
Rev. Mat. Iberoam. 30 (2014), no. 1, 65–78
doi 10.4171/rmi/769

c© European Mathematical Society

Restriction spaces of A∞

Dietmar Vogt

Abstract. In the present paper it is shown that for certain totally discon-
nected Carleson sets E the restriction space A∞(E) = {f |E : f ∈ A∞} has
a basis. Its isomorphism type is determined. The result disproves a claim
of S.R. Patel in [12]. To prove our result we analyze restriction spaces
C∞(E) = {f |E : f ∈ C∞(R)} and then, using a result of Alexander, Tay-
lor and Williams, we show that A∞(E) = C∞(E). Among our examples
there are the classical Cantor set and sets of type E = {xn : n ∈ N}∪{0},
where (xn)n∈N is a null sequence in R with certain properties.

1. Introduction

In his paper [12] Patel claims the following result: if E ⊂ [0, 2π[ is a compact,
totally disconnected Carleson set, then the space of restrictions of A∞ to E in
its natural locally convex topology fails to have a Schauder basis. This result,
if true, would have provided us with a wealth of quite natural counterexamples
for the basis problem for nuclear Fréchet spaces. This problem has, of course,
been solved in the negative a long time ago by Mityagin and Zobin [7], [8], [9].
Further counterexamples have been given by Djakov and Mityagin [5], Djakov [4]
and Moscatelli [10]. Quite recently the author of this note has given a very simple
counterexample, which is a Fréchet algebra of C∞-functions on R2 [19]. That the
proof of Patel’s result has a gap has been widely noted. However it remained an
interesting question whether the result is correct or not. Unfortunately it is not.
We present examples of sets E fulfilling all the above mentioned assumptions and
for which the restriction space A∞(E) has a basis.

In this paper A∞ will be considered as the space of all 2π-periodic C∞-functions
on R for which all negative Fourier coefficients vanish. E will always denote a
compact subset of R and when it comes to considerations about A∞ we will always
assume that E ⊂ [0, 2π[.

We recall that the sets E which are zero sets of an A∞-function have been
characterized by Taylor and Williams [13] and Novinger [11] as those satisfying
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the Carleson condition ∫ 2π

0

log
1

d(x,E)
dx < ∞.

The sets E with the property that for any (periodic) C∞-function f on R there
is g ∈ A∞ such that f and g and all their derivatives coincide on E have been
characterized by Alexander, Taylor and Williams [2] as those satisfying the strong
Carleson condition (ATW-condition): there are constants C1 and C2 such that

1

b− a

∫ b

a

log
1

d(x,E)
dx ≤ C1 log

1

b− a
+ C2

for all 0 ≤ a < b ≤ 2π.
For functional analytic terminology and results we refer to [6]. For all notation

concerning power series spaces, invariants like diametral dimension, (DN), (Ω),
etc., and related results we refer also to the survey article [18].

2. Restriction spaces of C∞(R)

Let E ⊂ R be a closed set and 0 an accumulation point of E. We set

C∞(E) =
{
f |E : f ∈ C∞(R)

}
and J(E) =

{
f ∈ C∞(R) : f |E = 0

}
.

Then we have in a natural way

C∞(E) ∼= C∞(R)/J(E)

and this makes C∞(E) a nuclear Fréchet space.
We want to characterize the functions ϕ ∈ C∞(E). Of course such a character-

ization in terms of divided differences has been given by Whitney a long time ago,
see [21] and there is a vast literature on this problem. We will give a description
in this special case which fits our purposes.

Lemma 2.1. If ϕ ∈ C∞(E) and ϕ = f |E for f ∈ C∞(R), then f (p)(0) is uniquely
determined by ϕ for all p ∈ N0.

Proof. We proceed by induction. First, f (0)(0) = f(0) = ϕ(0). Assume that
f (0)(0), . . . , f (p)(0) have been shown to be uniquely determined. We obtain for
x ∈ E, x �= 0,

f (p+1)(ξ) =
(p+ 1)!

xp+1

(
f(x)−

p∑
j=0

f (j)(0)

j !
xj
)

with a suitable ξ between 0 and x.
For x → 0 we have f (p+1)(ξ) → f (p+1)(0), hence we have

f (p+1)(0) = lim
x→0,x∈E

(p+ 1)!

xp+1

(
ϕ(x) −

p∑
j=0

f (j)(0)

j !
xj
)
.

In particular, this limit exists. �

Definition 2.2. We set ϕ(p)(0) := f (p)(0) for some f ∈ C∞(R) with f |E = ϕ.
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Corollary 2.3. If f ∈ J(E) then f is flat at 0, that is, f (p)(0) = 0 for all p.

Proof. This follows from Lemma 2.1 because f is an extension of 0 and g ≡ 0 is
another one. �

Lemma 2.4. δp : ϕ 
→ ϕ(p)(0) is a continuous linear form on C∞(E).

Proof. If δ∞p is the same map considered on C∞(R) and ρ : C∞(R) → C∞(E) the
restriction map then δ∞p = δp ◦ ρ, hence δp is continuous, by the definition of the
topology on C∞(E). �

Lemma 2.5. Δ(ϕ) := (δp)p∈N0 defines a continuous, linear surjective map Δ from
C∞(E) onto the space ω of all scalar sequences.

Proof. Continuity follows from Lemma 2.4, and surjectivity from a theorem of
E. Borel (see 26.29 in [6]). �

We set J∞(0) :={f ∈ C∞(R) : f (p)(0) = 0 for all p} and J∞(0) :={ϕ∈C∞(E) :
ϕ(p)(0) = 0 for all p} = {f |E : f ∈ J∞(0)}.

If f ∈ J∞(0) we have, for all x ∈ R and p ∈ N,

f(x) =
f (p)(ξ)

p !
xp

where ξ is between 0 and x. Therefore for any 0 ≤ x ≤ R and p ∈ N0 we get,
setting ‖f‖M := sup

{|f(t)| : t ∈ M
}
for any function on a set M ,

(2.1)
∣∣f(x)∣∣ ≤ ∥∥f (p)

∥∥
[0,R]

|x|p
p !

.

From now on we assume that E = {x1, x2, . . . } ∪ {0}, where xn ↘ 0. We set
εn = xn − xn+1 and assume that εn ≥ εn+1 > 0 for all n.

Let χ be an even C∞-function with support in [−1/2,+1/2] such that χ ≡ 1 in
a neighborhood of 0. We set χε(x) := χ(x/ε). For any sequence ξ ∈ ω the function

f(x) =

∞∑
n=1

ξn χεn(x − xn)

is in C∞(R \ {0}) and f(xn) = ξn for all n ∈ N.

Lemma 2.6. Let f be as above. Then f ∈ J∞(0) if and only if

lim
n→∞

|ξn|
εpn

= 0 for all p ∈ N0.

Proof. For all p we have

(2.2) sup
0<|x|≤xN

∣∣f (p)(x)
∣∣ = sup

n≥N

∣∣ξn∣∣ ∥∥χ(p)
εn

∥∥
R
=

∥∥χ(p)
∥∥
R
sup
n≥N

|ξn|
εpn

.

This proves the result. �
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We assume now that there is q ∈ N such that

(2.3) sup
n

xq
n

εn
< ∞.

Remark 2.7. If condition (2.3) is fulfilled then for any scalar sequence ξ the
following are equivalent:

1. limn→∞ |ξn|/εpn = 0 for all p ∈ N0.

2. limn→∞ |ξn|/xp
n = 0 for all p ∈ N0.

We set αn := − log xn. Because
∑

n x
q
n ≤ C

∑
n εn < ∞, the space

Λ∞(α) :=
{
ξ = (ξ1, ξ2 . . . ) : |ξ|p = sup

n
|ξn| epαn < ∞ for all p

}
is nuclear, by the Grothendieck–Pietsch criterion (see 28.15 in [6]). We obtain:

Proposition 2.8. If condition (2.3) is fulfilled then Φ : ϕ 
→ (ϕ(xn))n∈N maps
J∞(0) isomorphically onto Λ∞(α).

Proof. If ϕ ∈ J∞(0) and f ∈ C∞(R) is any extension of ϕ then f ∈ J∞(0) and,
by inequality (2.1), we have

|ϕ(xn)| ≤
‖f (p)‖[0,x1]

p !
e−pαn .

Since this holds for every extension f of ϕ we have

sup
n

|ϕ(xn)| epαn ≤ s(ϕ),

where s is a continuous seminorm on J∞(0).
Obviously Φ is injective. Surjectivity of Φ follows from Lemma 2.6. We have,

using the notation of Lemma 2.6,

Φ−1(ξ) =

∞∑
n=1

ξn χεn(x− xn).

Continuity of Φ−1 follows from equation (2.2) with N = 1 or from the open
mapping theorem. �

We will now investigate the structure of C∞(E).

Theorem 2.9. Let ϕ ∈ C(E). Then ϕ ∈ C∞(E) if and only if the following holds:
there are numbers Ap, p ∈ N0, such that A0 = ϕ(0) and for all p ∈ N0 we have

(2.4) Ap+1 = lim
n→∞

(p+ 1)!

xp+1
n

(
ϕ(xn)−

p∑
j=0

Aj

j !
xj
n

)
.

In this case Ap = ϕ(p)(0) for all p ∈ N0.

Proof. Necessity follows from Lemma 2.1. From this lemma it follows also that
necessarily Ap = ϕ(p)(0) for all p ∈ N0. We have to show that the condition is also
sufficient.
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Given the sequence Ap, p ∈ N0, there exists, by the E. Borel theorem, a function
g ∈ C∞(R) such that g(p)(0) = Ap for all p ∈ N0.

We consider the function h = ϕ− g|E. For n ∈ N we have

h(xn) = ϕ(xn)− g(xn) =

p∑
j=0

Aj

j !
xj
n +

Ãp+1

(p+ 1)!
xp+1
n − g(xn)

=
Ãp+1

(p+ 1)!
xp+1
n − g(p+1)(ξ)

(p+ 1)!
xp+1
n =

(
Ãp+1 − g(p+1)(ξ)

) xp+1
n

(p+ 1)!
.

By (2.4), Ãp+1 depends on n and converges to Ap+1 for large n, and ξ ∈]0, xn[
comes from Taylor’s formula with the Lagrange remainder. Hence we have

lim
n→∞

|h(xn)|
xp+1
n

= lim
n→∞

1

(p+ 1)!

∣∣Ãp+1 − g(p+1)(ξ)
∣∣ = 0

for all p ∈ N0.
By Lemma 2.6 and condition (2.2) there is a function H ∈ J∞(0) such that

H(xn) = h(xn) for all n ∈ N; that is H |E = h. We set f := g + H . Then
f ∈ C∞(R) and f |E = ϕ. �

On C∞(E) we consider for p = 0, 1, . . . the seminorms

|ϕ|p = sup
n

∣∣∣ p !
xp
n

(
ϕ(xn)−

p−1∑
j=0

ϕ(j)(0)

j !
xj
n

)∣∣∣.
We fix p. For every n the function ϕ 
→ | . . . | is a continuous seminorm, since
ϕ → ϕ(xn) and δj , j = 0, . . . , p − 1, are continuous linear forms on C∞(E). The
supremum exists for all ϕ, hence, by the Banach–Steinhaus Theorem, the | · |p are
continuous seminorms on C∞(E).

Theorem 2.10. The family of norms {| · |p, p ∈ N0}, is a fundamental system of
seminorms in C∞(E).

Proof. It suffices to show that C∞(E) is complete in the topology generated by
the norms | · |p. Let ϕk, k ∈ N, be a Cauchy sequence with respect to | · |p, p ∈ N0.

Since |ϕ|0 = supn∈N |ϕ(xn)| = sup{|ϕ(x)| : x ∈ E} the sequence ϕk converges
uniformly on E to a function ϕ ∈ C(E).

For every p the sequence

p !

xp
n

(
ϕk(xn)−

p−1∑
j=0

ϕ
(j)
k (0)

j !
xj
n

)
, k = 1, 2, . . .

converges uniformly in n. Therefore the right-hand side of

ϕ
(p+1)
k (0) = lim

n→∞
(p+ 1)!

xp+1
n

(
ϕk(xn)−

p∑
j=0

ϕ
(j)
k (0)

j !
xj
n

)
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converges for all p ∈ N0. We set for p ∈ N0

Ap+1 = lim
k→∞

ϕ
(p+1)
k (0)

and arrive, by induction, at the condition (2.4) for ϕ ∈ C(E). By Theorem 2.9 we
get that ϕ ∈ C∞(E).

The proof that limk→∞ |ϕk − ϕ|p = 0 for all p is now standard. �

Remark 2.11. The system of seminorms | · |p, p ∈ N0, is not increasing. To see
this we choose ϕ = P |E where P is a polynomial of degree m. Then |ϕ|p = 0 for
p > m. In this case, fundamental system of seminorms means that every continuous
seminorm s on C∞(E) satisfies an estimate of the form s(ϕ) ≤ C maxp=0,...,p0 |ϕ|p.

3. C∞(E) and A∞(E)

Lemma 3.1. Condition (2.3) implies that E = {x1, x2, . . . } is a Carleson set.

Proof. We may assume that 0 < x1 ≤ 1 and obtain, with suitable s > 0,

∞∑
n=1

εn log
1

εn
≤ s+ q

∞∑
n=1

εn log
1

xn
≤ s+ q

∫ 1

0

log
1

x
dx = s+ q.

The second sum is a lower Riemann sum for the integral whence the second esti-
mate. �

We will now carefully study the Carleson condition and also the strong Carleson
condition of Alexander–Taylor–Williams (ATW-condition), see [2]. We start with
a simple calculation. For 0 ≤ a < b we obtain

(3.1)

∫ b

a

log
1

d(x, {a, b}) dx = (b− a) log
1

b− a
+ (1 + log 2)(b− a).

For A < B and a ∈ [(A+B)/2, B] we have∫ B

a

log
1

d(x, {A,B}) dx =

∫ B

a

log
1

B − x
dx = (B − a) log

1

B − a
+ (B − a).

For a ∈ [A, (A +B)/2] we get∫ B

a

log
1

d(x, {A,B}) dx ≤
∫ B

A

log
1

d(x, {A,B}) dx

= (B −A) log
1

B −A
+ (1 + log 2)(B −A)

≤ 2(B − a) log
1

B − a
+ 2(1 + log 2)(B − a),

since B − a ≤ B −A ≤ 2(B − a). Therefore we have in both cases

(3.2)

∫ B

a

log
1

d(x, {A,B}) dx ≤ 2 (B − a) log
1

B − a
+ 4 (B − a).
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In the same way we get, for b ∈ [A,B],

(3.3)

∫ b

A

log
1

d(x, {A,B}) dx ≤ 2 (b−A) log
1

b−A
+ 4 (b−A).

We need another elementary inequality. For 0 < a ≤ b we have, using the mean
value theorem, with a < ξ < a+ b,

(a+ b) log(a+ b)− a log a = b (log ξ + 1)(3.4)

≤ b (log(a+ b) + 1) ≤ b log b+ b log 2 + b,

and therefore

(3.5) a log
1

a
+ b log

1

b
≤ (a+ b) log

1

a+ b
+ 2 b.

Assume now that we have numbers 0 < a1 ≤ a2 ≤ · · · ≤ am such that

k∑
j=1

aj ≤ ak+1

for k = 1, . . . ,m− 1. We set a =
∑m

j=1 aj and we obtain, by inductive use of the
estimate (3.5),

(3.6)

m∑
j=1

aj log
1

aj
≤ a log

1

a
+ 2 a.

We return to our previous setting and we have shown:

Lemma 3.2. If xk+1 ≤ εk for all k ∈ N then, for 0 ≤ a < b ≤ x1,

(3.7)
1

b− a

∫ b

a

log
1

d(x,E)
dx ≤ 2 log

1

b− a
+ 16 .

Proof. First we apply for any j the formulas (3.1), (3.2) or (3.3), respectively, to
the interval [αj+1, αj ] = [xj+1, xj ] ∩ [a, b] and obtain in all cases

(3.8)

∫ αj

αj+1

log
1

d(x,E)
dx ≤ 2(αj − αj+1) log

1

αj − αj+1
+ 4 (αj − αj+1).

If b ∈ [αm+1, αm] then we obtain, by use of the formula (3.6),

(3.9)

∫ αm+1

a

log
1

d(x,E)
dx ≤ 2(αm+1 − a) log

1

αm+1 − a
+ 8 (αm+1 − a).

Applying the formula (3.5) to (3.8), with j = m, and to (3.9), we arrive at∫ b

a

log
1

d(x,E)
dx ≤ 2(b− a) log

1

b− a
+ 16 (b− a),

which is equivalent to (3.7). �
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Now, for E ⊂ [0, 2π[, we set

A∞(E) =
{
f |E : f ∈ A∞}

.

From the result of Alexander, Taylor and Williams (Theorem 1.1 in [2]) we obtain:

Theorem 3.3. If xn+1 ≤ εn for all n ∈ N we have C∞(E) = A∞(E).

4. Structure of C∞(E)

We will now investigate the linear topological structure of C∞(E). Clearly it is
nuclear and, being a quotient of C∞(R), it has property (Ω). We will show that for
suitable sequences (xn)n∈N it has also property (DN). The argument we will use is
due to Tidten. In fact the proof of the following theorem is an easy adaptation of
the proof of Tidten (Satz 1 in [15]) where we have Whitney jets and E is 1-perfect.

First we will define an increasing fundamental system of seminorms for C∞(E).
We let

Rpϕ(xn) = ϕ(xn)−
p∑

j=0

ϕ(j)(0)

j !
xj
n

and define

‖ϕ‖k := max
p=0,...,k

{
|ϕ(p)(0)|+ sup

n∈N

|Rpϕ(xn)|
xp
n

}
.

Since |ϕ(p)(0)| ≤ |ϕ|p and

sup
n∈N

|Rpϕ(xn)|
xp
n

≤ x1 |ϕ|p+1

for all p, the ‖ · ‖k are continuous seminorms on C∞(E). Because

p !

xp
n
Rp−1ϕ(xn) =

p !

xp
n
Rpϕ(xn) + ϕ(p)(0),

we have
|ϕ|p ≤ p ! ‖ϕ‖p

for all p. Therefore the ‖ · ‖k are a fundamental system of seminorms in C∞(E).

Theorem 4.1. If there is a constant C such that xn ≤ C xn+1 for all n ∈ N, then
C∞(E) has property (DN).

Proof. We follow the proof of Tidten (Satz 1 in [15]). We present it here, with the
necessary changes (in fact, simplifications), for the convenience of the reader.

i) We want to show that there is a constant C1, such that for M > 1, k ∈ N,
and ϕ ∈ C∞(E) with ‖ϕ‖k−1 ≤ 1 and ‖ϕ‖k+1 ≤ M we have

|Rk−1ϕ(xn)|
xk
n

≤ C1M
1/2 for all n ∈ N.
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We set

Q :=
Rk−1ϕ(xn)

xk
n

.

For M ≤ x−2
1 we obtain i) with any C1 ≥ x−2

1 :

|Q| ≤ |Rkϕ(xn)|
xk
n

+
1

k !
|ϕ(k)(0)| ≤ ‖ϕ‖k ≤ ‖ϕ‖k+1 ≤ M ≤ x−2

1 ≤ C1 ≤ C1M
1/2.

Now let M > x−2
1 . We consider two cases.

In the case M1/2 ≥ 1/xn we obtain i) for any C1 ≥ 1,

|Q| = 1

xn

|Rk−1ϕ(xn)|
xk−1
n

≤ 1

xn
‖ϕ‖k−1 ≤ 1

xn
≤ M1/2 ≤ C1M

1/2.

There remains the case 1/x1 < M1/2 < 1/xn. Because x1 > M−1/2, there is a
maximal m ∈ N such that xm > M−1/2. For that m we have

xm+1 ≤ M−1/2 < xm ≤ C xm+1.

We set x̃ := xm+1 and we have

x̃ ≤ M−1/2,
1

x̃
< CM1/2, xn < M−1/2 < Cx̃.

We obtain∣∣∣Q− 1

k !
ϕ(k)(0)

∣∣∣ = |Rkϕ(xn)|
xk
n

= xn

∣∣∣Rk+1ϕ(xn)

xk+1
n

+
1

(k + 1) !
ϕ(k+1)(0)

∣∣∣(4.1)

≤ xn ‖ϕ‖k+1 ≤ xn M.

We set

Q̃ :=
Rk−1ϕ(x̃)

x̃k

and obtain, replacing xn in (4.1) with x̃ = xm+1,

(4.2)
∣∣∣Q̃− 1

k !
ϕ(k)(0)

∣∣∣ ≤ x̃M.

From (4.1) and (4.2) we obtain

(4.3) |Q− Q̃| ≤ (xn + x̃)M ≤ 2M1/2.

Because of ‖ϕ‖k−1 ≤ 1 we have

(4.4) |Q̃| = 1

x̃

|Rk−1ϕ(x̃)|
x̃k−1

≤ 1

x̃
≤ CM1/2.

From (4.3) and (4.4) we get

|Q| ≤ |Q− Q̃|+ |Q̃| < (C + 2)M1/2.

So, finally, we have shown claim i) with C1 = max{x−2
1 , 2C + 1}.
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ii) Let ϕ be as in i). From (2.4) we know that

ϕ(k)(0) = lim
n→∞ k !

Rk−1ϕ(xn)

xk
n

.

Therefore i) implies |ϕ(k)(0)| ≤ k !C1M
1/2.

We obtain

|Rkϕ(xn)|
xk
n

≤ |Rk−1ϕ(xn)|
xk
n

+
1

k !
|ϕ(k)(0)| ≤ 2C1M

1/2,

and therefore

‖ϕ‖k = max
{
‖ϕ‖k−1, |ϕ(k)(0)|+ sup

n∈N

|Rkϕ(xn)|
xk
n

}
≤ max

{
1, k !C1M

1/2 + 2C1M
1/2

} ≤ C2M
1/2,

with C2 = (k ! + 2)C1. This implies easily that ‖ϕ‖k ≤ C2‖ϕ‖1/2k−1‖ϕ‖1/2k+1 for all
k ∈ N. �

5. Sets with one accumulation point

We made assumptions on the sequence (xn)n∈N in (2.3), in Lemma 3.2 and in
Theorem 4.1. They all are fulfilled if we have, with suitable C > 0,

(5.1) 2xn+1 ≤ xn ≤ Cxn+1

because this implies xn+1 ≤ εn and therefore also xn = xn+1 + εn ≤ 2εn.

Theorem 5.1. If (5.1) is fulfilled then A∞(E) = C∞(E) ∼= Λ∞(α) where αn =
− log xn.

Proof. By Theorem 3.3 we have A∞(E) = C∞(E). Since (5.1) implies (2.3) we
obtain from Proposition 2.8 that J∞(0) ∼= Λ∞(α). Therefore we have an exact
sequence

0 −→ Λ∞(α) −→ C∞(E) −→ ω −→ 0

where ω denotes the space of all scalar sequences. Because of (5.1) the space Λ∞(α)
is stable. For the diametral dimensions we get Δ(Λ∞(α)) ∩ Δ(ω) = Δ(Λ∞(α))
and this is stable. So we obtain from Proposition 4.2 of [17] that Δ(C∞(E)) =
Δ(Λ∞(α)) and this is stable.

ClearlyC∞(E) has property (Ω) since it is a quotient ofC∞(R), by Theorem 4.1
it has also property (DN) and, of course it is nuclear. By Aytuna–Krone–Terzioğlu
Theorem 2.2 of [1], we get C∞(E) ∼= Λ∞(α). �

Example 5.2. Let xn = 2−n. Then (5.1) is fulfilled and C∞(E)=A∞(E)∼=H(C).

We remark that, because αn = n log 2, it is easily seen that the space Λ∞(α)
is isomorphic to the space H(C) of entire functions on C.
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6. The Cantor set

Now let E be the classical Cantor set. It has been known for a long time that E
is a Carleson set (see Beurling [3]). We will show that it also fulfills the ATW-
condition.

For this we will use that (3kE) ∩ [0, 1] = E for all k ∈ N. We will again need
an elementary formula: for that let M ⊂ [0, 1] be a compact subset. We have, for
a > 0,

(6.1)

∫ a

0

log
1

d(x, aM)
dx = a log

1

a
+ a

∫ 1

0

log
1

d(t,M)
dt.

Let now 0 ≤ a < b < 1 be given. We set b − a := γ = 0, γ1 γ2 . . . , where the
last expression denotes the triadic expansion of γ, finite if possible. In the first
step we restrict to the case of γ with a finite expansion, say γ = 0, γ1 . . . γm. We
set a0 = a and ak = a+ 0, γ1 . . . γk, so that ak+1 = ak + γk+13

−k−1. We obtain∫ b

a

log
1

d(x,E)
dx =

m−1∑
k=0

∫ ak+1

ak

log
1

d(x,E)
dx.

Since γk assumes only the values 0, 1, 2 we have to estimate the integrals from
above over intervals of length 3−k−1 or 2 · 3−k−1.

Now we consider the subdivision of [0, 1] into 3k intervals of length 3−k and
refer to the classical stepwise construction of the Cantor set. Some of the intervals,
we call them windows, have already been excluded from the Cantor set, and we
call them white, while some await for treatment, and we call them black.

We restrict now to the nontrivial case of γk+1 �= 0. Our interval of length
3−k−1 or 2 · 3−k−1 hits at most two of the windows. If it is of length 3−k−1, and
completely in a white window, the worst case is (see equation (3.1))∫ 3−k−1

0

log
1

x
dx = 3−k−1 log

1

3−k−1
+ 3−k−1.

If it is of length 2 · 3−k−1 and completely in a white window we estimate roughly
by 2 times the previous case and obtain for both cases

(6.2)

∫ ak+1

ak

log
1

d(x,E)
dx ≤ 2

∫ 3−k−1

0

log
1

x
dx ≤ 3−k log

1

3−k−1
+ 3−k.

If it is completely in a black window we take into account that, by shifting the
lower end of the window to zero and multiplying by 3k we obtain E. The interval
[ak, ak+1], if nontrivial, extends to an interval of length 1/3 or 2/3. Therefore we
have, estimating by the integral over the whole window and using (6.1),

(6.3)

∫ ak+1

ak

log
1

d(x,E)
dx ≤ 3−k log

1

3−k−1
+D0 3

−k,

where

D0 = log 3 +

∫ 1

0

log
1

d(x,E)
dx.
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Therefore we have in all cases, estimating crudely by the sum of estimate (6.2)
and estimate (6.3),∫ ak+1

ak

log
1

d(x,E)
dx ≤ 2 · 3−k log

1

3−k−1
+ (D0 + 1) 3−k

≤ 6 γk+13
−k−1 log

1

3−k−1
+ 3(D0 + 1) γk+13

−k−1

≤ 6 γk+13
−k−1 log

1

γk+13−k−1
+Dγk+13

−k−1,

where D = 6 log 2 + 3(D0 + 1).
Therefore

(6.4)

∫ b

a

log
1

d(x,E)
dx ≤ 6

m−1∑
k=0

γk+13
−k−1 log

1

γk+13−k−1
+D (b− a).

To apply the estimate (3.6), counting reversely, we need the following:

m−1∑
k=n

γk+13
−k−1 ≤ 2

∞∑
k=n

3−k−1 = 3−n ≤ γν3
−ν,

where ν is the biggest number ≤ n with γν �= 0. If there is no such ν we are done,
as we need add no further summand.

From (6.4) and (3.6) we get now∫ b

a

log
1

d(x,E)
dx ≤ 6 (b− a) log

1

b− a
+ (D + 15) (b− a)

for all triadic numbers in [0, 1[. Since we know that E is Carleson, that is log 1
d(x,E)

is integrable over [0, 1], the left and the right-hand sides depend continuously on
a and b. Therefore the estimate is true for all 0 ≤ a < b ≤ 1.

Applying the result of Alexander, Taylor and Williams (Theorem 1.1 in [2]) we
have shown:

Proposition 6.1. If E is the classical Cantor set we have A∞(E) = C∞(E).

Remark 6.2. Because of Corollary 2.3 the functions f ∈ J(E) and all all their
derivatives vanish on E. This means C∞(E) = E (E), where E (E) is the space of
Whitney jets on E.

From Tidten ([15], Folgerung, p. 76) we know that E (E) is isomorphic to a
complemented subspace of s. Clearly C∞(E) is stable, because

C∞(E) ∼= C∞(E ∩ [0, 1/3])⊕ C∞(E ∩ [2/3, 1]) ∼= C∞(E)2.

Again, using Aytuna–Krone–Terzioğlu ([1], Theorem 2.2) (or Wagner, [20], Theo-
rem 1), we obtain:

Theorem 6.3. If E is the classical Cantor set then A∞(E) = C∞(E) and A∞(E)
has a basis. In fact, it is isomorphic to a power series space of infinite type.
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7. Final remarks

We return to the notation of Section 2 and assume that (2.3) holds. We define, for
f ∈ J∞(0),

Pf(x) = f(x)−
∞∑
n=1

f(xn)χεn(x − xn).

Then, by (2.1) and Lemma 2.6, P is a linear map from J∞(0) to J(E) which is
continuous by the estimates (2.1) and (2.2). We have shown:

Lemma 7.1. If (2.3) is fulfilled, then P is a continuous projection from J∞(0)
onto J(E).

Corollary 7.2. If (2.3) is fulfilled, then J(E) has property (Ω).

Proof. J∞(0) has property (Ω) by Tidten ([16], Satz 2.2) and (Ω) is inherited by
complemented subspaces. �

We obtain:

Theorem 7.3. If there are q ∈ N and C > 0 such that xq
n ≤ Cεn and xn ≤ Cxn+1

for all n ∈ N, then there is a continuous linear extension operator from C∞(E) to
C∞(R).

Proof. We have the natural exact sequence

0 −→ J(E) −→ C∞(R)
ρ−→ C∞(E) −→ 0

where ρ is the restriction map. Then J(E) has property (Ω) by Corollary 7.2,
C∞(E) has property (DN) by Theorem 4.1, and all the spaces appearing are nu-
clear. By the (DN)-(Ω)-splitting theorem (see 30.1 in [6]) the sequence splits,
hence ρ has a continuous linear right inverse, that is, there is a continuous linear
extension operator. �

Examples of this include not only exponentially decreasing sequences xn, but
also, for example, xn = 1/n, n ∈ N.

Finally, let us remark that for the classical Cantor set E there is a contin-
uous linear extension operator from C∞(E) = E (E) to C∞(R) by Tidten ([15],
Folgerung, p. 76).
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