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Sobolev, Poincaré, and isoperimetric inequalities
for subelliptic diffusion operators satisfying a
generalized curvature dimension inequality

Fabrice Baudoin and Bumsik Kim

Abstract. By adapting some ideas of M. Ledoux ([12], [13] and [14]) to
a sub-Riemannian framework we study Sobolev, Poincaré and isoperimet-
ric inequalities associated to subelliptic diffusion operators that satisfy
the generalized curvature dimension inequality that was introduced by
F. Baudoin and N. Garofalo in [3]. Our results apply in particular on
all CR Sasakian manifolds whose horizontal Webster–Tanaka–Ricci curva-
ture is nonnegative, all Carnot groups with step two, and wide subclasses
of principal bundles over Riemannian manifolds whose Ricci curvature is
nonnegative.

1. Introduction and framework

In this paper, M will be a C∞ connected finite-dimensional manifold endowed
with a smooth measure μ and a second-order diffusion operator L on M, locally
subelliptic in the sense of [7] (see also [11]), satisfying L1 = 0 and∫

M

fLgdμ =

∫
M

gLfdμ,

∫
M

fLfdμ ≤ 0,

for every f, g ∈ C∞
0 (M). We indicate by Γ(f) := Γ(f, f) the carré du champ of L,

that is the quadratic differential form defined by

(1.1) Γ(f, g) =
1

2
(L(fg)− fLg − gLf), f, g ∈ C∞(M).

There is an intrinsic distance associated to L that can be defined via the notion
of subunit curves (see [7]). An absolutely continuous curve γ : [0, T ] → M is said
to be subunit for the operator L if for every smooth function f : M → R we have
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∣∣ d
dtf(γ(t))

∣∣ ≤√(Γf)(γ(t)). We then define the subunit length of γ by �s(γ) = T .
Given x, y ∈ M, we write

S(x, y) = {γ : [0, T ] → M | γ is subunit for L, γ(0) = x, γ(T ) = y}.

In this paper we assume that S(x, y) is not empty for every x, y ∈ M. With such
an assumption it is easy to verify that

(1.2) d(x, y) = inf{�s(γ) | γ ∈ S(x, y)},

defines a true distance on M. Furthermore, in this case, it is known that

(1.3) d(x, y) = sup {|f(x) − f(y)| | f ∈ C∞(M), ‖Γ(f)‖∞ ≤ 1} , x, y ∈ M.

Throughout this paper, we assume that the metric space (M, d) is complete.

In addition to the differential form (1.1), we assume that M is endowed with
another smooth symmetric bilinear differential form, indicated by ΓZ , satisfying,
for f, g ∈ C∞(M),

ΓZ(fg, h) = fΓZ(g, h) + gΓZ(f, h)

and ΓZ(f) = ΓZ(f, f) ≥ 0.

We make the following assumptions that will be in force throughout the paper:

(H.1) There exists an increasing sequence hk ∈ C∞
0 (M) such that hk ↗ 1 on M,

and

||Γ(hk)||∞ + ||ΓZ(hk)||∞ → 0, as k → ∞.

(H.2) For any f ∈ C∞(M) one has

Γ(f,ΓZ(f)) = ΓZ(f,Γ(f)).

(H.3) For every t ≥ 0, Pt1 = 1, and for every f ∈ C∞
0 (M) and T ≥ 0, one has

sup
t∈[0,T ]

‖Γ(Ptf)‖∞ + ‖ΓZ(Ptf)‖∞ < +∞,

where Pt is the heat semigroup generated by L.

As has been proved in [3], the assumption (H.1) implies in particular that L is
essentially self-adjoint on C∞

0 (M). The assumption (H.2) is subtler and is crucial
for the validity of most of the subsequent results: it is discussed in detail in [3]
in several geometric examples. In the sub-Riemannian geometries covered by the
present work (H.2) means that the torsion of the sub-Riemannian connection is
vertical. Assumption (H.3) is necessary to rigorously justify the Bakry–Émery
type arguments. In many examples it is a consequence of the generalized curvature
dimension inequality below (see [3]). Other sufficient conditions ensuring that (H.3)
is satisfied can be found in [17].
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In addition to Γ and ΓZ we need the following second order differential bilinear
forms:

Γ2(f, g) =
1

2

[
LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)

]
,(1.4)

ΓZ
2 (f, g) =

1

2

[
LΓZ(f, g)− ΓZ(f, Lg)− ΓZ(g, Lf)

]
.(1.5)

As for Γ and ΓZ , we will freely use the notations Γ2(f) = Γ2(f, f) and ΓZ
2 (f) =

ΓZ
2 (f, f).
The following curvature dimension condition was introduced in [3].

Definition 1.1. (See [3]) We say that L satisfies the generalized curvature dimen-
sion inequality CD(ρ1, ρ2, κ, d) if there exist constants ρ1 ∈ R, ρ2 > 0, κ ≥ 0, and
0 < d < ∞ such that the inequality

Γ2(f) + ν ΓZ
2 (f) ≥

1

d
(Lf)2 +

(
ρ1 − κ

ν

)
Γ(f) + ρ2 Γ

Z(f)

holds for every f ∈ C∞(M) and every ν > 0, where Γ2 and ΓZ
2 are defined by (1.4)

and (1.5).

The motivation for this condition comes from the study of several examples
coming from sub-Riemannian geometry where the generalized curvature dimension
inequality turns out to be equivalent to lower bounds on intrinsic curvature tensors
(see [3]). The parameter ρ1 is of special importance. It is the curvature parameter.
The condition ρ1 = 0 means that the ambient space has nonnegative curvature
whereas the condition ρ1 > 0 means that it has positive curvature. In particular,
in the latter case a Bonnet–Myers type theorem was proved in [3], implying that M
must be compact. Let us mention that in [17], F.Y. Wang proposed an extension
of the generalized curvature dimension inequality .

Our goal in the present work is to discuss Sobolev type embeddings, isoperi-
metric type results, and Poincaré inequalities by using the generalized curvature
dimension inequality. Our methods will exploit and extend to the present subel-
liptic framework some clever and beautiful ideas due to M. Ledoux (see [12], [13]
and [14] ) who used heat semigroup methods to study isoperimetric, Sobolev, and
Poincaré inequalities. Our discussion will be based on the curvature parameter ρ1.

In the case ρ1 = 0, which is studied in Section 2, one of our main results is the
following Besov–Sobolev embedding:

Theorem 1.2. Assume that L satisfies the generalized curvature dimension in-
equality CD(0, ρ2, κ, d). For every 1 ≤ p < q < ∞ and every f ∈ W 1,p(M), we
have

‖f‖q ≤ C ‖
√
Γ(f)‖θp ‖f‖1−θ

B
θ/(θ−1)
∞,∞

where θ = p/q; where C > 0 is a constant that only depends on p, q, ρ2, κ and d;
and where ‖ · ‖

B
θ/(θ−1)
∞,∞

is the Besov norm which is introduced in (2.3).
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We then prove that this Besov–Sobolev embedding implies the following isoperi-
metric inequality:

Proposition 1.3. Assume that L satisfies the generalized curvature dimension
inequality CD(0, ρ2, κ, d). Assume that there exists constants C > 0 and D > 0
such that for every x ∈ M and R ≥ 0, μ(B(x,R)) ≥ CRD. For any 1 ≤ p, q, r < ∞
with 1/q = 1/p − r/(qD), there exists a constant C′ > 0 such that for all f ∈
C∞

0 (M), we have

‖f‖q ≤ C′ ‖
√
Γ(f)‖p/qp ‖f‖1−p/q

r ,

and there exists a constant C′′ > 0 such that, for every Caccioppoli set E ⊂ M,
one has

μ(E)(D−1)/D ≤ C′′P (E),(1.6)

where P (E) denotes the horizontal perimeter of E in M.

In the isoperimetric inequality (1.6) the constant C′′ we obtain is not sharp
but the exponent (D − 1)/D is correct as the example of the Heisenberg group, to
which the result applies, shows. We can see that in the Euclidean case the optimal
isoperimetric constant can be obtained from the semigroup method by using Riesz-
Sobolev rearrangement type inequalities (see [4] and [13]). However, so far, to the
knowledge of the authors, the rearrangement inequality is not available in the
Heisenberg group case. Since the celebrated note of Pansu [15], the problem of the
optimal isoperimetric constant on the Heisenberg group is a long-standing open
problem (see [5]).

In Section 3, we study the case where the curvature parameter ρ1 is positive.
In that case, as we stressed before, the manifold M must be compact and the
measure μ must be finite. We obtain the following Poincaré inequality:

Proposition 1.4. Assume that L satisfies the generalized curvature dimension
inequality CD(ρ1, ρ2, κ, d) with ρ1 > 0. Let 1 ≤ p < ∞. There exists C =
Cp(ρ1, ρ2, κ, d) > 0 such that, for every f ∈ C∞

0 (M),

‖f − fM‖p ≤ C ‖
√
Γ(f)‖p,

where fM = 1
μ(M)

∫
M
fdμ.

Interestingly, the constant C we obtain is explicit and does not depend on p
for 1 ≤ p < 2 or 2 ≤ p < ∞. Also C does not depend on the dimension d when
1 ≤ p < 2.

The end of Section 3 is then devoted to the study of the isoperimetric constant
introduced by Cheeger in [6] in a Riemannian framework and to the study of the
first nonzero eigenvalue of M. Concerning Cheeger’s isoperimetric constant, we
prove in particular the following lower bound.
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Proposition 1.5. Assume that L satisfies the generalized curvature dimension
inequality CD(ρ1, ρ2, κ, d) with ρ1 > 0 and that μ(M) = 1. Define

ι = inf
P (E)

μ(E)
,

where the infimum runs over all Caccioppoli sets E such that μ(E) ≤ 1/2. We
have then

ι ≥ 1

2

√
ρ1
2

1

1 + 2κ/ρ2
.

Concerning the first eigenvalue we prove the following analogue of the cele-
brated Lichnerowicz’ lower bound:

Proposition 1.6. Assume that L satisfies the generalized curvature dimension
inequality CD(ρ1, ρ2, κ, d) with ρ1 > 0. The first nonzero eigenvalue λ1 of −L
satisfies the estimate

λ1 ≥ ρ1ρ2
d−1
d ρ2 + κ

.

To conclude the introduction, let us now turn to the fundamental question of
the examples to which the above results apply. We refer the reader to [3] for more
details about most of the examples we discuss below.

Besides Laplace–Beltrami operators on complete Riemannian manifolds with
Ricci curvature bounded from below, a wide class of examples is given by
sub-Laplacians on sub-Riemannian manifolds with transverse symmetries. Sub-
Laplacians on Sasakian manifolds form a special and interesting subclass that we
quickly describe below. Let M be a complete strictly pseudoconvex CR Sasakian
manifold with real dimension 2n + 1. Let θ be a pseudo-Hermitian form on M

with respect to which the Levi form is positive definite. The kernel of θ deter-
mines a horizontal bundle H. Denote now by T the Reeb vector field on M, i.e.,
the characteristic direction of θ. We recall that the CR manifold (M, θ) is called
Sasakian if T is a sub-Riemannian Killing field. For instance the standard CR
structures on the Heisenberg group H2n+1 and the sphere S

2n+1 are Sasakian. On
CR manifolds, there is a canonical subelliptic diffusion operator which is called the
CR sub-Laplacian. It plays the same role in CR geometry as the Laplace–Beltrami
operator does in Riemannian geometry. In this framework we have the following
result that shows the relevance of the generalized curvature dimension inequality.

Proposition 1.7. [3] Let (M, θ) be a complete CR Sasakian manifold with real
dimension 2n + 1. If for every x ∈ M the Tanaka–Webster Ricci tensor satisfies
the bound

Ricx(v, v) ≥ ρ1|v|2

for every horizontal vector v ∈ Hx, then, for the CR sub-Laplacian of M, the
curvature dimension inequality CD(ρ1, d/4, 1, d) holds with d = 2n and ΓZ(f) =
(Tf)2 and the hypotheses (H.1), (H.2), (H.3) are satisfied.
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In addition to sub-Laplacians on Heisenberg groups, more generally, the sub-
Laplacian on any Carnot group of step 2 has been shown to satisfy the generalized
curvature dimension inequality CD(0, ρ2, κ, d), for some values of the parameters ρ2
and κ.

2. The case ρ1 = 0

Throughout this section, we assume that L satisfies the generalized curvature di-
mension inequality CD(0, ρ2, κ, d) with ρ2 > 0 and κ ≥ 0.

The main tool to prove the theorems mentioned in the introduction, is the heat
semigroup Pt = etL, which is defined using the spectral theorem. Since L satis-
fies the curvature dimension inequality, this semigroup is stochastically complete
(see [3]), i.e. Pt1 = 1. Moreover, thanks to the hypoellipticity of L, for f ∈ Lp(M),
1 ≤ p ≤ ∞, the function (t, x) → Ptf(x) is smooth on M× (0,∞) and

Ptf(x) =

∫
M

p(x, y, t) f(y) dμ(y)

where p(x, y, t) = p(y, x, t) > 0 is the so-called heat kernel associated to Pt.
A key ingredient in the following analysis is the following gradient bound that

was proved in [3].

Theorem 2.1 (Li–Yau type gradient estimate with ρ1 = 0). Let f ∈ C∞
0 (M),

f ≥ 0, f 
≡ 0, then the following inequality holds for t > 0:

Γ(lnPtf) ≤
(
1 +

3κ

2ρ2

)LPtf

Ptf
+

d
(
1 + 3κ/(2ρ2)

)2
2t

.

2.1. Gradient bounds for the heat semigroup

Proposition 2.2. Let f ∈ C∞
0 (M).

• If 1 ≤ p < 2, then for every t > 0,

∥∥∥√Γ(Ptf)
∥∥∥
p
≤ 1 + 3κ/(2ρ2)√

1 + (p− 1) (1 + 3κ/(2ρ2))

√
d

2t
‖f‖p.

• If 2 ≤ p ≤ +∞, then for every t > 0,

∥∥∥√Γ(Ptf)
∥∥∥
p
≤
√

1 + 2κ/ρ2
2t

‖f‖p.

Proof. Suppose that 1 ≤ p < 2. By Theorem 2.1, for f ∈ C∞
0 (M), f ≥ 0, f 
≡ 0,

and t > 0,

(Ptf)
p−2 Γ(Ptf) ≤ D

d
(Ptf)

p−1(LPtf) +
D2

2td
(Ptf)

p,
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where D = d(1 + 3κ/(2ρ2)). It follows that∫
M

(Ptf)
p−2Γ(Ptf)dμ ≤ D

d

∫
M

(Ptf)
p−1(LPtf) dμ+

D2

2td

∫
M

(Ptf)
p dμ

= −D

d

∫
M

Γ((Ptf)
p−1, Ptf) dμ+

D2

2td

∫
M

(Ptf)
p dμ

= −D

d

∫
M

(p− 1)(Ptf)
p−2 Γ(Ptf) dμ+

D2

2td

∫
M

(Ptf)
p dμ.

Observing
∫
M
(Ptf)

pdμ = ‖Ptf‖pp ≤ ‖f‖pp, we get∫
M

(Ptf)
p−2 Γ(Ptf) dμ ≤ 1

1 + (p− 1)D/d

(
D2

2td

)
‖f‖pp.

On the other hand, let us choose α = p/2 and β = (2− p)/2. Since 1 ≤ p < 2,
one can easily check that( ∫

M

(Ptf)
p−2 Γ(Ptf) dμ

)α
=
∥∥∥(Ptf)

p(p−2)/2 Γ(Ptf)
p/2
∥∥∥
2/p

,

(∫
M

(Ptf)
pdμ

)β
=
∥∥∥(Ptf)

p(2−p)/2
∥∥∥
2/(2−p)

.

So, by Hölder’s inequality, we obtain∫
M

Γ(Ptf)
p/2 dμ ≤

(∫
M

(Ptf)
p−2 Γ(Ptf) dμ

)α(∫
M

(Ptf)
p dμ

)β
,

or, equivalently,∫
M

(Ptf)
p−2 Γ(Ptf) dμ ≥

[ ∫
M

Γ(Ptf)
p/2 dμ

(∫
M

(Ptf)
pdμ

)−β
]1/α

=
[
‖
√
Γ(Ptf)‖pp ‖Ptf‖−pβ

p

]1/α
=
[
‖
√
Γ(Ptf)‖pp ‖Ptf‖−p(2−p)/2

p

]2/p
= ‖
√
Γ(Ptf)‖2p ‖Ptf‖−(2−p)

p .

Therefore, for 1 ≤ p < 2, we obtain

‖
√
Γ(Ptf)‖2p ≤

[ 1

1 + (p− 1)D/d

(D2

2td

)
‖f‖pp

]
‖Ptf‖2−p

p

≤ 1

1 + (p− 1)D/d

(D2

2td

)
‖f‖pp ‖f‖2−p

p =
1

1 + (p− 1)D/d

(D2

2td

)
‖f‖2p.

For f ∈ C∞
0 (M), let us decompose f as f = f+ − f−, where f+ = max(f, 0)

and f− = −min(f, 0).
Then for each of f+ and f−, the above gradient estimate holds.
We can then finish the proof by observing that ‖f‖p = ‖f+‖p + ‖f−‖p and

‖
√
Γ(Ptf)‖p ≤ ‖

√
Γ(Ptf+) +

√
Γ(Ptf−)‖p ≤ ‖

√
Γ(Ptf+)‖p + ‖

√
Γ(Ptf−)‖p.
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Now suppose that 2 ≤ p ≤ +∞.
In [1], the following reverse Poincaré inequality (Caccioppoli type inequality)

is proved:

Γ(Ptf) + ρ2 tΓ
Z(Ptf) ≤ 1 + 2κ/ρ2

2t

(
Pt(f

2)− (Ptf)
2
)
.

For 2 ≤ p ≤ +∞, one can write ‖Pt(f
2)‖p/2 ≤ ‖f2‖p/2 = ‖f‖2p.

Therefore, we have

‖Γ(Ptf)‖p/2 ≤ 1 + 2κ/ρ2
2t

∥∥Pt(f
2)
∥∥
p/2

≤ 1 + 2κ/ρ2
2t

‖f‖2p,

which implies ∥∥√Γ(Ptf)
∥∥
p
≤
√

1 + 2κ/ρ2
2t

‖f‖p. �

2.2. Pseudo-Poincaré inequalities

By duality, the previous gradient bounds lead to the following pseudo-Poincaré
type inequalities.

Proposition 2.3. Let f ∈ C∞
0 (M).

• If 1 ≤ p < 2, then for every t ≥ 0,

‖f − Ptf‖p ≤
√(

2 +
4κ

ρ2

)
t
∥∥√Γ(f)

∥∥
p
.(2.1)

• If 2 ≤ p ≤ +∞, then for every t ≥ 0,

‖f − Ptf‖p ≤ (1 + 3κ/(2ρ2))
√
2d√

1 + (p− 1) (1 + 3κ/(2ρ2))

√
t ‖
√
Γ(f)‖p.(2.2)

Proof. Let p′ = p/(p− 1). For any g ∈ C∞
0 (M) with ‖g‖p′ ≤ 1, we have

∫
M

g(f − Ptf) dμ =

∫
M

g
(
−
∫ t

0

∂sPsf ds
)
dμ = −

∫ t

0

∫
M

gLPsf dμ ds

= −
∫ t

0

∫
M

gPsLf dμ ds = −
∫ t

0

∫
M

PsgLf dμ ds

=

∫ t

0

∫
M

Γ(Psg, f) dμ ds ≤ ‖
√
Γ(f)‖p

∫ t

0

‖
√
Γ(Psg)‖p′ ds.

By using Proposition 2.2, we have

∫ t

0

‖
√
Γ(Psg)‖p′ ds ≤

∫ t

0

Cp′√
s
ds ‖g‖p′.
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We therefore obtain∫
M

g(f − Ptf) dμ ≤ 2Cp′
√
t ‖
√
Γ(f)‖p ‖g‖p′ .

By duality we can now conclude that

‖f − Ptf‖p ≤ 2Cp′
√
t ‖
√
Γ(f)‖p. �

2.3. Improved Sobolev embedding

For α < 0, we define the Besov norm ‖ · ‖Bα∞,∞ on M by

‖f‖Bα∞,∞ = sup
t>0

t−α/2‖Ptf‖∞.(2.3)

It is clear from this definition that ‖f‖Bα∞,∞ ≤ 1 is equivalent to the fact that

for every u > 0, |Ptuf | ≤ u, where tu = u2/α . For p ≥ 1, we then define
the Sobolev space W 1,p(M) as the closure of C∞

0 (M) with respect to the norm
‖f‖p + ‖√Γ(f)‖p.

Theorem 2.4 (Improved Sobolev embedding). For every 1 ≤ p < q < ∞ and
every f ∈ W 1,p(M), we have

‖f‖q ≤ C ‖
√
Γ(f) ‖θp ‖f‖1−θ

B
θ/(θ−1)
∞,∞

(2.4)

where θ = p/q and where C > 0 is a constant that only depends on p, q, ρ2, κ and d.

Proof. The techniques of the proof are mainly based on [14]; for the sake of com-
pleteness, we reproduce the main arguments and make sure they adapt to our
sub-Riemannian framework. The proof proceeds in three steps.

Step 1. We first prove the weak-type inequality

‖f‖q,∞ ≤ C ‖
√
Γ(f) ‖θp ‖f‖1−θ

B
θ/(θ−1)
∞,∞

.

Without loss of generality, we can assume ‖f‖
B

θ/(θ−1)
∞,∞

≤ 1, which is equivalent

to the condition

|Ptuf | ≤ u , tu = u2(θ−1)/θ for every u > 0.(2.5)

We have then

uqμ{|f | > 2u} ≤ uqμ{|f − Ptuf | > u} ≤ uq−p

∫
M

|f − Ptuf |p dμ .

From Proposition 2.3, we have

‖f − Ptf‖p ≤ C
√
t ‖
√
Γ(f)‖p.
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Since q − p+ p
2
2(θ−1)

θ = 0, we conclude

uqμ{|f | > 2u} ≤ uq−p
(
Cp tp/2u ‖

√
Γ(f)‖pp

)
≤ Cp ‖

√
Γ(f)‖pp.

We finally observe that supu>0 u
qμ{|f | > 2u} = 1

2q ‖f‖qq,∞, to conclude Step 1.

Step 2. In the previous weak type inequality, we would like to replace the Lq,∞-
norm by the Lq-norm. Again, we assume ‖f‖

B
θ/(θ−1)
∞,∞

≤ 1. That is, |Ptuf | ≤ u for

tu = u2(θ−1)/θ, for all u > 0. For f ∈ W 1,p(M) ∩ Lq(M) such that |Ptuf | ≤ u, for
all u > 0, we want to show that for some constant C > 0,∫

M

|f |q dμ ≤ C

∫
M

Γ(f)p/2 dμ.

Let c ≥ 5 be an arbitrary constant. For any u > 0, we introduce the truncation

f̃u = (f − u)+ ∧ ((c− 1)u) + (f + u)− ∨ (−(c− 1)u).

That is, f̃u(x) = f(x) − u when u ≤ f(x) ≤ cu, and f̃u(x) = f(x) + u when
−cu ≤ f(x) ≤ −u; otherwise |f̃u| is truncated as constants 0 or (c−1)u. Observing

{|f | ≥ 5u} ⊂ {|f̃u| ≥ 4u},

yields∫ ∞

0

μ({|f | ≥ 5u}) d(uq) ≤
∫ ∞

0

μ({|f̃u| ≥ 4u}) d(uq)

≤
∫ ∞

0

μ({|f̃u − Ptuf | ≥ 3u}) d(uq) (since |Ptu(f)| ≤ u)

≤
∫ ∞

0

μ({|f̃u − Ptu f̃u| ≥ u}) d(uq) +

∫ ∞

0

μ({Ptu(|f − f̃u|) ≥ 2u}) d(uq).

We now apply the pseudo-Poincaré inequality for f̃u as follows:

μ({|f̃u − Ptu f̃u| ≥ u}) ≤ u−p

∫
M

|f̃u − Ptu f̃u|p dμ

≤ C′ u−p tp/2u

∫
M

Γ(f̃u)
p/2 dμ = C′ u−q

∫
{u≤|f |≤cu}

Γ(f)p/2 dμ.

So, by integration, we get∫ ∞

0

μ({|f̃u − Ptu f̃u| ≥ u}) d(uq) ≤
∫ ∞

0

C′ q u−1

∫
{u≤|f |≤cu}

Γ(f)p/2 dμ du

≤ C′q
∫
M

Γ(f)p/2
∫ |f |

|f |/c

du

u
dμ = C′q ln c

∫
M

Γ(f)p/2 dμ.
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On the other hand, we have

|f − f̃u| = |f − f̃u| 1{|f |≤cu} + |f − f̃u| 1{|f |>cu}
= min(u, |f |) 1{|f |≤cu} + (|f | − (c− 1)u) 1{|f |>cu} ≤ u+ |f | 1{|f |>cu}.

By integrating, we then obtain

∫ ∞

0

μ({Ptu(|f − f̃u|) ≥ 2u}) d(uq) ≤
∫ ∞

0

μ({Ptu(|f | 1{|f |>cu}) ≥ u}) d(uq)

≤
∫ ∞

0

1

u

( ∫
M

(|f | 1{|f |>cu}) dμ
)
d(uq) (Pt is a contraction on L1(M))

=
q

q − 1

∫
M

|f |
(∫ ∞

0

1{|f |>cu} d(uq−1)
)
dμ =

q

q − 1

1

cq−1
‖f‖qq.

Gathering all the estimates, we can then conclude

1

5q

∫
M

|f |qdμ =
1

5q
‖f‖qq =

∫ ∞

0

μ({|f | ≥ 5u}) d(uq)

≤ C′ q ln c

∫
M

Γ(f)p/2 dμ+
q

q − 1

1

cq−1
‖f‖qq.

If we pick a large c ≥ 5 depending on q such that 1
5q > q

q−1
1

cq−1 , we have proved

‖f‖qq ≤ Cq ‖
√
Γ(f)‖p

with

C =
( C′q ln c

1
5q − q

(q−1)cq−1

)1/q
.

Step 3. Finally, it remains to prove that ‖f‖q < ∞ is actually a consequence

of ‖√Γ(f)‖p < ∞ and ‖f‖
B

θ/(θ−1)
∞,∞

≤ 1, so that we can remove the condition

f ∈ Lq(M) from Step 2 and complete the proof of theorem. From the weak type
inequality of Step 1, we have ‖f‖q,∞ < ∞. For any 0 < ε < 1, we define

Nε(f) =

∫ 1/ε

ε

μ({|f | ≥ 5u}) d(uq) ≤ 2q

5q

(
ln

1

ε

)
‖f‖qq,∞ < ∞.

Following the argument in Step 2 again, we see that

Nε(f) ≤ C′q ln c
∫
M

Γ(f)p/2 dμ+

∫ 1/ε

ε

1

u

(∫
M

(|f | 1{|f |>cu}) dμ
)
d(uq).
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The first term is bounded, and the second term can be estimated as follows:

∫ 1/ε

ε

1

u

( ∫
M

(|f | 1{|f |>cu}) dμ
)
d(uq)

=

∫ 1/ε

ε

1

u

(
cu μ({|f | > cu}) + c

∫ ∞

u

μ({|f | > cv}) dv
)
d(uq)

≤
(
c+

c

q − 1

)∫ 1/ε

ε

μ({|f | ≥ cu}) d(uq) +
c q

(q − 1)εq−1

∫ ∞

1/ε

μ({|f | ≥ cu}) du

≤ q

q − 1

5q

cq−1
Nε(f) +

c q

q − 1

∫ 1/ε

5/cε

‖f‖qq,∞
(cu)q

d(uq) +
c q

(q − 1)εq−1

∫ ∞

1/ε

‖f‖qq,∞
(cu)q

du

=
q

q − 1

5q

cq−1
Nε(f) +

q

q − 1

1

cq−1
‖f‖qq,∞

(
q ln

c

5
+

1

q − 1

)
.

So, by choosing c large enough, we have sup0<ε<1Nε(f) < ∞, which implies
‖f‖q = limε→0 5(Nε(f))

1/q < ∞. This completes the proof. �

2.4. Sobolev inequality, isoperimetry and volume growth

In this section, we study the Sobolev and isoperimetric inequalities and their con-
nections with the volume growth of metric balls. We obtain the sub-Riemannian
analogue of a theorem essentially due to Ledoux [13].

We first recall what we mean by the perimeter of a set in our subelliptic setting.
For further details, we refer to [8].

Let us first observe that, given any point x ∈ M there exists an open set
x ∈ U ⊂ M in which the operator L can be written as

(2.6) L = −
m∑
i=1

X∗
i Xi,

where the vector fields Xi have Lipschitz continuous coefficients in U , and X∗
i

indicates the formal adjoint of Xi in L2(M, dμ).
We indicate by F(M) the set of C1 vector fields which are subunit for L. Given

a function f ∈ L1
loc(M), which is supported in U we define the horizontal total

variation of f as

Var(f) = sup
φ∈F(M)

∫
U

f
( m∑

i=1

X∗
i φi

)
dμ,

where on U , φ =
∑m

i=1 φiXi. For functions not supported in U , Var(f) may be
defined by using a partition of unity. The space

BV (M) = {f ∈ L1(M) | Var(f) < ∞},

endowed with the norm

||f ||BV (M) = ||f ||L1(M) +Var(f),
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is a Banach space. It is well known that W 1,1(M) = {f ∈ L1(M) | √Γf ∈ L1(M)}
is a strict subspace of BV (M) and when f ∈ W 1,1(M) one has in fact

Var(f) = ||
√
Γ(f)||L1(M).

Given a measurable set E ⊂ M we say that it has finite perimeter, or is a Cacciopoli
set if 1E ∈ BV (M). In this case the perimeter of E is, by definition,

P (E) = Var(1E).

In a later section, we will need the following approximation result, see Theo-
rem 1.14 in [8].

Lemma 2.5. Let f ∈ BV (M). Then there exists a sequence {fn}n∈N of functions
in C∞

0 (M) such that:

(i) ||fn − f ||L1(M) → 0;

(ii)
∫
M

√
Γ(fn)dμ → Var(f).

We now prove the main result of this subsection.

Theorem 2.6. Let D > 1. Assume that M is not compact in the metric topology.
Then the following assertions are equivalent:

(1) There exists a constant C1 > 0 such that for every x ∈ M and r ≥ 0,

μ(B(x, r)) ≥ C1 r
D.

(2) There exists a constant C2 > 0 such that for x ∈ M and t > 0,

p(x, x, t) ≤ C2

tD/2
.

(3) For some 1 ≤ p, q, r < ∞ with 1/q = 1/p − r/(qD), there exists a constant
C3 > 0 such that for all f ∈ C∞

0 (M), we have

‖f‖q ≤ C3 ‖
√
Γ(f)‖p/qp ‖f‖1−p/q

r .

(4) There exists a constant C4 > 0 such that, for every Caccioppoli set E ⊂ M,
one has

μ(E)(D−1)/D ≤ C4 P (E).

Remark 2.7. If we replace the condition of (3) by for all 1 ≤ p, q, r < ∞ with
1/q = 1/p− r/(qD), (1), (2), (3) and (4) would still be equivalent.
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Proof. That (1) → (2) follows immediately from the Li–Yau Gaussian upper bound

p(x, x, t) ≤ C

μ(B(x,
√
t)

that is proved in [3].
The proof that (2) → (3) follows from the improved Sobolev embedding The-

orem 2.4.
Indeed, (2) implies first that for x, y ∈ M,

p(x, y, t) =

∫
M

p(x, z, t/2) p(z, y, t/2)μ(dy)

≤
(∫

M

p(x, z, t/2)2 μ(dz)
)1/2(∫

M

p(y, z, t/2)2 μ(dz)
)1/2

=
√
p(x, x, t) p(y, y, t) ≤ C2

tD/2
.

Therefore, for every f ∈ L1(M), we have

‖Pt(f)‖∞ =

∥∥∥∥
∫
M

p(·, y, t) f(y)μ(dy)
∥∥∥∥
∞

≤ ‖p(·, y, t)‖∞ ‖f‖1 ≤ C2

tD/2
‖f‖1.

On the other hand, Pt is a contraction on L∞(M), i.e. ‖Pt‖∞→∞ ≤ 1. Therefore,
by the Riesz–Thorin interpolation theorem, we deduce that we have the following
heat semigroup embedding:

‖Pt‖r→∞ ≤ C
1/r
2

tD/(2r)
, r ≥ 1.

Let now 1 ≤ p, q, r < ∞ be such that 1/q = 1/p − r/(qD). Since for θ = p/q,
−θ/(2(θ − 1))−D/(2r) = 0, we have

‖f‖
B

θ/(θ−1)
∞,∞

=sup
t>0

t−θ/(2(θ−1)) ‖Ptf‖∞

≤ sup
t>0

t−θ/(2(θ−1)) C
1/r
2

tD/(2r)
‖f‖r = C

1/r
2 ‖f‖r,

we can conclude (3) from the improved Sobolev embedding of Theorem 2.4.
The proof that (3) is equivalent to (4) follows the classical ideas of Fleming–

Rishel and Maz’ya, and it is based on a generalization of Federer’s co-area formula
for the space BV (M), see for instance [8].

Finally, we show that (3) → (1). We adapt an idea in [16] (see Theorem 3.1.5
on p. 58). For any fixed x ∈ M and s > 0, consider the function

f(y) = max{s− d(x, y), 0}.
Then, it is easily seen that

‖f‖q ≥ (s/2)μ(B(x, s/2))1/q

‖f‖r ≤ s μ(B(x, s))1/r

‖
√
Γ(f)‖p ≤ μ(B(x, s))1/p.
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Hence, from (3) we have

μ(B(x, s/2))1/q ≤ 2C3 s
−p/q μ(B(x, s))1/q+(1/r)(1−p/q)

= 2C3 s
−p/q μ(B(x, s))1/q+p/(qD) .

This can be written as

μ(B(x, s)) ≥ (2C3)
−Dq/(D+p) sDp/(D+p) μ(B(x, s/2))D/(D+p).

μ(B(x, s)) ≥ {(2C3)
−qsp}a μ(B(x, s/2))a

where a = D/(D + p) < 1. Replacing s by s/2 iteratively, we obtain

μ(B(x, s)) ≥ (2C3)
−q (

∑i
j=1 aj)sp (

∑i
j=1 aj) 2−p (

∑i
j=1(j−1)aj) μ(B(x, s/2i))a

i

.

From the volume doubling property proved in [2], we have the control

μ(B(x, s/2i)) ≥ C−1 (1/2i)Q μ(B(x, s)),

for some C = C(ρ1, ρ2, κ, d) > 0 and Q = log2 C.
Therefore, we have

lim inf
i→∞

μ(B(x, s/2i))a
i ≥ lim

i→∞
(C−1μ(B(x, s)))a

i

(1/2)iQai

= 1.

Since
∑∞

j=1 a
j = D/p,

∑∞
j=1(j − 1)aj = D2/p2, we obtain the volume growth

control
μ(B(x, s)) ≥ 2−(q+D)D/p C

−qD/p
3 sD.

This establishes (1), thus completing the proof. �

Remark 2.8. By combining the results of [2] and [8], an alternative proof of
(1)→(4) could be given. Indeed, in [8] it was proved that in a Carnot–Carathéodory
space (X,μ, d) the doubling condition

μ(B(x, 2r)) ≤ C1 μ(B(x, r)), x ∈ X, r > 0,

for the volume of the metric balls combined with a weak Poincaré inequality suffices
to establish the basic relative isoperimetric inequality

min
{
μ(E ∩B(x, r)), μ((X \ E) ∩B(x, r))

}(D−1)/D

≤ Ciso

( rD

μ(B(x, r))

)1/D
P (E,B(x, r)),

(2.7)

where E ⊂ X is any set of locally finite perimeter. In this inequality the number
D = log2 C1, where C1 is the doubling constant, and Ciso is a constant which
depends only on C1 and on the constant in the Poincaré inequality. If in addition
the space X satisfies the volume growth condition

(2.8) μ(B(x, r)) ≥ C2 r
D, x ∈ M, r > 0,
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then (2.7) gives the global isoperimetric inequality

(2.9) μ(E)(D−1)/D ≤ Ciso P (E,M)

for any measurable set of locally finite perimeter E ⊂ M. Since in [2], it was
proved that the doubling condition and the weak Poincaré inequality are satisfied
when ρ1 ≥ 0, we conclude that (1) → (4).

3. The case ρ1 > 0

Throughout this section, we assume that L satisfies the generalized curvature di-
mension inequality CD(ρ1, ρ2, κ, d) with ρ1 > 0, ρ2 > 0 and κ ≥ 0. The following
gradient bound was also proved in [3].

Theorem 3.1 (Li–Yau type gradient estimate with ρ1 > 0). Let f ∈ C∞
0 (M),

f ≥ 0 and f 
≡ 0. Then the following inequality holds for t > 0:

Γ(lnPtf) ≤ 2ρ2 + 3κ

2ρ2
e
− 2ρ1ρ2

3(ρ2+κ)
tLPtf

Ptf
+

dρ1
12ρ2

(2ρ2 + 3κ)2

ρ2 + κ

e
− 4ρ1ρ2

3(ρ2+κ)
t

1− e
− 2ρ1ρ2

3(ρ2+κ) t
.(3.1)

3.1. Gradient bounds for the heat semigroup

We first establish the following reverse Poincaré inequality.

Proposition 3.2. For f ∈ C∞
0 (M) and t ≥ 0,

Γ(Ptf) ≤ 1

2
ρ1

ρ2 + 2κ

ρ2 + κ

e
−2

ρ1ρ2
ρ2+κ t

1− e−
ρ1ρ2
ρ2+κ t

(Ptf
2 − (Ptf)

2).

Proof. Let us fix T > 0 once and for all in the following proof. Given a function
f ∈ C∞

0 (M), for 0 ≤ t ≤ T we introduce the functionals

φ1(x, t) = Γ(PT−tf)(x), and φ2(x, t) = ΓZ(PT−tf)(x),

which are defined on M× [0, T ]. A straightforward computation shows that

Lφ1 +
∂φ1

∂t
= 2Γ2(PT−tf). and Lφ2 +

∂φ2

∂t
= 2ΓZ

2 (PT−tf).

Consider now the function

φ(x, t) = a(t)φ1(x, t) + b(t)φ2(x, t) = a(t) Γ(PT−tf)(x) + b(t) ΓZ(PT−tf)(x),

where a and b are two nonnegative functions that will be chosen later. Applying
the generalized curvature dimension inequality CD(ρ1, ρ2, κ,∞), we obtain

Lφ+
∂φ

∂t
= a′ Γ(PT−tf) + b′ ΓZ(PT−tf) + 2 aΓ2(PT−tf) + 2 bΓZ

2 (PT−tf)

≥
(
a′ + 2ρ1a− 2κ

a2

b

)
Γ(PT−tf) + (b′ + 2ρ2a) Γ

Z(PT−tf).
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Let us now choose

b(t) =
(
exp

(
− 2ρ1ρ2t

κ+ ρ2

)
− exp

(
− 2ρ1ρ2T

κ+ ρ2

))2
and a(t) = −b′(t)

2ρ2
,

so that

b′ + 2ρ2a = 0 and a′ + 2ρ1a− 2κ
a2

b
≥ ρ1

ρ2 + 2κ

ρ2 + κ
e
−2

ρ1ρ2
ρ2+κT

.

With this choice, we get

Lφ+
∂φ

∂t
≥ −ρ1

ρ2 + 2κ

ρ2 + κ
e−2

ρ1ρ2
ρ2+κT Γ(PT−tf).

and therefore from a comparison theorem for parabolic partial differential equations
(see [3]) we have

PT (φ(·, T ))(x) ≥ φ(x, 0) − ρ1
ρ2 + 2κ

ρ2 + κ
e−2

ρ1ρ2
ρ2+κT

∫ T

0

Pt(Γ(PT−tf)) dt.

It is easily seen that

∫ T

0

Pt(Γ(PT−tf)) dt =
1

2
(PT f

2 − (PT f)
2),

and, since,

φ(x, 0) = a(0)Γ(PT f)(x) + b(0) ΓZ(PT f)(x)

and

PT (φ(·, T ))(x) = a(T )PT (Γ(f))(x) + b(T )PT (Γ
Z(f))(x) = 0,

the proof is completed. �

Proposition 3.3. Let f ∈ C∞
0 (M).

• If 1 ≤ p < 2, then for every t > 0,

∥∥∥√Γ(Ptf)
∥∥∥
p
≤
( dρ1ρ2

3(ρ2+κ)

(1+ 3κ
2ρ2

)2e
− 4ρ1ρ2

3(ρ2+κ)
t

(1−e
− 2ρ1ρ2

3(ρ2+κ)
t
)

1 + (p− 1)(1 + 3κ
2ρ2

)e
− 2ρ1ρ2

3(ρ2+κ)
t

)1/2

‖f‖p.

• If 2 ≤ p ≤ +∞, then for every t > 0,

∥∥∥√Γ(Ptf)
∥∥∥
p
≤
(
1

2
ρ1

ρ2 + 2κ

ρ2 + κ

e−2
ρ1ρ2
ρ2+κ t

1− e
− ρ1ρ2

ρ2+κ t

)1/2

‖f‖p.
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Proof. The proof is essentially the same as the proof of Proposition 2.2. We observe
from this proof that if for f ∈ C∞

0 (M) and t > 0,

Γ(lnPtf) ≤ α(t)
LPtf

Ptf
+ β(t), f ≥ 0, f 
≡ 0, α(t), β(t) > 0,

Γ(Ptf) ≤ γ(t) (Ptf
2 − (Ptf)

2), γ(t) > 0,

then

‖
√
Γ(Ptf)‖p ≤

( β(t)

1 + (p− 1)α(t)

)1/2
‖f‖p, for 1 ≤ p < 2,

‖
√
Γ(Ptf)‖p ≤ (γ(t))1/2 ‖f‖p, for 2 ≤ p < ∞.

By Theorem 3.1 and Proposition 3.2, we then see that α(t), β(t), γ(t) are given by

α(t) =
(
1 +

3κ

2ρ2

)
e
− 2ρ1ρ2

3(ρ2+κ)
t
, β(t) =

dρ1ρ2
3(ρ2 + κ)

(1 + 3κ
2ρ2

)2e
− 4ρ1ρ2

3(ρ2+κ)
t

(1 − e
− 2ρ1ρ2

3(ρ2+κ)
t
)

γ(t) =
1

2
ρ1

ρ2 + 2κ

ρ2 + κ

e−2
ρ1ρ2
ρ2+κ t

1− e−
ρ1ρ2
ρ2+κ t

.

�

3.2. Pseudo-Poincaré inequalities

Proposition 3.4. Let f ∈ C∞
0 (M).

• If 1 ≤ p < 2, then for every t ≥ 0,

‖f − Ptf‖p ≤
(2(ρ2 + 2κ)(ρ2 + κ)

ρ1ρ22
(1− e−

ρ1ρ2
ρ2+κ t)

)1/2
‖
√
Γ(f)‖p.(3.2)

• If 2 ≤ p ≤ +∞, then for every t ≥ 0,

‖f − Ptf‖p ≤
(
1 +

3κ

2ρ2

)(3d(ρ2 + κ)

ρ1ρ2
(1− e

− 2ρ1ρ2
3(ρ2+κ)

t
)
)1/2

‖
√
Γ(f)‖p.(3.3)

Proof. As shown in the proof of Proposition 2.3, we have

‖f − Ptf‖p ≤
(∫ t

0

√
γ(s)ds

)
‖
√
Γ(f)‖p, for 1 ≤ p < 2,

‖f − Ptf‖p ≤
(∫ t

0

√
β(s)

1 + (p− 1)α(s)
ds
)
‖
√
Γ(f)‖p, for 2 ≤ p < ∞,
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where α, β and γ are defined in the proof of Proposition 3.3. The proof is finished by∫ t

0

√
γ(s)ds =

∫ t

0

(ρ1(ρ2 + 2κ)

2(ρ2 + κ)

)1/2 e
− ρ1ρ2

ρ2+κ s√
1− e−

ρ1ρ2
ρ2+κ s

ds

=
(2(ρ2 + 2κ)(ρ2 + κ)

ρ1ρ22
(1− e−

ρ1ρ2
ρ2+κ t)

)1/2
,

∫ t

0

√
β(s)

1 + (p− 1)α(s)
ds ≤

∫ t

0

√
β(s)ds

=

∫ t

0

(
dρ1ρ2

3(ρ2 + κ)

(1 + 3κ
2ρ2

)2e
− 4ρ1ρ2

3(ρ2+κ)
s

(1− e
− 2ρ1ρ2

3(ρ2+κ) s)

)1/2

ds

=
(
1 +

3κ

2ρ2

)(3d(ρ2 + κ)

ρ1ρ2
(1− e

− 2ρ1ρ2
3(ρ2+κ)

t
)
)1/2

.
�

3.3. Poincaré inequality

In the case of ρ1 > 0, we have the following theorem which is proved in [1].

Theorem 3.5. The measure μ is finite, i.e., μ(M) < +∞ and for every 1 ≤ p ≤ ∞
and f ∈ Lp(M),

Ptf
t→∞−−−→ 1

μ(M)

∫
M

f dμ.

This theorem allows us to deduce the Poincaré inequality.

Proposition 3.6. Let 1 ≤ p < ∞. There exists C = Cp(ρ1, ρ2, κ, d) > 0 such that,
for all f ∈ C∞

0 (M),

‖f − fM‖p ≤ C ‖
√
Γ(f)‖p,

where fM = 1
μ(M)

∫
M
fdμ.

Proof. The proof is immediate from Proposition 3.4 and Theorem 3.5 by letting
t → ∞. And C is given by

Cp(ρ1, ρ2, κ, d) =

⎧⎪⎨
⎪⎩
(

2(ρ2+2κ)(ρ2+κ)
ρ1ρ2

2

)1/2
if 1 ≤ p < 2,

(1 + 3κ
2ρ2

)
(

3d(ρ2+κ)
ρ1ρ2

)1/2
if 2 ≤ p < ∞.

�

3.4. A lower bound on the Cheeger’s isoperimetric constant

In [6], in order to bound from below the first eigenvalue λ1 of a compact Rieman-
nian manifold with normalized Riemannian measure μg, Cheeger introduced the
following isoperimetric constant:

h = inf
μg(∂A)

μg(A)
,
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where the infimum runs over all open subsets A with smooth boundary ∂A such
that μ(A) ≤ 1/2. Cheeger’s inequality then states λ1 ≥ h2/4.

Such an isoperimetric quantity may also be considered and estimated in our
sub-Riemannian framework. Throughout this section, we assume μ(M) = 1. Let

ι = inf
P (E)

μ(E)
,

where the infimum runs over all Caccioppoli sets E such that μ(E) ≤ 1/2 (we recall
that P (E) denotes the perimeter of E as defined in Section 2.4 ). By following the
argument of Ledoux in [12] we see that λ1 ≥ i2/4 where λ1 is the first eigenvalue
of −L. The next proposition gives a lower bound on ι (and therefore on λ1).

Proposition 3.7. Let E ⊂ M be a Caccioppoli set. We have

μ(E) (1 − μ(E)) ≤
√

2

ρ1

(
1 +

2κ

ρ2

)
P (E).

As a consequence,

ι ≥ 1

2

√
ρ1
2

1

1 + 2κ/ρ2
.

Proof. We know from the pseudo-Poincaré inequality that for f ∈ C∞
0 (M),

‖Ptf − f‖1 ≤
√

2

ρ1

(
1 +

2κ

ρ2

)√
1− e−

ρ1ρ2
ρ2+κ t ‖

√
Γ(f)‖1, t > 0.(3.4)

Suppose now that E ⊂ M is a Caccioppoli set. By Proposition 2.5 there exists
a sequence {fn}n∈N in C∞

0 (M) satisfying (i) and (ii) of that proposition. Apply-
ing (3.4) to fn, we obtain

‖Ptfn − fn‖1 ≤
√

2

ρ1

(
1 +

2κ

ρ2

)√
1− e−

ρ1ρ2
ρ2+κ t ‖

√
Γ(fn)‖1

=

√
2

ρ1

(
1 +

2κ

ρ2

)√
1− e−

ρ1ρ2
ρ2+κ t Var(fn).

Letting n → ∞ in this inequality, we conclude

‖Pt1E − 1E‖L1(M) ≤
√

2

ρ1

(
1 +

2κ

ρ2

)√
1− e−

ρ1ρ2
ρ2+κ t Var(1E)

=

√
2

ρ1

(
1 +

2κ

ρ2

)√
1− e−

ρ1ρ2
ρ2+κ t P (E).

Observe now that, using Pt1 = 1, we have

‖Pt1E − 1E‖L1(M) ≥
∫
M

|1Ec | |Pt1E − 1E| dμ ≥
∫
M

1Ec(Pt1E − 1E) dμ

=

∫
M

1Ec Pt 1E dμ =

∫
M

Pt 1E dμ−
∫
M

1E Pt 1E dμ

=

∫
M

1E dμ−
∫
E

Pt 1E dμ = μ(E)−
∫
E

Pt 1E dμ .
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On the other hand, from the semigroup property we have∫
E

Pt 1E dμ =

∫
M

(
Pt/2 1E

)2
dμ.

We thus obtain

||Pt1E − 1E ||L1(M) ≥
(
μ(E)−

∫
M

(
Pt/2 1E

)2
dμ
)
.

In [3], it has been proved that for x, y ∈ M and t > 0,

p(x, y, t) ≤ 1(
1− e

− 2ρ1ρ2t

3(ρ2+κ)
) d

2 (1+3κ/(2ρ2))
.

This gives∫
M

(Pt/2 1E)
2 dμ ≤

(∫
E

( ∫
M

p(x, y, t/2)2 dμ(y)
)1/2

dμ(x)

)2

=
( ∫

E

p(x, x, t)1/2 dμ(x)
)2

≤ 1(
1− e

− 2ρ1ρ2t

3(ρ2+κ)
)d(1+3κ/(2ρ2))

μ(E)2.

Combining these equations we reach the conclusion√
2

ρ1

(
1 +

2κ

ρ2

)√
1− e−

ρ1ρ2
ρ2+κ tP (E) ≥ μ(E) − 1(

1− e
− 2ρ1ρ2t

3(ρ2+κ)
)d(1+3κ/(2ρ2))

μ(E)2.

We conclude by letting t → +∞. �

3.5. A Lichnerowicz type theorem

A well-known theorem of Lichnerowicz asserts that on a d-dimensional complete
Riemannian manifold whose Ricci curvature is bounded below by a nonnegative
constant ρ, then the first eigenvalue of the Laplace-Beltrami operator is bounded
below by ρd/(d− 1). In this section, we provide a similar theorem for our op-
erator L. Let us observe that in [9], Greenleaf obtained a similar result for the
sub-Laplacian on a CR manifold. Recent work of Hladky [10] also gives lower
bounds for the first eigenvalue of sub-Laplacians on some sub-Riemannian mani-
folds.

Proposition 3.8. The first nonzero eigenvalue λ1 of −L satisfies the estimate

λ1 ≥ ρ1ρ2
d−1
d ρ2 + κ

.

Proof. Let f : M → R be an eigenfunction corresponding to the eigenvalue −λ1.
From the generalized curvature dimension inequality we know that for every ν > 0,

Γ2(f, f) + ν ΓZ
2 (f, f) ≥

1

d
(Lf)2 +

(
ρ1 − κ

ν

)
Γ(f, f) + ρ2 Γ

Z(f, f).
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By integrating this inequality on the manifold M, we obtain∫
M

Γ2(f, f) dμ+ ν

∫
M

ΓZ
2 (f, f) dμ

≥ 1

d

∫
M

(Lf)2 dμ+
(
ρ1 − κ

ν

)∫
M

Γ(f, f) dμ+ ρ2

∫
M

ΓZ(f, f) dμ.

Let us now recall that

Γ2(f, f) =
1

2

[
LΓ(f, f)− 2 Γ(f, Lf)

]
,

and

ΓZ
2 (f, f) =

1

2

[
LΓZ(f, f)− 2 ΓZ(f, Lf)

]
.

Therefore, by using Lf = −λ1f and integrating by parts in the above inequality,
we find (

λ2
1 −

λ2
1

d
+

κλ1

ν
− ρ1λ1

)∫
M

f2 dμ ≥ (ρ2 − νλ1)

∫
M

ΓZ(f, f) dμ.

By choosing ν = ρ2/λ1, we obtain the inequality

λ1 ≥ ρ1ρ2
d−1
d ρ2 + κ

. �

Remark 3.9. We note that when κ = 0, which corresponds to the Riemannian
case, we recover the classical theorem of Lichnerowicz.

References

[1] Baudoin, F. and Bonnefont, M.: Log-Sobolev inequalities for subelliptic oper-
ators satisfying a generalized curvature dimension inequality. J. Funct. Anal. 262
(2012), no. 6, 2646–2676.

[2] Baudoin, F., Bonnefont, M. and Garofalo, N.: A sub-Riemannian curvature-
dimension inequality, volume doubling property and the Poincaré inequality. To ap-
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