction
in Lemma 1, we can write

p2 ≤
t−K∑
s=K

p(x, x; s) p(x, x; t − s) ≤ C

t−K∑
s=K

s−d/2(t− s)−d/2 ≤ C K1−d/2 t−d/2.

Since d ≥ 3 we can choose K sufficiently large such that p2 ≤ p1/2. So we know
that with probability p1 − p2 ≥ ct−d/2 the walk does not return to x between K
and t−K. If it does reach x before time K, do some local modification so that it
does not. For example, if the original walker reached x at some time s < K and on
the next step went to some neighbour y of x, modify it to walk to y in the first step
and stay there for s steps (remember that our walk is lazy) and then continue like
the original walker. Clearly this “costs” only a constant and ensures our walker
does not visit x in the interval [1,K]. Do the same for the interval [t−K, t− 1],
losing another constant. This finishes the proof. �

Lemma 3. Let G be a graph and let p be the heat kernel for the lazy walk on G.
Let t and s satisfy |t− s| ≤ √

t. Then,

|p(x, x; t) − p(x, x; s)| ≤ C
|t− s| log3 t√

t
p(x, x; t) + C e−c log2 t.
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Proof. Denote by q(x, y; t) the heat kernel for the simple random walk on G. Then
by definition,

p(x, x; t) =

t∑
i=0

q(x, x; i)

(
t

i

)
2−t.

Writing the same formula for p(x, x; s) and subtracting we get

|p(x, x; t)− p(x, x; s)| ≤
∑
i

q(x, x; i)

((
t

i

)
2−t −

(
s

i

)
2−s

)
= Σ1 +Σ2 ,

where Σ1 is the sum over all |t − 2i| ≤ √
t log t and Σ2 is the rest. A simple

calculation with Stirling’s formula shows that

2−t

(
t

i

)
=

√
2

πt
exp

(
− (t− 2i)2

2t

(
1 +O

( |t− 2i|+ 1

t

)))
.

We now bound the difference between these expressions at t and at s by the
maximum of the derivative, and get, for i such that |t− 2i| ≤ √

t log t,∣∣∣∣ 2−t

(
t

i

)
− 2−s

(
s

i

) ∣∣∣∣ ≤ |t− s|
(C + C|t− 2i|

t3/2
+

C|t− 2i|3
t5/2

)
exp

(
− (t− 2i)2

2t

)
≤ C |t− s| log3 t

t
exp

(
− (t− 2i)2

2t

)
.

Summing over i now gives

Σ1 ≤
∑

|t−2i|≤√
t log t

q(x, x; i)

√
2

πt
e−(t−2i)2/2tC|t− s| log3 t√

t
≤ C

|t− s| log3 t√
t

p(x, x; t),

while
Σ2 ≤ C

∑
|t−2i|>√

t log t

e−c(t−2i)2/t ≤ Ce−c log2 t,

proving the lemma. �

Proof of the Theorem. Abusing notation, for subsets H ⊂ Z
d we will not distin-

guish between H as a set and as an induced subgraph of Zd (d will be 22). For
the construction we need a sufficiently fast increasing sequence a1 < a2 < · · · . We
further assume that ak are all even and that ak−1 divides ak/2. It would have
probably been enough to choose ak = 2ak−1 , but it turns out simpler to choose the
ak inductively, and we do this as follows. Let a1 = 2. Assume a1, . . . , ak−1 have
been defined. Define, for integers m < l/2 and i ∈ {1, . . . , 22},

Ql,m,i :=
{
�n ∈ Z

22 : |ni mod l| ≤ m
}

Ql,m :=
⋃

I⊂{1,...,22}
|I|=19

⋂
i∈I

Ql,m,i.
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Here n mod l ∈ {−
(l− 1)/2�, . . . , 
l/2�}. In words, Ql,m,i is a 21-dimensional
subspace of Z22 orthogonal to one of the axes, fattened up by 2m + 1 (a “slab”)
and repeated periodically with period l. Ql,m is the collection of all 3-dimensional

subspaces, fattened and repeated similarly. The particular point �0 is in fact con-
tained in all

(
22
3

)
of these 3-dimensional slabs which will be a little inconvenient,

so let us shift Ql,m by

v(m) =
(

1
2m, . . . , 1

2m︸ ︷︷ ︸
3 times

, 0, . . . , 0︸ ︷︷ ︸
19 times

)
.

In the shifted set Ql,m + v(m), the geometry of the neighbourhood of �0 is simpler;
it is contained in just one slab. Compare with the figure on page 3. The point x is
in the middle of a fat column and not at the intersection of a column and a band.

We want to use these graphs with l = aj and m a little larger than aj−1.
Precisely, define

bj =

j∑
k=1

ak.

With this choice of bj , Q(aj , bj−1, i) contains only complete components of Q(al,
bl−1, i) for each l < j. Each such component is either contained in Q(aj , bj−1, i)
or disjoint from it. The same holds for the translations Q(al, bl−1, i) + v(al) (we
need here that al > 4al−1 so let us assume this from now on). For brevity, define
vj = v(aj).

We may now define two graphs, denoted by He
k−1 and Ho

k−1 (“e” and “o”
standing for even and odd) by

H
e/o
k−1 :=

⋂
2≤j≤k−1
j even/odd

(Qaj ,bj−1 + vj).

We shall usually suppress the k − 1 from the notation. It is not difficult to check
that He/o are both roughly isometric to Z

22 (the rough isometry constant depends
on the “past” a1, . . . , ak−1). Therefore by Lemma 1 we see that there exists an α
(again, depending on the past) such that

(5) pHe/o (x, x; t) ≤ α t−11.

Examine now the graphs

F
e/o
k−1 := H

e/o
k−1 ∩

{
�n ∈ Z

22 : |ni| ≤ bk−1 ∀i = 4, . . . , 22
}
.

F e/o are both roughly isometric to Z
3 so by Lemma 2 there exists some β such

that

(6) PF e/o(the walk returns to �0 for the first time at t) ≥ 1

β
t−3/2.

Define γk := �max{α, β}� (as usual, �·� stands for the upper integer value). With
these we can define ak to be any even number satisfying ak > 2γ4

k + 4ak−1 and
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such that ak−1 divides ak/2. This completes the description of the induction, and
we define

He/o
∞ :=

⋂
2≤j

j even/odd

(Qaj ,aj−1 + vj).

These graphs will be the two halves of our target graph G.

Before continuing, let us collect some simple facts about H
e/o
∞ :

i) H
e/o
∞ is connected. In fact we used this indirectly when we claimed H

e/o
k are

roughly isometric to Z
22.

ii) H
e/o
∞ are transient. This follows because each contains a copy of Z3 (namely

{n4 = · · · = n22 = 0}) and transience is preserved upon adding edges. This
last fact follows from conductance arguments, see e.g. [6].

Define therefore the escape probabilities

εe/o := P
�0

H
e/o
∞

(R(t) �= �0∀t > 0)

(R being the random walk on the graph) and let δ := 1
2 min{εe, εo}. Define the

graph G by connecting He∞ to Ho∞ with a single edge with weight δ between �0e

and �0o. Define x := �0e and y = �0o. This is our construction and we need to
show (2), which will follow if we show that, for k sufficiently large,

(7)
p(x, x; t2k) ≥ 3 p(y, y; t2k)

p(x, x; t2k+1) ≤ 1
3 p(y, y; t2k+1)

}
tk := γ4

k.

We will only prove the even case. The proof of the odd case is similar.
Examine p(x, x; t2k). Since a2k > t2k we get that

He/o
∞ ∩ [−t2k, t2k]

22 = H
e/o
2k ∩ [−t2k, t2k]

22

or in other words, the steps after 2k have no effect whatsoever. Similarly it is
possible to simplify the last stage. Namely,

He
2k ∩ [−t2k, t2k]

22 = He
2k−1 ∩ (Qa2k,b2k−1

+ v2k) ∩ [−t2k, t2k]
22 =

= He
2k−1 ∩

{
�n ∈ Z

22 : |ni| ≤ b2k−1 ∀i = 4, . . . , 22
}
= F e

2k−1

(here is where the translations by vj are used). By (6),

pG(x, x; t2k) ≥ 1

2
PHe

2k
(R returns to x for the first time at t) ≥

(6)

≥ 1

2γ2k
t
−3/2
2k =

1

2
t
−7/4
2k(8)

(the 1/2 comes from the first step).
To estimate p(y, y; t2k) we divide the event {R(t2k) = y} according to whetherR

“essentially goes through x” or not. Formally, denote by T1 and T2 the first and
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last time before t2k when R(T ) = x (if this does not happen, denote T1 = ∞ and
T2 = −∞). Then we define

p1 := P(T1 > γ2k, R(t2k) = y)

p2 := P(T2 < t2k − γ2k, R(t2k) = y)

p3 := P(T1 ≤ γ2k, T2 ≥ t2k − γ2k, R(t2k) = y),

so that p(y, y; t2k) ≤ p1 + p2 + p3.
Now, p1 and p2 are easy to estimate. As above we have

Ho
2k ∩ [−t2k, t2k]

22 = Ho
2k−1 ∩ [−t2k, t2k]

22,

so (5) applies and we get

(9) P
y
Ho∞

(R(t) = y) ≤ γ2kt
−11 ∀t ≤ t2k.

Therefore,

p1 ≤
t2k−1∑
t=γ2k

P(T1 = t, R(t2k) = y) + P(T1 = ∞, R(t2k) = y)

≤
t2k−2∑

t=γ2k−1

PHo∞(R(t) = y) + PHo∞(R(t2k) = y)

(9)

≤
t2k−2∑

t=γ2k−1

γ2k · t−11 + γ2k · t−11
2k C γ−9

2k = C t
−9/4
2k

(8)
= o(p(x, x; t)),(10)

and similarly for p2. As for p3, we have

P(T1 ≤ γ2k) ≤
( ∞∑

i=0

PHo∞(r visits y i times before γ2k)
)
· δ ≤ δ

εo
≤ 1

2
,

and similarly (using time reversal) for P(T2 ≥ t2k − γ2k). Hence we get

p3 ≤ 1

4
max

t2k−2γ2k≤s≤t2k
p(x, x; s),

and, by Lemma 3,

p3 ≤ 1

4
p(x, x; t2k)

(
1 +O

(γ2k log3 t2k√
t2k

))
+O(e−c log2 t2k)

(8)

≤ 1

4
p(x, x; t2k) (1 + o(1)).

With the estimate (10) for p1 and the corresponding estimate for p2 we get

p(y, y; t2k) ≤ p(x, x; t2k)
(1
4
+ o(1)

)
.
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A completely symmetric argument shows that at t2k+1 the opposite occurs:

p(x, x; t2k+1) ≤ p(y, y; t2k+1)
(1
4
+ o(1)

)
proving the theorem. �

Remark. If one wants an example with unweighted graphs, this is not a problem;
He and Ho are already unweighted, so the only thing needed is to connect them,
instead of with an edge of weight δ, with a segment sufficiently long such that the
probability to traverse it is ≤ δ. The proof remains essentially the same.

3. Manifolds

We would like to exhibit a manifold M and two points x, y ∈ M such that the heat
kernel on M satisfies

p(x, x; t)

p(y, y; t)
�

as t → ∞. Here is how one might translate the construction of our theorem to the
setting of manifolds. The dimension of the manifold plays little role, so we might
as well construct a surface.

To a subset H ⊂ Z
22 one can associate a manifold H∗ by replacing each vertex

v ∈ H with a sphere v∗ and every edge with a empty, baseless cylinder. Since the
degree of every vertex in H is ≤ 44, we may simply designate 44 disjoint circles
on S

2 and attach the cylinders to the spheres at these circles. This is reminiscent of
the well-known “infinite jungle gym” construction, see some lovely pictures in [9].
The exact method of doing so is unimportant since anyway the manifold that we
get is roughly isometric to H , considered as an induced subgraph of Z22 (one of
the nice features of rough isometry is that continuous and discrete objects may
be roughly isometric, as rough isometry inspects only the large scale geometry).
Clearly H∗ can be made to be C∞.

One can then construct a (possibly different) sequence ak and two manifolds(
H

e/o
∞

)∗
with the only difference being that the α and β must satisfy (5) and (6) for

our choice of the ∗ operation. This should be possible since
(
H

e/o
k

)∗
and

(
F

e/o
k

)∗
are roughly isometric to Z

22 and Z
3 respectively. Instead of Delmotte’s theorem [7]

one can use the manifold version [12] (or rather, Delmotte’s theorem is the graph
version of earlier results for manifolds, see [12] for historical remarks).

The argument for the transience of
(
H

e/o
∞

)∗
should also be direct translation.

Each contains a submanifold (with boundary) which is roughly isometric to Z
3 and

therefore is transient. Since transience is equivalent to the fact that for some c > 0
every function which is 1 at x and 0 at infinity satisfies that the Dirichlet form
〈∇f,∇f〉 > c, and since restricting to a submanifold only decreases the Dirichlet

form, we see that
(
H

e/o
∞

)∗
are transient. Write

εe/o = inf
x∈v∗,v∼�0e/o

P
x
(
W [0,∞) ∩ (

�0e/o
)∗

= ∅),
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where W here is the Brownian motion on the manifold
(
H

e/o
∞

)∗
; and where the

infimum is taken over all x belonging to a sphere v∗ where v is some neighbour

of �0e/o in H
e/o
∞ . One can now define δ = 1

2 min(εe, εo) and connect �0e to �0o by a
cylinder sufficiently thin (or sufficiently long) such that the probability to traverse
it in either direction before reaching a neighbouring sphere is ≤ δ. This concludes
a possible construction of a manifold M , and one may take x to be an arbitrary
point in

(
�0e
)∗

and y and arbitrary point in
(
�0o

)∗
.

The proof that p(x, x; t)/p(y, y; t) does not converge should not require signif-
icant changes. We note that in our case it is possible for a Brownian motion at
time t to exit the box [−t, t]22, but it is exponentially difficult to do so. Hence, for
example, instead of (8) we get

p(x, x; t2K) ≥ 1

2γ2
2k

t
−3/2
2k − C e−c t2k ≥ 1

4
t
−7/4
2k

for k sufficiently large. Another point to note is that Lemma 3 needs to be replaced
with an appropriate analog.
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