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Maximal and quadratic Gaussian Hardy spaces

Pierre Portal

Abstract. Building on the author’s recent work with Jan Maas and Jan
van Neerven, this paper establishes the equivalence of two norms (one
using a maximal function, the other a square function) used to define
a Hardy space on R"™ with the Gaussian measure, that is adapted to the
Ornstein—Uhlenbeck semigroup. In contrast to the atomic Gaussian Hardy
space introduced earlier by Mauceri and Meda, the h*(R™; dy) space stud-
ied here is such that the Riesz transforms are bounded from h'(R™;dy)
to L*(R";dy). This gives a Gaussian analogue of the seminal work of
Fefferman and Stein in the case of the Lebesgue measure and the usual
Laplacian.

1. Introduction

In recent years, the real variable theory of Hardy spaces, which originates from
the work of Fefferman and Stein [4], has been extend to a variety of new settings.
These developments involve replacing the Euclidean Laplacian with a different
semigroup generator L, and the space R" endowed with the Borel algebra and the
Lebesgue measure with a different metric measure space (M, d, ). Prominent ex-
amples include Hofmann and Mayboroda’s work [6] on the Euclidean space with A
replaced by a more general divergence form second order elliptic differential oper-
ator with bounded measurable coefficients, and Auscher—-McIntosh—Russ’s Hardy
spaces of differential forms associated with the Hodge Laplacian on a Riemannian
manifold [1]. These results rely heavily on two assumptions. At the level of the
metric measure space, one requires the doubling property: there exists C' > 0 such
that, for all x € M and all » > 0,

u(B(x,2r)) < Cu(B(x,r)).
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At the level of the semigroup (e'X);>¢, one requires some heat kernel estimates or,
at least, some appropriate L? off-diagonal decay of the form

A(E, F)2y —k
s el < € (14 BBy,

where E and F are Borel sets, 1z and 1z denote the corresponding characteristic
functions, u € L%, k > 0, t > 0, and C is independent of E,F,t and u. This
paper is concerned with the Gaussian case: the metric measure space is R™ with
the Gaussian measure dy(z) = 7/2¢=1** 4z and the operator is the Ornstein—
Uhlenbeck operator defined by

Lf(z):= %Af(m) —z-Vf(z), zeR™

This setting is motivated by stochastic analysis and has a long history (see the
survey [15]). Hardy spaces in this context were first introduced by Mauceri and
Meda in [10]. Their work is striking because the Gaussian measure is not doubling,
and the Ornstein—Uhlenbeck semigroup does not satisfy the kernel bounds required
to apply the non-doubling theory of Tolsa [16]. While [10] contains highly inter-
esting results, it does not provide a fully satisfying theory. This is due to the fact
that Mauceri-Meda’s Hardy spaces hl,(v) are defined via an atomic decomposition
that may not relate to the Ornstein—Uhlenbeck operator as well as classical Hardy
spaces relate to the usual Laplacian (see [4]). In particular, the fact, proven in [11],
that some associated Riesz transforms are not bounded from Al (v) to L'(v) in
dimension greater than 1 is problematic. More generally, Mauceri-Meda’s hl (v)
spaces provide a good endpoint to the L? scale from the interpolation point of
view, but their theory does not contain all the machinery that makes Fefferman—
Stein [4] so outstanding, and has proven useful in a range of applications, especially
to partial differential equations.

In [8] and [9], Jan Maas, Jan van Neerven, and the author have started the
development of such a complete theory. This involves adequate dyadic cubes,
covering lemmas of Whitney type, related tent spaces and their atomic decompo-
sitions, and techniques to estimate the following non-tangential maximal functions
and conical square functions:

Tyu(w) == sup e Lu(y)],
(y,t)era(y)
1 . dt\1/2
Squ(x) = / ———— [tVer Puy) P dy(y) — ,
0=y 3G 7O B F)

where
Te(y) == {(y,t) ER" x (0,00): |y — x| <t <am(x)}

is the admissible cone based at the point z € R, m(x) := min{l, 1/|z|} is the
corresponding admissibility function, and a the admissibility parameter. From the
point of view of Hardy space theory, one defines h},,. ,(7) as the completion of

the space of smooth compactly supported functions CS°(R™) with respect to

lulla,,..cn = I1Taullcy,
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and hl () as the completion of C'2°(R™) with respect to

quad,a

lulln,,. .0 = 1SatllLryy + [lull)-

quad,a

A key result should be that these two norms are equivalent for some choice of a.
However, [9] only gives the inequality || Squllx < C||T2 |1, for some C,a’ > 0 inde-
pendent of u (actually [9] gives a slightly stronger inequality involving an averaged
version of TFu). The purpose of this paper is to prove the reverse inequality to
establish the following result.

Theorem 1.1. Given a > 0, there exists a’ > 0 such that h} () = hl ()-

quad,a max,a’

Since héuad’a = héuad’l for all @ > 1 (as a consequence of Theorem 3.8 in [8]),

we then call ht(y) := hthuad,Q the Gaussian Hardy space. In the final section, the
techniques used in the proof of the above reverse inequality are used again to prove
that the Riesz transforms associated with L are bounded on h'(v). The proof is

based on a version of Calderén reproducing formula

> a?):? dt
u:c/ (tQL)N+1e(1+a)f Lu?+/ Ud’y,
0 n

for u € L? and some suitable constants IV, C' and «. The part

m(x) 22 dt
Jlu(m) — /O (tQL)N+1e(1+a ialy's u(x) 7

is treated via the atomic decomposition of tent spaces established in [8], leading to
the estimate ||Jyu/|)1 y SC'(lullpr ) + llullr(y)). The remainder term

quad,a

o

x

o a?)? dt
Joou(m) — / (t2L)N+1 e(1+a iy u(m) o
m(x) l

is a priori problematic, as the boundedness of the square function norm ||S,ul1
does not give information about it. It turns out, however, that properties of the
kernel of the Ornstein—Uhlenbeck semigroup give the estimate ||Jooul|p1 (1) <

max,a’

C"|ul[ (). This phenomenon is typical of local Hardy spaces, as can be seen, for
instance, in [2] and [7].

The paper is organised as follows. In Section 2, we recall the necessary def-
initions and known results, and set up the proof, decomposing Jyu into a main
term and two remainder terms similar to Ju. In Section 3, we prove the relevant
kernel estimates, and deduce appropriate off-diagonal bounds. In Section 4, we
show that the main term can be decomposed as a sum of molecules, and estimate
the hl_ . mnorm of molecules. In Section 5, we estimate Jou and the remainder
terms, and thus conclude the proof. In Section 6, we use the same techniques to
prove that the Riesz transforms associated with L are bounded on h'(y).

Acknowledgement. This work completes the first part of a larger project, started
in [8] and [9] in collaboration with Jan Maas and Jan van Neerven. It owes a
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2. Preliminaries

We start by recalling some basic properties of the Ornstein—Uhlenbeck operator L
(details can be found in the survey paper [15]). On L?(y), L generates a semi-
group for which the Hermite polynomials (Ha)aezg; form an orthonormal basis of
eigenfunctions. Using this chaos decomposition, we have:

etL< Z C@Hﬁ) = Z eit‘mCﬂH@,

BELY BELT:

for ¢cg € C and |8 = Z?zl Bj. As a direct consequence, we have the following
Calderén reproducing formula.

Lemma 2.1. For all N € N and a, > 0, there exists C' > 0 such that for all

u € L?(y)
e 14a®)e® pdb
u:C’/ (tZL)N+1e(+a)t Lu?Jr/ wdry.
0 n

On LP(R™, ), for 1 < p < oo, L generates the semigroup defined by

el fz) = - My(z,y)f(y) dy,

where f € LP(), x € R", and M; denotes the Mehler kernel
. e ety — yf?
My, y) i= "2 (1= 7)™/ exp ((— ﬁ)
A well-known technique in Gaussian harmonic analysis, going back to [13], consists
of splitting kernels such as the Mehler kernel into a local and a global part, the

idea being that the local part behaves like a Calderon—Zygmund operator, and the
global part has some specific decay properties. The local region is defined as

N == {(z,y) € R*"; |z — y| < am(x)},

where a > 0 and m(z) := min{1,1/|z|}. A typical result obtained by this tech-
nique, proven by Harboure, Torrea, and Vivani in [5], Theorem 2.7, is that the
local part of the Hardy-Littlewood maximal operator has weak-type 1-1, and its
global part has strong type 1-1. In this paper, we will use the corresponding re-
sult for the non-tangential maximal function. Before stating this result, we recall
Lemma 2.3 in [8], and introduce some notation.

Lemma 2.2. Let a > 0, and z,y € R". If |[v — y| < am(z), then m(z) <
(1+a)m(y) and m(y) < (24 2a)m(x).
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Given A,a > 0, we define
I‘gA’a)(’y) = {(y,t) €R"™ x (0,00): |y — x| < At, and t < am(:ﬂ)},

and call I‘SCA’G) (7) the admissible cone with aperture A and admissibility parame-
ter a based at the point x. To simplify notation we write I';(v) := I‘g’l)(’y) and

Te(y) := I‘g(,;l’a)('y). Non-tangential maximal functions are pointwise dominated by
the Hardy—Littlewood maximal function. This is the following lemma, proven by
Pineda and Urbina in [14], Lemma 1.1 (for the particular choice (4,a) = (1,1/2),
but the proof carries over to different apertures and admissibility parameters).

Lemma 2.3. Let A,a > 0. There exists C > 0 such that, for all x € R™ and all
fel*(v),

sup |et2Lf(y)| < C sup

R f(@)ldy(2).
(y,t)EF&A’“)(fy) r>0’7(B(£C,7”)) /B(a:,r) | | ( )

Using Theorem 2.7 in [5], we get the L? boundedness of non-tangential maximal
functions, and the L' boundedness of their global parts.

Proposition 2.4. Let A,a > 0 and set 7 := (14 aA)(1+ 2aA)/2. Then, for
feCx®R),

) || Toopaaf i sup Mea(y,2) s (9,2) | ()] 2| < 111
(w)ers™ (y) JR"
(i) o sup Mea(y, 2) f ()] dz | S £
() ert ) (7) /R ?
Here,
o~ sup Mo (y,2) s (9, 2) 1) 2| 111
(y)ere I (y) /R

means

(TSI Mya(y,2) 1y, ) |£(2) 2| < Clfll
(wers () /R !

for some C' > 0 independent of f. We will use this notation throughout the paper.
(A,a)

Proof. For z € R", (y,z) € N¢, and (y,t) € Ty (), we have that
T 1
— > — > — - - ,
|z — z| > mm(y) — aAm(z) > (1 o aA) m(x) 2m(ac)
Therefore
o sw Mea(y, ) Ly, ) £(2) 2
(w,)er ) (5) R '
< H T sup Mt2(y,Z)gz(2)dZ’ :
1

(y,yerdt ™ (y) /R
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where ¢, (z) = 1Nf/2(x,z)|f(z)|. Lemma 2.3, combined with Theorem 2.7 in [5]
thus gives

Hm — sup M2 (y, z) lNg(y,z)|f(Z)|dZH
(y)er ) () JR™ !

1
< / s s /B @RI E) S

To prove (ii), we apply Lemma 2.3 and Lemma 2.2 to obtain, for z € R",

sup / Ly, (5, 2) Mea(y, 2) | £(2)] de
(y,t)eTE ) (v) /R

1
s sw s [ @lne),
re(0,7'm(x)) ’Y(B(J),’I")) B(z,r)

for 7/ = aA + 7(2 + 2aA) and an implicit constant independent of x. The weak

type 1-1 of this local part is proven, for instance, in [8], Lemma 3.2. Combined
with (i), this gives the weak type 1-1 of

T sup M2(y, 2) | f(2)| d=.
(y)ers™ ¥ (v) JR?

Given the (obvious) L® boundedness of the Hardy-Littlewood maximal function
(and thus of the non-tangential maximal function by Lemma 2.3), the proof follows
by interpolation. O

A geometric version of the local/global dichotomy is given by the key notion
of admissible balls, introduced in [10]. Defining

By :={B(z,r):x € R", 0<r <am(z)},

we say that a ball B € B, is admissible at scale a. The Gaussian measure acts as
a doubling measure on admissible balls, as Mauceri and Meda have pointed out in
Proposition 2.1 of [10]. We recall here a version of their result.

Lemma 2.5. There exists C > 0 such that for all a,b > 1 and all B(x,r) € B,
we have ) )
Y(B(x,br)) < (B, r)).

This led Jan Maas, Jan van Neerven and the author to introduce Gaussian tent
spaces, in [8], as follows. Let D := {(t,z) € (0,00) x R" ; ¢t < m(z)}. Then t*?(v)
is the completion of C,(D) with respect to the norm

- 1 ) dt\1/2 N
Pl = [ ([ Sy el aw §) e

Here we use the notation ¢'?(v) rather than the notation 7%?(v) used in [8],
to emphasise the local nature of this space. Theorem 3.4 in [8] gives an atomic
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decomposition of t12(y). Given a > 0, a function F : D — C is called a t*?(v)
a-atom if there exists a ball B € B, such that supp(F') C {(¢,y) € (0,00)xR"™; t <
min(d(y, B%),m(y))} and

// ) ydt <y(B)~L.

Theorem 2.6. For all f € t42(y) and a > 1, there exists a sequence (A )n>1 € {1
and a sequence of t%(7y) a-atoms (F,,)n>1 such that

(i) Yps1 Aal S flleze)-

To simplify notation we will simply call atoms the t12(y) 2-atoms. Combining
the atomic decomposition of ¢1?(y) and Lemma 2.1 we get the following decom-
position, which is the basis of the proof of Theorem 1.1.

Corollary 2.7. For all N € N, a > 1, b > 1/2, and o > a?, there exist C > 0

and n sequences of atoms (Fp, j)men and complex numbers (Am j)men for j =
1,...,n, such that for all u € C°(R™) and x € R",

u() = [y CZZ/\M/ 13 B )

j=1m=1
. dt
+ CZ Z /\m,]/ 1[m(w)/b,2}(t)(t2L)N ta m](t l‘) ¢
j=1m=1
n m(x)/b 2 1242 dt
_ CZ/ (PL)Y 5105, (1pe(t, ) 10,55 u(a) &
j=170
o [T rpre Rty &
m(z)/b t’
and
n o0
2 2 Pl Sl -
j=1m=1
Here 07 denotes the adjoint of d,; in L3(¥).
Proof. We first remark that
a?)e2 1 — 2 242
(PL)N Tl Ly = =3 DL eTE0; (L (t ) + Loe(t) 10,5 ).

Jj=1

a2t2

There remains to check that the terms 1p(t,.)t0,,e =

Lu, for j € {1,...,n},
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belong to t1:2(v). Using Lemma 2.5 we have

(12 ,2
(8, @) = 1p(t,2) t0,, e 5 P ()12

5/” (/’”(’UWE/B@ Vas) ’Vl(D((;//_\j_i))ﬂ Ve Lu(y) 2 dy(y) %)1/2 dy(x)
/n / / o) 1DLSy))ﬂ Ve Lu(y) 2 dy (y) %)Uzdy(x),

By Theorem 3.8 in [8], we thus have

[(t.2) = Lot )t0,, €% Pu@) | 1

m() 1p(as,y) 2.2 dsy\ 1/2
sVe® * Lu(y)?d — dvy(z
<[(f /B@ el )P v ) " iy (a)

1Dty 2 dt\1/2
s/ / / PO D g )P dy) D) i) = ulns
» \Jo By VB, 1) t quadie

Theorem 1.1 is then proven by combining the results from the next sections as
follows.

Proof of Theorem 1.1. For a > 0, Theorem 1.1 in [9] gives that there exists a’ > 0
such that Al .(7) C hlyaq.q(7)- Fix this o’ and pick

2 < 4 n
o > max (238,3264,4\/562“ ) , b > max (26, \/(a32e4)‘22166_2a2/a) ) , and N > 1

Let u € C°(R™) and apply Corollary 2.7. We have that

([, v,
FOS Y Dl [ @0 e 10, e 2]

j=1m=1 maxa

2 . dt
+C’ZZ|)\mJ|H/ Lm(y/m) (t tL)NeaLtaijnJ(t,.)—

[

max,a

7(7) S

(1)

(1)

j=1m=1 maxa
L 2 a?t2 dt
+CZH/ (t2L)Ne:Lta;j(1Dc(t7,)taxje = L)u? N
- ’ max,a’ \ 7
(1 a2)2 dt
vl [ e,
¢ /()

m ax,a’

Since e*1 =1 for all s > 0, we have

o [ua)], <l <l 0
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Proposition 5.5 gives that

H /OO (LNt O
m(.)/b t

For j € {1,...,n}, Proposition 5.4 then gives

Bl () < Hqu < ||u||h}luada('y)'

max,a

m(. )/b 022 dt
H/ LN —Lta;j(lpc(t,.)ta%e g L)u?

Bl () < ||U||1 < ||u||h(11uada('y)'

max,a

Proposition 5.3 gives that

2 2 dt
H/ Uiy () LN 5502 Byt ) | S,
0 max,a’
while Proposition 4.2 combined with Theorem 4.3 gives
2 s
H/ t*L)N et tdr F, H
0 ’ max, o/ (7)
Therefore
ol oy S Wl 0+ D 3 Pl el o0
j=1m=1

3. Kernel estimates

In this section, we establish some properties of the Mehler kernel, and use them to
prove the following off-diagonal decay result. Given a > 0, B = B(cp,r5) € Ba,
and k € Z4 we consider the following sets:

B(CB,ZTB) if k = 0,

Cr(B) := k1 k ~
B(cp, 2" rg)\B(cp, 2"rp) otherwise.

Lemma 3.1 (Off-diagonal estimates). Let N € Z;,a >0, j € {1,...,n}, B € B,

a > 4e2” | and k € N. Then for all u € L*(y)

t2
e Lo O LY 20, g, 5 e (= 50 44 (22)°)

with the implied constant depending only on o and N.

This lemma plays a key role in the subsequent sections, and could be deduced
from more general methods giving L? off-diagonal bounds (see [3] or [12]). We
prove it through direct kernel estimates which are used in various parts of the
paper. In the following sections, it will become clear that one needs off-diagonal
decay of the form exp(—c4¥) with ¢ large enough to compensate for the growth in
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02)42
Lemma 2.5. This is the reason why we use eSS i the reproducing formula
and pick « large enough.

Givent,a>0,j € {1,...,n},and N € Z,, we denote by K> y , and Kt2,N,a7j
the relevant kernels defined, given u € L?(v), by

2
KtQ,N,a(:L', y) u(y) dy = (tzL)N et U(IL'),
RTI,

. .
Ke N oz, y)uly) dy = (L)Y e?Ltﬁ% u(x).
RTL

Note that K2 n (2, y) = 2NN M(z, Y)|s=t2/a, and that, by duality
Rﬁ,N,a,j(xvy) = t2N+1ayja£VMs(y,m)|s=t2/o< exp(|m|2 - |y|2)
To prove Lemma 3.6, we need preparatory lemmas of independent interest.

Lemma 3.2. Let N € Z,. There exist Cn € N and a 2n + 1 variable polyno-
mial Py of degree Cn such that, for all xz,y € R™ and s > 0,

ON M(z,y)
—2s\— —s e r; — Yj —
=0 e (7 () e (VImem) )6t

Proof. Let j € {1,...,n}, s> 0, z,y € R™. We have the following:
s 1— 6725
Os(V1—e 25m;) = (1 — e 2%) " He 2%/ 1 — e~ 251;),

e
,(176—2s)—1(e—s% 1_e2s 4 o288 93)7

V1—e2s

_ _ _ e Sy — 2
OsM(z,y) = —(1 — e72*) 'ne 2 My(z,y) — My(z,y)0s (%),
o, (1=
N 1—e2s
_ _ e — e_s{L“—yl e_sm,_y, 2 _
= —(1=e2) 7 (e VT = ey - jﬂg) +( 1 jﬂg) 2¢72).
The proof thus follows by induction. O

Computing partial derivatives in ; one obtains in the same way:

Corollary 3.3. Let N € Zy and j € {1,...,n}. There exist Cy € N and a 2n+1
variable polynomial Qn of degree Cn such that, for all z,y € R™ and s > 0,

8$185Ms($,y) =(1- 6725)*(N+1/2)

et —y;
. Q s J J /1 _ =28 M
N (e ’ ( V1 — 6728 )j=17,,,,'yL) ( 1 € 6x])j:17,,,7n) S(x’ y)
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Lemma 3.4. Fora,C >0, a>1,t¢€ (0,a], and z,y € R™ we have

. C‘e_t /o y‘ < C o ‘e—tzxfy‘Q t ‘x‘z
() exp ( — C5— =, exp pean? o=z ) XP (O S
P 2
. le= "/ a—y|? o lema—yl? _tyl?
(ii) exp ( —C e ) sexp( O e ) exp (O e

Proof. Let t € (0,a] and o > 1. Applying the mean value theorem to f(§) = £,
we have

1— 2 cae1
1 — e—2t?/ =ag
for some £ € [e’2t2/a, 1]. Therefore,
) _o—2t?
046720’2 < aef2t (a— 1)/a l—e a.

— 1 — e 2t} =
To prove (i), we note that

42 42 42 42 42
e/ a —y[ e e —yl e —e O Ja] 2 e w —y| — P]al,

and thus, by Cauchy—Schwarz,

2 s le e —yl®

le=t /g —y|? > 5 —t*x)%.

This gives
2
et /a —y?
exp (— C T o—a )
Crl—e2" \|e Pz —y] t4x]?
< exp (7 5(1 — e—2t2/0‘> 1—e—2t? > <P (Cl—e—Qtz/‘J

2
a le Uz —yl? t4|z|?
< exp ( — 0262‘12 = ) exp (071 — e—2t2/o<)'

The estimate (ii) is proven in the same way, noticing that

—1 )t2

,t2/am . y| > e("‘T

le |e*t2:c fe*(anl)to|

42 _(a—1y\,2 42
>ler—yl—1—e Ty > e e -y -yl 4
Lemma 3.5. Let N € Zy, j € {1l,...,n}, a >0 and o > 4e27° | Let r,y € R?
and t € (0,a).
(i) If t Sm(y) then My )o(z,y) S exp (— 2 le xfy‘Q)Mtz(m,y).

P 2
2e2a l—e—2t

—¢2

_42

(ii) If ¢ S mlx) then |Kp, .ol ) S exp (— 2 S22U0) M (2,y).

2a2 ] _g—2t2

t

(i) I £ S mly) then | Ko yas (0,9)] S exp (— 22 S22 Mo (2, y).

4e2a
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Proof. (i) follows from Lemma 3.4.
k,—Cw?

(ii) follows from Lemma 3.2 and Lemma 3.4 using that sup,,., w"e < 00
for all K > 0 and C > 0.
(iii) follows from Corollary 3.3 and Lemma 3.4 in the same way, using that

Mz (y, z) exp(jzf* — [y[*) = Mz (, y). o
We can now prove our main lemma.

Lemma 3.6 (Off-diagonal estimates). Let N € Z;,a >0, j € {1,...,n}, B € B,
a > 4e2° and k € N. Then for all u € L3(%)

27 A o B2
H]'Ck(B) 1(07TB)(t)(t2N+1LN€ @ Laxj)13u||2 S exXp ( - W 4k(7) )HUHZ»

with the implied constant depending only on «, a and N.

Proof. For t <rp < am(cg) and y € B, we have t < a(l +a)m(y) by Lemma 2.2.
Given z € R, we also have, using Cauchy-Schwarz, |y — z|> < 2(le "y — 2|2 +
(1—e=t")2|y[2), and thus

a e Py — a2

2
exp(— - ) Sexp(— sz 7l )exp (Lz(t|y|)2)
2362(1 t2 2462(1 t2 2362(1

a |y—af
fjexp<72462a2 2 )

Therefore, using Lemma 3.5, we have the following estimates:

/Ck(B) (/B |Kt2,N,Oé,j(1',y)'l(o,rB)(t)|u(y)|dy>2d,y(x)

a |e_t2ym|2> 2
< L My (2, y) 1000 (¢ d) d
< [ (Lo (= g ) Me o Dluldy) 1)

6] TB\2 2 (6] rp\2
< exp ( - 266—2(124]6(7) )Het “lulll2 < exp ( - 2(36—2(124k(7) >H“H§

|

We conclude this section with a property of the sets Cj(B) in the local region
N:(B) :={x € R"; |x — cg| < t7m(cp)}, which will be helpful when off-diagonal
estimates fail.

Lemma 3.7. Let a,7 > 0 and B = B(cp,rg) € Ba. There exists C > 0 such that,
for allk € Z4,
v(Cx(B) N N.(B)) < C2"" y(B).

Proof. Let k € Zy and © € Cy(B) N N.(B). We have |z — cg| < mm(cp) <
7(1 4 7)m(z), by Lemma 2.2. Therefore

|2|* > |ep|* — 2rm(cp)|cp]

les|* > |a|* — 27(1 + m)m(z)|a],
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and thus e~1*I” ~ e=lesl” for all 2 € €}, (B) N N, (B), with implicit constants inde-
pendent of k, B and z. In particular, for kK = 0, we have

v(B) ~ e lenl’ / dx ~ i elenl”,
B
For k € Z,, this gives

A(Cu(B) N N,(B)) < / elel’ 4p < (2Frpyelenl” < obhy(B). O

2k+1B

4. Molecules

In this section, we show that, given a t1?(7) atom F associated with a ball B =
B(cg,rp) € Ba, the function

/ (L) 5L 10; F(t, ) %
0

is a (2, NV,2723a)-molecule in the following sense.

Definition 4.1. Let N € N, a > 0, and C > 0. A function f € L?(7) is called a
(a, N, C)-molecule if there exist B = B(cp,rg) € B, and f in L?(y) such that the
following hold:

() lewmyfllz < ey (B)"Y2 Yk Zy;
(i) f=LNf;
(i) [1ep(m) flla < Ve Oy (B)"2 Yk € Zy.

We then show that there exists M > 0 depending only on (a, N, C), such that
nt < M for all (a, N,C)-molecules.

max

I1f

Proposition 4.2. Let N € N, j € {1,...,n} and a > 0. Let B = B(cp,rp) € B
and F be a t12(y) atom F associated with B. The function

i 2 dt
/ (LN el oy Ft, ) "
0

is a (2, N,2~%3a)-molecule.

Proof. Let us treat the case k = 0 first. Let g = Zﬁem cgHp € L*(R™,v) be such
that Zﬁezz;

csl? < 1. We need to estimate

/Ors / (L)Y G%Lta;jF(t,x)g(x)| dv(z) %.
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By duality, and the L? boundedness of the Riesz transforms, we have that

/T‘B /ﬂ |(t2L)N e%L ta;F(t)J))g(m” d'y(l') ﬂ

2 dt 1/2
// FoParo F) ([ il e e )

ﬁ€Z"

_2e2 g dit\1/2 _
B (3 Jesl? / (2182 e 10 Y <y,

ﬂGZ" t

Moreover

B P B P
/ (L)Y =t 1oy F(t, )%—LNf for f _/ t2N+1e%La;jF(t,.)%.
0 0

The same argument thus gives

- o0 0i2 1 o diN 1/2
1712 7BV ([ e 1ale F L) S )
0

Now let k € Z be such that & # 0. By Lemma 3.6, we have the following:
rB )
chuB) / (LN " b 1d: Ft,.) H
0
B
o TBN2 dt
</ exp(— e (2)) 1P, ) S

conl ) [ (2P ety

~ 223
Since
. on [T 21 o dt
Rewm lls < 75" | o Lors) () e 10, F(E )], 5
the proof is concluded as above, using Lemma 3.6 with N replaced by 0. O

Theorem 4.3. Let a > 0, and let f be a (2,N,C)-molecule with N > n/4 and
C > 2. Then f € hl and || fln < M for some M independent of f.

max,a

max,a

Proof. Let B = B(cg,rg) € Bs be the ball associated with f. Pick a > 23!, and
let Cy := (44 4a)T + 2a where 7 := (14 a)(1 + 2a)/2, as in Proposition 2.4. We
use the following decomposition:

h < l/c,l k>
Wl ST+ Ta+> D> I

e k=0 1=0 k=0 1=0
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where

Fim [ sup {0 (0.5) € T2O0)s < ra/Va o)
B [ s {l Ao AW 9) €T50).5 2 s/ Vo)

10,2005 /00) (M(2)) dy(2),
llc”l = / SUP{|LNeszL(1CZ(B)f)(y)| (y,8) €Te(y),s > 7"3/\/5}
Cr(B)

Aok jca,11(m(z)) dy ().
FEstimating I.

Decomposing into a local and global part and using Proposition 2.4, we have

that o
TSf+Y2> ner,
k=0 =0
where
1= sw{ [ Mooy Gl fw)de: (25) € TH0).s < 22 Y ar(a),
Cr(B) Ci(B) @

By Lemma 2.5 we also have that

(o) e}
I£1lx < Z /7(2k+13) lewmyfll2 < 268(2k+2+1)26704k <1,
k=0 k=0

since C' > 27,
Estimating 1, for k <1+ 2.
By Lemma 2.5 and Proposition 2.4 we have that
2
L7 < A7(@M1B) [[o = sup{e” F[Loym) fI(v) 5 (v,5) € T},
S VB Loy £, < e,

and thus:
oo I+1 o) e
YS RGN (2@ S0
1=0 k=0 1=0

Estimating I}ColC for k>1+2.

We use Lemma 3.5 to obtain

1o :/ sup{ [ Moaja(z w)in, (2w fw)ldw's (=,1) € B, b do(a)
Cr(B) C(B)

2
o e z—w|?

< / sup{ Mo (z,w)e_ZT -2 1y (z,w)|f(w)|dw; (2,t) € Egﬂ} dy(x),
Ck(B) Ci(B)
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where, given x € R",
E; = {(z,t) e T{/VorV®(q) it < rp},
and we have used Lemma 2.2 to see that
|z =z <am(z) = m(z) < (1+a)m(z),
|z —w[ <7m(z) = m(z) < (14 7)m(w),
t<avam(z) = t <aya(l +a)(l+7)m(w).

Now, for z € Ck(B), w € C;(B), t < min(rg, ay/a(l+a)m(z)), and z € B(z, t//a),
we have

,tz

2 2
ez —w| > o —w| — |z — 2] — (1—e )|z > (251 — 7 2a\/a(1 + a))rg

Let M, o € N be such that 2/\/a+2a/a(1+a) < 2Maa. For k > max(l, My ) +2
we have the following:

ocC « — 2 a,aN/
T S exp (5222 [ e o)1) () €TV EVD () da ()
k

o
Sexp (- 234k) Y(25H1B) | 1cy(m) fll2 < exp (*ﬁ‘lk) exp(2” - 4%) exp(-C4'),
where we have used Proposition 2.4 and Lemma 2.5. Noticing that
Ma,a+2 Ma,o Ma,a+2 Ma,a Ma,a+2 Ma,a
2. 2 WS 2 2 EBIflas )L ) ew4H S
k=0  1=0

and using the fact that o > 2%, we get that 2 >, o [, < 1 and thus
that I < 1.

Estimating I}, for k <1+ 2.

Reasoning as above, using Proposition 2.4 and Lemma 2.5, we have that

Ly Sexp(2” - 4NV (B) |[1om) fll2 S exp(2® - 4F — C4Y),

and thus
oo 1+1

ZZIM<ZZ—|—2 exp(—(C —21)4l) <1

1=0 k=0
Estimating I}, for k > 1+ 2.

Given ¥ € Cx(B) such that m(z) < 2¥rp/C,, s < am(x), y € B(x,s), and
w € Cj(B), we have, using Lemma 2.2,

ly —w| > |z —w|—|z—y| > ok—1 rp(2 — 2“’2_’“) —am(x) > (— - a) m(x)

>

2 +12a (% ~a) mly) =rm(y).



MAXIMAL AND QUADRATIC GAUSSIAN HARDY SPACES 95

By Proposition 2.4, we thus have

Z Z Ilcl<Z|| glob,a,1 [Lewm [ SIfI S 1

=0 k=1+2
Estimating I}/ ;.
For z € R", t < ay/am(z), y € B(z,t/\/a), we have t < m(y) by Lemma 2.2
and thus
2 - B ~
LS 1o DI S [ (Kl 0] fw) do

Ci(B)

5 2N M- (yaw) |f(w)| dw,
Ci(B)

by Lemma 3.5. Therefore

2 ~ ~
I S /C " sup{t >N e" Pl ) fI(2) 1 (2,1) € B} Larrp 0, 11 (mi(x) dy ()
k

—2N glob loc
St Tl

where, given x € R",

Ey = {(2,t) e TMVEVD (4) 1t > rp},

and

g [ s [ M) ) ) do d o),
Cr(B) (2,t)€E, J Ci(B)

1
JloC ::/ Sup ——
Cn(B) (et

My (z,w)1n, (z,w) | fl(w) dw 1gx,, /¢, 1 (m(2)) dy(2),
Ci(B)

and 7 is defined as in Proposition 2.4 for the parameters (1/+/c, a\/«). Proposi-
tion 2.4 then gives that

[ee] [ee] B
YIS s flh SV

k=0 =0

NE

Il
=)

For z € Cx(B) and m(z) > 2¥rp/C, we have
|z — cp| < 2" lrp <20, m(x) <20, (1 +2C,) m(cg) =: 7'm(cp).

Therefore

s <[ sup £ [ Moz, w) 1y (2, w) |f](w) dw dy ().
Cr(B)NN ./ (B) (2,t)€ By Ci(B)
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Estimating J)°F for k <1+ 2.

Using Pr0p051t10n 2.4 and Lemma 3.7, we have

oo [+1 oo I+1
ST SN Y Y VACKB) N NA(B)) ey 2
1=0 k=0 1=0 k=0

o) I+1
S exp(—C4h) Y 2k <1
=0 k=0

Estimating J}COZC for k>1+2.

For x € R", s < aam(x), z € B(xz,am(z)), and (z,w) € N;, we have m(w) ~
m(z) ~ m(z) and thus s < m(w). Therefore, using Lemma 3.5, and introducing,
for x € R™,

Fy = {(z.5) € TM/*(5) : s > Varp),

we have
Joe < / sip 5N [ Moa(ew) Ly, (2, 0) | Fw)] dw dy()
(B)NN_/(B) (z,s)€F, Ci(B)

< 1
< SUp  —w
Ck(B)mNT’(B) (sz)EFwS
[ tetemes (-5 T a0
: z,w)exp ( — == ————5— || f(w)|dw dy(z).
CI(B) 52 ’ p 217 17 67282 ’y
For x € Cy(B), w € Ci(B), s < aam(z), and z € B(z,s/a) we have
1
|e_s2z —w| >z —w| —|zr—2z—-(1- 6_82)|Z| > 2k lrp — (— +ala+ 2a2))s.
a

Therefore, there exists C,, > 0 such that

1 —Cod*(rp/s)? 5
g0 < / sip T [ M (ew)| fw)dw dr ()
Cr(B)NN,/(B) (z,5)er(/®e) (4 S Ci(B)
< (2brp) 2N / sup / Ma(z,w) | F(w)| duw dry (z)
Cr(B)NN_./(B) (2, S)EF(l/a'aa)(’y) Ci(B)

S (275) N\ /A(Ch(B) N N (B)) [[1ey () flla S 47 e=CF 2kn/2,

where we have used Proposition 2.4 and Lemma 3.7. This gives

ZZJIOC S iglefkr(an/él) 676'4Z g 17
=0 k=0 =0 k=0

which concludes the proof. O
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5. Remainder terms

In this section, we handle the remainder terms

’ INFITN Lo« dt
1. /0 1[m(.)/b,2](t)t LY ea (9ij(15,.) ?,
m(.)/b 2)s2 o dt
2./ PENHILN JOHC L e (Ape(t, )ty e zatzL)UT,
0

m(.)/b l

where u € L!(7) and F is a t12(y) atom.

Lemma 5.1. Let N € Z,, j € {1,...,n}, b >0 and a > 232. Let F be a t"?(v)
atom associated with the ball B = B(cg,rp) € Ba. Then

" 2N+1LN ﬁL a* F ﬂ
; Lim()/m2)(t) e="0, F(t,.)

<1
t ~

Proof. By Lemma 2.2, we have m(y) ~ m(cp) for y € B. Therefore, by Lemma 3.5,
and reasoning as in Proposition 4.2, we have

t

3 R dt
S Z / / / | K2 N o, (@, y)| |F(t,y)| dy - dv(z)
k=0 Y Cr(B) Y0 B

= ["B dt
s143 [Tew (- gt (BB IFC ) T
k=1

" 1 INHIPN 2L g« | dt
; (m(.)/b,2) (1) e 0, F(t,.) .

[e’s) (6%
S1+> exp(2”-4%)\/~(B) exp(*2734k)
k=1

i a reyaNdNYZ
([ e (=g () F)
S14+> exp (- ﬁf29)4’“) 1.

Combined with Proposition 2.4, this gives:

Corollary 5.2. Let a,b >0, N € Zy, {j =1,...,n}, and a > 232, Let F be a
tY2() atom associated with the ball B = B(cg,r5) € Ba. Then

2 dt
| T (/ Lo O PN N 5 E 0 B () T) | S
0 1
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Proposition 5.3. Leta >0, N € Z,, {j = 1,...,n}, and o > 238. Let F be a
tY2 () atom associated with the ball B = B(cg,r5) € By. Then

H/ L (/b2 () 2N TN € _La* t,.) H <1

In’xx ,a

Proof. Given Corollary 5.2, and 7 as in Proposition 2.4, we only have to estimate

[:/ sup / M2 (y, 2) 1N, (y, 2)
R™ (y,8)€Te(y) JR™
) - dt
oo Jen Ln(z)/6,2)(t) [ K2, N o, (2, w)| [F (8, w)| dw t dz ().

Forw € Bandt < rp, we have t < m(w) by Lemma 2.2. Therefore, by Lemma 3.5,

I</ sup M2 (y,2) 1n.(y, 2)
R™ (y,s)€Te(y) JR™

e w—z|? dt
S tmcmatres (- g5 M w)l Pt w)ldu S d o)

lob
5&00“”2-@%0 )
k=0

where

TB
80— / swp [ My, 2y, (4,2) / / Loy 021 ()
Cr(B) (y,8)ele(v) JR™ 0 R™

—t? 2
a eV w—z dt

rB
Loe ::/ sup M2 (y,z)lNT (y,z) / / 1[m(z)/b,2] (t)
R™ (y,s)€lg (v) JR™ 0 JRrn

o le P w—z[2 dt

Estimating I,fl‘)b.

For w € B, x € Cx(B), y € B(xz,am(z)), z € B(y,7m(y)), t < rp, and
m(z) < brg, Lemma 2.2, gives that ¢t < m(w), |z — 2| < (a + 27(1 + a))m(z) and
m(z) < (1+a+27(1+a))m(z) <b(1+a+27(1+ a))rp. Therefore

Py — zZl > |w—z|—|z—2z|—(1— e*t2)|w| > okl Cob7B,

le
for some C, > 0. Let M, € N be such that Cpp < 2Mab - We first note that,
for k < Myp+1, x € Cyx(B), and z € B(x, (a +27(1 + a))m(z)), Lemma 2.2 gives
m(z) ~ m(z) ~ m(cp) with the implicit constant depending only on a and b. In
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particular m(z)/b > k4 m(cg) for some k4 > 0. Therefore

Mg, p+1 Mg, p+1 2m(cs)

||2 t

dt
Iglob < 2k+1B * t L -
> > s [ e Rl
k=0 a,b
a,b+1 2m(cg) dt 1/2 B dt
> vamese ([ D [ireop )"
k=0 Ka,bm(cB) 0
Ma,b+1
< D> exp2’-4%) <1
k=0
For k > M, + 2 we estimate as follows, using Lemma 3.5:
[oe]
Z Iglob
k
k=M, ,+2
g Z V(251 B) / exp ( 228 4F (22)2) || T (e | F (L,
a,bt2
e e 2k dt\1/2
S Z ’7(3)629'4k et (/ exp ( - %( TB)Q) _)
k=M, ,+2 0 t t
"B dt
([ ireoar )"
0
[oe]
< Z exp(2” - 4%) exp (— 2794’“) 1.
k:Ma,b+2

FEstimating Loc.
We have

Tioc ,S / sup ]\4:92 (y,z)lNT (yv Z)
R™ (y,s)€lg ()

/}/1m/m ), (10) o [Pt ) o i o),

For w € B, (z,w) € N1, (y,z) € N,, and (z,y) € N,, we have that m(z) ~
m(y) ~ m(z) ~ m(w) ~ m(cg). Moreover |x — cp| < am(z) + Tm(y) + m(z) +
m(eg) S m(ep), |[v —w| < m(w), and e~1wl” ~ e=l#1’ Let x and A be such that

m(z)/b > km(cg) and |z — cg| < Am(cp). Using the positivity of (e’

the fact that e’1 = 1, we have that

rB dt
m&/ mw%/ 1Bl de S
km(cg) B(cp, m(cg))

g(i?M%fmvaAWW(mﬁS/gL

(cB)

99

L)t>0, and
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Proposition 5.4. Let a,a’ >0, N € Z4, j € {l,...,n} and let

o > max(32¢* 4\/562“2) and b > max (26 ( 2 >1/2 >
’ - "\(a — 32e)(1 — e—20%/)

Then

S lullzry-

’

1
max,a

m(.)/b 5 422 dt
H/ tzN'HLNe%LO;j(ch(t,.)taxj e*s L)u?
0

Proof. We claim that

m(.)/b +2 0242 I dt
H/ NN 02 (e, )10, €5 ) u || Sl
0 o0

The result then follows from the fact that e*/1 = 1 for all s > 0 and the positivity
of e, To prove the claim, fix € R™, and consider ¢ > 0 and y € R” such that
m(y) <t <m(zx)/b. Then |y| > 1 and |y| > b|z| > 2¢|x|. Therefore

e~y — | > lyl Iyl

|y|
— > =
26 2e |l‘|

d +7 1< |yl
> 5, an < |yl

Using Corollary 3.3 and Lemma 3.5, this gives, for some M > 0,

—t? 2
1.5 a ey —ux
R g @) S o exp (= L) o)
2e? 1—e
M+ @ 2
Sy exp (- 164|y|)<e P (= 3501 W)

Using Lemma 3.4, and the fact that ¢ — 2/(1 — e=27°t*/) is increasing on (0, 1),
we then have

m(.)/b +2 0242 dt
H/ NN el 9r (1pe(t, ) tdy,; e™o L)u—H

1/b e—a 2t% Ja _
Yy z
S L e S a2 e (— gl ) ddy

1/b o |e_t2y _ Z|2 .2 L
S " (— : ) (7 2)
~ /O /" /n P 4\/_62‘12 1 —e—2t? xp 1 — e—2a%t?/a 9p2 |y|
337l )|u<z>|dzdydt

1/b
/ /” o Mt2 Y, )exp(2b2( — —2(12/@) |y| )

oxp (= o7 lyl?) Ju(2)| d= dy dt

1/b ,
S| ] ruwlama s ]

~exp<
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Proposition 5.5. Let N € Z,, a,a’,b >0, and o > 8¢22”. For all u € C(R™),

we have - . ”
G et I
md(.

ht

maz,a

t

Proof. Let M > 1 and x € R™. Without loss of generality we assume that
Judy =0 (since L1 = 0). Then,

(1+a?)m?

M
(tQL)N—i-l €(l+a2)%Lu(l‘) ﬂ < « SN+16N+1esLu(l,)§
t 1™ ) a+a?)ym(@)? 5
m(@)/b e

S

N N
(1+a2)Mm?2
§Z/R 1K (1402)p-2m(0)? k. (@ 9)] [u@) | dy + Y |(MPL)Fe s Fu(a)].
k=0 YR k=0

Given k € {0,..., N} we have, using the chaos decomposition and Proposition 2.4,
(14a?) M2 (14a2)M2
larLybe ™= |, < |TOCDRe S
(t+a?)m? (t+a?)m?
< (ML |, < M T  ul; o o,
M — o0

It thus remains to prove that, given k € {0,..., N},

|72 [ 1Karan oo sate )l lu@ldy) |, < ulh.
Rn

Using Lemma 3.5, the positivity of (e'£);>¢, and the fact that eL'1 = 1, this further
reduces to proving

|7 [ Mosaemioto ) el d) | <

We first use Proposition 2.4 to obtain

[T ([ Masams-omie ) ol dy)|
R™ 1

< [ [ Mo @) )y o),
We decompose the right-hand side into a local and a global part. Let
T = % (1+b0"1+a2) (1+20""/1+a?)
F=201+V1+a2b )7+ V1+a2b L.

For z,y,z € R™ such that |z —y| > 7m(z) and |z — 2| < —Vll)Wm(x), we have that
|z —y| > 7m(z). Therefore

L[ Mosaemors ) s o) )] dy dr(a)

=  Mis(z.) e (2.9) [u(y)| dy dy () S [l
B (zpery tVita? ) JRY
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by Proposition 2.4. Now, for (z,y) € N7, we have m(z) ~ m(y) by Lemma 2.2.
Therefore

L Mossonsmor (o.9) 1) o)l du o o)

< [ m) / fu(y)| dy dr(2).
R™ B(z,7m(x))

For (z,y) € N+, we also have e~lel o e_|y|2, therefore

/ m(z)™" / fu(y)| dy dy(z) < / () lm(y) ™" / d(x) dy
n B(xz,7m(x)) n B(y,7(1+7)m(y))
< [l dy <

The proof will be completed once we have estimated the two following terms:

ngob = / sup MtZ(y,Z) 1N,r/ (y,Z)
(y,t)eTg JR™
. M“:f)m(z)z (z,w) Ine, (2, w) lu(w)| dw dz dv(z),
Jioe = / sup M=(y,2) 1n_, (y,2)
(y,t)er's JR™
M (1142 (zw) In, (z,w) [u(w)| dw dz dy(x),
R —r m(z)

where 7/ is defined in Proposition 2.4 for the parameters (1,a’), and 7" is defined
as follows. For (z,y) € N, and (y,z) € N, we have m(z) ~ m(y) ~ m(z) by
Lemma 2.2. Let A > 0 be such that A='m(z) < m(z) < Am(x), and fix 77 as in
Proposition 2.4, for the parameters

(4,a) = (27 (14 @) + a)b/ (AW 1+a?), V1 + a2~ N).

Using Proposition 2.4, the positivity of (e'l);>0, and the fact that el = 1, we
have that

ngob S / sup Mt2(y72) 1N7—’ (yvz)
(y;t)ery JR™

swp [ Maln.w) L, (0. 0) u(w)] dw d=da )
(n,s)erst® (v) VR"

s sw M (,w) L, (1.w) [u(uw)| dw dy () < [[u] .
(n,5)eT{t D (5) TR"

Finally, for (x,y) € Ng, (y,2) € N, and (z,w) € N, we have

m(z) ~m(y) ~m(z) ~m(w), |w—z| < Im(z)
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. 2 2
for some numerical constant A > 0 by Lemma 2.2, and e~ 1*I" ~ e~ 11", Let C >0

be such that m(x) < Cm(w). Using the positivity of (e'£);>o, and the fact that
el1 =1, we have that

e < / sup [ Mu(y,2) Ly, (g, =) m(z) " /B fu(uw) | duw dz dy ()

(y,t)ere JRrn (@,Am(z))

/m "/ |u(w)| dw dy(x /|u )|m(w / dry(x) dw
B(z,Am(x)) B(w,CAm(w))

< / u(w)| e~ dw < JJullr-

6. Riesz transforms
In this section, we prove the following boundedness result for the Riesz transforms
associated with L. Let M : L*(R", dvy) — L?*(R", dv) be defined by MH, =
la|~Y2H, for all a € Z"\{0}, and let M Hy = 0.
Theorem 6.1. For all k =1,...,n, the Riesz transforms

Ry =0, M, Sp=0;, M

extend to bounded operators from h'(vy) to L(v).

Recall that h'(y) := Al .4 2(7). The proof of this theorem follows the approach

of the preceding sections. We start with an appropriate Calderén reproducing
formula, which can be established through chaos expansion.

Lemma 6.2. For all N € N, k € {1,...,n}, and a,a > 0, there exists C > 0 such
that for all u € L?(v)

(o)
u= C/ (t2L)N+3/2 Ly %,
0

o N 5t2 L dt
Rru = C/ t0,, (tPL)Y N " by >
0

e 5¢2 dt
Sku = C/ to;, (t2L)N+1 ey T
0

In what follows, k € {1,...,n} is fixed. With the same proof as Corollary 2.7,
we get the following.

Corollary 6.3. For all N € N, b > 0, and o > 4, there exist C > 0 and n
sequences of atoms (F, j)men and complex numbers (Am j)men for j =1,...,n,
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such that for all w € C*(R™) and z € R",

(@)
“Ryu(z) = C Z Z Ao / O (2L)N T LD, P st ) ‘ff

j=1m=1
n

m(x)/b 2 2
+C Z/ t@k(tzL)NeULtaij(lpc( )10, ew L)u(:c)%

+C’/ L)N+l " Lu(x)%,

and
oo

n
22 Wil S el
j=1m=1

The same result holds for Syu (replacing 9., by its adjoint). Theorem 6.1
will be proven, once we have obtained the following three estimates (and their
analogues for 03, instead of 0, ):

m(:)/ 2P \N 2L, o di
/0 (L)Y e5or P ) Ll <

~ Y

L ()

; for all t1?(v) atoms F;

m(.)/b 2 at dt
/ tak(tQL)Netha;j(lDC( )tax eT )u_’
0

o0
/ 0 (2 L)N e%Luﬂ’
m(.)/b t

iy S Tl

< Jul| 1 .
iy ¥ lullz()

We start with the relevant kernel estimate.

Lemma 6.4. Let N € Z,, j € {1,...,n}, and a > 4e®. Let x,y € R" and
€ (0,a]. If t < m(y) then

—t2 2
~ a lety—x
[t0n, K2 N0 (2, y)| S (1 + t]z]) exp ( - Eﬁ) My (z,y).

Proof. As in Corollary 3.3, there exist Cy € N and two 2n variable polynomials @ y
and @y of degree C'y such that, for all z,y € R™ and ¢t > 0,

R T

(1 — e—22/a)N+T

7t2/a . .
~ e Yj — o a
'QN<(ﬁ’w/i>ﬂ o WLz yj)jl,m,n)  Mezaly, @)
2N 42 |z|2 =]y’ —t2/a,, _
£ xkf On ($> (V1= e—2Play;)
(1— e 2P/m)N+1/2 Vi—e 2 )it m =1
My o (y, ).

takatZ,N,oe,j(xv y) =

+
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Therefore

1 |e—t2/ay — z?

|t3katZ,N,a,j(fE,y)| S (1 + tlz]) exp ( T3 {2

) exp(lef? — [yl?).
Using Lemma 3.4, and the fact that ¢t < m(y), we have that

t02, K12 N0y (2,)]|

2
a ety —xf?
) Mea(y, ) expfal? — Jyf?)
a e 2yfac|2
4e8 1 — 20

S (14 tal) exp (-

= (1 +t|z]) exp ( -

Proposition 6.5. Let N € N, j € {1,...,n} and a > 232. Let B = B(cp,r5) €
By and let F be a t2(vy) atom F associated with B. Then

<1

| dt
t L) ™

i

(i) H/O 10, (L)Y 5L 107 F(1,.)

<1

| dt
t Lty ™

(ii) H/O 107, (2L)N e 5L 10; F(t,.)

Proof. For | € 7, we have, using Lemma 2.5:

e 2 \N L o dt
HlC“B) i |10y, (PL)N e P10y F(t,.) Tl

"B 2 dt
V@B 1 [ a0 S 0P| T

o B 2 . dt
<A 1 [ 0 DY 0P|
0

L2 ()

t L2y

For [ = 0, we use the L? boundedness of R;, and duality.

1 o, (L)Y e v () 2
[1eve | oy e om0l | L

rB dt\1/2 rB 2 ) din1/2
S F(t,z)[* dvy(z)— / LN Hes LR |, =

SA(B)Y2 sup ||Rigllra) S v(B)”V2,
lglla<1

where we have used the chaos decomposition (or the L? functional calculus for L) as
in the proof of Proposition 4.2. For [ > 0, we use off-diagonal estimates, obtained
from Lemma 6.4 as in Lemma 3.6, and the fact that |rpx| < rgle —cp| +1 < 2!
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for all x € C(B), to obtain

1 o (DN 50z Bt )| Y
t0y, (t ahtor F(t,.)| —
1o [ om0 S e T,
"B « B2 dt
521/ exp (= 555 4 (1)) IF(Eaae) T
0 & t

o ! o dt\1/2 _
5216’(?(‘2%4”(/0 e (=gt (7)) F) )

<2 eXP(*ﬁ 4y ()12,

Summing in [ gives (i).

The same argument also gives

B t2 .
‘peé mmmmﬁ%@j(n—

Ll(v)

and thus (ii). O

We now turn to the remainder terms. With exactly the same proof as Propo-
sition 5.4, we get the following.

Proposition 6.6. Let N € Z, j € {1,...,n}. Let

32¢* 1/2
a > max(32¢*,8¢%)  and b > max (26, ( > >
(o —32e)(1 — e=8/)
Then
m()/b 2 as? dt
i) H/o taxthN“LNe%La;j(ch(t, ) 10, e'a byu—= L) S llullzigy)-
. m(-)/b 2 4 dt
) | [ o, LY e o, (1) 00, E P TS il

The final estimate is obtained as in Proposition 5.5.

Proposition 6.7. Let N € Z,, b > 0, and o > 4e®. For all u € C(R"), we
have

H/ L(2L)N e L, dt
m()/b

dt

Ligy) ™~ S Ml

S llullpry-

(ii) H/ oy, (PL)NTle Ly

L ()
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Proof. Let M > 0 and x € R™. Using Corollary 3.3 and Lemma 3.4, we have that

\/ 2LV dt\ S \/ SV [0, O M, (2, y) uly) dy ds|
(Jc)/b 5!!L(.L)2 R™
—5r b2 IINE ) m(x n
5 / Ql( (6 n(z)?/( Ot)xj y]) ) ( L _672552(:2 xj) )
— n \/1 — e—25m(x)?/(ba) / j=1 j=1

N
5 272
Mo (2, y) uly)| dy + Do IMH Y, L ea M u(x)]
b2a 1=0
«a |e—5m(ar:)2/b2

x —y|? 521
< [ o (- T Yt 300
=0

2
/J%M@Wuywu|@+§]Mm%9U5MmeL
=0

Using the chaos decomposition, this gives

wry dt
H/ O (L) e P u v
m(.)/b

S [ Moo o) il dy ot +ZM%1 Yl

L(7)

and thus, letting M go to infinity,

o 5t2 dt
H/ 10y, (FPL)NFL e Ly =
m(.)/b t

The proof of 5.5 gives

5/ Moy 2 (2, ) [u(y)] dy dry(z).
L1(v) n JRn

L Moo oot )l dy s (@) < v,

which concludes the proof of (i). The same proof also gives (ii), using that
|em(z)| <1 for all x € R™. O
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