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The Alexander module of a trigonal curve

Alex Degtyarev

Abstract. We describe the Alexander modules and Alexander polynomi-
als (both over Q and over finite fields Fp) of generalized trigonal curves.
The rational case is completely resolved; in the case of characteristic p > 0,
a few points remain open. The results obtained apply as well to plane
curves with deep singularities.

1. Introduction

1.1. Motivation

This paper continues the systematic study of the fundamental groups of (gener-
alized) trigonal curves that was started in [6]. (By a common abuse of language,
when speaking about the fundamental group of an embedded curve, one means the
group of the complement of the curve; see Subsection 3.4 for the precise description
of the groups to be studied.) The principal motivation for this research is the belief
that there should be strong restrictions on the complexity of these groups, far be-
yond the obvious fact that they admit presentations with at most three generators.
Thus, only about a dozen distinct groups appear as the fundamental groups of ir-
reducible plane sextics with a triple point (see [10] and references therein), which
are a special class of generalized trigonal curves. (Remarkably, the commutants
of most finite groups obtained in this way are of the form SL(2, k), where k is a
finite field.) These restrictions are due to the fact that the monodromy group of a
trigonal curve is a genus zero subgroup of the modular group, see Subsection 3.2
and Theorem 3.2; hence, it is sufficiently ‘large’, resulting in a sufficiently small
fundamental group. At present, it is not quite clear how or even in what terms
such fundamental groups can be characterized; as a first step, we make an attempt
to describe their metabelian invariants.

Another special feature of trigonal curves is the fact that, in this case, the
relation between the fundamental group and the geometry of a curve is ‘two-
sided’, as all curves with ‘at least’ a certain fundamental group are essentially
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induced from some universal curve with this property, see Speculation 1.2.1 and
a number of examples in [6]. For example, Theorem 1.2.5 in [6] characterizes the
so-called curves of torus type in terms of their Alexander polynomials; remarkably,
a very similar assertion holds for irreducible plane sextics, see [9]. An essential
intermediate statement concerning the universal curves is recalled as Theorem 3.2.

A generalized trigonal curve in the Hirzebruch surface Σ1 (the plane blown
up at one point) can be regarded as a curve in the plane P2 = Σ1/E, where E
is the exceptional section, and as such it has a distinguished singular point of
multiplicity (degree − 3), see Subsection 3.5. Thus, the study of trigonal curves
sheds light on the classical problem about the fundamental group of a plane curve.
(It is this construction that motivated my original interest in trigonal curves.) As
an example, the passage to the trigonal model, combined with the techniques of
dessins d’enfants described below, lets one compute the fundamental groups of
all irreducible sextics with a singular point of multiplicity at least three, see [10],
whereas the groups of a number of sextics with only double singular points are still
unknown. It is worth mentioning that there is a mysterious similarity, although
not quite literal coincidence, between the properties of plane sextics and those
of trigonal curves (see [6] for a more detailed discussion); it must be due to the
similarity between K3- and elliptic surfaces.

The principal tool used in this paper is the correspondence between trigonal
curves in Hirzebruch surfaces, genus zero subgroups of the modular group, and a
certain class of planar bipartite ribbon graphs (essentially, Grothendieck’s dessins
d’enfants for the modular j-invariant), see, e.g., [2], [3], [6], [11], and[14]. As a by-
product, we obtain some information on the sparseness of the image of the Burau
representation of the braid group B3, see Remark 1.6 on the ‘Burau congruence
subgroups’, although no attempt to formalize these results has been made.

1.2. The subject

In [6], we gave a complete classification of the dihedral quotients of the fundamental
group of a generalized trigonal curve. Here, we deal with the ultimate metabelian
invariants of a curve, viz. its so-called Alexander module and Alexander polyno-
mial. In the context of algebraic curves, this concept appeared essentially in [23]; it
was later developed in [15], [16], [17] and [18], and it has been a subject of intensive
research since then, see the recent surveys [19] and [21] for further references.

For an irreducible generalized trigonal curve C in the Hirzebruch surface Σd

(see Section 3), the Alexander module AC can be defined as the homology group
H1(X) of the maximal cyclic covering X → Σd ramified at C and the excep-
tional section E, see Subsections 2.6 and 3.4 for details. The deck translation
automorphism of the covering induces an action on AC , turning it into a module
over the ring Λ := Z[t, t−1] of Laurent polynomials. This module describes the
fundamental group of the curve modulo its second commutant. Classically, one
tensors AC by Q to get a torsion module over the principal ideal domain Λ ⊗ Q;
the order ΔC of AC ⊗Q is called the Alexander polynomial of C. To capture the
integral torsion of AC , we will also consider the product AC ⊗Fp for a prime p; the
order ΔC,p ∈ Λ ⊗ Fp of this product is called the (mod p)-Alexander polynomial.
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(A similar approach was used in [16], where some (mod p)-Alexander polynomials
were computed.)

As in the knot theory, the Alexander polynomial is a purely algebraic invariant
of the fundamental group of the curve, but it is usually much easier to compute
directly. The classical rational polynomial ΔC(t) can be computed by means of
Hodge theory, in terms of the superabundance of certain linear systems related
to the singularities of the curve, see [7], [13], [16], and [20]. (Although most
results are stated for plane curves, they can easily be adapted to curves in any
surface.) Moreover, there are many so-called divisibility theorems bounding the
Alexander polynomial in terms of the degree of the curve and/or its singularities.
Some of these theorems, e.g., [15], [16], are of a purely topological nature and
apply as well to pseudo-holomorphic curves and (mod p)-Alexander polynomials.
Others, e.g., [8], rely on vanishing theorems in algebraic geometry; these give better
estimates, but work only for algebraic curves and rational Alexander polynomial.
All these statements are in sharp contrast with the principal results of this paper,
as we show that, for each p, the (mod p)-Alexander polynomial of a trigonal curve
may take only finitely many values, no matter what the singularities are. The
particular case p = 0, see Theorem 1.2, can be translated into a certain restriction
on the complexity of the singularities of a trigonal curve and their mutual positions:
the superabundance of some linear systems cannot be too large.

1.3. Principal results

Throughout the paper, we assume that p is a prime or zero and let k0 = Q
and kp = Fp for p > 0. (When p is fixed, we abbreviate kp to k.) For an
element ξ algebraic over k, we denote by κξ ∈ k[t] its minimal polynomial and, if ξ
is understood, we let K = k(ξ) = (Λ⊗k)/κξ. The cyclotomic polynomial (over Q)
of order n is denoted by Φn.

As this paper is just a first step towards the understanding of the Alexander
module, we choose to work over a field and consider the specializations AC(ξ) :=
(AC ⊗ k)/κξ, see Subsection 2.7, thus reducing to r = 1 the higher torsion sum-
mands of the form Zpr or (Λ⊗k)/κr

ξ , r > 1, which may and do appear when p > 0.
In other words, we are trying to enumerate the possible roots ξ of the Alexander
polynomial ΔC,p or, equivalently, its irreducible factors, which are of the form κξ.
Note that AC(ξ) is a vector space over K, and therefore we can speak about its
dimension rather than rank.

Convention 1.1. Since ΔC,p is defined over kp itself, the set of its roots is Galois
invariant. For this reason, in most statements we refer to the minimal polynomials
κξ ∈ kp[t] rather than to particular roots ξ ∈ Kp. With ξ or κξ understood, we fix
the notation N for the multiplicative order ord(−ξ). Certainly, N is determined
by p and κξ; however, in view of the importance of this parameter, we will speak
about triples (p,N,κξ) rather than just pairs (p,κξ) (or even singletons κξ, which
formally retain the information abou kp as their coefficient field). It is worth
mentioning that each pair (p,N), N � 1, corresponds to but finitely many minimal
polynomials κξ, viz. the irreducible divisors (over kp) of ΦN (−t), and in some
statements it is (p,N) that is fixed or discussed, whereas κξ is allowed to vary.



28 Alex Degtyarev

Table 1. Exceptional factors of Δ (N > 10)

p N Factors κξ ∈ Fp[t] of Δ Ḡ ⊂ Γ

2 ∗15 t4 + t+ 1, t4 + t3 + 1 (17; 1, 2; 12151)
5 12 t2 + 2t+ 4, t2 + 3t+ 4 (52; 0, 4; 14124)

13 ∗12 t+ 2, t+ 6, t+ 7, t+ 11 (14; 0, 2; 12121)
19 18 t+ 2, t+ 3, t+ 10, t+ 13, t+ 14, t+ 15 (40; 2, 4; 1221182)

The principal results of the paper are summarized in the next four statements.
We resolve completely the case p = 0, while for p > 0 a certain range still remains
open. Conjecturally, the Alexander polynomial of a non-isotrivial trigonal curve
can take finitely many values, and all irreducible factors are indeed listed in the
paper (with Table 3 in Example 5.12 taken into account). Note that, unlike a
number of known divisibility theorems (cf. [15], [16], and [8]), the bounds below
are universal, as we do not make any assumptions about the singularities of the
curve or its degree.

Theorem 1.2. The Alexander polynomial ΔC of an irreducible non-isotrivial gen-
eralized trigonal curve C can take only the following four values : Φ6, Φ2

6, Φ10,
and Φ2

10. All four values can be realized by genuine trigonal curves.

Theorem 1.3. Let p > 0, and assume that the (mod p)-Alexander polynomial
ΔC,p of a non-isotrivial generalized trigonal curve C has a root ξ ∈ K ⊃ kp.
Then, with the exception of the fourteen triples (p,N,κξ) listed in Table 1, one has
1 � N � 10. If C is irreducible and N �= 3 or 5, one has dimK AC(ξ) = 1.

Addendum 1.4. In the setting of Theorem 1.3, assume in addition that N � 5
and C is irreducible. Then the pair (p,N) and the dimension r := dimK AC(ξ)
take the following values :

1. (p,N) = (3, 4) and r = 1;

2. (p,N) = (3, 1) or (p, 3), p �= 3, with r � 2;

3. (p,N) = (5, 1) or (p, 5), p �= 5, with r � 2;

4. (p,N) = (7, 1) and r = 1.

All four possibilities for (p,N) (and all possibilities for r) are realized by genuine
trigonal curves, and for such curves they are mutually exclusive.

Addendum 1.5. For each pair (p,N) as in Table 1, at most one of the factors κξ

listed can appear in the Alexander polynomial of any given curve. The six triples
(p,N,κξ) marked with a ∗ in the table do appear in the Alexander polynomials of
genuine trigonal curves ; the other eight do not.

Theorem 1.2 is proved in Subsection 6.7. Theorem 1.3 and Addendum 1.5
are proved in Subsection 5.4, and Addendum 1.4 merely summarizes the detailed
description of the modules AC/ΦN (−t), N � 5, given in Subsections 6.2–6.4.
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In Table 1, the last column gives a description of the projection to the modular
group Γ := PSL(2,Z) of the corresponding universal subgroup, see Definition 2.14.
Listed are the index [Γ : Ḡ], the numbers c2, c3 of the conjugacy classes of elements
of order 2 and 3, respectively, and the set of cusp widths in the partition notation,
see [5]. These data do not determine the subgroup completely, but drawing large
diagrams does not seem practical here. Note that, in each case marked with a ∗, the
universal subgroup Ḡ′ corresponding to genuine trigonal curves is smaller than the
one listed: one has [Ḡ : Ḡ′] = 3. Each time, the skeleton of Ḡ, see Subsection 2.4,
has one monovalent •-vertex and one monogonal region with the type specification
nontrivial modulo 6, see Subsection 2.5, and the skeleton of Ḡ′ is the triple cyclic
covering ramified at these vertices and regions.

1.4. Ramifications and speculations

The assumption that the trigonal curve in question be irreducible is not very
important. Lifting this requirement would result in a few extra factors with N =
1, 2, or 4; they are controlled by congruence subgroups and thus can easily be
enumerated, see Subsections 6.3 and 6.1. (The case N = 1 is known, see [6].)

As an extra remark, note that, for genuine trigonal curves, each triple (p,N,κξ)
among those listed appears in the Alexander polynomial ‘in a unique way’, in the
sense that, up to Nagata equivalence, each curve C with κξ | ΔC,p is induced
from a certain universal curve with this property, see Subsection 3.1 for the defini-
tions. This statement follows from the uniqueness of the corresponding universal
subgroups (found in the computation) and Theorem 3.2.

All four statements apply equally well to plane curves with a singular point of
multiplicity deg− 3 (as they can be regarded as generalized trigonal curves in the
Hirzebruch surface Σ1, see Subsection 3.5), provided that the trigonal model of
the curve is not isotrivial. The relatively simple case of irreducible isotrivial curves
is discussed in Subsection 4.7; the degrees of the Alexander polynomials of such
curves are not universally bounded.

The parabolic case N = 6 is treated in Section 7; we do not mention it here
as it does not seem to lead to nontrivial conventional Alexander polynomials. (In
fact, we mainly study the so-called extended Alexander polynomials, which depend
on the monodromy group of the curve rather than on its fundamental group only,
see Definition 2.12 and Remark 2.13.) The range 7 � N � 10 remains open. A
few examples are found in Table 3 in Example 5.12. I conjecture1 that Tables 1
and 3 do exhaust all possibilities with N � 7. Among other consequences, this
conjecture would imply that, as an abelian group, AC has p-torsion for finitely
many primes p only; the current list is 2 � p � 43 but p �= 23, 31, or 41.

Another question left open for N > 5 is which pairs, triples, etc., of factors κξ

can appear simultaneously in the Alexander polynomial of a particular curve. This
problem reduces to computing the genera of the intersections of the corresponding
universal subgroups, including all their conjugates, or, equivalently, the genera of
the connected components of the fibered products of their skeletons. We postpone
this computation until the conjecture above has been settled.

1Added in proof: this conjecture has been proved in [12].
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It is worth mentioning that none of the groups Ḡ listed in Tables 1 and 3 is
a congruence subgroup of Γ (which is easily shown using the ‘signatures’ listed
and the tables found in [5]). This fact refutes my original expectation that the
fundamental group of a non-isotrivial genuine trigonal curve might be controlled
by congruence subgroups.

1.5. Idea of the proof

Modifying the classical Zariski–van Kampen theorem, see Theorem 3.4, one re-
duces the study of the fundamental group of a (generalized) trigonal curve C to
a question about its monodromy group ImC , which is a subgroup of the braid
group B3 (respectively, of its extension via the inner automorphisms of the free
group F). Crucial is the fact that the projection of ImC to the modular group Γ
is a subgroup of genus zero, see [6] and Theorem 3.2, which imposes a very strong
restriction on ImC . The Alexander polynomial is controlled by the reduced Burau
representation, see [4], [18] and Subsection 2.2, which is a B3-action on a certain
universal Alexander Λ-module A ∼= Λ ⊕ Λ. Then, there remains to describe the
‘Burau congruence subgroups’ {β ∈ B3 |β = id mod V}, where V ⊂ A is a fixed
submodule, and select those that are of genus zero.

Unfortunately, no convenient description of the image of B3 in Mat2×2(Λ) seems
to be known, and we take a more geometric approach. A subgroup G ⊂ B3 is
represented by its skeleton Sk, see Subsection 2.4, which is a certain planar (in the
genus zero case) bipartite ribbon graph. Then, in Section 4, we derive some local
restrictions on the geometry of Sk necessary for the nonvanishing of the Alexander
module. In Section 5, these local restrictions and the planarity condition (Euler’s
formula χ(S) = 2, where S is the minimal supporting surface of Sk) are used to
narrow N down to the range N � 26 (or N � 21 if p = 0). In this finite range,
we use a computer aided analysis to improve the a priori bound on the number of
‘small’ regions of Sk and reduce it further to N � 10, with the exception of finitely
many triples (p,N,κξ), p > 0, see Corollary 5.10. For each exceptional triple, we
compute the genus of the corresponding universal subgroup G by a straightforward
coset enumeration in the finite group GL(2,Kp), thus proving Theorem 1.3.

In Section 6, the case N � 5 is reduced to congruence subgroups of Γ, allowing
an easy classification of the Alexander modules. Then, for p = 0, we eliminate the
range 6 � N � 10 and prove Theorem 1.2. (For N = 7 and 9, we have to use
Maple to show that the corresponding universal subgroups are of infinite index.)

Sections 2 and 3 are preliminary: we introduce the groups used and the neces-
sary technical tools and explain the relation between trigonal curves and subgroups
of B3. Section 7 deals with the parabolic case N = 6: we discover an infinite series
of non-congruence subgroups of genus zero with nontrivial extended Alexander
module.

Remark 1.6. As an interesting by-product of this research, not quite related to
the original problem, we discover that ‘Burau congruence subgroups’ described
above behave quite differently from the conventional congruence subgroups of Γ:
there are finitely many subgroups forN � 5, infinitely many finite index subgroups,
all of genus zero or one, for N = 6, and the subgroups seem to be of infinite index
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for N � 7 (although formally the latter claim has only been proved for N = 7
and 9). Apparently, this is due to the fact that the Burau representation on
A/ΦN (−t) is highly nontransitive for N � 7.

Acknowledgements. I am grateful to A. Libgober for his helpful remarks and
stimulating discussions of the subject. The final version of the manuscript was
prepared during my sabbatical stay at l’Instutut des Hautes Études Scientifiques
and Max-Planck-Institut für Mathematik; I would like to extend my gratitude to
these institutions for their support and hospitality.

2. The braid group

In this section, we introduce the braid group B3 and related objects, the principal
purpose being fixing the notation and terminology.

2.1. The group B3

Let F = 〈α1, α2, α3〉 be the free group on three generators. The braid group B3 can
be defined as the group of automorphisms β : F → F with the following properties:

• each generator αi is taken to a conjugate of a generator;
• the element ρ := α1α2α3 remains fixed.

Recall, see [1], that B3 = 〈σ1, σ2 |σ1σ2σ1 = σ2σ1σ2〉, the Artin generators σ1, σ2

acting on F via

σ1 : α1 �→ α1α2α
−1
1 , α2 �→ α1; σ2 : α2 �→ α2α3α

−1
2 , α3 �→ α2.

Note that the set of Artin generators depends on the basis {α1, α2, α3}.
In the sequel, we reserve the notation F for the free group supplied with a

B3-action, or, equivalently, with a distinguished set of bases constituting a whole
B3-orbit. Any basis in the distinguished orbit is called geometric; any such basis
gives rise to a pair of Artin generators of B3. We will also consider the degree
homomorphisms

deg: F → Z, α1, α2, α3 �→ 1, dg : B3 → Z, σ1, σ2 �→ 1.

It is straightforward that they do not depend on the choice of a geometric basis
{α1, α2, α3} and that for any α ∈ F, β ∈ B3 one has deg β(α) = degα.

With generalized trigonal curves in mind, see Subsection 3.3, we introduce also
the extended group B3 · InnF ⊂ AutF, where InnF ∼= F is the subgroup of inner
automorphisms of F. The intersection B3 ∩ InnF is the cyclic group generated
by (σ2σ1)

3 = ρ; hence the degree map extends to the product via dg(β · α) =
dg β + 2degα, where β ∈ B3 and α ∈ InnF ∼= F.

The natural action of B3 · InnF on the set of conjugacy classes of geometric
generators defines an epimorphism B3 · InnF � S3. A subgroup G ⊂ B3 · InnF
is said to be S-transitive if this action, restricted to G, is transitive. Clearly, G is
S-transitive if and only if its image under the above epimorphism contains a cycle
of length three.
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Given two subgroups G and H of B3 or B3 · InnF (or any of the quotients
Bu3, Γ̃, or Γ considered below), we write G ∼ H if G is conjugate to H and G ≺ H
if G is subconjugate to H , i.e., if G is conjugate to a subgroup of H .

2.2. The Burau representation

Denote by A the abelianization of the kernel Ker deg, and let [h] ∈ A be the class of
an element h ∈ Ker deg. An element α ∈ F of degree one defines a homomorphism
t : A → A, [h] �→ [αhα−1], which does not depend on α. Thus, A turns into a
module over the ring Λ := Z[t, t−1] of Laurent polynomials. An easy computation
shows that A = Λe1 ⊕ Λe2, where e1 = [α2α

−1
1 ], e2 = [α3α

−1
2 ] in some geometric

basis {α1, α2, α3}.
Since the B3-action on F preserves the degree, it restricts to a certain action

on A, which is called the (reduced) Burau representation, see [4]. This represen-
tation is faithful; for this reason we identify an element β ∈ B3 and the matrix in
Mat2×2(Λ) representing it. The Artin generators σ1 and σ2 corresponding to the
chosen geometric basis {α1, α2, α3} (the one used to define e1 and e2) act via

σ1 =

[−t 1
0 1

]
, σ2 =

[
1 0
t −t

]
,

and the powers of these matrices are given by

(2.1) σm
1 =

[
(−t)m ϕ̃m(−t)

0 1

]
, σm

2 =

[
1 0

tϕ̃m(−t) (−t)m

]
,

where ϕ̃m(t) := (tm − 1)/(t− 1). For future reference, observe that, for any r ∈ Z,
one has

(2.2) (t+ 1) tr ϕ̃m(−t) + tr(−t)m = tr.

The following two matrices are also used in the sequel:

σ2σ1 =

[−t 1
−t2 0

]
, σ2σ1σ2 =

[
0 −t

−t2 0

]
.

The Burau representation extends to the product B3 · InnF. Clearly, the map
InnF = F → Mat2×2(Λ) is given by α �→ tdegα id. The image of B3 · InnF in
the group GL(2,Λ) is denoted by Bu3; it is the central product B3 � Z, obtained
by identifying the center Z(B3) and the subgroup 3Z ⊂ Z (both subgroups being
generated by t3 id). The center Z(Bu3) is the cyclic subgroup formed by all scalar
matrices tr id. The degree map dg descends to Bu3 and coincides, essentially, with
the determinant: one has detβ = (−t)dg β for any β ∈ Bu3.

Given two submodules U ,V ⊂ A, we say that U is conjugate to V , U ∼ V , if
V = β(U) for some β ∈ B3, and U is subconjugate to V , U ≺ V , if U is conjugate
to a submodule of V . Clearly, in this definition B3 can be replaced with Bu3.

For an ideal I ⊂ Λ, we will use the notation U ∼ V mod I and U ≺ V mod I
meaning the images of the modules in A/I. If I = Λf , f ∈ Λ, is a principal ideal,
we abbreviate mod Λf to mod f .
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2.3. The modular representation

Specializing all matrices at t = −1, one obtains homomorphisms B3,Bu3 → Γ̃ :=
SL(2,Z), which give rise to the modular representation

prΓ : B3,Bu3 → Γ := PSL(2,Z) = Γ̃/± id .

Usually, we abbreviate prΓ G = Ḡ and prΓ β = β̄ for a subgroup G ⊂ Bu3 or an
element β ∈ Bu3.

Recall that the modular group Γ is generated by two elements X and Y subject
to the relations X3 = Y2 = 1. One can take X = (σ̄2σ̄1)

−1 and Y = σ̄2σ̄
2
1 ; then

σ̄1 = XY and σ̄2 = X2YX−1.
A subgroup of Γ is called a congruence subgroup of level l | n if it contains the

principal congruence subgroup Γ(n) = {g ∈ Γ | g = id mod n}. We make use of the
list of congruence subgroups found in [5]; when referring to such subgroups, we use
the notation of [5] and, whenever available, the alternative conventional notation.

The degree homomorphisms dg : B3 → Z and dg : Bu3 → Z descend to well
defined homomorphisms dg : Γ → Z6 and dg mod 2: Γ → Z2, respectively. Thus,
one has B3 = Γ×Z6 Z and Bu3 = Γ×Z2 Z.

Definition 2.3. The depth dpG of a subgroup G ⊂ Bu3 is the degree of the
positive generator of the intersection G ∩ KerprΓ, or zero if this intersection is
trivial. One has dpG = 0 mod 2 and dpG = 0 mod 6 if G ⊂ B3.

Consider a subgroup G ⊂ Bu3, let 2d = dpG, and let Gd be the image of G
under the projection prd := prΓ × (dg mod 2d) : Bu3 → Γ×Z2d. (We let Z0 = Z.)
ThenG = pr−1

d Gd andGd projects isomorphically onto Ḡ; in other words, Gd is the
graph of a certain homomorphism ϕ : Ḡ → Z2d. This construction is summarized
by the following definition and proposition, which is immediate.

Definition 2.4. The homomorphism ϕ : Ḡ → Z2d as above is called the slope of
a subgroup G ⊂ Bu3.

Proposition 2.5. There is a one-to-one correspondence between the set of sub-
groups G ⊂ Bu3 and the set of pairs (Ḡ, ϕ), where Ḡ ⊂ Γ is a subgroup and ϕ is a
homomorphism Ḡ → Z2d with the property ϕ = dg mod 2. One has G ⊂ B3 if and
only if d = 0 mod 3 and ϕ = dg mod 6.

Each subgroup Ḡ ⊂ Γ admits three canonical slopes, namely, the restrictions
to Ḡ of the homomorphisms ± dg: Γ → Z6 and dg mod 2: Γ → Z2. We denote the
corresponding subgroups of Bu3 by (Ḡ)± and (Ḡ)bu, respectively. The subgroups
(Ḡ)bu = pr−1

Γ Ḡ and (Ḡ)+ = (Ḡ)bu ∩ B3 are merely the full preimages of Ḡ under
prΓ : Bu3 → Γ and prΓ : B3 → Γ, respectively.

2.4. Skeletons

In this subsection, we outline the relation between subgroups of Γ and certain
bipartite ribbon graphs, called skeletons. This and other very similar constructions
have been studied, e.g., in [2], [3], and [14]. In the exposition below we follow the
recent paper [11], where all proofs and further details can be found.
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Recall that a bipartite graph is a graph whose vertices are divided into two kinds,
•- and ◦-, so that the two ends of each edge are of the opposite kinds. A ribbon
graph is a graph equipped with a distinguished cyclic order (i.q., transitive Z-
action) on the star of each vertex. Any graph embedded in an oriented surface S is
a ribbon graph, with the cyclic order induced from the orientation of S. Conversely,
any finite ribbon graph defines a unique, up to homeomorphism, closed oriented
surface S into which it is embedded: the star of each vertex is embedded in a
small oriented disk (it is this step where the cyclic order is used), these disks are
connected by oriented ribbons along edges producing a tubular neighborhood of
the graph, and finally each boundary component of the resulting compact surface is
patched with a disk. (Intuitively, the boundary components patched at the last step
are the regions defined combinatorially in Subsection 2.4.3 below.) The surface S
thus constructed is called the minimal supporting surface of the ribbon graph.

In the rest of this section, we redefine a certain class of bipartite ribbon graphs
in purely combinatorial terms, relating them to the modular group. In spite of this
combinatorial approach, we will freely use the topological language applicable to
the geometric realizations of the graphs.

2.4.1. The skeleton of a subgroup. Given a subgroup G ⊂ Γ, its skeleton
Sk = SkG is the bipartite ribbon graph, possibly infinite, defined as follows: the
set of edges of Sk is the Γ-set Γ/G, its •- and ◦-vertices are the orbits of X and Y,
respectively, and the cyclic order (ribbon graph structure) at a trivalent •-vertex is
given by X−1. (All other vertices are at most bivalent and cyclic order is irrelevant.)
The skeleton SkG is equipped with a distinguished edge, namely the coset G/G.

By definition, Sk is a connected bipartite graph with the following properties:

• the valency of each •-vertex equals 1 or 3 (a divisor of ordX = 3), and
• the valency of each ◦-vertex equals 1 or 2 (a divisor of ordY = 2).

Conversely, the set of edges of any connected bipartite ribbon graph Sk satisfying
the valency restriction above admits a natural structure of a transitive Γ-set (the
actions of X−1 and Y following the cyclic order at the •- and ◦-vertices, respec-
tively), and the original subgroup G can be recovered, up to conjugation, as the
stabilizer Stab(e) of any edge e of Sk.

Convention 2.6. In the figures, we omit bivalent ◦-vertices, assuming that such a
vertex is to be inserted at the center of each edge connecting two •-vertices. With
an abuse of the language, we will speak about adjacent •-vertices, meaning that
they are connected by a pair of edges with a common bivalent ◦-vertex.

As usual, skeletons of genus zero (see Subsection 2.4.3 below) are drawn in
the disk, assuming the blackboard thickening for the ribbon graph structure. The
boundary of the disk (the dotted grey circle in the figures) represents a single point
in the sphere S2.

2.4.2. Paths. Topologically, it is convenient to regard Sk as an orbifold, assigning
to each monovalent •- or ◦-vertex ramification index 3 or 2, respectively. Then
there is a canonical isomorphism

G = Stab(e) = πorb
1 (Sk, e),
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where the basepoint for the fundamental group is chosen inside an edge e. In fact,
homotopy classes of paths in Sk (taking into account the orbifold structure) can be
identified with pairs (e0, g), where the starting point e0 is an edge and g ∈ Γ; the
ending point of such a path is then e1 := g−1e0. Intuitively, one starts at e0 and
constructs a path edge by edge, choosing at each intermediate step one of the four
possible directions: turning about the •- or ◦-end of the last edge in the positive or
negative direction (with respect to the distinguished cyclic order); these directions
are encoded by the letters Y−1 = Y or X∓1 in the word representing g.

A path (e, g), g ∈ Γ, is a loop if and only if e = g−1e, i.e., g ∈ Stab(e); hence
the isomorphism above.

2.4.3. Regions. A region of a skeleton Sk is an orbit of XY. The cardinality of
a region R is called its width wdR. (In the arithmetical theory, instead of regions
one speaks about cusps and cusp widths; this, and the fact that the term ‘degree’ is
overused, explains the terminology.) A region R of width n is also referred to as an
n-gon or n-gonal region, ‘corners’ being the •-vertices in the boundary of R. If Sk
is finite, then, patching each region with an oriented disk, one obtains a minimal
compact oriented surface S supporting Sk. Its genus is called the genus of Sk and
of the subgroup G ⊂ Γ corresponding to Sk. (This definition is equivalent to the
conventional one, see [11].) Using the projection prΓ, we extend the notions of
skeleton, genus, etc., to subgroups of Bu3.

A marking at a trivalent •-vertex v is a choice of an edge e adjacent to v. The
region (orbit) containing an edge e is denoted by ((e)). Thus, the three regions
adjacent to a marked vertex (v, e) are ((e)), ((Xe)), and ((X2e)). By default, given
a region R, a marking e at each vertex v in ∂R is chosen so that R = ((e)). Note
that a vertex may appear in ∂R more then once; in this case each occurrence gets
its own marking.

2.4.4. Coverings. An inclusion G′ ⊂ G of two subgroups gives rise to a Γ-map
Sk′ → Sk of their skeletons, which is a covering with respect to the orbifold struc-
ture defined in Subsection 2.4.2. It extends to an essentially unique (ramified) cov-
ering S′ → S of the minimal surfaces, see Subsection 2.4.3. The covering Sk′ → Sk
is called (un-)ramified if S′ → S is (un-)ramified. In other words, the covering
is unramified if and only if the pullback of each monovalent vertex of Sk consists
of monovalent vertices only and the pullback of each region R of Sk consists of
regions of the same width wdR.

2.4.5. Canonical bases. In the definition of the skeleton Sk of a subgroup G, we
use a distinguished pair X, Y of generators of Γ, hence a distinguished pair σ1, σ2

of Artin generators of B3, hence a distinguished geometric basis {α1, α2, α3} of F;
the latter is defined up to the action of the center Z(B3), i.e., up to conjugation
by ρ.

One has G = πorb
1 (Sk, e), where e = G/G is the distinguished edge of Sk, see

Subsection 2.4.2. If e′ is another edge, we fix a path γ = (e, g) from e to e′ and
identify πorb

1 (Sk, e′) with G via the translation isomorphism δ �→ γδγ−1, i.e., via
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the conjugation by g. Alternatively, one can lift g to an element g̃ ∈ B3 and
consider the new geometric basis {α′

1, α
′
2, α

′
3}, α′

i = g̃(αi), for F. In this sense,
assuming γ fixed, we will speak of a canonical basis over e′.

2.5. Type specification

If G ⊂ Bu3 is a subgroup of genus zero, its slope can be described in terms of its
skeleton Sk. In view of Subsection 2.4.2, the projection Ḡ ⊂ Γ has a presentation
of the form

(2.7)
〈
βR, γv

∣∣ (γ•
v )

3 = (γ◦
v )

2 = 1,
∏

βR

∏
γv = 1

〉
,

where the indices R and v run, respectively, over all regions and monovalent vertices
of Sk and the superscript indicates the type of the vertex. (The product in the last
relation is ordered in a certain manner depending on the choice of the basis. In
fact, {βR, γv} is merely a geometric basis for the fundamental group of a punctured
sphere, cf. Definition 3.1 below.) Furthermore, each generator βR is conjugate
to σ̄wdR

1 , and each generator γv is conjugate to X
−1 = σ̄2σ̄1 or Y = σ̄2σ̄

2
1 , depending

on whether v is a •- or ◦-vertex.
Definition 2.8. The type specification of a subgroup G ⊂ Bu3 of genus zero is the
ZdpG-valued function tp defined on the set of all regions and monovalent vertices
of the skeleton SkG; each region or monovalent vertex is sent to the degree of (any)
lift to G of the corresponding generator in (2.7) or, equivalently, to the value of
the slope of G on the corresponding generator.

Proposition 2.9. Let d = 6 if G ⊂ B3 and d = 2 otherwise. Then one has :

1. dpG = 0 mod d;

2. tp(R) = wdR mod d for any region R;

3. tp(•) = 2 mod d and 3 tp(•) = 0;

4. tp(◦) = 3 mod d and 2 tp(◦) = 0;

5. the sum of all values of tp equals zero.

Any pair (dp, tp) satisfying (1)–(5) above defines a unique slope; such a pair results
in a subgroup G ⊂ B3 if and only if it satisfies (1)–(4) with d = 6.

Proof. The (mod d)-congruences in (1)–(4) follow from the properties of slopes,
see Proposition 2.5, and the other relations in (3)–(5) are the abelian versions of
the relations in (2.7). The type specification determines the slope of G as it assigns
a value to each generator in (2.7). �

Given an integer m, a type specification is said to be trivial modulo m if it
satisfies the congruences in (1)–(4) of Proposition 2.9 with d = m. Thus, Proposi-
tion 2.9 states that any type specification is trivial modulo 2 and that a subgroup G
is in B3 if and only if its type specification is trivial modulo 6.

Convention 2.10. In the drawings, we indicate the type specification (inside a
region or next to a vertex) only when it is not trivial modulo 0.
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2.6. The Alexander module

For a subgroup G ⊂ B3 · InnF, let
V̄G =

∑
β∈G Im(β − id) ⊂ A, VG =

∑
β∈G, α∈F Λ[β(α) · α−1] ⊂ A.

Definition 2.11. The Alexander module of a subgroup G ⊂ B3 · InnF is the
Λ-module AG := A/VG. If the product AG ⊗ kp is a torsion (Λ ⊗ kp)-module, its
order ΔG,p ∈ Λ⊗ kp is called the (mod p)-Alexander polynomial of G. We usually
abbreviate ΔG,0 = ΔG.

Definition 2.12. The extended Alexander module of a subgroup G ⊂ B3 · InnF
is the Λ-module ĀG := A/V̄G; the extended Alexander polynomial Δ̄G,p ∈ Λ ⊗ kp
(whenever defined) is the order of the (Λ⊗ kp)-module ĀG ⊗ kp.

Clearly, the Alexander polynomial ΔG,p and its extended counterpart Δ̄G,p can
be computed using any field K of characteristic p, and the Alexander polynomial
can be interpreted as the characteristic polynomial of the operator t acting on the
finite dimensional K-vector space AG ⊗K (respectively, ĀG ⊗K).

Remark 2.13. Assume thatG = ImC is the monodromy group of a trigonal curve,
see Subsections 3.2 and 3.3 below. Then, the conventional Alexander module AG

is the Alexander module of C; it depends on the fundamental group of C only,
see Subsection 3.4. On the contrary, the submodule V̄G ⊂ A depends only on the
image of G in Bu3; thus, it is easier to compute. Furthermore, V̄G, ĀG, and the
extended Alexander polynomials can be defined for subgroupsG of Bu3 rather than
those of the more complicated group B3 · InnF. There is a canonical epimorphism
ĀG � AG, see Lemma 2.16, and the conventional Alexander polynomials divide
their extended counterparts (whenever defined). For this reason, and since we are
mainly interested in an upper bound on the Alexander polynomial, we will usually
deal with the extended versions. Lemma 2.17 and Corollary 2.18 below show that,
for subgroups of B3 (i.q., genuine trigonal curves), the two submodules V̄G,VG ⊂ A
usually coincide.

Definition 2.14. Given a submodule V ⊂ A, the set

GV =
{
β ∈ Bu3

∣∣ Im(β − id) ⊂ V}
is a subgroup of Bu3, cf. [6]; it is called the universal subgroup corresponding to V .

Definitions 2.11, 2.12, and 2.14 have a geometric meaning for subgroups of genus
zero, see Subsection 3.4 below. In general, it is not quite clear how the Alexander
modules and, especially, universal subgroups should be defined, see Remark 3.6.

Next two statements are straightforward.

Lemma 2.15. For subgroups G,H ⊂ Bu3 and submodules U ,V ⊂ A, one has

1. if G ≺ H, then V̄G ≺ V̄H ;

2. if U ≺ V, then GU ≺ GV ;

3. V̄G ≺ U if and only if G ≺ GU .



38 Alex Degtyarev

Lemma 2.16. One has :

1. V̄G ⊂ VG,

2. [β(αh) · (αh)−1] = [β(α) · α−1] + tdegα(β − id)[h] for any h ∈ Ker deg,

3. [β(αn) · α−n] = ϕ̃n(t
degα)[β(α) · α−1] for any n ∈ Z,

where β ∈ B3 and α ∈ F. As a consequence,

4. VG = V̄G +
∑

β∈G Λ[β(αi) · α−1
i ] for any geometric generator αi ∈ F.

Lemma 2.17. For a subgroup G ∈ B3, one has (t2 + t+ 1)VG ⊂ V̄G.

Proof. Since degα3
1 = 3 = deg ρ, for any braid β ∈ B3 one has

(t2 + t+ 1)[β(α1) · α−1
1 ] = [β(α3

1) · α−3
1 ] = [β(ρ) · ρ−1] mod V̄G,

see Lemma 2.16 (3) and (2). Since ρ is B3-invariant, this expression is 0 mod V̄G,
and the statement follows from Lemma 2.16 (4). �

Corollary 2.18. For any subgroup G ⊂ B3, field K, and polynomial f ∈ Λ ⊗ K
prime to t2 + t+ 1, the images of V̄G and VG in (A⊗K)/f coincide.

2.7. Specializations

Recall that we write k0 = Q and kp = Fp for p prime. If p is understood, we drop
the index. The notation κξ ∈ k[t] stands for the minimal polynomial of an element
ξ �= 0 of an algebraic extension K ⊃ k.

Definition 2.19. The multiplicative order of an element ξ ∈ K∗ is denoted by
ord ξ. (If ξ is not a root of unity, we let ord ξ = ∞.) For N ∈ Z+ not divisible
by p (where p is a prime or zero), define ep(N) as follows: e2(N) = N and

ep(N) =

⎧⎪⎨
⎪⎩
2N, if N = 1 mod 2,
1
2N, if N = 2 mod 4,

N, if N = 0 mod 4

for p �= 2. Then ep(ord ξ) = ord(−ξ) and ep is an involution: ep(ep(N)) = N .

Given ξ as above, we define the specializations of Λ and A at ξ to be Λ(ξ) =
(Λ ⊗ k)/κξ and A(ξ) = (A ⊗ k)/κξ, respectively. (The specializations of other
relevant modules are defined below on a case-by-case basis.) Usually we assume
that K = Λ(ξ); then A(ξ) is a K-vector space of dimension 2.

For a subgroup G ⊂ B3 · InnF, define the specializations V̄G(ξ) ⊂ VG(ξ) ⊂ A(ξ)
as the images of V̄G ⊗ k and VG ⊗ k in A(ξ), respectively. (In general, the maps
V̄G⊗k → A⊗k are not monomorphisms.) As above, these images can be regarded
as K-vector subspaces. If G ⊂ B3 and ξ2+ ξ+1 �= 0, these two subspaces coincide,
see Corollary 2.18. We write ĀG(ξ) = A(ξ)/V̄G(ξ) and AG(ξ) = A(ξ)/VG(ξ). The
barred versions of all objects can also be defined for a subgroup G ⊂ Bu3.

We extend the notion of (sub-)conjugacy, see Subsection 2.2, and the notation∼
and ≺ to submodules of A ⊗ k and A(ξ). The concept of universal subgroup, see
Definition 2.14, can also be extended to submodules of A ⊗ k and A(ξ), and an
analog of Lemma 2.15 holds literally.
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3. Trigonal curves

In this section, we introduce (generalized) trigonal curves and their monodromy
groups. Proofs are mostly omitted; for all details see [6] and references therein.

3.1. Trigonal curves in Hirzebruch surfaces

A Hirzebruch surface Σd is a geometrically ruled rational surface with an excep-
tional section E of self-intersection −d � 0. The fibers of Σd are the fibers of the
ruling Σd → P1. To avoid excessive notation, we identify fibers and their images in
the base P1. The semigroup of classes of effective divisors on Σd is freely generated
by the classes |E| and |F |, where F is any fiber.

A generalized trigonal curve is a reduced curve C ⊂ Σd intersecting each fiber
at three points, counted with multiplicities; in other words, C ∈ |3E + 3dF |. A
(genuine) trigonal curve is a generalized trigonal curve disjoint from the excep-
tional section E ⊂ Σd. A singular fiber of a generalized trigonal curve C ⊂ Σd is a
fiber F of Σd intersecting C ∪E geometrically at fewer than four points, i.e., such
that either C is tangent to F or the union C ∪ E has a singular point in F .

We emphasize that, from our point of view, a trigonal curve is always a curve
embedded in a certain way in a certain Hirzebruch surface; the latter is assumed
even if it is not mentioned explicitly. In particular, all (iso-, auto-, etc.) morphisms
of trigonal curves are supposed to extend to their respective surfaces.

The (functional) j-invariant jC : P1 → P1 of a trigonal curve C ⊂ Σd is the an-
alytic continuation of the function sending a nonsingular fiber F to the j-invariant
(divided by 123) of the elliptic curve covering F and ramified at F ∩ (C ∪ E). In
appropriate affine coordinates (x, y) in Σd (such that E = {y = ∞}) the curve C
can be given by its Weierstraß equation

y3 + 3p(x)y + 2q(x) = 0.

Then

jC(x) =
p3

Δ
, where Δ(x) = p3 + q2.

The curve C is called isotrivial if jC = const. A non-isotrivial trigonal curve C is
determined by its j-invariant up to Nagata equivalence, see below.

A positive (negative) Nagata transformation is the birational transformation
Σd ��� Σd±1 consisting in blowing up a point P on (respectively, not on) the ex-
ceptional section E and blowing down the proper transform of the fiber through P .
An m-fold Nagata transformation is a sequence of m Nagata transformations of
the same sign over the same point of the base. Two trigonal curves C and C′ are
called m-Nagata equivalent if C′ is the proper transform of C under a sequence of
m-fold Nagata transformations. The special case m = 1 is referred to simply as
Nagata equivalence.

Each generalized trigonal curve C is Nagata equivalent to a genuine one, which
is unique up to Nagata equivalence. It is called a trigonal model of C.

Given a nonconstant holomorphic map j̃ : P1 → P1, the ruled surface Σ′ :=
j̃∗Σd is also a Hirzebruch surface; it is isomorphic to Σd·deg j̃. Given a trigonal
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curve C ⊂ Σd, its divisorial pullback C′ := j̃∗C ⊂ Σ′ is also a trigonal curve; it is
said to be induced from C by j̃.

3.2. Braid monodromy

Introduced in this subsection are a few prerequisites for the classical Zariski–van
Kampen theorem: we define the notion of proper section and, using such a section,
construct the braid monodromy of a curve. The construction applies literally to
any curve disjoint from the exceptional section; in the case of a trigonal curve
C ⊂ Σd, it turns out that the monodromy group captures quite a few essential
geometric properties of C. See Theorem 3.2 for the precise statement.

Fix a Hirzebruch surface Σd. For a fiber F of Σd, the complement F ◦ := F �E
is an affine space over C. Hence, one can speak of the convex hull of a subset of F ◦.
For a subset S ⊂ Σd �E, denote by convF S the convex hull of S ∩ F ◦ in F ◦ and
let convS =

⋃
F convF S.

Fix a genuine trigonal curve C ⊂ Σd. The term ‘section’ stands for a continuous
section of (a restriction of) the fibration p : Σd → P1. Let Δ ⊂ P1 be a closed
topological disk. (In what follows, we take for Δ the complement of a small regular
neighborhood of a nonsingular fiber F0 ∈ P1.) A section s : Δ → Σd of p is called
proper if its image is disjoint from both E and convC. As a simple consequence
of the obstruction theory, any disk Δ ⊂ P1 admits a proper section s : Δ → Σd,
unique up to homotopy in the class of proper sections.

Fix a disk Δ ⊂ P1 and let F1, . . . , Fr ∈ Δ be all the singular and, possibly, some
nonsingular fibers of C that belong to Δ. Assume that all these fibers are in the
interior of Δ. Let Δ◦ = Δ� {F1, . . . , Fr} and fix a reference fiber F ∈ Δ◦. Then,
given a proper section s, one can define the group πF := π1(F

◦ � C, s(F )) and
the braid monodromy, which is the anti-homomorphism m : π1(Δ

◦, F ) → AutπF

sending a loop γ to the automorphism obtained by dragging F along γ and keeping
the reference point in s.

Definition 3.1. LetD be an oriented punctured disk, and let b ∈ ∂D. A geometric
basis in D is a basis {γ1, . . . , γr} for the free group π1(D, b) formed by the classes
of positively oriented lassoes about the punctures, pairwise disjoint except at the
common reference point b, and such that γ1 . . . γr = [∂D].

Shrink the reference fiber F to a closed disk containing convF C in its interior
and s(F ) in its boundary. Pick a geometric basis for πF and identify it with a
geometric basis {α1, α2, α3} for F, establishing an isomorphism πF

∼= F. Under
this isomorphism, the braid monodromy m takes values in the braid group B3 ⊂
AutF. The monodromy m thus defined is independent of the choice of a proper
section, and another choice of the geometric bases for πF and F results in the
global conjugation by a fixed braid β ∈ B3, i.e., in the map γ �→ β−1m(γ)β. Thus,
the monodromy group ImC := Imm ⊂ B3 is determined by C up to conjugation.
One has dp ImC | 6d; the group ImC is S-transitive if and only if C is irreducible.

The next statement is proved in [6].
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Theorem 3.2. The monodromy group of a non-isotrivial trigonal curve is of genus
zero. Conversely, given a subgroup G ⊂ B3 of genus zero and depth 6d > 0, there
is a unique, up to isomorphism and d-Nagata equivalence, trigonal curve CG with
the following property: for a non-isotrivial trigonal curve C one has ImC ≺ G if
and only if C is d-Nagata equivalent to a curve induced from CG. This curve CG

is called the universal curve corresponding to G.

The universal curve CG can be reconstructed from the skeleton SkG. In fact,
SkG is the dessin d’enfants, in the sense of Grothendieck, of a unique (up to Möbius
transformation of the source) regular map j : P1 → P1 = C∪∞ with three critical
values 0, 1, and ∞ only. This map j is the j-invariant of CG (thus defining CG up
to Nagata equivalence), and the types of the singular fibers of CG are given by the
type specification of G (which explains the term).

3.3. Generalized curves

Now, let C ⊂ Σd be a generalized trigonal curve. This time, the closure of convC
does not need to be compact and C may not admit a proper section. To overcome
this difficulty, consider a proper model C′ ⊂ Σd′ of C and, for a punctured disk Δ◦

as above, let m′ : π1(Δ
◦, F ) → B3 be the braid monodromy of C′. Further, fix a

geometric basis {γ1, . . . , γr} for π1(Δ
◦, F ). Then, the difference between C and C′

can be described in terms of the so-called slopes κi ∈ F assigned to each geometric
generator γi. Roughly, assume that γi is represented by a loop of the form li·μi ·l−1

i ,
where μi is a small circle about a fiber Fi and li is a simple path connecting the
common base point and a point ai ∈ μi. Consider a small analytic disk Φ ⊂ Σd

transversal to Fi and disjoint from C and E, and a similar disk Φ′ ⊂ Σd′ with
respect to C′. Let Φ̄ ⊂ Σd′ be the transform of Φ, and assume that the boundaries
∂Φ′ and ∂Φ̄ have a common point over ai. Then, the loop [∂Φ̄]·[∂Φ′]−1 is homotopic
to a certain class in the fiber over ai. The image of this class under the translation
homomorphism along l−1

i is the slope; it is well defined up to a number of moves,
irrelevant in the sequel. For details and further properties, see [10].

Now, the monodromy of C is defined as the homomorphism m : γi �→ mi, where
mi is the map α �→ κ−1

i m′
i(α)κi and m′

i = m′(γi). This monodromy takes values in
the extended group B3 · InnF; its image ImC is called the monodromy group of C.
Strictly speaking, both m and ImC depend on a number of choices (the trigonal
model C′, geometric basis {γi}, slopes κi, etc.); however, we only retain the original
curve C in the notation as the other choices do not affect the fundamental group.
See Theorem 3.4 below.

The projections prΓ ImC and prΓ ImC′ coincide, hence ImC is also a subgroup
of genus zero, see Theorem 3.2. Unlike the case of genuine trigonal curves, I do
not know an intrinsic description of the subgroups of B3 · InnF that can appear as
the monodromy groups of generalized trigonal curves.

Remark 3.3 (Important remark). It is worth emphasizing that the monodromy
groups of genuine and generalized trigonal curves lie, respectively, in the braid
group B3 and extended group B3 · InnF. Hence, all statements below concerning
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subgroups of B3 · InnF or Bu3 hold for generalized trigonal curves, whereas those
specific to subgroups of B3 hold for genuine curves only. Formally, one can ex-
tend the statements concerning subgroups G ⊂ B3 and extended modules V̄G to
generalized trigonal curves with all slopes of degree divisible by three.

3.4. The fundamental group

Consider a generalized trigonal curve C ⊂ Σd and pick a nonsingular fiber F0

of C. The affine and projective fundamental groups of C are defined to be πafn
C =

π1(Σd � (C ∪ E ∪ F )) and πproj
C = π1(Σd � (C ∪ E)). The affine group πafn

C is an

infinite cyclic central extension of πproj
C . In particular, the commutants of the two

groups are canonically isomorphic, hence so are the Alexander modules defined
below.

Fix all necessary data (trigonal model, proper section, bases, an identification
πF = F, etc., see Subsections 3.2 and 3.3) and let ImC be the resulting monodromy
group. The following theorem is essentially contained in [22].

Theorem 3.4. One has πafn
C = F/〈β(α) = α, β ∈ ImC , α ∈ F〉.

It follows that πafn
C depends only on the conjugacy class of ImC ⊂ B3 · InnF.

Any presentation of πafn
C as in Theorem 3.4 is called geometric. The group inherits

from F the degree homomorphism deg: πafn
C � Z, which does not depend on the

choice of a geometric presentation. (The projective group πproj
C is the quotient

of πafn
C by a certain central element of positive degree.)

Denote by AC the abelianization of the kernel Ker deg. As in Subsection 2.2,
the conjugation t by any element α ∈ πafn

C of degree one turns AC into a module
over Λ; it is called the Alexander module of C, and the order ΔC,p ∈ Λ ⊗ kp of
the (Λ ⊗ kp)-module AC ⊗ kp, whenever defined, is called the (mod p)-Alexander
polynomial of C. In the classical setting, one usually considers ΔC := ΔC,0. As
an immediate consequence of Theorem 3.4, one concludes that AC = AG, where
G = ImC is the monodromy group. For this reason, and in view of Theorem 3.2,
in the rest of the paper we deal mainly with subgroups rather than curves.

Letting G = ImC , one can also consider the extended module ĀC := ĀG, which
‘estimates’ AC from above: there is an epimorphism ĀC � AC (see Remark 2.13).
Note however that ĀC is not an invariant of the fundamental group πafn

C alone:
examples in Sections 6 and 7 show that ĀC may be nontrivial even when πafn

C = Z.

Remark 3.5 (Important remark). Summarizing, one concludes that any upper
bound on the extended module V̄G of a subgroup G of Bu3 (respectively, B3) of
genus zero can serve as an upper bound on the conventional module VC of a gener-
alized (respectively, genuine) trigonal curve C. If G is required to be S-transitive,
C must be irreducible. Furthermore, according to Theorem 3.2, any finite index
subgroup G ⊂ B3 of genus zero is the monodromy group of a certain genuine trig-
onal curve. Hence, all existence statements concerning subgroups of B3 do imply
the existence of trigonal curves with desired properties.
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Remark 3.6. In view of Theorem 3.2, the isomorphism AC = AG, G = ImC ,
makes Definitions 2.11–2.14 geometrically meaningful for subgroups of genus zero.
To generalize, one could consider ‘trigonal curves’ in geometrically ruled surfaces
Σ → B over arbitrary, not necessarily rational, bases. However, in this case the
presentation of πafn

C is not the one given by Theorem 3.4: πafn
C is the quotient

of the semidirect product F ∗ ImC/〈β−1αβ = β(α), β ∈ ImC , α ∈ F〉 by all
elliptic and parabolic elements of ImC . (A subgroup of genus zero is generated
by its elliptic and parabolic elements, see (2.7), and one arrives at the statement
of Theorem 3.4.) Thus, it is not quite clear whether one should speak about the
Alexander module of πafn

C itself (which is always large) or that of the kernel of the
inclusion epimorphism πafn

C � π1(Σ) ∼= π1(B). Nor is it clear how the universal
subgroups should be defined in this situation.

3.5. Plane curves with deep singularities

Let D ⊂ P2 be a plane curve with a distinguished singular point P of multiplicity
degD − 3. Blow P up and consider the proper transform C of D: it is a general-
ized trigonal curve in the Hirzebruch surface Σ1 = P2(P ), the exceptional section
E ⊂ Σ1 being the exceptional divisor of the blow-up. The projection Σ1 → P2

establishes a diffeomorphism

Σ1 � (C ∪E)
∼=−→ P2 �D,

hence an isomorphism πproj
C = π1(P

2 � D) of the fundamental groups. Thus, all
restrictions to the Alexander module/polynomial of a generalized trigonal curve,
in particular Theorems 1.2 and 1.3, and Addenda 1.4 and 1.5 in the introduction,
hold for plane curves as above. For this reason, we do not mention them separately.

4. Local geometry of the skeleton

In this section, we describe the local geometry of the skeleton of a finite index
subgroup with nontrivial extended Alexander module. The finite index condition
is used in Subsection 4.2: we assume that all regions of the skeleton are bounded.

4.1. Settings

Fix a subgroup G ⊂ Bu3 and let Sk = SkG be its skeleton. We assume that the
index [Γ : Ḡ] is finite, so that Sk is a finite ribbon graph.

Fix, further, a field k = kp and an element ξ algebraic over k. Let K = k(ξ).
Unless stated otherwise, we assume that ξ �= ±1. In the rest of the paper, M
and N stand for the multiplicative orders of ξ and −ξ, respectively. In particular
we show that they are finite.

In Subsections 4.2–4.4 below, we pick a vertex v and an edge e close to v, de-
fine a certain subgroup Gv ⊂ G generated by some loops in a neighborhood of v,
and consider the submodule V̄v(ξ) := V̄Gv(ξ) ⊂ A(ξ) and the quotient Āv(ξ) :=
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A(ξ)/V̄v(ξ). Then we introduce a basis {α1, α2, α3} over e, see Subsection 2.4.5,
and use this basis to analyze the conditions, ‘local’ at v, necessary for the nonva-
nishing Āv(ξ) �= 0; this last is equivalent to the requirement that dimK V̄v(ξ) � 1
and is obviously necessary for the nonvanishing ĀG(ξ) �= 0.

4.2. A trivalent •-vertex
Consider a trivalent •-vertex v of Sk; fix a marking e at v and a corresponding
canonical basis {α1, α2, α3}. Let Gv ⊂ G be the subgroup generated by the bound-
aries of ((e)) and ((X−1e)), i.e., by trσm

1 and tsσn
2 , where m,n > 0 are the widths

of the two regions and r, s are given by the corresponding type specifications.
Consider the matrix M =

[
trσm

1 − id
∣∣ tsσn

2 − id
]
:

(4.1) M =

[
tr(−t)m − 1 trϕ̃m(−t) ts − 1 0

0 tr − 1 ts+1ϕ̃n(−t) ts(−t)n − 1

]
.

Clearly, dimK V̄v(ξ) = rkM(ξ), and we are interested in the conditions on m,n, r, s
necessary and sufficient for rkM(ξ) � 1. Consider the following cases.

4.2.1. Type 0. If M(ξ) = 0, i.e., V̄v(ξ) = 0, the marked vertex v is said to be
of type 0. This is the case if and only if N := ord(−ξ) < ∞ divides both m and n
and ep(N) divides both r and s.

Now, assume that V̄v(ξ) �= 0 is a proper submodule of A(ξ). Then ξ annihilates
all (2 × 2)-minors of M and one has one of the following three cases.

4.2.2. Type I1. ξr(−ξ)m−1 = ϕ̃m(−ξ) = ξs−1 = 0, i.e., the first row vanishes.
In this case, N := ord(−ξ) | m; in addition, one has ξr = ξs = 1, i.e., ep(N)
divides both r and s. The module V̄v(ξ) is generated by ϕ̃n(−t)e2. If N � n, the
marked vertex v is said to be of type I1. Then V̄v(ξ) �= 0 is generated by e2.

4.2.3. Type I2. ξr−1 = ϕ̃n(−ξ) = ξs(−ξ)n−1 = 0, i.e., the second row vanishes.
Similarly to the previous case, N := ord(−ξ) | n and ep(N) divides both r and s.
The module V̄v(ξ) is generated by ϕ̃m(−t)e1. If N � m, the marked vertex v is
said to be of type I2. In this case, V̄v(ξ) �= 0 is generated by e1.

4.2.4. Type II. ξr(−ξ)m − 1 = ξs(−ξ)n − 1 = M2,3(ξ) = 0, where M2,3 is the
minor composed of the second and third columns. Modulo the first two relations,
ξrϕ̃m(−ξ) = (ξr − 1)/(ξ + 1) and ξs+1ϕ̃n(−ξ) = ξ(ξs − 1)/(ξ + 1), see (2.2), and
M2,3(ξ) = −(ξr − 1)(ξs − 1)(ξ2 + ξ + 1)/(ξ + 1)2. Thus, either

1. ξr = 1, and then N := ord(−ξ) | m, or

2. ξs = 1, and then N := ord(−ξ) | n, or
3. ξ2 + ξ + 1 = 0.

Using (2.2) and the fact that t + 1 is invertible in Λ(ξ), one can see that the
module V̄v(ξ) is generated by

(ts − 1)((t−1 + 1)e1 + e2) and (tr − 1)(e1 + (t+ 1)e2)
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in Cases (1) and (2), respectively. In Case (1), assuming that ξs �= 1 (and
hence N � n), the vertex is said to be of type II1; the module V̄v(ξ) is generated by
(t−1 +1)e1 + e2. In Case (2), assuming that ξr �= 1 (and hence N � m), the vertex
is said to be of type II2; the module V̄v(ξ) is generated by e1 + (t+ 1)e2.

In Case (3), assuming that ξr �= 1 and ξs �= 1, we let N = ep(3) and assign to
the vertex type IIex. This is the only case when one cannot assert that N | m or
N | n. (In fact, if N does divide m or n, then the vertex is of type 0, II1, or II2.)
The module V̄v(ξ) is generated by any of the two elements (t−1 + 1)e1 + e2 or
e1 + (t+ 1)e2 above.

Summarizing, one concludes that a necessary condition for the nonvanishing
A(ξ)/V̄G(ξ) �= 0 is that N := ord(−ξ) < ∞ and at each marked vertex (v, e) other
than of type IIex (which can only occur if ep(N) = 3) at least one of the regions
((e)), ((X−1e)) has width divisible by N .

Definition 4.2. With N fixed, a region of width divisible by N is called trivial
(or N -trivial); such a region does not contribute to V̄G(ξ). A region of width not
divisible by N is called essential, or N -essential. Essential regions are subdivided
into type I and II, depending on the types of the vertices in their boundaries.

Summarizing, one arrives at the following statement.

Lemma 4.3. Assume that ĀG(ξ) �= 0 and let M = ep(N). Then:

1. for each trivial region R one has tp(R) = wdR mod 2M ;

2. for each type I essential region R one has tp(R) = wdR mod 2M ;

3. for a type II essential region R of width n = wdR, if n is even or p = 2,
then tp(R) = −n mod 2M , otherwise tp(R) = M − n mod 2M , and in the
latter case M must be even;

4. if M �= 3, at each trivalent •-vertex at most one region is essential ;

5. if V̄G(ξ) = 0, then all regions are trivial.

Proof. Items (1)–(3) paraphrase the conditions ts = 1 and ts(−1)n = 1 in terms
of the type specification. For (4) and (5), it suffices to consider all three markings
at the given vertex or, respectively, at all vertices of the skeleton. �

4.3. A monovalent •-vertex (type III)

Consider a monovalent •-vertex v and let e be the adjacent edge. In a canonical
basis {α1, α2, α3} over e, the positive loop about v lifts to an element of the form
tr(σ2σ1). Let Gv ⊂ G be the subgroup generated by this element.

One has det(tr(σ2σ1) − id) = ϕ̃3(t
r+1). Hence, one has Āv(ξ) �= 0 if and only

if M := ord ξ < ∞ satisfies the following conditions:

• M | 3(r + 1) and M � (r + 1) (in particular, M = 0 mod 3) if p �= 3, and

• M | (r + 1) and M �= 0 mod 3 if p = 3.

If this is the case, the module V̄v(ξ) is generated by −tre1 + e2. Computing the
exponents modulo M , the latter can be rewritten in the form −tse1 + e2, where
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• s = ± 1
3M − 1 if p �= 3 and

• s = −1 (or s = M − 1) if p = 3.

If p �= 3 then, according to the sign ± in the expression for s above, we assign
to the vertex v type III±. If p = 3, there is one type III. Observe that, if p �= 3, the
generator of V̄G(ξ) can be rewritten in the form −εt−1e1 + e2 with ε2 + ε+ 1 = 0.

Now, assume that v has a trivalent neighbor u in Sk. (The remaining cases are
treated in Subsection 4.5 below.) Summarizing and using Lemma 4.3, one arrives
at the following statement.

Lemma 4.4. Assume that ĀG(ξ) �= 0 and let M = ep(N). Let v be a monovalent
•-vertex and let u be its trivalent neighbor. Then:

1. if p �= 3, then M = 0 mod 3 and tp(v) = ± 2
3M mod 2M ;

2. if p = 3, then M �= 0 mod 3 and tp(v) = 0 mod 2M ;

3. unless u is of type IIex, v is in the boundary of an N -trivial region.

Remark 4.5. If G ∈ B3 and p �= 3, see Lemma 4.4 (1), the condition tp(•) = 2
mod6 in Proposition 2.9 (3) implies that M = ±3 mod 9 and, according to the
sign in this congruence, only one type III± can appear.

4.4. A monovalent ◦-vertex (type IV)

Consider a monovalent ◦-vertex v and let e′ be the adjacent edge. To simplify the
expressions below, switch to the edge e = XYe′. In a canonical basis {α1, α2, α3}
over e, the positive loop about v lifts to an element of the form tr(σ2σ1σ2). Let
Gv ⊂ G be the subgroup generated by this element.

One has det(tr(σ2σ1σ2) − id) = 1 − t2r+3. Hence, one has Āv(ξ) �= 0 if and
only if M := ord ξ | (2r + 3), and in this case V̄v(ξ) is generated by tr+1e1 + e2,
which can be rewritten in the form tse1 + e2, where s = 1

2 (M − 1).
A monovalent ◦-vertex v is said to be of type IV. Assuming that v is adjacent

to a trivalent vertex u, one arrives at the following statement.

Lemma 4.6. Assume that ĀG(ξ) �= 0 and let M = ep(N). Let v be a monovalent
◦-vertex and u its trivalent neighbor. Then:

1. M is odd and tp(v) = M mod 2M ;

2. unless u is of type IIex, v is in the boundary of an N -trivial region.

4.5. Two special subgroups

In this subsection, we treat the two cases that are not quite covered by Lemmas 4.4
and 4.6; namely, we consider a skeleton Sk with a monovalent •- or ◦-vertex that
is not adjacent to a trivalent •-vertex. Clearly, Sk is either ◦−−• or •−−•; in the
former case, Ḡ = Γ, in the latter case, Ḡ is the only index 2 subgroup Γ2 = 2A0.

Proposition 4.7. If Ḡ = Γ, then AG(ξ) �= 0 if and only if G ≺ (Γ)−. In this
case, one has p = 2, ξ2 + ξ + 1 = 0, and V̄G(ξ) = K(−te1 + e2).

Proof. It suffices to consider the matrix M in (4.1) with m = n = 1. �
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Proposition 4.8. Assume that Ḡ = Γ2 = 2A0 and AG(ξ) �= 0. Then either

1. p = 3, ξ = 1, and V̄G(ξ) = K(−te1 + e2); in which case G ≺ (2A0)bu, or

2. ξ2 + ξ + 1 = 0 and V̄G = Λ(−te1 + e2) mod Φ3; in which case G ≺ (2A0)−.

Proof. The group is generated by trσ2
1 , t

sσ2
2 , t

kσ2σ1, and, possibly, an extra power
of t, and the proof is a direct computation, starting with (4.1) with m = n = 2;
see Subsections 4.2 and 4.3. �

Remark 4.9. The largest subgroup of Γ (respectively, Γ2 = 2A0) on which the
slope −dg is equal to dg mod 6 is Γ(3) = 3D0 = Ker(dg mod 3) (respectively,
Γ′ = 6A1 = Ker(dg mod 6); this latter subgroup is of genus one).

4.6. A few consequences

We state a few immediate consequences of the computation in Subsections 4.2–4.4.
Note that in Lemma 4.10 we do not assume that dpG �= 0 (which would make the
claim trivial).

Lemma 4.10. If Ḡ ⊂ Γ is a subgroup of finite index, there is an integer M > 0
such that (tM−1)(AG⊗kp) = 0 for each p. In particular, the Alexander polynomial
Δ̄G,p is well defined and divides (tM − 1)2.

Proof. One merely repeats the arguments of Subsections 4.2 and 4.5, computing
the ranks of the corresponding matrices over Λ⊗ kp. Each time the rank is 2 and
all invariant factors divide some (tM − 1). �

Lemma 4.11. If V̄G(ξ) = 0, i.e., if rkAG = 2, then all vertices of SkG are
trivalent (equivalently, G is torsion free) and all regions of SkG are trivial.

Proof. According to Subsections 4.2, 4.3, and 4.4, each essential region of SkG and
each monovalent vertex makes a nontrivial contribution to V̄G(ξ). �

4.7. Isotrivial curves

Recall that, in appropriate affine coordinates (x, y) on Σd, the equation of an
irreducible isotrivial genuine trigonal curve C can be written in the form

y2 =
∏

i(x− xi)
mi , m := g.c.d.(mi) �= 0 mod 3.

Hence, the monodromy group of any generalized trigonal curve Nagata equivalent
to C is the abelian group generated by tr(σ2σ1) and ts id for some r, s ∈ Z.

Theorem 4.12. The extended Alexander polynomial of an irreducible isotrivial
generalized trigonal curve C divides ϕ̃3(t

r+1) for some r ∈ Z. If C is a genuine
curve, then Δ̄C,p = ϕ̃3(t

r+1) for some r ∈ 3Z and any p.

Proof. Both statements follow from the description of the monodromy group and
the computation in Subsection 4.3. If C is a genuine curve, the monodromy group
is generated by (σ2σ1)

m, hence r ∈ 3Z and s = 0. �
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5. Proof of Theorem 1.3

Throughout this section, we fix p (a prime or zero), a subgroup G ⊂ Bu3 of genus
zero, and a root ξ of its Alexander polynomial Δ̄G,p. Let N = ord(−ξ) < ∞.
Recall that we assume ξ �= ±1, hence N � 3. The ultimate goal of the section is a
proof of Theorem 1.3 and the estimate N � 10 for p = 0, see Corollary 5.10.

5.1. The boundary of a trivial region

Consider an N -trivial region R of a certain width Nm. With respect to the default
marking, see Subsection 2.4.3, all vertices in ∂R are of types 0, I1, II1, III± (or III
if p = 3), or IV. Define the distance dist(v1, v2) ∈ ZNm between two boundary
vertices v1, v2 ∈ ∂R as the distance in R, regarded as an orbit of XY, between the
corresponding edges e1, e2 used in Subsections 4.2–4.4 to construct the canonical
bases.

Lemma 5.1. With two exceptions, the distance in ∂R between any two vertices of
the same type other than 0 is divisible by N . The exceptions are as follows :

• ep(N) = 3 and the vertices are of type II or III−, or
• ep(N) = 3, p = 2, and the vertices are of type IV.

Proof. Let M = ep(N). Consider a vertex v ∈ ∂R of a type other than 0, I2, or II2
(the two latter do not occur due to our choice of the markings). According to
Subsections 4.2–4.4, in the corresponding canonical basis the submodule V̄v(ξ) is
generated by a vector of the form av(t)e1 + e2, where the coefficient av(t) ∈ Λ(ξ)
depends on ξ and the type of v only. One has

(5.2) av(t) = 0, t−1 + 1, −ts, or t
1
2 (M−1)

for v of type I1, II1, III± (or III if p = 3), or IV, respectively. Here, s = ± 1
3M − 1

for type III± and s = −1 for type III.
Let u ⊂ ∂R be another vertex at a distance d from v. Connecting the corre-

sponding edges by a path in ∂R, one can assume that the canonical bases used
are related via σd

1 , and a necessary condition for ĀG(ξ) �= 0 is that the generators
of V̄u(ξ) and σd

1 V̄v(ξ) should be linearly dependent. This condition results in the
equation

(5.3) ϕ̃d(−ξ)
(
(ξ + 1)av(ξ)− 1

)
= av(ξ)− au(ξ).

If u and v are of the same type, the right hand side vanishes and (5.3) takes the
form ϕ̃d(−ξ) = 0 or (ξ + 1)av(ξ) = 1. In the former case, one has N | d, as
stated; in the latter case, using the list above, one can see that the equation has
no solutions (for type I1), implies ξ = 1 (for type III with p = 3), or implies
ξ2 + ξ +1 = 0. Indeed, if v is a vertex of type II1, the equation (ξ+1)av(ξ) = 1 is
equivalent to ξ2 + ξ + 1 = 0. If v is of type III±, then, switching to av(t) = −εt−1

with ε2+ε+1 = 0, see Subsection 4.3, one has ξ = −ε/(ε+1), hence ξ2+ξ+1 = 0.
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Furthermore, in this case εξ−1 = ξ, i.e., the type is III−. If v is of type IV, then,
letting s = 1

2 (M − 1) and hence M = 2s+ 1, one has

[ts(t+ 1)− 1] · t[ts(t+ 1) + 1]− [t2s+1 − 1] · (t+ 1)2 = t2 + t+ 1.

Then M = 3 and the equation turns into ξ2 + ξ = 1. Hence p = 2. �

Lemma 5.4. If p = 0 and N �= 4, the boundary ∂R cannot contain vertices of
types both I1 and II1.

Proof. Assume that v is of type I1 and u is of type II1. Then (5.3) turns into the
four term equation ξ(−ξ)d + ξ2 + ξ + 1 = 0, in which each term is a root of unity.
Geometrically, the sum of four unit complex numbers equals zero if and only if the
summands split into two pairs of opposite ones. Hence, the above equation implies
ξ = −1 or ξ = ±i; in the latter case, one has N = 4. �

5.2. First estimates

Denote by Ri and Sj , respectively, the trivial and essential regions of Sk (where i
and j run over certain index sets). Introduce the following counts for Sk:

• v1 is the number of monovalent •-vertices;
• v3 is the number of trivalent •-vertices;
• e1 is the number of monovalent ◦-vertices;
• e2 is the number of edges connecting pairs of •-vertices;
• Nmi is the width of the trivial region Ri; let m =

∑
imi;

• nj is the width of the essential region Sj ; let n =
∑

j nj .

For a trivial region Ri, introduce also the following parameters, counting special
vertices in the boundary ∂Ri:

• KI
i is the number of vertices of type I1 or II1;

• KIII
i is the number of vertices of type III± (or III if p = 3);

• KIV
i is the number of vertices of type IV.

For ∗ = I, III, or IV, let k∗i = K∗
i /mi and k∗ = maxi k

∗
i . Unless ep(N) = 3, in view

of Lemma 5.1, one has 0 � kI, kIII � 2 and 0 � kIV � 1 and, due to Lemma 5.4,
one has kI � 1 if p = 0 and N �= 4. Furthermore, kIII � 1 if p = 3 and kIII and kIV

vanish unless ep(N) satisfies certain divisibility conditions, see Lemmas 4.4 and 4.6
for the existence of vertices of the corresponding types.

The total number of regions of Sk does not exceed m + n and, since Sk is a
ribbon graph of genus zero, Euler’s theorem implies m+n−e2+v1+v3 � 2. (The
edges counted by e1 are cancelled by the monovalent ◦-vertices.) As usual, one has
v1 +3v3 = Nm+n = e1 +2e2, and, eliminating e2 and v3, one can rewrite Euler’s
inequality above in the form

(6 −N)m+ 5n+ 4v1 + 3e1 � 12.
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Since all monovalent vertices belong to the boundaries of trivial regions of Sk, see
Lemmas 4.4 and 4.6, one has

v1 =
∑

i k
III
i mi � kIIIm, e1 =

∑
i k

IV
i mi � kIVm.

The following observation is crucial.

Lemma 5.5. One has n =
∑

i k
I
imi � kIm.

Proof. By definition, each vertex in the boundary of an essential region is of type I
or II. On the other hand, due to Lemma 4.3 (4), each such vertex v appears in the
boundary of an essential region exactly once (hence the number of these vertices
is n) and admits a unique marking e with respect to which it is of type I1 or II1.
With this marking, ((e)) is a trivial region; hence v is counted exactly once in the
sum

∑
i k

I
imi. �

Substituting, one arrives at

(5.6) (6−N)m+
∑

i(5k
I
i + 4kIIIi + 3kIVi )mi � 12

and (6 + kall −N)m � 12, where kall = maxi(5k
I
i + 4kIIIi + 3kIVi ). This implies

(5.7) N < 6 + kall � 6 + 5kI + 4kIII + 3kIV.

Corollary 5.8. If p = chark = 0, then N � 21; otherwise, N � 26.

Proof. The statement follows from (5.7) and the estimates on kI, kIII, and kIV

listed right after their definition. �

5.3. Further restrictions

We keep the notation introduced in Subsection 5.2.

Lemma 5.9. If N > 10 and the triple (p,N,κξ) is not one of those listed in
Tables 1 and 2, then, for each trivial region Ri, one has kIi + kIIIi + kIVi � 1.

Proof. It suffices to show that, with the stated assumptions, the distance in ∂Ri

between any two vertices u and v of types, respectively, Tu and Tv other than 0
is divisible by N . Due to Lemma 5.1, one can assume that Tu �= Tv. Let d =
dist(u, v). Then ξ must satisfy (5.3) and, since the equation is obviouslyN -periodic
in d, it suffices to consider the values d = 1, . . . , N − 1.

Now, for each N = 11, . . . , 26, see Corollary 5.8, each d = 1, . . . , N − 1, and
each pair Tu �= Tv of types, consider the resultant R of (5.3) and (−ξ)N − 1.
(All computations below were performed using Maple.) One has R �= 0, which
proves the statement for p = 0. For each prime divisor p �= 2, 3 of R, consider
the greatest common divisor of the two polynomials over Fp, decompose it into
irreducible factors, and select those that do not divide (−ξ)n − 1 for some n < N .
The minimal polynomial κξ must be one of these factors. The cases p = 2 or 3 are
treated similarly, but separately, as equation (5.3) changes in these cases.

The above procedure results in a finite collection (too large to be listed here)
of sequences (N, p,κξ; d, Tu, Tv). For each triple (N, p,κξ) thus obtained, one can
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Table 2. Exceptional factors of Δ (not realized)

p N Factors κξ ∈ Fp[t] of Δ

3 13 t3 + 2t+ 1, t3 + 2t2 + 1, t3 + t2 + 2t+ 1, t3 + 2t2 + t+ 1
23 11 t+ 2, t+ 4, t+ 6, t+ 9, t+ 12, t+ 18
29 14 t+ 4, t+ 22
31 15 t+ 14, t+ 18, t+ 19, t+ 20
37 12 t+ 8, t+ 14, t+ 23, t+ 29
43 14 t+ 32, t+ 39

21 t+ 14, t+ 40
53 13 t+ 28, t+ 36
61 15 t+ 16, t+ 42
79 13 t+ 38, t+ 52
127 21 t+ 47, t+ 100
211 15 t+ 83, t+ 150

analyze the types of vertices that may appear simultaneously in the boundary of
a single region and improve the a priori estimate kall � 21 used in (5.7). (For
example, if all types that can appear in the same region are I, II, and III+, the
estimate improves to kall � 14, hence N � 19.) Disregarding the triples that do
not satisfy the new inequality N < 6 + kall, one obtains Tables 1 and 2. �

Corollary 5.10. Unless (p,N,κξ) is one of the triples listed in Tables 1 and 2,
one has N � 10.

Proof. Replacing all coefficients in the definition of kall with their maximum 5 and
using Lemma 5.9, one obtains kall � 5 in (5.7). �

5.4. Proof of Theorem 1.3 and Addendum 1.5

Due to Remark 3.5, it suffices to prove a similar statement for the extended Alexan-
der modules V̄G of subgroups G ⊂ Bu3 of genus zero. Note that we do not use
S-transitivity.

Consider one of the triples (p,N,κξ) listed in Tables 1 and 2. The submod-
ule V̄G(ξ) has the form Kv, where v is one of the vectors listed in (5.2). We
choose v = e2 and compute the genus of the corresponding universal subgroup.
The computation, using Maple, proceeds as follows. Map B3 or Bu3 to the finite
group GL(2,K), let V = Ke2, and enumerate the cosets modulo the universal sub-
groupGV . In order to pass to ḠV , identify furtherM and tsM forM ∈ Mat2×2(K)
and s ∈ ZM . (If a subgroup of B3 is to be found, take only s ∈ 3ZM .) The result is
the set of edges of the skeleton of GV , see Subsection 2.4, its •- and ◦-vertices and
regions being the orbits of σ2σ1, σ2σ

2
1 , and σ1, respectively. Compute the Euler

characteristic and make sure that it equals 2.
After the computation is completed, one can use the cosets found to verify that,

in fact, all the subspaces Kv with v as in (5.2) are conjugate to Ke2; hence they
would yield the same universal subgroups.
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Table 3. Examples with 7 � N � 10

p N Factors κξ ∈ k[t] of Δ Ḡ ⊂ Γ

2 ∗7 t3 + t+ 1, t3 + t2 + 1 (9; 1, 0; 1271)
3 ∗8 t2 + 2t+ 2, t2 + t+ 2 (10; 0, 1; 1281)
5 ∗8 t2 + 2, t2 + 3 (78; 0, 0; 1689)

11 ∗10 t+ 2, t+ 6, t+ 7, t+ 8 (24; 2, 0; 1221102)
17 ∗8 t+ 2, t+ 8, t+ 9, t+ 15 (36; 0, 0; 1484)
19 9 t+ 4, t+ 5, t+ 6, t+ 16, t+ 9, t+ 17 (20; 0, 2; 1292)
29 ∗7 t+ 7, t+ 16, t+ 20, t+ 23, t+ 24, t+ 25 (60; 0, 0; 1478)
37 9 t+ 7, t+ 9, t+ 12, t+ 16, t+ 33, t+ 34 (76; 0, 4; 1498)
43 ∗7 t+ 4, t+ 11, t+ 16, t+ 21, t+ 35, t+ 41 (132; 0, 0; 16718)

This computation eliminates all the triples listed in Table 2 and, for subgroups
of B3, the values p = 5 and 19 in Table 1, thus completing the proof of Theorem 1.3
and the existence part of Addendum 1.5. (For the existence, one should also use
Remark 3.5 and, passing from V̄G to VG, Corollary 2.18.)

Further analysis of the data obtained in Lemma 5.9 shows that, with N and p
fixed, each triple (d, Tu, Tv) gives rise to at most one irreducible factor κξ. Hence,
this factor is uniquely recovered from the geometry of any trivial region of the
skeleton containing vertices of more than one type (such a region must exist to
break the bound kall � 5, cf. Corollary 5.10), and two distinct factors cannot
appear simultaneously. �

Remark 5.11. Since the images of B3 and Bu3 in GL(2,K) are not known, the
coset enumeration procedure starts with the identity and keeps multiplying matri-
ces by σ2σ1 and σ1σ2σ1, comparing the result with all matrices already listed; each
new matrixM is added to the list together with all products tsM, s = 1, . . . ,M−1.
(If M = 0 mod 3 and a subgroup of B3 is to be found, only values s = 0 mod 3 are
used.) The equivalence relation is linear: two matrices M1,M2 ∈ Mat2×2(K) are
equivalent if and only if v⊥(M1 −M2) = 0.

Example 5.12. The elliptic case N � 5 and the parabolic case N = 6 are treated
in detail in Sections 6 and 7 below, while the range 7 � N � 10 remains open.
A few examples are given in Table 3; they were found by the coset enumeration
procedure described in Subsection 5.4 and Remark 5.11. All groups listed are S-
transitive. The notation is the same as in Table 1: the triples that appear in the
Alexander polynomials of genuine trigonal curves are marked with a ∗, and the
last column describes the projection to Γ of the corresponding universal subgroup.
(This time, the universal subgroups in B3 and in Bu3 have the same projections
to Γ; they differ by their depths.)

Conjecturally, Tables 1 and 3 list all triples (p,N,κξ), N � 7 (including the
case p = 0), that appear in the extended Alexander polynomials of subgroups
of Bu3, not necessarily S-transitive, of genus zero. The proof, in its current state,
requires a great deal of computation and a number of technical details still need
to be double checked. It will appear elsewhere.
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6. Proof of Theorem 1.2

In this section, we list all roots ξ of the extended Alexander polynomials with
N := ord(−ξ) � 5. Only finitely many universal subgroups appear, and they are
all congruence subgroups of genus zero. Then we eliminate the remaining cases
6 � N � 10 for p = 0 and prove Theorem 1.2.

6.1. Reduction to congruence subgroups

For an integer N � 2, denote by B3(N) ⊂ B3 the subgroup normally generated
by σN

1 . For N � 5 these subgroups are of finite index: one has prΓ B3(N) = Γ(N)
and dpB3(N) = 6, 12, 24, and 60 for N = 2, 3, 4, and 5, respectively.

Lemma 6.1. Fix an integer N � 2 and let A′ = A/ϕ̃N (−t). Then the induced
B3-action on A′ � Z factors through B3/B3(N).

Lemma 6.2. In the notation of Lemma 6.1, let GV be the universal subgroup
corresponding to a submodule V ⊂ A′. Then all cusp widths of GV divide N . If
N � 5, then ḠV ⊂ Γ is a congruence subgroup of level l | N .

Proof of Lemmas 6.1 and 6.2. Any element conjugate to σN
1 acts trivially on A(ξ),

see (2.1), and on the product A′ �Z (as σ1 preserves α3). If N � 5, then Γ(N) is
normally generated by σ̄N

1 . �

Lemma 6.3. In the notation of Lemma 6.1, if N � 5, then the action of the
quotient B3/B3(N) on A′ � Z is faithful.

Proof. For any s ∈ Z one has

(6.4) [(σ2σ1)
3s(α1) · α−1

1 ] = ϕ̃s(t
3)[(t − 1)e1 + (t2 − 1)e2];

hence the depth of the kernel of the action equals that of B3(N), see above.
Specializing at t = −1, one obtains a faithful action of SL(2,ZN ) = Γ̃/Γ̃(N) on

ZN ⊕ ZN ; hence, the images of the kernel and of B3(N) in Γ also coincide. �

The action of B3/B3(6) is also faithful, see Lemma 7.5, but I do not know
whether this statement extends to N � 7.

Using Lemmas 6.1 and 6.2 and the tables of congruence subgroups found in [5],
one can easily enumerate all conjugacy classes of submodules V̄G ⊂ A/ϕ̃N (−t) for
N � 5. In Subsections 6.2–6.4 below, we state a few consequences in terms of the
specializations V̄G(ξ) ⊂ A(ξ).

6.2. The cases N = 3 and 5

In this subsection, we do not assume a priori that G is of genus zero or S-transitive.
For each universal subgroup GV , we indicate only its image ḠV ; in each case, the
type specification is recovered uniquely (sometimes up to automorphism) using
Proposition 2.9 (always dpGV = 2 ep(N)) and Lemmas 4.3, 4.4, and 4.6.
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(a) 3B0 (Φ6) (b) 3D0 (Φ2
6) (c) 5D0 (Φ10) (d) 5H0 (Φ2

10)

Figure 1. Skeletons of the universal groups for p = 0.

Theorem 6.5. Assume that the extended Alexander polynomial Δ̄G,p has a root
ξ ∈ K ⊃ kp, p �= 3, with ord(−ξ) = 3. Then one has one of the following three
mutually exclusive cases :

1. V̄G(ξ) = 0; then Ḡ ≺ Γ(3) = 3D0, Figure 1(b), and unless p = 2, one has
V̄G = 0 mod Φ6 (hence V̄G(ξ) = 0 for any q);

2. V̄G(ξ) ∼ Ke2; then Ḡ ≺ Γ1(3) = 3B0, Figure 1(a), and unless p = 2, one
has V̄G ∼ Λe2 mod Φ6 (hence V̄G(ξ) ∼ Kqe2 for any q);

3. p = 2 and V̄G(ξ) = K(−te1 + e2); then G ≺ (Γ)−, see Proposition 4.7.

If G ⊂ B3, then Case (3) does not occur and in all other cases 2VG ⊂ V̄G mod Φ6

and VG(ξ) = V̄G(ξ) unless p = 2.

The reason for the exception in Cases (1) and (2) is the fact that, for p �= 2,
the type specification is defined modulo 2 ep(3) = 12, whereas for p = 2 it is only
defined modulo 2 e2(3) = 6. Hence, the corresponding universal groups are larger
(index 2 extensions) for p = 2. The same remark applies to Theorem 6.7 below.

Proof. Assuming G universal and using Lemma 6.2, one concludes that Ḡ is a
congruence subgroup of level 1 or 3, and the submodules V̄G(ξ) can be computed
using the list found in [5]. For Ḡ = Γ(3) and Γ1(3), one has V̄G = Φ6A and
Λe2 + Φ6A, respectively, cf. [6]. The three other subgroups 3C0 ⊂ 3A0 ⊂ Γ have
2-torsion. Hence V̄G(ξ) = A(ξ) unless p = 2, see Lemma 4.6(1). If p = 2, the
universal subgroup is given by Proposition 4.7.

Cases (2) and (3) are mutually exclusive since the largest subgroup of Γ1(3) on
which the type specification shown in Figure 1 (a) matches −dg mod 6 is Γ(3), see
Remark 4.9. For the last statement, it suffices to notice that the ideal generated
by Φ6 and t2 + t+ 1 contains 2Λ, hence 2VG ⊂ V̄G mod Φ6, see Lemma 2.17. �

Remark 6.6. If p = 2 in Theorem 6.5, the module VG(ξ) depends on the type spec-
ification, i.e., on the lift of G, which can be regarded as a subgroup of PSL(2,F3) =
Γ/Γ(3), to SL(2,F3) = B3/B3(3). In other words, V̄G(ξ) defines the type specifi-
cation modulo 6, whereas VG(ξ) depends on its values modulo 12.
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Figure 2. Some subgroups of level 3, 4, and 5

Theorem 6.7. Assume that the extended Alexander polynomial Δ̄G,p has a root
ξ ∈ K ⊃ kp, p �= 5, with ord(−ξ) = 5. Then one has one of the following four
mutually exclusive cases :

1. V̄G(ξ) = 0; then Ḡ ≺ Γ(5) = 5H0, Figure 1 (d), and unless p = 2, one has
V̄G = 0 mod Φ10 (hence V̄G(ξ) = 0 for any q);

2. V̄G(ξ) ∼ Ke2; then Ḡ ≺ Γ1(5) = 5D0, Figure 1 (c), and unless p = 2, one
has V̄G ∼ Λe2 mod Φ10 (hence V̄G(ξ) ∼ Kqe2 for any q);

3. p = 2 and V̄G(ξ) ∼ K(t2e1 + e2); then Ḡ ≺ 5E0, Figure 2 (c);

4. p = 3 and V̄G(ξ) ∼ K(e1 − te2); then Ḡ ≺ 5F 0, Figure 2 (d).

If G ⊂ B3, then VG = V̄G mod Φ10.

Proof. As above, using Lemma 6.2 one can assume that Ḡ ⊃ Γ(5) and use the
list found in [5]. The two torsion free subgroups Ḡ = Γ(5) and Γ1(5) result in
V̄G = 0 mod Φ10 and Λe2 mod Φ10, respectively. All other subgroups have torsion
and, due to Lemmas 4.4(1) and 4.6(1), one has V̄G(ξ) = A(ξ) whenever p �= 3
and G has 3-torsion or p �= 2 and G has 2-torsion.

Assume that p = 2. The three level 5 subgroups with only 2-torsion are 5B0

and 5G0 ⊂ 5E0. The skeleton of 5B0, see Figure 2 (b), contradicts Lemma 5.1.
For the other two groups, a direct computation shows that V̄G(ξ) = K(t2e1 + e2).

Assume that p = 3. The only level 5 subgroup with only 3-torsion is 5F 0,
see Figure 2 (d). Over Γ(5), it is generated by σ̄2σ̄1 and, lifting this element to
t4(σ2σ1), one obtains V̄G(ξ) = K(e1 − te2), see Subsection 4.3.

Cases (2), (3), and (4) are mutually exclusive since the only common subcon-
jugate of any pair of corresponding universal subgroups is Γ(5).

The last statement follows directly from Corollary 2.18. �

6.3. The cases N = 1, 2, and 4

Here, we do assume that the subgroup G is S-transitive. Without this assumption,
the number of cases in Theorems 6.8, 6.9, and 6.10 would be much larger. As
above, we only indicate the image ḠV of the universal subgroup GV ; the type
specification is given by Proposition 2.9 and Lemmas 4.3, 4.4, and 4.6.

Theorem 6.8. For an S-transitive subgroup G, assume that Δ̄G,p(1) = 0. Then:

1. p = 3, V̄G(1) = K(−te1 + e2), and G ≺ (2A0)bu, see Proposition 4.8 (1).

The conventional Alexander polynomial ΔG,p cannot vanish at 1.
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Proof. Using Lemma 6.2, one can assume that Ḡ ⊃ Γ(2) and, for G to be S-
transitive, Ḡ must not lie in Γ1(2), i.e., it must contain Γ2 = 2A0, see [5]. Thus,
the statement about V̄G(1) follows from Propositions 4.7 and 4.8, and a simple
computation for Ḡ = 2A0 (using the fact that over Γ(2) this subgroup is generated
by σ̄2σ̄1) shows that VG(1) = A(1). �

Theorem 6.9. For an S-transitive subgroup G, assume that Δ̄G,p(−1) = 0. Then
one has one of the following five mutually exclusive cases :

1. p = 3 and V̄G(−1) = 0; then Ḡ ≺ Γ(3) = 3D0, Figure 1 (b);

2. p = 3 and V̄G(−1) ∼ ke2; then Ḡ ≺ Γ1(3) = 3B0, Figure 1 (a);

3. p = 5 and V̄G(−1) = 0; then Ḡ ≺ Γ(5) = 5H0, Figure 1 (d);

4. p = 5 and V̄G(−1) ∼ ke2; then Ḡ ≺ Γ1(5) = 5D0, Figure 1 (c);

5. p = 7 and V̄G(−1) ∼ ke2; then Ḡ ≺ Γ1(7) = 7E0.

If G ⊂ B3, then VG = V̄G mod (t+ 1).

Proof. Essentially, the statement is the principal result of [6], where all modules
AG/(t + 1) are classified. (Note that Lemma 6.2 does not apply to N = 1.) The
action Bu3 on A/(t+1) factors through Γ̃, and the universal subgroups are of the
form Γ̃m(n). There are five such subgroups of genus zero that are S-transitive.
The last statement follows from Corollary 2.18. �

Theorem 6.10. For an S-transitive subgroup G ⊂ Bu3, assume that Δ̄G,p has a
root ξ ∈ K ⊃ kp, p �= 2, with ord(−ξ) = 4. Then one has :

1. p = 3, V̄G(ξ) ∼ K(e1 − te2), and Ḡ ≺ 4D0, Figure 2 (a).

If G ⊂ B3, then VG = V̄G mod (t2 + 1).

Proof. Using Lemma 6.2, one can assume that Ḡ is a congruence subgroup of
level 2 or 4. According to [5], there are three S-transitive (i.e., not subconjugate
to Γ1(2)) subgroups with this property: Γ2 = 2A0, 4A0, and 4D0. All three have
3-torsion; hence V̄G(ξ) = A(ξ) unless p = 3, see Lemma 4.4 (1). The subgroup 2A0

was considered in Subsection 4.5. The subgroup 4A0 has 2-torsion as well and is
eliminated by Lemma 4.6 (1). The remaining subgroup 4D0, see Figure 2 (a), is
generated over Γ(4) by σ̄2σ̄1; lifting it to t3(σ2σ1) and using Subsection 4.3, one
obtains V̄G(ξ) = K(e1 − te2). The last statement follows from Corollary 2.18. �

6.4. Realizability and dependencies

We show that most pairs (p,κξ) listed in the previous two sections do appear in
the (extended) Alexander polynomials of genuine trigonal curves and that most of
them are mutually exclusive.

Theorem 6.11. With the exception of 6.5(3), each case listed in Theorems 6.5,
6.7, 6.8, 6.9, and 6.10 can be realized by a subgroup of B3, ergo by a genuine
trigonal curve.
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Proof. The type specifications in Theorem 6.5, except Case 6.5(3), are trivial mod-
ulo 6. In all the other theorems, one has g.c.d.(M, 3) = 1 and hence the type
specifications can be chosen trivial modulo 6. �

Remark 6.12. The minimal, in the sense of the skeleton, genuine trigonal curve
with the Alexander polynomial Φ10 has non-simple singularities. According to the
type specification shown in Figure 1 (c), it must be a curve in Σ10 with the set of
singular fibers J̃8,0 ⊕ 2Ã4 ⊕ Ã∗

0.

Theorem 6.13. The fourteen cases listed in Theorems 6.5, 6.7, 6.8, 6.9, and 6.10,
are related as follows :

1. if p �= 2, then 6.5(1) =⇒ 6.9(1) and 6.5(2) =⇒ 6.9(2);

2. if p �= 2, then 6.7(1) =⇒ 6.9(3) and 6.7(2) =⇒ 6.9(4);

3. 6.10(1) =⇒ 6.8(1);

4. Cases 6.5(2) =⇒ 6.9(2) and 6.8(1) can occur simultaneously;

5. Case 6.5(3) can occur simultaneously with any case except 6.5(1), (2);

6. otherwise, if G is of genus zero, the cases are mutually exclusive.

The implications in (1) turn into equivalences if G ⊂ B3 and p �= 2.

Proof. For (1) and (2), the universal subgroups coincide, the type specifications
in Theorems 6.5 and 6.7 being more restrictive (defined, respectively, modulo 12
or 20) than those in Theorem 6.9 (defined modulo 4 only). If G ⊂ B3, Proposi-
tion 2.9 makes the type specifications in Theorem 6.9 well defined modulo 12 as
well (if p �= 2) and the implications in (1) turn into equivalences.

The implication in (3) follows from the inclusion 4D0 ⊂ 2A0.
The fact that the cases within each theorem are mutually exclusive is stated

in the corresponding theorem. Otherwise, consider two cases and let G1 and G2

be the corresponding universal subgroups, and M1 and M2 the values of M . For
the two cases to occur simultaneously, the projections Ḡ1 and Ḡ2 must have a
common subconjugate of genus zero. Then, if in addition g.c.d.(M1,M2) = 1,
one can also find a common type specification. Common subconjugates can be
analyzed using the tables found in [5] (listing, in particular, all sub/supergroups).
Unless one of the groups is Γ itself (Item (5) of the statement), the only pair is
2A0 ⊃ 6C0 ⊂ 3B0, which accounts for Item (4). �

The following fact was stated in [6] without proof.

Corollary 6.14. For an irreducible genuine trigonal curve C, if Φ2
M | ΔC , then

the fundamental group πafn
C admits a dihedral quotient D(ZM ⊕ ZM ).

Theorem 6.15. For an S-transitive subgroup G ⊂ Bu3 of genus zero, assume that
V̄G(ξ) = 0 for some ξ ∈ K ⊃ kp. Then Ḡ ⊂ Γ(N) for N = 3 or 5, see Cases
6.5(1), 6.7(1), and 6.9(1) and (3).

Proof. According to Lemma 4.11, G is torsion free and all its cusp widths are
divisible by N . As a torsion free subgroup of genus zero, G is generated by its para-
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bolic elements, hence G ⊂ Γ(N). Then N � 5, and it remains to observe that the
subgroups Γ(4) ⊂ Γ(2) are not S-transitive. �

6.5. The case p = 0 and e0(N) = qr

Assume that one of the polynomials ΔG or Δ̄G of a subgroup G ⊂ B3 · InnF has
a root ξ of order M := e0(N) = qr, where q is a prime. In the range 3 � N � 10,
see Corollary 5.10, this is the case for N = 4, 6, 8, or 10, all even values of N .

Lemma 6.16. Let M = qr be a prime power. If ΦM divides ΔG or Δ̄G, then
(t− 1) divides ΔG,q or Δ̄G,q, respectively.

Proof. We will prove the statement for Δ; the proof for Δ̄ is a literal repetition.
With the stated assumptions, the group AG/ΦM is infinite (as it remains non-

trivial after tensoring with Q). Hence, the q-group Hom(AG/ΦM ,Fq) is nontrivial,
and the order qr automorphism t of this group has a nontrivial invariant element ϕ.
Then the (Λ⊗ Fq)-module AG ⊗ Fq factors as Imϕ ∼= Fq = (Λ⊗ Fq)/(t− 1). �

Corollary 6.17. Let M = qr be a prime power, and let G be an S-transitive
subgroup. Then ΦM � ΔG, and if ΦM | Δ̄G, one has :

1. M = 3, V̄G = Λ(−te1 + e2) mod Φ3 and G ≺ (2A0)−, see Proposition 4.8.

A subgroup G with these properties cannot lie in B3.

Proof. The statement follows from Lemma 6.16 and Theorems 6.8 and 7.16. �

6.6. Eliminating N = 7 and 9 for p = 0

Let k = Q and let ξ be a primitive root of (−1) of degree 7 or 9, so that κξ

is the cyclotomic polynomial Φ14 or Φ18, respectively. Note that, in both cases,
degκξ = 6, so that Q(ξ) ⊃ Q is a Galois extension of degree six.

Fix a vector h ∈ A(ξ) and consider the universal subgroup

Gh := {β ∈ Bu3 | Im[β(ξ)− id] ⊂ Λ(ξ)h} ⊂ Bu3.

Lemma 6.18. For any h ∈ A(ξ), one has [Bu3 : Gh] = [Γ : Ḡh] = ∞.

Proof. Consider the element

β := tσ−1
1 σ2 =

[
t− 1 −t
t2 −t2

]

and its specialization β(ξ). We assert that, in an appropriate extensionK ⊃ Q(ξ) of
degree at most two, β(ξ) has two distinct eigenvalues which are not roots of unity.
Indeed, the characteristic polynomial of β(ξ) is χ(λ) = λ2 +(ξ2 − ξ+1)λ+ ξ2 and
its roots belong to an extension of Q of degree 6 or 12. Hence, the degree of the
minimal polynomial κλ ∈ Q[t] of any eigenvalue λ divides 12. There are finitely
many cyclotomic polynomials Φn with degΦn | 12 (one has n = 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 12, 13, 14, 18, 21, 26, 28, 36, or 42; alternatively, in the computation
below one can use the polynomials λn − 1 with n = 8, 10, 26, 28, 36, or 42). For
each such polynomial Φn(λ), compute the resultant Rn(ξ) of Φn(λ) and χ(λ) with
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respect to λ, treating ξ as an independent variable. Each time, it is straightforward
thatRn mod κξ �= 0; hence χ(λ) and Φn(λ) have no common roots in any extension
of Q(ξ). (This computation was performed using Maple.) It follows that the two
roots of χ are not roots of unity and, in particular, they are distinct (as their
product ξ2 is a root of unity).

Thus, for any pair of integers m �= 0 and r, the two eigenvalues of ξrβm(ξ)− id
are distinct and nonzero. Hence, rk[ξrβm(ξ) − id] = 2 and trβm /∈ Gh. On the
other hand, the projection β̄ ∈ Γ is an element of infinite order. �

Corollary 6.19. If G ⊂ Bu3 and [Γ : Ḡ] < ∞ (e.g., if G is a subgroup of genus
zero), the polynomial Δ̄G is not divisible by Φ14 or Φ18.

Remark 6.20. In the proof of Lemma 6.18, we used Maple to show that a certain
algebraic number is not a root of unity. Probably there should be a better way to
detect rational arguments, and I expect that the statement of the lemma holds for
any primitive root ξ ∈ C of (−1) of degree N � 7.

6.7. Proof of Theorem 1.2

Let G ⊂ B3 · InnF be the monodromy group of the curve; it is an S-transitive
subgroup of genus zero, see Theorem 3.2. Due to Lemma 4.10 and Corollary 5.10,
each irreducible factor of ΔG is of the form ΦM with N := e0(M) � 10. Most
values of N are eliminated above, see Theorem 6.8 for N = 2, Theorem 6.9 for
N = 1, Corollary 6.17 for N = 4, 6, 8, and 10, and Corollary 6.19 for N = 7, 9.
The multiplicity of each of the remaining factors Φ6 and Φ10 cannot exceed two,
see Lemma 4.10, and two distinct factors cannot appear simultaneously according
to Theorem 6.13. The realizability is given by Theorem 6.11, see Remark 3.5. �

7. The case N = 6

In this section, we treat the parabolic case N := ord(−ξ) = 6. Since ξ2+ ξ+1 = 0
in this case, Corollary 2.18 does not apply and we consider the extended modules
V̄G ⊂ A and ĀG only.

7.1. The action on A′

Let Λ′ = Λ/Φ3 and A′ = A/Φ3; for an integer m > 1, let also Λ′
m = Λ′ ⊗ Zm and

A′
m = A′ ⊗ Zm. Consider the vector v = −te1 + e2 ∈ A′. It is immediate that

σ1(v) = σ2(v) = v, and in the basis {v, e2} the induced B3-action is given by the
matrices

(7.1) σ1 =

[
1 −t2

0 −t

]
, σ2 =

[
1 0
0 −t

]
;

hence

(7.2) σ1σ
−1
2 =

[
1 t
0 1

]
, σ−1

2 σ1 =

[
1 t+ 1
0 1

]
.

It follows that the image of the action on A′ is the full group of upper triangular
matrices with [1, (−t)s] in the diagonal.
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Let Γ′ = [Γ,Γ] = 6A1. Recall that it is the free subgroup generated by σ̄1σ̄
−1
2

and σ̄−1
2 σ̄1. Let Γ′′ = [Γ′,Γ′] be the second commutant, and let Γ′′

m ⊂ Γ′ be the
preimage of mZ⊕mZ under the abelianization homomorphism Γ′ → Z⊕ Z.

The next two lemmas follow immediately from (7.1) and (7.2).

Lemma 7.3. The kernels of the B3-actions on A′ and A′
m are the subgroups (Γ′′)+

and (Γ′′
m)+, respectively. The image of (Γ′)+/(Γ′′)+ in SL(A′) consists of all unipo-

tent upper triangular matrices.

Lemma 7.4. Any two vectors of the form e2 + fiv ∈ A′, fi ∈ Λ′, i = 1, 2, are
conjugate to each other.

Lemma 7.5. The action of B3/B3(6) on A′ � Z, see Lemma 6.1, is faithful.

Proof. The images in Γ of the elements β1 := σ1σ
−1
2 and β2 := σ−1

2 σ1 generate Γ′,
and the image of the commutator [β1, β2] := β1β2β

−1
1 β−1

2 normally generates Γ′′.
One can easily check the identity [β1, β2](σ2σ1)

−3 = σ1σ
−6
2 σ−1

1 ; hence B3(6) is the
lift (Γ′′)0 of Γ′′ with the slope 0 : Γ′′ → Z. On the other hand, due to (6.4), the
kernel of the action is a subgroup of depth 0. �

Lemma 7.6. If m �= 0 mod 3, the subgroup Γ′′
m is S-transitive.

Proof. One has (σ̄1σ̄
−1
2 )m ∈ Γ′′

m. �

Lemma 7.7. Any subgroup G ⊂ Γ containing Γ′′
m is of genus at most one. If m

is prime to 6, the following statements are equivalent :

1. G is of genus zero;
2. [Γ : G] �= 0 mod 6;
3. G �⊂ Γ′;
4. G has torsion.

Proof. The group Γ′ is torsion free and all its cusp widths are equal to 6. According
to Lemma 6.2, all cusp widths of Γ′′

m divide 6. Hence, the covering SkΓ′′
m
→ SkΓ′ is

unramified, see Subsection 2.4.4, and Γ′′
m has genus one (as Γ′ has genus one and

any unramified covering of a torus is a torus).
One has [Γ : Γ′] = 6 and [Γ′ : G′] | m2 for any G′ ⊂ Γ′; hence, statements (2)

and (3) are equivalent. Obviously, (2) implies (4), and (4) implies (3), as Γ′ is
torsion free. Since Γ′ has genus one, (1) implies (3). Finally, if G has torsion, the
covering SkG∩Γ′ → SkG is ramified, see Subsection 2.4.4, and G has genus zero (as
any ramified covering by a torus has sphere as the base). Thus, (4) implies (1). �

7.2. Subgroups of B3

In this and the following subsections, we treat the case of genuine trigonal curves,
i.e., we assume that G ⊂ B3.

Lemma 7.8. Assume that m is prime to 6. For a subgroup G ⊂ B3, denote by V̄ ′
G

the projection of V̄G to A′
m. Then either

1. V̄ ′
G = 0 mod Λ′

mv, and then Ḡ ⊂ Γ′, or

2. V̄ ′
G = A′

m mod Λ′
mv, and then Ḡ �⊂ Γ′.
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Conversely, any submodule V ⊂ A′
m satisfying (1) or (2) above is of the form V̄ ′

G

for some subgroup G ⊂ B3.

Proof. All statements follow immediately from the description of the action via
upper triangular matrices, see (7.1) and (7.2), and the fact that all polynomials
(−t)s − 1, s �= 0 mod 6, are invertible in Λ′

m. �

Theorem 7.9. Let G ⊂ B3 be a subgroup of genus zero. Then the module A′
G :=

AG/Φ3 is finite and, modulo 2- and 3-torsion, one has

1. A′
G = A′

m/(Λ′
me2 + Iv) for some integer m prime to 6 and ideal I ⊂ Λ′

m.

Conversely, any module A′
m/(Λ′

me2 + Iv) as above is of the form A′
G for some

S-transitive genus zero subgroup G ⊂ B3.

Proof. One has (σ1σ
−1
2 )se2− e2 = stv for any s ∈ Z. Hence, for A′

G to be infinite,
the submodule V̄G/Φ3 must lie in Λ′v. Then Lemma 7.8 implies that Ḡ ⊂ Γ′ is a
subgroup of genus at least one.

Assume that A′
G is finite. Then, modulo 2- and 3-torsion, A′

G = A′
m/V̄ ′

G for
some sufficiently large m prime to 6. Since Ḡ �⊂ Γ′, one has V̄ ′

G = A′
m mod Λ′

mv,
see Lemma 7.8, i.e., V̄ ′

G contains a vector of the form e2 + fv, f ∈ Λ′
m. In view

of Lemma 7.4, any such vector is conjugate to e2, i.e., up to conjugation V̄ ′
G is as

stated in the theorem.
Conversely, any submodule V = Λ′

me2 + Iv ⊂ A′
m as in the statement is of

the form V̄ ′
G for some subgroup G ⊂ B3 with Γ′′

m ⊂ Ḡ �⊂ Γ′, see Lemma 7.8; this
subgroup is S-transitive, Lemma 7.6, and has genus zero, Lemma 7.7. �

7.3. A characterization of universal subgroups

Let Sk be the skeleton of a genus zero subgroup G ⊂ Γ. Assume that it has only
1, 2, 3, and 6-gonal regions. Then Euler’s formula yields

(7.10) 3n◦ + 4n• + 5n1 + 4n2 + 3n3 = 12,

where n◦, n•, and ni, i = 1, 2, 3, 6 are, respectively, the numbers of monovalent ◦-
and •-vertices and i-gonal regions of Sk. One of the solutions to this equation is
n◦ = n• = n1 = 1, n2 = n3 = 0, and in this case one has [Γ : G] = 6n6 + 1.

Definition 7.11. A proper finite index subgroup G of B3 (or of Γ) is called 6-
significant if dpG = 6 and the skeleton Sk of G has exactly two monovalent
vertices, one ◦- and one •-, and one monogonal region, while all other regions of Sk
are hexagons.

Note that any 6-significant subgroup G ⊂ B3 is automatically S-transitive and
of genus zero. Note also that, since dpG = 6, it is not important whether we speak
about subgroups of B3 or Γ: one always has G = (Ḡ)+. Examples of 6-significant
subgroups are shown in Figure 3.

Lemma 7.12. Any 6-significant subgroup G ⊂ Γ contains Γ′′
m for some integer m

prime to 6. One can take m = [Γ : G].

Proof. Since [Γ : G] = 6n6 + 1 = 1 mod 6, see above, the subgroup G′ := G ∩ Γ′ is
of index 6 in G, torsion free, and with all cusp widths equal to 0 mod 6. On the
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(a) p = 7 (b) p = 13

Figure 3. Examples of Gξ, N = 6.

other hand, there is a unique subgroup of G with these properties: it corresponds
to the 6-fold cyclic covering Sk′ → SkG appropriately ramified over the monovalent
vertices and the monogonal region. From the latter description, it follows that all
cusp widths of G′ are equal to 6. Hence, SkG′ → SkΓ′ is an unramified covering of
degree m = [Γ′ : G′] = [Γ : G] and, the fundamental group of the torus being Z×Z,
it splits the (Zm × Zm)-covering corresponding to the inclusion Γ′′

m ↪→ Γ′. �

Theorem 7.13. A subgroup G ⊂ B3 is the universal subgroup corresponding to a
proper submodule V = Λ′

me2 + Iv ⊂ A′
m for some sufficiently large m prime to 6,

see Theorem 7.9, if and only if it is 6-significant. One can take m = [Γ : Ḡ].

Proof. According to Lemma 7.4, any submodule as in the statement contains vec-
tors conjugate to −e1+e2 and te1+e2. Hence, the universal subgroup has both 2
and 3-torsion and, in view of Lemma 6.2 and (7.10), it is 6-significant.

For the converse, consider a 6-significant subgroup G and let m = [Γ : G].
Due to Lemmas 7.12 and 7.3, G ⊃ Γ′′

m and G/Γ′′
m acts faithfully on A′

m. Up to
conjugation, one can assume that σ2 ∈ G; then G/Γ′′

m has the form

G =

{[
1 a
0 (−t)s

] ∣∣∣∣ s ∈ Z6, a ∈ I

}

for some ideal I ⊂ Λ′
m, and it is clear that G is the universal subgroup correspond-

ing to the submodule V = Λ′
me2 + Iv ⊂ A′

m. �

Example 7.14. According to Theorems 7.9 and 7.13, there are infinitely many
conjugacy classes of 6-significant subgroups: they can be classified by the proper
ideals I ⊂ Λ′ with the property that mΛ′ ⊂ I for some m prime to 6. Using the
list in [5], one can see that none of them is a congruence subgroup.

Two examples of 6-significant subgroups are shown in Figure 3. (For the nota-
tion, see Theorem 7.16 below.) In each case, the skeleton shown in the figure and
its mirror image correspond to the two distinct cubic roots of unity in Fp.

7.4. Subgroups with nontrivial type specification

In conclusion, we show that the only other source of nontrivial modules A′
G is the

subgroup (2A0)−, see Proposition 4.8 (2).

Theorem 7.15. For a subgroup G �⊂ B3, let A′
G = AG/Φ3 and assume that

6A′
G �= 0. Then V̄G ⊂ Λ(−te1 + e2) mod Φ3 and G ⊂ (2A0)−.
If G is S-transitive and has genus zero, then V̄G = Λ(−te1 + e2) mod Φ3.
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Proof. Denote by V̄ ′
G the image of V̄G in A′. For any integer s �= 0 mod 6, one has

Λ′(ts − 1) ⊃ 6Λ′, and it follows from (7.1) that, whenever the type specification is
not trivial modulo 6, there is an inclusion 6Λ′v ⊂ V̄ ′

G. The induced B3-action on
A′/v is β : h �→ (−t)dg βh; hence, as above, V̄ ′

G is not a submodule of 6A′ if and
only if Ḡ ⊂ 2A0 = Ker(dg mod 2) and the type specification is −dg mod 6, i.e.,
G ⊂ (2A0)−.

For G = (2A0)−, one does have V̄ ′
G = Λ′v, and for any subgroup G′ ⊂ G not

contained in B3, still V̄G′ ⊃ 6Λ′v. Tensoring the module A′
G′ with F2 or F3 and

using Theorems 6.5 and 6.8, one concludes that, if G′ is S-transitive and of genus
zero, the quotient Λ′v/V̄G′ cannot have 2 or 3-torsion. (Note in addition that the
intersection (2A0)− ∩ B3 = (Γ′)+ has genus one, see Remark 4.9.) �

To summarize the results obtained in this section, we restate a few consequences
of Theorems 7.9 and 7.15 in terms of the specializations V̄G(ξ).

Theorem 7.16. For a genus zero S-transitive subgroup G ⊂ Bu3, assume that
the extended Alexander polynomial Δ̄G,p has a root ξ ∈ K ⊃ kp, p �= 2, 3, with
ord(−ξ) = 6. Then one has one of the following two cases :

1. V̄G = Λ(−te1 + e2) mod Φ3 and G ≺ (2A0)−;

2. p � 5, V̄G(ξ) ∼ Ke2, and G ≺ (Gξ)
+ ⊂ B3, where Gξ ⊂ Γ is a certain

subgroup of index pdegκξ .

Cases (1) and (2) are mutually exclusive. In Case (2), any finite number of distinct
pairs (p,κξ) can appear in the Alexander module of a particular group.

Proof. Cases (1) and (2) are given by Theorems 7.15 and 7.9, respectively; they are
mutually exclusive due to Remark 4.9. In Case (2), any finite number of distinct
primes pi � 5 can be ‘mixed’ in the module AG = A′

m/Λ′
me2, where m =

∏
i p

2
i ,

see Theorem 7.9. �
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