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Hamilton Jacobi equations on metric spaces and

transport entropy inequalities

Nathael Gozlan, Cyril Roberto and Paul-Marie Samson

Abstract. We prove a Hopf–Lax–Oleinik formula for the solutions of some
Hamilton–Jacobi equations on a general metric space. As a first conse-
quence, we show in full generality that the log-Sobolev inequality is equiv-
alent to a hypercontractivity property of the Hamilton–Jacobi semi-group.
As a second consequence, we prove that Talagrand’s transport-entropy
inequalities in metric space are characterized in terms of log-Sobolev in-
equalities restricted to the class of c-convex functions.

1. Introduction

Let L : Rm → R be a convex function with superlinear growth, in the sense that
L(h)/‖h‖ → ∞, when ‖h‖ → ∞, where ‖ · ‖ is any norm on R

m. It is well known
that if f is some Lipschitz function on R

m, the function Qtf defined by

(1.1) Qtf(x) = inf
y∈Rm

{f(y) + tL((x− y)/t)} , t ≥ 0, x ∈ R
m,

is a solution, in different weak senses, of the following Hamilton–Jacobi equation,

(1.2) ∂tu(t, x) = −L∗(∂xu(t, x))

with initial condition u(0, x) = f(x), where L∗(v) = supu∈Rm{u · v − L(u)} is
the Fenchel–Legendre transform of L (see for instance [7]). It can be shown, for
example, that the function (t, x) �→ Qtf(x) is almost everywhere differentiable in
(0,∞)×R

m and that (1.2) is satisfied at every point of differentiability (see, e.g.,
Chapter 3 of [7]). Formula (1.1) is usually referred to as the Hopf–Lax–Oleinik
formula for Hamilton–Jacobi equations.

The objectives of this paper are two:

(i) to generalize the Hopf–Lax–Oleinik (HLO) formula to a class of Hamilton–
Jacobi equations in a metric space framework;
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(ii) to use this HLO formula to establish different connections between logarith-
mic Sobolev type inequalities and transport-entropy inequalities.

1.1. General framework

In this section we give the general setting of this article.

1.1.1. Assumptions on the space. Throughout the paper, (X, d) will be a
complete and separable metric space in which closed balls are compact. This last
assumption could be removed at the expense of additional standard technicalities.
We will sometimes assume that (X, d) is a geodesic space, meaning that for every
two points x, y ∈ X there is at least one curve (γt)t∈[0,1] with γ0 = x and γ1 = y,
and such that d(γs, γt) = |t− s|d(x, y) for all s, t ∈ [0, 1]. Such a curve is called a
geodesic between x and y.

1.1.2. The sup and inf convolution “semigroups”. Throughout the paper,
α : R+ → R

+ will be an increasing convex function of class C1 such that α(0) = 0.
If f : X → R is a bounded function, we define, for all t > 0, the functions Ptf and
Qtf by

(1.3) Ptf(x) = sup
y∈X

{
f(y)− t α

(d(x, y)
t

)}
, ∀x ∈ X,

and

(1.4) Qtf(x) = inf
y∈X

{
f(y) + t α

(d(x, y)
t

)}
, ∀x ∈ X.

The operators Pt and Qt are connected by the following simple relation:

Qtf = −Pt(−f).

When the space (X, d) is geodesic, the families of operators {Qt}t>0 and {Pt}t>0

form nonlinear semigroups acting on bounded functions:

Qt+sf = Qt (Qsf) and Pt+sf = Pt (Psf) , ∀t, s > 0,

for all bounded function f : X → R. When (X, d) is not geodesic, only half of this
property is preserved:

Qt+sf ≤ Qt (Qsf) and Pt+sf ≥ Pt (Psf) , ∀t, s > 0.

Now we present our main results.

1.2. A Hopf–Lax–Oleinik formula on a metric space

Our objective is to show that the Hamilton–Jacobi equation (1.2) is still satisfied
by Qtf in the metric space framework introduced above. To that purpose we first
need to give a meaning to the state space partial derivative ∂x in this context.
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We will adopt the classical measurements |∇+f |(x) and |∇−f |(x) of the local
slope of a function f : X → R around x ∈ X defined by

(1.5) |∇+f |(x) = lim sup
y→x

[f(y)− f(x)]+
d(x, y)

, |∇−f |(x) = lim sup
y→x

[f(y)− f(x)]−
d(x, y)

(by convention, |∇±f |(x) = 0 if x is an isolated point in X).
If f is locally Lipschitz, then |∇±f |(x) are finite for every x ∈ X . Moreover, if f

is Lipschitz continuous with Lipschitz constant Lip(f), then |∇±f |(x) ≤ Lip(f)
for all x ∈ X. Finally, when X is a Riemannian manifold and f is differentiable
at x, it is not difficult to check that |∇±f |(x) is equal to the norm of the vector
∇f(x) ∈ TxX (the tangent space at x).

One of our main results is the following theorem.

Theorem 1.1. If f : X → R is an upper semicontinuous function bounded from
above, then there hold the following Hamilton–Jacobi differential inequalities:

(1.6)
d

dt+
Ptf(x) ≥ α∗(|∇+Ptf |(x)

)
∀t > 0, ∀x ∈ X,

and
d

dt−
Ptf(x) ≥ α∗ (|∇−Ptf |(x)

)
∀t > 0, ∀x ∈ X,

where α∗(u) = suph≥0 {hu− α(h)}, u ≥ 0, and where d/dt+ and d/dt− denote
respectively the right and left time derivatives.

Moreover, when the space (X, d) is geodesic, there holds

(1.7)
d

dt+
Ptf(x) = α∗(|∇+Ptf |(x)

)
∀t > 0, ∀x ∈ X.

The interesting feature of Theorem 1.1 is that there is no measure theory in
its formulation: the conclusion holds for all t > 0 and all x ∈ X . Theorem 1.1
extends previous results by Lott and Villani ([14], [20]), where (1.7) was obtained
on compact measured geodesic spaces (X, d, μ) provided the measure μ satisfies
some additional assumptions. More precisely, it is proved in [14] that if μ satisfies
a doubling condition together with a local Poincaré inequality, then (1.7) holds
true, for all t and for all x outside a set Nt of μ measure 0. Under the geometric
assumption that (X, d) is finite dimensional with Aleksandrov curvature bounded
from below, Lott and Villani obtained the validity of (1.7) for all t and x. In
Theorem 22.46 of [20], Villani proves (1.7) for all t and x on a Riemannian manifold.

We indicate that, during the preparation of this work, we learned that The-
orem 1.1 has also been obtained by Ambrosio, Gigli and Savaré in their recent
paper [1] (see also [2]), with a very similar proof. Let us underline that the in-
equality

(1.8)
d

dt+
Qtf(x) ≤ −α∗(|∇−Qtf |(x)

)
,
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which is equivalent to (1.6), is an important ingredient in their study of gradient
flows of entropic functionals over general metric spaces. The main source of inspi-
ration for the present paper is the seminal work by Bobkov, Gentil and Ledoux
in [4] establishing the equivalence between the logarithmic Sobolev inequality and
hypercontractivity properties of Hamilton–Jacobi solutions.

The main tool in the proof of Theorem 1.1 is the following result of independent
interest.

Theorem 1.2. Let f : X → R be an upper semicontinuous function bounded from
above. For all t > 0 and x ∈ X, denote by m(t, x) the set of points where the
supremum (1.3) defining Ptf(x) is reached:

m(t, x) =
{
ȳ ∈ X : Ptf(x) = f(ȳ)− t α

(d(x, ȳ)
t

)}
.

These sets are always non empty and compact and there hold

d

dt+
Ptf(x) = β

(1
t

max
ȳ∈m(t,x)

d(x, ȳ)
)
, ∀t > 0, ∀x ∈ X

and
d

dt−
Ptf(x) = β

(1
t

min
ȳ∈m(t,x)

d(x, ȳ)
)
, ∀t > 0, ∀x ∈ X,

where β(h) = hα′(h)− α(h), h ≥ 0.

1.3. Hypercontractivity of Qt and the log-Sobolev inequality

Let μ be a Borel probability measure on X . Recall that the entropy functional
Entμ( · ) is defined by

Entμ(g) =

∫
g log

( g∫
g dμ

)
dμ, ∀g > 0.

In order to introduce the log-Sobolev inequality, and for technical reasons, define,
for r > 0,

Lip(f, r) = sup
x,y:

d(x,y)≤r

|f(y)− d(x)|
d(x, y)

,

and observe that the usual Lipschitz constant is Lip(f) = supr Lip(f, r). Then, we
denote by Fα the set of bounded functions f : X → R such that Lip(f, r) <∞ for
some r > 0 and

Lip(f) ≤ lim
h→∞

α(h)

h

(observe that if α(h)/h→ ∞ when h→ ∞, this last condition is empty).
The probability measure μ is said to satisfy the modified log-Sobolev inequality

minus LSI−α (C) for some C > 0 if

(LSI−α (C)) Entμ(e
f ) ≤ C

∫
α∗(|∇−f |)ef dμ ∀f ∈ Fα.
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In particular, when α(h) = hp/p, h ≥ 0, with p > 1, there holds α∗(h) = hq/q,
h ≥ 0 with 1/p + 1/q = 1. In this case, we write LSI−q for LSI−α . If X is a
Riemannian manifold and μ is absolutely continuous with respect to the volume
element, the inequality LSI−2 is the usual logarithmic Sobolev inequality introduced
by Gross [13].

Following Bobkov, Gentil and Ledoux, [4], we relate LSI−α (C) to hypercon-
tractivity properties of the family of operators {Qt}t>0. To perform the proof,
we need to make some restrictions on the function α. We will say that α satisfies
the Δ2-condition, [17], if there is a positive constant K such that

α(2x) ≤ Kα(x), ∀x ≥ 0.

Theorem 1.3. Suppose that α satisfies the Δ2-condition. Then the exponents
rα ≤ pα defined by

rα = inf
x>0

xα′(x)
α(x)

≥ 1 and 1 < pα = sup
x>0

xα′(x)
α(x)

are both finite. Moreover, the measure μ satisfies LSI−α (C) if and only if for all
t > 0, for all to ≤ C(pα − 1) and for all bounded continuous functions f : X → R,

(1.9)
∥∥eQtf

∥∥
k(t)

≤
∥∥ef∥∥

k(0)
,

with

k(t) =

⎧⎪⎨
⎪⎩

(
1 + C−1(t−to)

pα−1

)pα−1

1t≤to +
(
1 + C−1(t−to)

rα−1

)rα−1

1t>to if rα > 1

min
(
1;
(
1 + C−1(t−to)

pα−1

)pα−1)
if rα = 1

,

where ‖g‖k =
( ∫

|g|kdμ
)1/k

for k �= 0 and ‖g‖0 = exp
(∫

log g dμ
)
.

Our proof follows the lines of [4]. Let us explain in few words how to de-
rive (1.9) from LSI−α . Since Qtf → f when t → 0, it is enough to show that
H : t �→ log ‖eQtf‖k(t) is non-increasing. The left derivative of H has an expression

involving Entμ(e
k(t)Qtf ) and

∫
d

dt+
Qtfe

k(t)Qtf dμ (see Proposition 4.1). To bound

the first term from above, we apply the inequality LSI−α . To bound the second
term, we use the inequality (1.8) which is precisely in the right direction to prove
that the left derivative of H is negative.

1.4. From log-Sobolev to transport-entropy inequalities

Following [4] and [14], a by-product of the above hypercontractivity result is a met-
ric space extension of Otto–Villani’s theorem [16] that indicates that log-Sobolev
inequalities imply transport-entropy inequalities.

Let c : X ×X → R be a continuous function; recall that the optimal transport
cost Tc(ν1, ν2) between two Borel probability measures ν1, ν2 ∈ P(X) (the set of
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all Borel probability measures on X) is defined by

Tc(ν1, ν2) = inf
π∈P (ν1,ν2)

∫∫
c(x, y)π(dx dy),

where P (ν1, ν2) is the set of all probability measures π on X×X such that π(dx×
X) = ν1(dx) and π(X × dy) = ν2(dy).

The probability measure μ is said to satisfy the transport-entropy inequal-
ity Tc(C) for some C > 0 if

(Tc(C)) Tc(μ, ν) ≤ CH(ν|μ), ∀ν ∈ P(X),

where

H(ν|μ) =
{ ∫

log dν
dμ dν if ν � μ,

+∞ otherwise,

is the relative entropy of ν with respect to μ. This class of inequalities was intro-
duced by Marton and Talagrand, [15], [19]. When c(x, y) = α(d(x, y)) we denote
the optimal transport cost by Tα( · , · ) and the corresponding transport inequality
by Tα. In the particular case when α(x) = xp/p, p ≥ 2 we use the notation Tp
and Tp.

The first point of the next theorem will appear to be an easy consequence
of Theorem 1.3 and of Bobkov and Götze’s dual formulation of the inequality Tα

(which roughly speaking corresponds to the hypercontractivity with to = C(pα−1)
or equivalently k(0) = 0).

Theorem 1.4. Suppose that α satisfies the Δ2-condition. If μ satisfies LSI−α (C),
then it satisfies Tα(A), with

A = max
(
((pα − 1)C)rα−1; ((pα − 1)C)pα−1

)
,

where the numbers rα and pα are defined in Theorem 1.3.

In a Riemannian framework and for the quadratic function α(t) = t2/2, Theo-
rem 1.4 was first obtained by Otto and Villani in [16], closely followed by Bobkov,
Gentil and Ledoux [4]. Extensions to other functions α were provided in [4] and [8].
The path space case was treated by Wang in [21]. In [14], Lott and Villani extended
to certain geodesic measured spaces (X, d, μ) the Hamilton–Jacobi approach of [4]
in the quadratic case. They proved Theorem 1.4 under additional assumptions on μ
(doubling property and local Poincaré). Under the same assumptions Balogh, En-
goulatov, Hunziker and Maasalo [3] treated the case of LSI−q for all q ≤ 2. The first
proofs of the Otto–Villani theorem valid on any complete separable metric space
appeared in [10] and [12]. Their common feature is the use of the stability of the
log-Sobolev inequality under tensor products of the reference probability measure.
In a recent paper [9], Gigli and Ledoux give another quick proof of the Otto–Villani
theorem on metric spaces. It is based on calculations along gradient flows in the
Wasserstein space.

Using some rough properties of the operators Qt, we also provide a metric
space generalization of another result by Otto and Villani ([16]) relating transport-
entropy inequalities to the Poincaré inequality.
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Proposition 1.5. Let θ : R+ → R
+ be any function such that θ(x) ≥ min(x2, a2)

for some a > 0. If μ satisfies Tθ(C) for some C > 0, then it satisfies the following
Poincaré inequality:

Varμ(f) ≤
C

2

∫
|∇−f |2 dμ,

for all bounded function f such that Lip(f, r) <∞, for some r > 0.

1.5. Transport-entropy inequalities as restricted log-Sobolev inequali-
ties

A second consequence of the Hamilton–Jacobi approach on metric spaces is a char-
acterization of transport-entropy inequalities in terms of log-Sobolev inequalities
restricted to a certain class of functions depending on the cost function α.

To be more precise, let us say that a function f is c-convex with respect to a cost
function (x, y) �→ c(x, y) defined on X×X if there is a function g : X → R∪{±∞}
such that

f(x) = Pcg(x) = sup
y∈X

{g(y)− c(x, y)} ∈ R ∪ {±∞}, ∀x ∈ X.

The class of c-convex functions is intimately related to optimal-transport, via for
instance the Kantorovich duality theorem (see e.g. [20]).

An important case is when c(x, y) = 1
2‖x − y‖22 on R

m (see Proposition 2.3
below). In this case, a function f : Rm → R is c-convex if and only if the function
x �→ f(x) + ‖x‖22/2 is convex on R

m. If f is of class C2, this amounts to saying
that Hess f ≥ −Id.

In what follows, we consider the cost cp(x, y) = dp(x, y)/p, p ≥ 2. The second
main result of this paper is the following.

Theorem 1.6. Let μ be a probability measure on a geodesic space (X, d) and p ≥ 2.
The following properties are equivalent:

1. There is some C > 0 such that μ satisfies Tp(C).

2. There is some D > 0 such that μ satisfies the following (τ)-log-Sobolev in-
equality: for all bounded continuous f and all 0 < λ < 1/D, there holds

Entμ(e
f ) ≤ 1

1− λD

∫
(f −Qλf)ef dμ,

where for all λ > 0, Qλf(x) = infy∈X {f(y) + λcp(x, y)} .

3. There is some E > 0 such that μ satisfies the following restricted log-Sobolev
inequality: for all Kcp-convex function f , with 0 < K < 1/E there holds

Entμ(e
f ) ≤ βp(u)− 1

pKq−1(1 −KEu)

∫
|∇+f |qef dμ, ∀u ∈ (1, 1/(KE)),

where q = p/(p− 1) and βp(u) =
u

[u1/(p−1)−1]p−1 for all u > 1.
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The optimal constants Copt, Dopt and Eopt are related by

Eopt ≤ Dopt ≤ Copt ≤ κpEopt,

where κp is some universal constant depending only on p. For p = 2, one can take
κ2 = e2.

We make some comments on Theorem 1.6.

• The first reason why we suppose p ≥ 2 in Theorem 1.6 (as well as in The-
orems 5.1 and 5.5 and Proposition 5.4), is that the only probability mea-
sures that satisfy the transport inequality associated to the cost function
cp(x, y) = dp(x, y)/p for 0 < p < 2 are Dirac measures (see Remark 1.3
in [12]). The second reason, is that the notation T1 is classically used in the
literature to indicate the transport inequality

T1(ν, μ) ≤
√
CH(ν|μ), ∀ν ∈ P(X).

This has been characterized by Djelout, Guillin and Wu in [6] by an integra-

bility condition of the form
∫∫

eεd
2(x,y) μ(dx)μ(dy) < +∞, for some ε > 0.

• The implication (1) ⇒ (2) is true for any cost function c. This was first
proved in [11].

• In [12], we proved that (1) is equivalent to (2) for cost functions c(x, y) =
α(d(x, y)) as soon as α satisfies the Δ2-condition. Our proof (in [12]) makes
use of a tensorization technique and is thus rather different from the one
presented here.

• In [11], we proved the equivalence between (1), (2) and (3) in a Euclidean
framework: X = R

m and c(x, y) = 1
2‖x − y‖22. Actually, the result of [11]

is slightly more general, since we are able to deal with cost functions of the
form c(x, y) =

∑m
i=1 θ(|xi − yi|), x, y ∈ R

m, where θ : R+ → R
+ is a convex

function of class C1 such that θ(0) = θ′(0) = 0 and θ′ is concave on R
+. For

a cost function of this type, we proved that (1) and (2) are both equivalent to
the following restricted modified log-Sobolev inequality (3’) (see Theorem 1.5
in [11] for a precise statement): there are E,K > 0 such that

Entμ(e
f ) ≤ E

∫ m∑
i=1

θ∗(∂if)ef dμ,

for all functions f : Rm → R of class C1 which are semiconvex in the sense
that

f(y) ≥ f(x) +∇f(x) · (y − x)−Kc(x, y), ∀x, y ∈ R
m.

Note that this class of functions is different from the class of Kc-convex
functions (except when c(x, y) = 1

2‖ x − y ‖22 ; see Proposition 2.3 below).
Note also that a function θ satisfying the condition above necessarily satisfies
θ(t) ≤ θ′′(0)t2/2, t ≥ 0. In particular, the cost function c(x, y) = 1

p‖x− y‖pp,
for p > 2 is not in the scope of [11], whereas Theorem 1.6 of the present
paper enables to consider such a cost function.
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Theorem 1.6 thus provides what we think is a good extension of the results
in [11] and unifies nicely the approaches of [11] and [12].

We mention that Theorem 1.6 as stated above is not as general as possible.
Indeed, we will see in Section 5 that this equivalence is still true when the space is
not geodesic (Theorem 5.1). In this more general framework, (3) has to be replaced
by a slightly weaker version of the restricted log-Sobolev inequality. The main tool
to prove this extension is Theorem 1.2. It would also be possible to consider more
general costs of the form c(x, y) = α(d(x, y)) with α satisfying the Δ2-condition
but, to avoid some lengthy developments, this will not be treated here.

We end this introduction with a short roadmap of the paper. Section 2 is de-
voted to c-convex functions. In particular, we will recall and prove some well known
facts about the subdifferential ∂cf(x) of a c-convex function. In Proposition 2.9, we
will relate their gradients |∇±f |(x) to the minimal or maximal distance between x
and the subdifferential ∂cf(x). Section 3 contains the proof of the HLO formula.
In Section 4, we prove the hypercontractivity property of Theorem 1.9, and deduce
as a corollary the Otto–Villani Theorem 1.4. Section 5 contains the proof of an
improved version of our main result, Theorem 1.6. Finally, the appendix contains
some technical results.

2. About c-convex functions

In this section we introduce the somehow classical notions of c-convex (and
c-concave) functions and of c-subdifferential. We will also give several useful facts
about these notions. The interested reader may find more results and comments,
and some bibliographic notes, in Chapter 5 of [20].

2.1. Definition of c-convex functions and preliminary results

Let X and Y be two Polish spaces, let c : X × Y → R be a general cost function,
and set R = R ∪ {±∞}. For any function f : X → R, we define Qcf : Y → R by

Qcf(y) := inf
x∈X

{f(x) + c(x, y)}.

For any function g : Y → R, we define Pcg : X → R, by

Pcg(x) := sup
y∈Y

{g(y)− c(x, y)}.

Definition 2.1 (c-convex and c-concave functions). A function f : X → R is said
to be c-convex if there is some function g : Y → R such that f = Pcg. A function
g : Y → R is said to be c-concave if there is some function f : X → R such that
g = Qcf.

Proposition 2.2. For any function f : X → R, the inequality PcQcf ≤ f holds.
Moreover, f : X → R is c-convex if and only if PcQcf = f.
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Proof. For the first point observe that, for z = x,

PcQcf(x) = sup
y∈Y

inf
z∈X

{f(z) + c(z, y)− c(x, y)} ≤ f(x).

Let us prove the second point. Trivially, a function f such that f = PcQcf is
c-convex. Conversely, if f : X → R is c-convex, then there is some function g
on Y such that f(x) = supy∈Y {g(y)− c(x, y)} = Pcg(y). Hence g satisfies g(y) ≤
infx∈X{f(x) + c(x, y)}. Plugging this inequality into f = Pcg gives f ≤ PcQcf .
Since the other direction always holds, the proof is complete. �

Recall that a function f : R
m → R is said to be closed (see [18]) if either

f = −∞ everywhere or f takes its values in R∪{+∞} and is lower semicontinuous.
It is said to be convex if its epigraph {(x, α) ∈ R

m × R : α ≥ f(x)} is a convex
subset of Rm×R. Let us denote by Γ(Rm) the set of all closed and convex functions
on R

m.

Proposition 2.3 (Examples). Assume that X = Y = R
m, m ∈ N

∗, is equipped
with its standard Euclidean structure and let f : Rm → R. Then:

(1) If c(x, y) = x · y, f is c-convex if and only if f ∈ Γ(Rm).

(2) If c(x, y) = 1
2‖x − y‖22, f is c-convex if and only if f + ‖ · ‖22/2 ∈ Γ(Rm).

In particular, if f : Rm → R is of class C2 then it is c-convex if and only if
Hess f(x) ≥ −Id, for all x ∈ R

m.

Proof. (1) By definition, a function f is c-convex for c(x, y) = x · y if and only if
f = h∗ for some function h : Rm → R. We recall that h∗ is defined by h∗(x) =
supy∈Rm{x · y − h(y)}. It is well known (and easy to check) that h∗ ∈ Γ(Rm) for
all h. Conversely, if f ∈ Γ(Rm) then f = f∗∗ (see e.g [18]) and so f is c-convex.

(2) The function f is a c-convex function for c(x, y) = ‖x − y‖22/2 if and only
if f = Pcg, for some g : Rm → R. Since

f(x) +
‖x‖22
2

= sup
y∈Rm

{
x · y −

(‖y‖22
2

− g(y)
)}
,

the conclusion follows from the first point. �

2.2. The c-subdifferential of a c-convex function

In this section we define the notion of c-subdifferential of a c-convex function and
derive some facts that will be useful later.

Definition 2.4 (c-subdifferential). Let f : X → R be a c-convex function and let
x ∈ X . The c-subdifferential of f at point x is the set, denoted by ∂cf(x) ⊂ Y , of
points ȳ ∈ Y such that

f(z) ≥ f(x) + c(x, ȳ)− c(z, ȳ), ∀z ∈ X.

The next lemma gives a characterization of the c-subdifferential.
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Lemma 2.5. For all x ∈ X, ∂cf(x) is the set of points y ∈ Y attaining the
supremum in f(x) = PcQcf(x). More precisely,

∂cf(x) = {y ∈ Y : f(x) = Qcf(y)− c(x, y)}.

More generally, if f = Pcg, for some function g : Y → R, then

{y ∈ Y : f(x) = g(y)− c(x, y)} ⊂ ∂cf(x).

Proof. The first part of the lemma is simple and is left to the reader. Let us prove
the second part. Since f(x) = supy∈Y {g(y) − c(x, y)}, x ∈ X , we have g ≤ Qcf .
So if, f(x) = g(ȳ)− c(x, ȳ) then f(x) ≤ Qcf(ȳ)− c(x, ȳ) ≤ f(z) + c(z, ȳ)− c(x, ȳ),
for all z ∈ X which proves that ȳ ∈ ∂cf(x). �

Lemma 2.6. Suppose that the function c : X × Y → R is continuous, satisfies
supv∈Y infu∈X c(u, v) < +∞ and that, for all x ∈ X and r ∈ R, the level sets
{y ∈ Y ; c(x, y) ≤ r} are compact. If f : X → R ∪ {−∞} is a c-convex function
bounded from above, then ∂cf(x) �= ∅ for all x ∈ X.

Remark 2.7. Note that, when X = Y , the condition supv∈X infu∈X c(u, v) < +∞
is always satisfied if c(x, y) = α(d(x, y)), where d is a distance onX and α : R+ → R

a non-decreasing function.

Proof. The function Qcf is an infimum of continuous functions on Y , so it is upper
semicontinuous on Y . For all x ∈ X , the function ϕx : y �→ Qcf(y)−c(x, y) is thus
upper semicontinuous on Y . Since f is c-convex and real valued, supy∈Y ϕx(y) =
PcQcf(x) = f(x) < +∞; so ϕx is bounded from above. Finally if y ∈ {ϕx ≥ r}
then c(x, y) ≤ sup f+supv∈Y infu∈X c(u, v)−r. Hence {ϕx ≥ r} is compact. From
this it follows that ϕx achieves its supremum at some point ȳ which, according to
Lemma 2.5, necessarily belongs to ∂cf(x). �

For a better understanding of the notion, in the next lemma we express the
c-subdifferential of a c-convex function f in term of its gradient in some simple
cases.

Lemma 2.8. Suppose that X = Y = R
m and that c(x, y) = L(x − y) where

L : Rm → R
+ is a differentiable and strictly convex function with superlinear

growth, i.e., L(x)/‖x‖ → +∞ when x→ ∞, where ‖ · ‖ denotes any norm on R
m.

Let f be a c-convex function bounded from above and differentiable at some point x.
Then

∂cf(x) = {x−∇(L∗)(−∇f(x))},

where L∗(y) = supx∈Rm{x · y − L(y)} is the Fenchel–Legendre transform of L.

We recall that if L is strictly convex and has superlinear growth, then its
Fenchel–Legendre transform is differentiable everywhere [18]. Lemma 2.8 is well
known. However, for the sake of completeness, we will recall its proof in the
appendix.
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2.3. Comparisons of gradients

In this last section, as in the rest of the paper, we will assume that (X, d) is
a complete separable metric space in which closed balls are compact. We take
Y = X and we consider a cost function c on X ×X of the form

c(x, y) = α(d(x, y)),

where α : R+ → R
+ is an increasing convex function of class C1 such that α(0) = 0.

If f : X → R is c-convex for the cost c(x, y) = α(d(x, y)), we introduce the
following quantities:

|∇−
c f |(x) = α′

(
inf

ȳ∈∂cf(x)
d(x, ȳ)

)
and |∇+

c f |(x) = α′
(

sup
ȳ∈∂cf(x)

d(x, ȳ)
)
.

The following proposition compares |∇±
c f | to |∇±f | defined in (1.5).

Proposition 2.9. Let f : X → R be a c-convex function for the cost c(x, y) =
α(d(x, y)). Suppose that f = Pcg for some upper semicontinuous function g :
X → R bounded from above, and consider, for all x ∈ X, the set m(x) defined by
m(x) = {y ∈ X : f(x) = g(y)− α(d(x, y))}.
(1) The following inequalities hold:

|∇+f |(x) ≤ α′
(

max
ȳ∈m(x)

d(x, ȳ)
)
≤ |∇+

c f |(x).

(2) If (X, d) is a geodesic space, then

|∇+f |(x) = α′
(

max
ȳ∈m(x)

d(x, ȳ)
)
= |∇+

c f |(x).

(3) The following inequalities hold:

|∇−f |(x) ≤ |∇−
c f |(x) ≤ α′

(
min

ȳ∈m(x)
d(x, ȳ)

)
.

Remark 2.10. We do not know if there is equality in (3) when the space is
geodesic.

Proof of Proposition 2.9. (1) First observe that, since f = Pcg with g bounded
above, f is locally Lipschitz (see Lemma 3.8 in [12])), so that |∇+f | is finite
everywhere. The second inequality is an immediate consequence of the definition
of |∇+

c f |(x) and the fact that, according to Lemma 2.5, m(x) ⊂ ∂cf(x). Let us
prove the first inequality. Let (xn)n∈N be a sequence of points converging to x,
with xn �= x for all n. For all n, fix yn ∈ m(xn) (the set m(xn) is not empty, by
Lemma 2.11 below). There holds

f(xn)− f(x) ≤ g(yn)− α(d(xn, yn))− (g(yn)− α(d(x, yn)))

≤ d(x, xn)α
′ (max(d(xn, yn); d(x, yn))) ,
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where the last inequality follows from the mean value theorem, the triangle in-
equality, and the non-negativity and monotonicity of α′. From this it follows that

[f(xn)− f(x)]+
d(xn, x)

≤ α′(max(d(xn, yn); d(x, yn))).

So, letting n→ ∞,

lim sup
n→∞

[f(xn)− f(x)]+
d(xn, x)

≤ α′
(
lim sup
n→∞

d(x, yn)
)

= α′ (max{d(x, ȳ) : ȳ limit point of (yn)n∈N}
)
≤ α′

(
max

ȳ∈m(x)
d(x, ȳ)

)
,

where the last inequality follows from Lemma 2.11 below.

(2) To prove the second point it is enough to show that |∇+
c f |(x) ≤ |∇+f |(x)

for all x ∈ X . Let ȳ ∈ ∂cf(x) (this set is not empty, by Lemma 2.6). According to
the definition of the c-subdifferential,

f(z)− f(x) ≥ α(d(x, ȳ))− α(d(z, ȳ)), ∀z ∈ X.

From the definition of |∇+f |(x), it follows that

|∇+f |(x) ≥ lim sup
z→x

α(d(x, ȳ))− α(d(z, ȳ))

d(x, z)
.

Let (zt)t∈[0,1] be a geodesic connecting x to ȳ, there holds d(x, zt) = td(x, ȳ),
d(zt, ȳ) = (1− t)d(x, ȳ) and therefore

|∇+f |(x) ≥ lim sup
t→0

α(d(x, ȳ))− α((1 − t)d(x, ȳ))

td(x, ȳ)
= α′(d(x, ȳ)).

Optimizing over all ȳ ∈ ∂cf(x) completes the proof.

(3) Let (xn)n∈N be a sequence of points converging to x, with xn �= x for all n.
If ȳ ∈ ∂cf(x), then there holds

f(xn)− f(x) ≥ α (d(x, ȳ))− α (d(xn, ȳ)) ≥ −d(x, xn)α′ (max(d(xn, ȳ); d(x, ȳ))) ,

where the second inequality follows from the mean value theorem and the triangle
inequality. From this it easily follows that

lim sup
n→+∞

[f(xn)− f(x)]−
d(x, zn)

≤ α′ (d(x, ȳ)) .

Optimizing over all ȳ ∈ ∂cf(x) leads to the first bound in (3). As above, the
second inequality in (3) is an immediate consequence of the definition of |∇−

c f |(x)
together with the fact that, by Lemma 2.5, m(x) ⊂ ∂cf(x). This completes the
proof. �

During the proof we have used the following simple lemma whose proof can be
found in the appendix.
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Lemma 2.11. Let X be a complete separable metric space with compact balls and
let g : X → R be an upper semicontinuous function bounded from above. Define,
for all x ∈ X, Ptg(x) = supy∈X

{
g(y) − t α (d(x, y)/t)

}
and let m(t, x) be the set

of points y ∈ X where this supremum is attained. Then:

(1) The set m(t, x) is a non empty compact set of X.

(2) Let xn → x ∈ X and tn → t > 0 be two converging sequences and consider
a sequence (yn)n∈N such that yn ∈ m(tn, xn) for all n. Then (yn)n∈N is
bounded and all its limit points belong to m(t, x).

3. Proof of the Hamilton–Jacobi equations

This part is devoted to the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.2. By Lemma 2.11, m(t, x) is a non empty compact set of X .
We treat the case of the right derivative; the other case is completely analogous.
Let t > 0 and x ∈ X , and let (hn)n∈N be a sequence of positive numbers converging
to 0. For all n ∈ N, we consider zn ∈ m(t+ hn, x). Then,

1

hn

(
Pt+hnf(x)− Ptf(x)

)

≤ 1

hn

[
f(zn)− (t+ hn)α

(d(x, zn)
t+ hn

)
−

(
f(zn)− t α

(d(x, zn)
t

))]

=
1

hn

[
t α

(d(x, zn)
t

)
− (t+ hn)α

(d(x, zn)
t+ hn

)]
.

Define D = lim supk→∞ d(x, zk) and take ε > 0. For all n large enough, d(x, zn) ≤
D + ε. For all h ≥ 0 and all t > 0, by the convexity assumption on α, the map

d �→ t α
(d
t

)
− (t+ h)α

( d

t+ h

)

is non-decreasing. Hence

lim sup
n→∞

1

hn

[
t α

(d(x, zn)
t

)
− (t+ hn)α

(d(x, zn)
t+ hn

)]

≤ lim
n→∞

1

hn

[
t α

(D + ε

t

)
− (t+ hn)α

(D + ε

t+ hn

)]
= β

(D + ε

t

)

where we recall that β(h) = hα′(h)−α(h), h ≥ 0. Since α is of class C1, as ε goes
to 0 we get

lim sup
n→+∞

1

hn
(Pt+hnf(x)− Ptf(x)) ≤ β

(D
t

)
.

Applying Lemma 2.11, it is not difficult to check that

D = lim sup
n→∞

d(x, zn) = max{d(x, z̄) : z̄ limit point of (zn)n∈N} ≤ max
ȳ∈m(t,x)

d(x, ȳ).
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The conditions on α ensure that β is non-decreasing and therefore

(3.1) lim sup
n→+∞

1

hn
(Pt+hnf(x)− Ptf(x)) ≤ β

(maxȳ∈m(t,x) d(x, ȳ)

t

)
.

Analogously, if ȳ ∈ m(t, x) then

1

hn
(Pt+hnf(x)− Ptf(x)) ≥

1

hn

(
t α

(d(x, ȳ)
t

)
− (t+ hn)α

(d(x, ȳ)
t+ hn

))
.

So, letting n go to ∞, and optimizing over ȳ yields

(3.2) lim inf
n→∞

1

hn
(Pt+hnf(x)− Ptf(x)) ≥ β

(maxȳ∈m(t,x) d(x, ȳ)

t

)
.

We conclude from (3.1) and (3.2) that

lim
n→∞

1

hn
(Pt+hnf(x)− Ptf(x)) = β

(maxȳ∈m(t,x) d(x, ȳ)

t

)
.

This completes the proof of Proposition 1.2. �

Proof of Theorem 1.1. By Theorem 1.2,

d

dt+
Ptf(x) = β

(maxȳ∈m(t,x) d(x, ȳ)

t

)
,

with β(u) = uα′(u) − α(u), for all u ≥ 0. By the definition of c-convexity, the
function x �→ Ptf(x) is c-convex for the cost c(x, y) = t α (d(x, y)/t). Applying
point (1) of Proposition 2.9, there holds

|∇+Ptf |(x) ≤ α′
(maxȳ∈m(t,x) d(x, ȳ)

t

)
.

Observing that β(u) = α∗(α′(u)) gives the result. By point (3) of Proposition 2.9,
equality holds in the geodesic case. The proof of the inequality involving the left
derivative of Ptf is similar. �

4. Log-Sobolev inequality and hypercontractivity on a metric
space

In this section, following [4], we show that log-Sobolev inequalities on metric spaces
are equivalent to some hypercontractivity property of the “semigroup” Qt. The
proof of Theorem 1.3 relies on the differentiation of the left-hand side of (1.9). For
this purpose, we use the next technical proposition, whose proof is postponed to
the appendix.
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Proposition 4.1. Let f be a bounded and continuous function on X and let k :
(a, b) → (0,+∞) be a function of class C1 defined on an open interval (a, b) ⊂
(0,∞) and such that k′(t) �= 0 for all t. Define, for all t ∈ (a, b),

H(t) =
1

k(t)
log

(∫
ek(t)Qtf dμ

)
, and K(t) =

1

k(t)
log

( ∫
ek(t)Ptf dμ

)
.

The functions H and K are continuous and differentiable on the right and on the
left on (a, b). Moreover, for all t ∈ (a, b), there holds

dH

dt+
(t) =

k′(t)
k(t)2

1∫
ek(t)Qtf dμ

[
Entμ

(
ek(t)Qtf

)
+
k(t)2

k′(t)

∫ ( d

dt+
Qtf

)
ek(t)Qtf dμ

]
.

The same formula holds for dH/dt−, dK/dt+ and dK/dt− (replacing Qt by Pt).

Proof of Theorem 1.3. Let us first show that the log-Sobolev inequality implies the
hypercontractivity property

(4.1)
∥∥eQtf

∥∥
k(t)

≤
∥∥ef∥∥

k(0)
,

for all bounded continuous function f : X → R, with

(4.2) k(t) =
(
1 +

C−1(t− to)

pα − 1

)pα−1

1t≤to +
(
1 +

C−1(t− to)

rα − 1

)rα−1

1t>to ,

with the convention that k(t) = min
(
1;
(
1 + C−1(t−to)

pα−1

)pα−1)
if rα = 1. The ex-

ponents rα and pα have the following properties (see the proof of Lemma A.3
in [12]):

α∗(sx) ≤ s
pα

pα−1 α∗(x), ∀x ≥ 0, ∀s ∈ [0, 1]

α∗(sx) ≤ s
rα

rα−1 α∗(x), ∀x ≥ 0, ∀s > 1.

Let H(t) = log
∥∥eQtf

∥∥
k(t)

, with f : X → R bounded and continuous. According

to Proposition 4.1, we have, for all t > 0,

dH

dt+
(t) ≤ k′(t)

k2(t)

1∫
ek(t)Qtf dμ

[
Entμ

(
ek(t)Qtf

)
+
k2(t)

k′(t)

∫
d

dt+
Qtfe

k(t)Qtf dμ
]
.

The function k(t)Qtf belongs to Fα. Indeed, if � = limx→∞ α(x)/x = ∞, this
follows immediately from Lemma 4.2 (2) below and the definition of Fα. On the
other hand, if � < +∞, then Lemma 4.2 (1) implies that rα = 1, which in turn
implies that k(t) ≤ 1. By Lemma 4.2 (2), Qtf ∈ Fα, which, in this case, means
that Lip(Qtf) ≤ �. Therefore, Lip(k(t)Qtf) ≤ � and so k(t)Qtf ∈ Fα. Applying
LSI−α (C) to the function k(t)Qtf , it follows that for all t > 0 (or all 0 < t ≤ to
if rα = 1),

Entμ

(
ek(t)Qtf

)
≤ C

∫
α∗ (k(t)|∇−Qtf |

)
ek(t)Qtf dμ

≤ C
(
k(t)

pα
pα−1 1t≤to + k(t)

rα
rα−1 1t>to

) ∫
α∗ (|∇−Qtf |

)
ek(t)Qtf dμ

≤ −C
(
k(t)

pα
pα−1 1t≤to + k(t)

rα
rα−1 1t>to

) ∫ d

dt+
Qtfe

k(t)Qtf dμ,
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where the last inequality follows from the Hamilton–Jacobi differential inequal-
ity (1.8). Therefore,

dH

dt+
(t) ≤

1− Ck′(t)
(
k(t)

2−pα
pα−1 1t≤to + k(t)

2−rα
rα−1 1t>to

)
∫
ek(t)Qtf dμ

∫
d

dt+
Qtfe

k(t)Qtf dμ = 0,

where the last equality is a consequence of the very definition of k. Hence H is
non-increasing on (0,+∞) (or on (0, to] if rα = 1). When α(h)/h → ∞, when
h → ∞, then by point (3) of Proposition A.1 and the dominated convergence
theorem, there holds

log
∥∥eQtf

∥∥
k(t)

= H(t) ≤ lim
s→0+

H(s) = log
∥∥ef∥∥

k(0)
.

If α(h)/h → � ∈ R
+, when h → ∞, then by point (3) of Proposition A.1, the

same conclusion holds if Lip(f) < �. Consider now a bounded continuous function
f : X → R and fix ε ∈ (0, 1). Thanks to Lemma 4.2 below, Lip((1 − ε)Qsf)
≤ (1− ε)� for all s > 0.

Since Qsf ≤ f , we conclude that

∥∥eQt((1−ε)Qsf)
∥∥
k(t)

≤
∥∥e(1−ε)Qsf

∥∥
k(0)

≤
∥∥e(1−ε)f

∥∥
k(0)

.

Using Lebesgue’s Theorem and Lemma 4.2, as ε→ 0, we get

∥∥eQt(Qsf)
∥∥
k(t)

≤
∥∥ef∥∥

k(0)
.

Since Qt+sf ≤ Qt(Qsf) and thanks to point (2) of Proposition A.1, we have
lims→0Qt+sf = Qtf so that (using Lebesgue’s theorem) the hypercontractivity
property (4.1) still holds when f is bounded and continuous, as expected.

Now we prove that if (4.1) holds for all bounded continuous f and all t > 0
with k defined by (4.2), then μ satisfies LSI−α (C). Observe that in the case
α(h)/h → � ∈ R

+, it is enough to show that LSI−α holds for functions with
Lip(f) < �.

Let H(t) = log ‖eQtf‖k(t), for all t > 0, with f ∈ Fα and Lip(f) < � when
α(h)/h→ � ∈ R

+ as h→ ∞. By assumption, there holds

lim sup
t→0+

H(t)−H(0+)

t
≤ 0.

We choose to < C(pα − 1) in the definition of k(t) so that k(0) and k′(0) > 0. It
is not difficult to check that

lim sup
t→0+

H(t)−H(0+)

t

=
k′(0)
k(0)2

Entμ
(
ek(0)f

)
∫
ek(0)f dμ

− 1

k(0)
∫
ek(0)f dμ

lim inf
t→0+

∫
ek(t)f − ek(t)Qtf

t
dμ.
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According to the mean value theorem, there exists a function ϕ : (0,∞)×X → R

taking values in the interval [k(t)ek(t)Qtf(x); k(t)ek(t)f(x)] such that

ek(t)f − ek(t)Qtf

t
=
f −Qtf

t
ϕ(t, x), ∀t > 0, x ∈ X.

Applying point (4) of Proposition A.1, we get

lim inf
t→0+

∫
ek(t)f − ek(t)Qtf

t
dμ ≤ lim sup

t→0+

∫
ek(t)f − ek(t)Qtf

t
dμ

≤ k(0)

∫
α∗(|∇−f |) ek(0)f dμ.

Hence

Entμ
(
ek(0)f

)
≤ k(0)2

k′(0)

∫
α∗ (|∇−f |

)
ek(0)f dμ.

Since

k(0) =
(
1− C−1to

pα − 1

)pα−1

→ 1 and k(0)2/k′(0) = C
(
1− C−1to

pα − 1

)pα

→ C,

when to → 0+, we conclude that LSI−α (C) holds. This completes the proof. �

In the proof above, we used the following technical lemma, whose proof is
postponed to the appendix to preserve the continuity of the exposition.

Lemma 4.2. Set � = limh→∞ α(h)/h ∈ R ∪ {+∞}. Let f : X → R be a bounded
and continuous function. Then:

(1) If � < +∞, then rα = infx>0 xα
′(x)/α(x) = 1.

(2) For all t > 0, Qtf ∈ Fα.

(3) For all t > 0 and all x ∈ X, limε→0Qt((1− ε)f)(x) = Qtf(x).

We are now in position to derive the Otto–Villani theorem from Theorem 1.3.
Recall that, according to Bobkov and Götze’s characterization, [5], μ satisfies

the transport-entropy inequality Tα(C) if and only if

(4.3)

∫
eC

−1Q1f dμ ≤ exp
(
C−1

∫
f dμ

)

for all bounded continuous function f : X → R.

Proof of Theorem 1.4. Since μ satisfies LSI−α (C), it satisfies the hypercontractivity
property (1.9) of Theorem 1.3. Take to = C(pα − 1) in the definition of k(t). The
hypercontractivity inequality (1.9) yields

∫
ek(t)Qtfdμ ≤ ek(t)

∫
fdμ, ∀t > 0
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for all bounded continuous function f . By (4.3), this means that μ satisfies the
following family of transport-entropy inequalities:

Tα( · /t)(μ, ν) ≤
1

tk(t)
H(ν|μ), ∀ν ∈ P(X),

where α( · /t) denotes the function x �→ α(x/t). According to the proof of Lemma A.3
in [12],

α(x) ≤ max(trα ; tpα)α(x/t), ∀t > 0.

Therefore, μ satisfies Tα(A), with the constant

A = inf
t>0

max(trα−1; tpα−1)

k(t)
.

Taking t = C(pα − 1) for which k(t) = 1, we see that

A ≤ max
(
((pα − 1)C)rα−1; ((pα − 1)C)pα−1

)
,

which ends the proof. �

Proof of Proposition 1.5. Define for all t > 0 the operators

Rtf(x) = inf
y∈X

{
f(y) +

1

t
θ(d(x, y))

}
and Qtf(x) = inf

y∈X

{
f(y) +

1

t
d2(x, y)

}

According to Bobkov and Götze’s dual formula (4.3) and by homogeneity, there
holds, for all t > 0, ∫

eC
−1tRtf dμ ≤ eC

−1t
∫
f dμ,

for all bounded continuous function f. Take a function f such that |f | ≤ M and
Lip(f, r) <∞ for some r > 0. If d(x, y) ≥ a, and t ≤ a2/(2M), then there holds

f(y) +
1

t
θ(d(x, y)) ≥ −M +

(2M)

a2
a2 =M ≥ f(x) ≥ Rtf(x).

It follows that if t ≤ a2/2M , then

Rtf(x) ≥ inf
y:d(x,y)≤a

{
f(y) +

1

t
d2(x, y))

}
≥ Qtf(x).

Hence the following inequality holds:

∫
eC

−1tQtf dμ ≤ eC
−1t

∫
f dμ, ∀t ≤ a2/(2M).

Applying Taylor’s formula, we see that

eC
−1 t Qtf(x) = 1 + C−1 tQtf(x) +

C−2(tQtf)
2(x)

2
eϕ(t,x),
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where |ϕ(t, x)| ≤ t C−1M , for all t and x. So, for all t ≤ a2/(2M),

C−1

∫
Qtf − f

t
dμ+

C−2

2

∫
(Qtf)

2(x)eϕ(t,x) μ(dx)

≤ eC
−1t

∫
f dμ − 1− tC−1

∫
f dμ

t2
.

Letting t go to 0 and using points (3) and (4) of Proposition A.1 together with the
dominated convergence theorem yields

−C
−1

4

∫
|∇−f |2 dμ+

C−2

2

∫
f2 dμ ≤ C−2

2

(∫
f dμ

)2

,

which is the claimed Poincaré inequality. �

5. Transport-entropy inequalities as restricted log-Sobolev
inequalities

In this section, we show that a transport-entropy inequality can be characterized
as a modified log-Sobolev inequality restricted to a class of c-convex functions.
Actually we will prove the following improved version of Theorem 1.6 which holds
even if the space is not geodesic.

Theorem 5.1. Let μ be a probability measure on (X, d) and let p ≥ 2. Define the
function βp by

(5.1) βp(u) =
u

[u1/(p−1) − 1]p−1
, ∀u > 1.

The following properties are equivalent:

(1) There is some C > 0 such that μ satisfies Tp(C).

(2) There is some D > 0 such that μ satisfies the following (τ)-log-Sobolev in-
equality: for all bounded continuous f and all 0 < λ < 1/D, there holds

Entμ(e
f ) ≤ 1

1− λD

∫
(f −Qλf)ef dμ,

where for all λ > 0, Qλf(x) = infy∈X {f(y) + λcp(x, y)} .

(3) There is some E > 0 such that μ satisfies the following restricted log-Sobolev
inequality: for all Kcp-convex function f , with 0 < K < 1/E there holds

Entμ(e
f ) ≤ βp(u)− 1

(1 −KEu)pKq−1

∫
|∇−

Kcp
f |qef dμ, ∀u ∈ (1, 1/(KE))

where q = p/(p − 1) and |∇−
Kcp

f |(x) = K
(
inf ȳ∈∂Kcpf(x)

d(x, ȳ)
)p−1

(see

Proposition 2.9).

Moreover, when the space (X, d) is geodesic these properties are equivalent to the
following:
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(3’) There is some F > 0 such that μ satisfies the following restricted log-Sobolev
inequality: for all Kcp-convex function f , with 0 < K < 1/F , there holds

Entμ(e
f ) ≤ βp(u)− 1

(1−KFu)pKq−1

∫
|∇+f |qef dμ, ∀u ∈ (1, 1/(KF ))

The optimal constants Copt, Dopt, Eopt and Fopt are related by

Fopt ≤ Eopt ≤ Dopt ≤ Copt ≤ κp Fopt,

where κp is some universal constant depending only on p. For p = 2, one can take
κ2 = e2.

5.1. From transport-entropy inequalities to (τ)-log-Sobolev inequalities

We recall the following proposition from [11], whose proof relies on a simple Jensen
argument.

Lemma 5.2. If μ satisfies the transport-entropy property Tc(C), for some contin-
uous cost function c on X2, then the following (τ)-log-Sobolev property holds: for
all function f , for all 0 < λ < 1/C,

(5.2) Entμ(e
f ) ≤ 1

1− λC

∫
(f −Qλf)ef dμ,

where for all x ∈ X, Qλf(x) = inf{f(y) + λc(x, y)}.

This proves the step (1) ⇒ (2) in Theorem 5.1.

5.2. From (τ)-log-Sobolev inequalities to log-Sobolev inequalities for
cp-convex functions

The general link between the (τ)-log-Sobolev property and the restricted log-
Sobolev inequality is the following: if the function f is c-convex then the quantity
f − Qλf on the right-hand side of (5.2) can be bounded by a function of |∇−

c f |
(see Lemma 5.3 below).

From now on, we assume that c = cp is the cost function defined by: for all
x, y in X , cp(x, y) = dp(x, y)/p, for some p > 1.

Lemma 5.3. Let λ > 0. If f is a Kcp-convex function bounded from above, and
if 0 < K < λ, then for all x ∈ X and all ȳ in the Kcp-subdifferential ∂Kcpf(x)
of f at point x,

f(x)−Qλf(x) ≤ K (βp (λ/K)− 1) cp(x, ȳ),

where Qλf(x) = infy∈X{f(y)+λcp(x, y)} and for all u > 1, βp(u) =
u

[u1/(p−1)−1]p−1 .

Equivalently, with the notation of Proposition 2.9,

f(x)−Qλf(x) ≤ (βp(λ/K)− 1)
1

pKq−1
|∇−

Kcp
f |q(x),

where q = p/(p− 1).
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Proof. By the definition (Definition 2.4) of ∂Kcpf(x) and using the triangular
inequality we get, for all ȳ ∈ ∂Kcpf(x),

f(x) −Qλf(x) = sup
z∈X

{f(x)− f(z)− λcp(z, x)}

≤ sup
z∈X

{Kcp(z, ȳ)−Kcp(x, ȳ)− λcp(z, x)}

≤ sup
z∈X

{Kcp(z, ȳ)− λcp(z, x)} −Kcp(x, ȳ)

≤ 1

p
sup
z∈X

{K(d(z, x) + d(x, ȳ))p − λdp(z, x)} −Kcp(x, ȳ)

≤ 1

p
sup
r≥0

{K(r + d(x, ȳ))p − λrp} −Kcp(x, ȳ) = Kcp(x, ȳ) (βp (λ/K)− 1) .

Thus optimizing over all possible ȳ ∈ ∂Kcpf(x) yields the expected result

f(x)−Qλf(x) ≤ (βp (λ/K)− 1) inf
ȳ∈∂Kcpf(x)

Kcp(x, ȳ)

= (βp(λ/K)− 1)
1

pKq−1
|∇−

Kcp
f |q(x).

�

From this lemma the (τ)-log-Sobolev property (5.2) provides immediately the
first part of the following statement by setting u = λ/C.

Proposition 5.4. If μ satisfies the (τ)-log-Sobolev (5.2) with the cost c = cp,
p ≥ 2, then for all K ∈ (0, 1/C) and all functions f that are bounded from above
and Kcp-convex, there holds

Entμ(e
f ) ≤ βp(u)− 1

(1−KCu)pKq−1

∫
|∇−

Kcp
f |q(x) ef(x) μ(dx), ∀u ∈ (1, 1/(KC)).

Moreover, when (X, d) is geodesic, the same inequality holds with |∇+f | instead of
|∇−

Kcp
f | on the right-hand side.

This proves the implications (2) ⇒ (3) and (2) ⇒ (3′) (in the geodesic case) in
Theorem 5.1.

Proof. Let us justify the statement in the geodesic case. According to Proposi-
tion 2.9 (applied with the function θ(x) = Kxp/p), there holds |∇−

Kcp
f | ≤ |∇+

Kcp
f |

and when the space is geodesic, |∇+
Kcp

f | = |∇+f |, which completes the proof. �

5.3. From log-Sobolev inequalities for cp-convex functions to transport-
entropy inequalities

In this part we prove that a modified log-Sobolev inequality restricted to the class
of Kcp-convex functions also implies a transport entropy-inequality. One of the
main ingredient of the proof is Theorem 1.2.
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Theorem 5.5. Let p ≥ 2. Suppose that for all K ∈ (0, 1/C) and all Kcp-convex
functions f : X → R bounded from above, there holds

(5.3) Entμ(e
f ) ≤ βp(u)− 1

(1−KCu)pKq−1

∫
|∇−

Kcp
f |q(x) ef(x) μ(dx), ∀u ∈ (1, 1

KC ).

Then μ satisfies the inequality Tp(κpC), where κp is some numerical constant
depending only on p. For p = 2, κ2 = e2. Moreover, if the space is geodesic,
the same conclusion holds if |∇−

Kcp
f | is replaced by |∇+f | on the right-hand side

of (5.3).

This proves the implications (3) ⇒ (1) and (3′) ⇒ (1) (in the geodesic case)
and completes the proof of Theorem 5.1.

Proof. For any bounded continuous function g, we define the function Ptg by

Ptg(x) = sup
y∈X

{
g(y)− 1

tp−1
cp(x, y)

}
.

Let � : [a, 1] → (0,+∞) be a decreasing C1 function defined on some interval [a, 1]
with a > 0 and such that �(1) = 0. For all bounded continuous g define

Hg(t) =
C

�(t)
log

( ∫
eC

−1
(t)Ptg dμ
)
, t ∈ [a, 1).

If all theHg’s were non-decreasing, then it would hold thatHg(a) ≤ limt→1− Hg(t) =∫
P1g dμ. Since g ≤ Pag, we would get∫

eC
−1
(a)g dμ ≤ eC

−1
(a)
∫
P1g dμ

which in turn, according to Bobkov and Götze characterization theorem, would
prove that μ satisfies Tp(C/�(a)).

Hence, our aim is to construct a function � such that all the Hg’s are non-
decreasing. Set ft = C−1�(t)Ptg. According to Proposition 4.1, Hg is continuous
and differentiable on the right and

d

dt+
Hg(t) =

C�′(t)
�2(t)

∫
eft dμ

[
Entμ

(
eft

)
+

�(t)2

C�′(t)

∫
dPtg

dt+
eft dμ

]
.

Since �′ < 0, all we have to show is that the term into brackets is non-positive.

For all t > 0, the function ft is K(t)cp-convex, with K(t) = 
(t)
Ctp−1 . Hence, for all t

such that �(t) < tp−1 and all u ∈ (1, 1/(CK(t)),

Entμ(e
ft) ≤ βp(u)− 1

(1−K(t)Cu)pK(t)q−1

∫
|∇−

K(t)cp
(ft)|q(x)eft(x) μ(dx).

Since ft is K(t)cp-convex, it follows from Proposition 2.9 (applied with α(h) =
K(t)hp/p) that

|∇−
K(t)cp

ft|(x) = K(t)
(

min
ȳ∈∂K(t)cp ft(x)

d(x, ȳ)
)p−1

≤ K(t)
(

max
ȳ∈m(t,x)

d(x, ȳ)
)p−1

,
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where m(t, x) is the set of points ȳ where the supremum defining Ptg is attained.
As a result, there holds

1

pK(t)q−1
|∇−

K(t)cp
ft|q(x) ≤ K(t) max

ȳ∈m(t,x)
cp(x, ȳ).

On the other hand, according to Proposition 1.2,

dPtg

dt+
(x) =

p− 1

tp
max

ȳ∈m(t,x)
cp(x, ȳ).

Therefore

(5.4)
1

pK(t)q−1
|∇−

K(t)cp
ft|q(x) ≤

K(t)tp

(p− 1)

dPtg

dt+
(x) =

t�(t)

(p− 1)C

dPtg

dt+
(x).

So, for all t > 0 with �(t) < tp−1, there holds

[
Entμ

(
eft

)
+

�(t)2

C�′(t)

∫
dPtg

dt+
eft dμ

]

≤ �(t)

C

[
θp

(
�(t)

tp−1

)
t

p− 1
+
�(t)

�′(t)

] ∫ dPtg

dt+
eft dμ,

where the function θp is defined by θp(x) = inf1<u<1/x

{βp(u)−1
1−xu

}
, for x < 1.

Observe that θp is finite on [0, 1[. Consider the function

Ψp(r) =
1

p− 1

∫ r

0

θp(s)

s(θp(s) + 1)
ds, ∀r ∈ [0, 1].

According to Lemma 5.6 below, since p ≥ 2, the function Ψp is well defined,
increasing and of class C1 on (0, 1). Define v(t) = Ψ−1

p (− ln(t)), for all t ∈ [ap, 1],
with ap = exp (−Ψp(1)). The function v is decreasing and v(t) ∈ [0, 1] for all
t ∈ [ap, 1]. Finally, define �p(t) = tp−1v(t), for all t ∈ [ap, 1]. A simple calculation
shows that

θp

(�p(t)
tp−1

) t

p− 1
+
�p(t)

�′p(t)
= 0, ∀t ∈ (ap, 1).

We conclude that μ satisfies the inequality Tp with the constant

C

�p(ap)
= C exp

( ∫ 1

0

θp(s)

s(θp(s) + 1)
ds
)
= Cκp.

In the particular case p = 2, one has θ2(x) = 4x/(1− x)2, and it is easy to check
that κ2 = e2.

There remains to consider the geodesic case. In this case, the inequality (5.4)
is replaced by the equality

1

pK(t)q−1
|∇+ft|q(x) =

K(t)tp

(p− 1)

dPtg

dt+
(x),

and the rest of the proof remains unchanged. �
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Lemma 5.6. The function s �→ φ(s) =
θp(s)

s(θp(s)+1) is continuous on (0, 1). More-

over, φ(s) goes to 1 as s goes to 1, and

φ(s) =
pp/(p−1)

s(p−2)/(p−1)
(1 + ε(s)), with ε(s) → 0 as s→ 0.

Proof. After some computations, it is easy to check that for s ∈ (0, 1), the infimum
θp(s) is attained at some unique point u = u(s) ∈ (1, 1/s) such that

β′
p(u)(1 − su) + s(βp(u)− 1) = 0,

or equivalently
u(s)p/(p−1) −

(
u(s)1/(p−1) − 1

)p
= 1/s.

It follows from this equality that u(s) is continuous on (0,1), u(s) → 1 as s → 1
and u(s) → +∞ as s→ 0. As a first consequence, φ is continuous on (0, 1).

By a Taylor expansion at 0, one has

1

su(s)p/(p−1)
= 1−

(
1− 1

u(s)1/(p−1)

)p

=
p

u(s)1/(p−1)
(1 + ε(s)),

with ε(s) → 0 as s → 0. It follows that su(s) → 1/p as s → 0. From these
observations, we get

φ(s) =
1−

(
1− u(s)−1/(p−1)

)p−1

s
(
1− su(s)

(
1− u(s)−1/(p−1)

)p−1 ) =
pp/(p−1)

s(p−2)/(p−1)
(1 + ε(s)),

with ε(s) → 0 as s → 0. Since u(s) → 1 as s → 1 we easily get that φ(s) → 1 as
s→ 1. �

A. Proofs of Lemma 2.8, Lemma 2.11, Proposition 4.1 and
Lemma 4.2

In this appendix we give the technical proofs of Lemmas 2.8, 2.11 and 4.2, and of
Proposition 4.1.

Proof of Lemma 2.8. Let ȳ ∈ ∂cf(x). According to the definition of the c-subdiff-
erential,

f(z)− f(x) ≥ L(x− ȳ)− L(z − ȳ), ∀z ∈ R
m.

Let z = x + εu with ε > 0 and u ∈ R
m. Since L and f are smooth at x, we get

that, as ε tends to 0, for all u ∈ R
m,

u · ∇f(x) ≥ −u · ∇L(x− ȳ),

and therefore ∇f(x) = −∇L(x − ȳ). Let vo = x − ȳ and uo = ∇L(v0). By the
convexity property of L,

(A.1) L(v) ≥ L(vo) + uo · (v − vo), ∀v ∈ R
m,
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or equivalently L(vo) ≤ uo · vo −L∗(uo). Since L(vo) = supu∈Rm{u · vo−L∗(u)}, it
follows that the derivative of u �→ u·vo−L∗(u) vanishes at uo, and so vo = ∇L∗(uo).
Finally, x− ȳ = ∇L∗(uo) = ∇L∗(−∇f(x)), which completes the proof. �

Proof of Lemma 2.11. (1) The function h : y �→ g(y) − t α (d(x, y)/t) is upper
semicontinuous, bounded from above and its level sets {h ≥ r} r ∈ R are compact.
It follows that h attains its supremum and so m(t, x) = {h ≥ suph} is not empty
and compact.

(2) Let hn(y) = g(y)− tn α(d(xn, y)/tn), y ∈ X. The sequence of functions hn
converges pointwise to the function h, and the convergence is uniform on each
bounded set. Since g is bounded from above by some constant r ∈ R, there holds

r − tnα
(d(xn, yn)

tn

)
≥ g(yn)− tnα

(d(xn, yn)
tn

)
(A.2)

≥ g(y)− tnα
(d(xn, y)

tn

)
, ∀y ∈ X.

Since (xn)n∈N is bounded and limn→∞ tn = t > 0, we conclude that (yn)n∈N is a
bounded sequence. As balls are supposed to be compact, (yn)n∈N has converging
subsequences. Passing to the limit in the inequality (A.2) along a converging
subsequence of (yn)n∈N yields the conclusion that any limit point ȳ of (yn)n∈N

belongs to m(t, x). �

We turn to the proof of Proposition 4.1. The proof requires some regularity
properties of Qtf in the t variable that are gathered in the following proposition.

Proposition A.1. Let f be a bounded lower semicontinuous function on X; define,
for all t > 0 and x ∈ X,

Qtf(x) = inf
{
f(y) + t α

(d(x, y)
t

)}
,

and let m(t, x) denote the set of points where this infimum is attained. The follow-
ing properties hold:

(1) For all x ∈ X,
m(t, x) ⊂ B

(
x, t α−1 (Osc(f)/t)

)
.

(2) For all t, h > 0,

1

h
sup
x∈X

|Qt+hf(x)−Qtf(x)| ≤ β
(
α−1 (Osc(f)/t)

)
.

(3) If α(h)/h → ∞, when h → ∞, then for all bounded continuous functions f
and for all x ∈ X,

lim
t→0+

Qtf(x) = f(x).

and

lim inf
t→0+

Qtf(x)− f(x)

t
≥ −α∗(|∇−f |(x)).

If α(h)/h → � ∈ R
+, when h → ∞, the same conclusions hold for all func-

tions f with Lip(f) < �.
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(4) Let μ be a probability measure and let ϕ : (0,+∞) × X → R be such that
|ϕ| ≤ M for some M > 0 and limt→0+ ϕ(t, x) = ψ(x) for all x ∈ X. If
α(h)/h → ∞ when h → ∞ and if f is such that Lip(f, r) < +∞ for some
r > 0, then

lim sup
t→0

∫
f −Qtf

t
ϕ(t, x) dμ ≤

∫
α∗(|∇−f |(x))ψ(x) dμ.

The same conclusion holds if α(h)/h → � ∈ R
+ when h→ ∞ and Lip(f) < �.

Proof of Proposition A.1. (1) Let M = sup(f) and m = inf(f). If ȳ ∈ m(t, x),
there holds

m+ t α
(d(x, ȳ)

t

)
≤ f(ȳ) + t α

(d(x, ȳ)
t

)
= Qtf(x) ≤M,

which proves the first claim.

(2) Since t �→ Qtf(x) is non-increasing, |Qt+hf(x) − Qtf(x)| = Qtf(x) −
Qt+hf(x). If ȳ ∈ m(t+ h, x), then

1

h
(Qtf(x)−Qt+hf(x)) ≤

1

h

(
t α

(d(x, ȳ)
t

)
− (t+ h)α

(d(x, ȳ)
t+ h

))

≤ β
(
α−1 (Osc(f)/t)

)
,

where the last inequality comes from the mean value theorem, the monotonicity
of the function β, and point (1).

(3) Let us first assume that α(h)/h → +∞, when h → +∞. In this case,
t α−1(Osc(f)/t) → 0 when t→ 0, and so, according to (1),

inf
y∈B(x,tα−1(Osc(f)/t))

{f(y)} ≤ Qtf(x) ≤ f(x).

Since f is lower semicontinuous, the limit when t goes to 0 of the left-hand side
is greater than or equal to f(x). This guarantees that limt→0+ Qtf(x) = f(x).
Moreover, for all ȳt ∈ m(t, x), f(ȳt) ≤ f(x) and therefore

f(x) −Qtf(x)

t
=
f(x)− f(ȳt)

t
− α

(d(x, ȳt)
t

)

=
[f(ȳt)− f(x)]−

d(x, ȳt)

d(x, ȳt)

t
− α

(d(x, ȳt)
t

)
≤ α∗

( [f(ȳt)− f(x)]−
d(x, ȳt)

)
.(A.3)

Arguing as before, we see that ȳt → x as t→ 0 so that

lim sup
t→0+

f(x)−Qtf(x)

t
≤ α∗ (|∇−f |(x)

)
.

Now we assume that α(h)/h→ � ∈ R
+ when h→ ∞. According to what precedes,

it is enough to show that there is a constant r > 0 such that

m(t, x) ⊂ B(x; rt), ∀t > 0, x ∈ X.
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Let ȳ ∈ m(t, x). Then there holds f(ȳ) − f(x) + t α (d(x, ȳ)/t) ≤ 0. Since f is
assumed to be Lipschitz, we conclude that Lip(f)d(x, ȳ)/t ≥ α (d(x, ȳ)/t) . Since
Lip(f) < � = limh→+∞ α(h)/h, this implies that d(x, ȳ) ≤ rt where r = sup{h :
α(h)/h ≤ Lip(f)} < +∞, which proves the claim.

(4) We already know, by point (3), that

lim sup
t→0+

f(x)−Qtf(x)

t
≤ α∗(|∇−f |(x)

)
.

Hence the result of point (4) will follow from Fatou’s Lemma (in its limsup version)
as soon as for some t0 > 0, there holds

sup
x

sup
t∈(0,to)

f(x)−Qtf(x)

t
<∞.

Assume first that limh→∞ α(h)/h = ∞ and let r > 0 be such that Lip(f, r) <∞.
Observe that limt→0 t α

−1(Osc(f)/t) = 0 so that, by point (1), there exists to > 0
such that, for all t ∈ (0, to), all x ∈ X and all ȳt ∈ m(t, x), d(x, ȳt) ≤ r. Us-
ing (A.3), we conclude that

sup
x

sup
t∈(0,to)

f(x)−Qtf(x)

t
≤ α∗ (Lip(f, r)) <∞.

Assume now that α(h)/h → � ∈ R
+, when h → ∞. Then, since Lip(f) < �,

(A.3) implies that

sup
x,t

f(x)−Qtf(x)

t
≤ α∗ (Lip(f)) <∞.

This ends the proof of point (4) and of the proposition. �

Proof of Proposition 4.1. We will prove that H is right differentiable, the proof of
the left-differentiability being similar. Formally differentiating under the integral
sign yields, for all t > 0,

dH

dt+
(t) = − k′(t)

k(t)2
log

(∫
ek(t)Qtf dμ

)

+
1

k(t)
∫
ek(t)Qtf dμ

[ ∫
k′(t)Qtfe

k(t)Qtf dμ+

∫
k(t)

d

dt+
Qtfe

k(t)Qtf dμ
]
,(A.4)

which easily gives the desired identity. Hence, there remains to justify the above
calculation. Define F (t) =

∫
ek(t)Qtf dμ. To obtain (A.4), it is enough to show

that F is right differentiable and that

dF

dt+
(t) =

∫
k′(t)Qtfe

k(t)Qtf dμ+

∫
k(t)

d

dt+
Qtfe

k(t)Qtf dμ.
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For all s > 0, 1
s (F (t+ s)− F (t)) =

∫
Gs dμ, withGs =

1
s

(
ek(t+s)Qt+sf − ek(t)Qtf

)
.

Since t �→ Qtf(x) is right differentiable for t > 0,

Gs(x) −→
s→0

k′(t)Qtf(x)e
k(t)Qtf(x) + k(t)

d

dt+
Qtf(x)e

k(t)Qtf(x).

For a given t ∈ (a, b), let ηt > 0 be any number such that t + ηt < b. Then,
using the mean value theorem together with point (2) of Proposition A.1, it is
not difficult to prove that supx∈X sups≤ηt

|Gs|(x) < +∞. Applying the dominated
convergence theorem completes the proof. �

Proof of Lemma 4.2. Let f : X → R be a bounded and continuous function and
fix t > 0.

(2) First, following Lemma 3.8 in [12], we will prove that there exists r > 0 such
that Lip(Qtf, r) < ∞. Set r = tα−1(Osc(f)/t). By point (1) of Proposition A.1,
there holds

Qtf(u) = inf
d(y,u)≤r

{f(y) + t α(d(u, y)/t)} , ∀u ∈ X.

Fix u, v ∈ X with d(u, v) ≤ r. Then, given yo ∈ X such that d(v, yo) ≤ r, it follows
from the mean value theorem that

|t α(d(u, yo)/t)− t α(d(v, yo)/t)|
≤ |d(v, yo)− d(u, yo)| max

s∈[0,1]
α′([sd(u, yo) + (1 − s)d(v, yo)]/t)

≤ α′(2r/t)d(u, v).

Now, let yo be such that Qtf(v) = f(yo)+ t α(d(v, yo)/t) and observe that, thanks
to the previous observation, d(v, y0) ≤ r. It follows that (choosing y = yo),

Qtf(u)−Qtf(v) = inf
y
{f(y) + t α(d(u, y)/t)} − f(yo)− tα(d(v, yo)/t)

≤ tα(d(u, yo)/t)− tα(d(v, yo)/t) ≤ α′(2r/t)d(u, v),

which proves that Lip(Qtf, r) <∞.
Now assume that α(h)/h→ � ∈ R

+, when h→ ∞ and let us prove that Qtf is
�-Lipschitz. The convexity of α implies that

(A.5)
α(h)

h
≤ α′(h) ≤ α(2h)− α(h)

h
, ∀h > 0.

So suph α
′(h) = limh→∞ α′(h) = � and it follows that Qtf is �-Lipschitz as an

infimum of �-Lipschitz functions.

(1) The inequality (A.5) above also proves that rα = 1 when � < +∞.

(3) Let (λn)n≥0 be a sequence of real numbers converging to 1. For any x ∈ X,
let m(t, x) be the set of points y ∈ X such that

Qtf(x) = inf
z∈X

{f(z) + t α(d(x, z)/t)} = f(y) + t α(d(x, y)/t).
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For any n, let yn be such that Qt(λnf)(x) = λnf(yn) + t α(d(x, yn)/t). We have,
for all z ∈ X ,

λn inf f + t α(d(x, yn)/t) ≤ λnf(yn) + t α(d(x, yn)/t) ≤ λnf(z) + t α(d(x, z)/t).

Since (λn)n converges, we deduce that the sequence (yn)n is bounded. Let y be a
limit point of a converging subsequence of (yn)n. Passing to the limit leads to

f(y) + t α(d(x, y)/t) ≤ f(z) + t α(d(x, z)/t) ∀z ∈ X.

Hence, y ∈ m(t, x). In turn, after easy considerations left to the reader, one sees
that Qt(λnf)(x) → Qtf(x), when n→ ∞ as expected. The conclusion of point (2)
follows and the proof is complete. �
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[1] Ambrosio, L., Gigli, N. and Savaré, G.: Calculus and heat flow in metric mea-
sure spaces and applications to spaces with Ricci bounds from below. Invent. Math.
195 (2014), no. 2, 289–391.
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