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Bouligand–Severi tangents in MV-algebras

Manuela Busaniche and Daniele Mundici

Abstract. In their important recent paper published in the Annals of
Pure and Applied Logic, Dubuc and Poveda call an MV-algebra A strongly
semisimple if all principal quotients of A are semisimple. All boolean
algebras are strongly semisimple, and so are all finitely presented MV-
algebras. We show that for any 1-generator MV-algebra, semisimplicity
is equivalent to strong semisimplicity. Further, a semisimple 2-generator
MV-algebra A is strongly semisimple if and only if its maximal spectral
space µ(A) ⊆ [0, 1]2 does not have any rational Bouligand–Severi tan-
gents at its rational points. In general, when A is finitely generated and
µ(A) ⊆ [0, 1]n has a Bouligand–Severi tangent then A is not strongly
semisimple. An MV-algebra A is strongly semisimple if and only if so is
every 2-generator subalgebra of A.

1. Introduction

We refer to [4] and [8] for background on MV-algebras. Following Dubuc and
Poveda [5], we say that an MV-algebra A is strongly semisimple if for every princi-
pal ideal I of A the quotient A/I is semisimple. Since {0} is a principal ideal of A,
every strongly semisimple MV-algebra is semisimple. The definition of “logically
complete” MV-algebras in [1] is a variant of this notion, where one further as-
sumes I �= {0}. The paper [7] is devoted to the frame-theoretic variant of strongly
semisimple MV-algebras, called “Yosida frames”. These papers, together with
the results of the present paper, show that strong semisimplicity is a very inter-
esting purely algebraic counterpart of the simplicial, topological, and differential
structure of MV-algebras. Further, from the logical viewpoint, 4.3 in [9] shows
that strongly semisimple MV-algebras coincide with Lindenbaum algebras of the-
ories Θ in infinite-valued �Lukasiewicz logic having the following property: for any
formula ψ, the set of syntactic consequences of Θ ∪ {ψ} coincides with the set of
(Bolzano–Tarski) semantic consequences of Θ ∪ {ψ}.
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From a classical result of Hay [6] and Wójcicki [14] (see also 4.6.7 in [4] and 1.6
in [8]), it follows that every finitely presented MV-algebra is strongly semisimple.
Trivially, all hyperarchimedean MV-algebras, hence in particular all boolean al-
gebras, are strongly semisimple, and so are all simple and all finite MV-algebras
(see 3.5 and 3.6.5 in [4]).

For any real-valued function g we will write Zg = g−1(0) for its zero set.
Our paper is devoted to n-generator strongly semisimple MV-algebras. When

n = 1, strong semisimplicity is equivalent to semisimplicity (Theorem 5.1). To
deal with the general case, we first recall that the free n-generator MV-algebra is
the MV-algebra M([0, 1]n) of all McNaughton functions f : [0, 1]n → [0, 1], with
pointwise operations of negation ¬x = 1 − x and truncated addition x ⊕ y =
min(1, x+ y). See 9.1.5 in [4].

For any nonempty closed set X ⊆ [0, 1]n we let M(X) denote the MV-algebra
of restrictions to X of the functions in M([0, 1]n). In symbols,

M(X) = {f |̀X | f ∈ M([0, 1]n)}.
By 3.6.7 in [4], M(X) is a semisimple MV-algebra; actually, up to isomorphism,
M(X) is the most general possible n-generator semisimple MV-algebra A. To see
this, pick generators {a1, . . . , an} of A. Let πi : [0, 1]

n → [0, 1] be the projection
functions in the free MV-algebra M([0, 1]

n
) for i = 1, . . . , n. Then the assignment

that maps πi �→ ai for each i = 1, . . . , n, uniquely extends to a homomorphism
ηa : M([0, 1]

n
) → A of the free n-generator MV-algebra onto A. Let ha = ker(ηa)

be the kernel of this homomorphism and let

(1.1) Za =
⋂

{Zf | f ∈ ha}
be the intersection of the zero sets of the McNaughton functions in ha. Then

(1.2) A ∼= M(Za).

A point x ∈ Rn is said to be rational if so are all its coordinates. By a rational
vector we mean a nonzero vector w ∈ Rn such that the line Rw ⊆ Rn contains at
least two rational points. An MV-algebra A is strongly semisimple if and only if so
is every 2-generator subalgebra of A (Proposition 4.1). A 2-generator MV-algebra

A = M(X), with nonempty closed X ⊆ [0, 1]2, is strongly semisimple if and only if
X has no rational outgoing Bouligand–Severi tangent vector at any of its rational
points, [2], [12], and [10]. See Theorem 3.1. As proved in Theorem 2.3, for any
closed X ⊆ [0, 1]n , having such a tangent is a condition sufficient for M(X) not to
be strongly semisimple.

Notation. Following p. 33 in [4] or p. 21 in [8], for k ∈ N, k �g stands for the k-fold
pointwise truncated addition of g.

2. Strong semisimplicity and Bouligand–Severi tangents

Severi (see §53, p. 59 and p. 392 of [11], as well as §1, p. 99 of [12]) and indepen-
dently, Bouligand (p. 32 in [2]) called a half-line H ⊆ Rn tangent to a set X ⊆ Rn

at an accumulation point x of X if for all ε, δ > 0 there is y ∈ X different from x



Strong semisimplicity and tangents 193

such that ||y − x|| < ε, and the angle between H and the half-line through y
originating at x is < δ. Here as usual, ||v|| is the length of the vector v ∈ Rn .

On §2, p. 100 and §4, p. 102 of [12], Severi noted that for any accumulation
point x of a closed set X there is a half-line H tangent to X at x.

Today (see, e.g., p. 16 in [3], or p. 1376 in [10]), Bouligand–Severi tangents are
routinely defined as follows.

Definition 2.1. Let x be an element of a closed subset X of Rn , and u a unit
vector in Rn. We then say that u is a Bouligand–Severi tangent (unit) vector to X
at x if X contains a sequence x0, x1, . . . of elements, all different from x, such that

lim
i→∞

xi = x and lim
i→∞

(xi − x)/||xi − x|| = u.

Observe that x is an accumulation point of X . We further say that u is outgoing
if for some λ > 0 the segment conv(x, x+ λu) intersects X only at x.

Already Severi noted that his definition of tangent half-line H = x + R≥0u is
equivalent to Definition 2.1. More precisely:

Proposition 2.2. (§5, p. 103 of [12]). For any nonempty closed subset X of Rn ,
point x ∈ X, and unit vector u ∈ Rn the following conditions are equivalent:

(i) For all ε, δ > 0, the cone conex,u,ε,δ with apex x, axis parallel to u, vertex
angle 2δ and height ε contains infinitely many points of X.

(ii) u is a Bouligand–Severi tangent vector to X at x.

When n = 1, conex,u,ε,δ is the segment conv(x, x+ εu). When n = 2, conex,u,ε,δ
is the isosceles triangle conv(x, a, b) with vertex x, basis conv(a, b), height equal

to ε (and parallel to u), and vertex angle âxb = 2δ.

The next two results provide necessary and sufficient geometric conditions on X
for the semisimple MV-algebra M(X) to be strongly semisimple. These conditions
are stated in terms of the nonexistence of Bouligand–Severi tangent vectors having
certain rationality properties.

Theorem 2.3. Let X be a nonempty closed set in [0, 1]n. Suppose X has a
Bouligand–Severi rational outgoing tangent vector u at some rational point x ∈ X.
Then M(X) is not strongly semisimple.

Proof. Since u is outgoing, let λ > 0 satisfy X ∩ conv(x, x + λu) = {x}. Without
loss of generality x+λu ∈ Qn. By Definition 2.1, our hypothesis yields a sequence
w1, w2, . . . of distinct points of X , all distinct from x, accumulating at x, at strictly
decreasing distances from x, in such a way that the sequence of unit vectors ui
given by (wi − x)/||wi − x|| tends to u as i tends to ∞. Let y = x + λu. Since
X ∩ conv(x, y) = {x}, no point wi lies on the segment conv(x, y), and we can
further assume that the sequence of angles ŵixy is strictly decreasing and tends
to zero as i tends to ∞.

Since both points x and y are rational, by 2.10 in [8], for some g ∈ M([0, 1]n)
the zero set

Zg = {z ∈ [0, 1]n | g(z) = 0}
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coincides with the segment conv(x, y). Thus,

∂g(x)

∂(u)
= 0.

Let J be the ideal of M([0, 1]n) generated by g,

J = {f ∈ M([0, 1]n) | f ≤ k � g for some k = 0, 1, 2, . . .}.
Then for each f ∈ J ,

∂f(x)

∂(u)
= 0.

Since the directional derivatives of f at x are continuous (meaning that the map
t �→ ∂f(x)/∂t is continuous), it follows that

(2.1) lim
t→u

∂f(x)

∂(t)
=
∂f(x)

∂(u)
= 0.

Let g� = g |̀X and let

J � = {f � ∈ M(X) | f � ≤ k � g� for some k = 0, 1, 2, . . .}
be the ideal of M(X) generated by g�. A moment’s reflection shows that

(2.2) J � = {l |̀X | l ∈ J}.
One inclusion is trivial. For the converse inclusion, if f |̀X ≤ (k �g) |̀X then letting
l = f ∧ k � g we get l ≤ k � g. So l ∈ J and l |̀X = f |̀X, whence f |̀X is extendible
to some l ∈ J.

For any f ∈ M([0, 1]n), the piecewise linearity of f ensures that for all large i
the value of the incremental ratio (f(wi) − f(x))/||wi − x|| coincides with the di-
rectional derivative ∂f(x)/∂ui along the unit vector ui = (wi−x)/||wi−x||. Thus
in particular, if f |̀X = f � ∈ J �, from (2.1)–(2.2) it follows that

lim
i→∞

f �(wi) − f �(x)

||wi − x|| = 0.

Since x is rational, again by 2.10 in [8] there is j ∈ M([0, 1]n) with Zj = {x}.
For some ω > 0 we have ∂j(x)/∂(u) = ω, whence

lim
i→∞

j �(wi) − j �(x)

||wi − x|| = ω.

Therefore, j � /∈ J �. Since Zg ∩ X = {x}, recalling 4.19 in [8] we see that the
only maximal ideal of M(X) containing J � is the set of all functions in M(X)
that vanish at x. Thus, j � belongs to all maximal ideals of M(X) containing J �.
By 3.6.6 in [4], M(X) is not strongly semisimple; specifically, j′/J ′ is infinitesimal
in the principal quotient M(X)/J ′. �
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3. A partial converse of Theorem 2.3

Theorem 3.1. Let X ⊆ [0, 1]n be a nonempty closed set. Suppose the MV-algebra
M(X) is not strongly semisimple.

(i) Then X has a Bouligand–Severi tangent vector u at some point x ∈ X sat-
isfying the following nonalignment condition: there is a sequence of distinct
wi ∈ X, all distinct from x such that

lim
i→∞

wi = x, lim
i→∞

wi − x

||wi − x|| = u, wi /∈ conv(x, x + u) for all i.

(ii) In particular, if n = 2, then X has a Bouligand–Severi outgoing rational
tangent vector u at some rational point x ∈ X.

Proof. (i) The hypothesis yields a function g ∈ M([0, 1]n), with its restriction
g� = g |̀X ∈ M(X), in such a way that the principal ideal J � of M(X) generated
by g�,

J � = {l� ∈ M(X) | l� ≤ k � g� for some k = 1, 2, . . .}
is strictly contained in the intersection I of all maximal ideals of M(X) contain-
ing J ′. Thus for some j ∈ M([0, 1]n) letting j � = j |̀X we have j � ∈ I \J �. By 3.6.6
in [4] and 4.19 in [8],

(3.1) j � = 0 on Zg�, i.e., X ∩ Zj ⊇ X ∩ Zg
and

(3.2) ∀m = 0, 1, . . . , ∃zm ∈ X, j �(zm) > m � g�(zm).

There is a sequence of integers 0 < m0 < m1 < . . . and a subsequence y0, y1, . . .
of {zi, z2, . . . } such that yi �= yl for i �= l and

(3.3) ∀t = 0, 1, . . . , j �(yt) > mt � g�(yt).

The compactness of X yields an accumulation point x ∈ X of the yt. Without loss
of generality (taking a subsequence, if necessary) we can further assume

(3.4) ||y0 − x|| > ||y1 − x|| > · · · , whence lim
i→∞

yi = x.

By (3.3), for all t, j �(yt) > 0. Then by (3.1), g�(yt) > 0. For each i = 0, 1, . . . ,
defining the unit vector ui ∈ Rn by ui = (yi − x)/||yi − x||, we obtain a sequence
of (possibly repeated) unit vectors ui ∈ Rn . Since the boundary of the unit ball
in Rn is compact, some unit vector u ∈ Rn satisfies

∀ε > 0 there are infinitely many i such that ||ui − u|| < ε.

Some subsequence w0, w1, . . . of the yi will satisfy the condition

(3.5) ∀ε, δ > 0 there is k such that for all i > k, wi ∈ conex,u,ε,δ .
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Correspondingly, the sequence v0, v1, . . . given by vk = (wk − x)/||wk − x|| will
satisfy

(3.6) lim
i→∞

vi = u.

We have just proved that u is a Bouligand–Severi tangent to X at x.

To complete the proof of (i) we need the following:

Fact 1. g�(x) = 0.

Otherwise, from the continuity of g, for some real ρ > 0 and suitably small
ε > 0, we have the inequality g(z) > ρ for all z in the open ball Bx,ε of radius ε
centered at x. By (3.5), Bx,ε contains infinitely many wi. There is a fixed integer
m̄ > 0 such that 1 = m̄ � g� ≥ j � for all these wi, which contradicts (3.3).

Fact 2. j �(x) = 0.

This immediately follows from (3.1) and Fact 1.

Fact 3. ∂g(x)/∂u = 0.

Aiming at a contradiction, suppose ∂g(x)/∂u = θ > 0. In view of the continuity
of the map t �→ ∂g(x)/∂t, let δ > 0 be such that ∂g(x)/∂r > θ/2, for any unit
vector r such that r̂u < δ. Since, by Fact 2, j(x) = 0 and both g and j are piecewise
linear, there is an ε > 0 together with an integer k̄ > 0 such that k̄ � g ≥ j over
the cone C = conex,u,ε,δ. By (3.5), C contains infinitely many wi, in contradiction
with (3.3).

To conclude the proof of the nonalignment condition in (i), it is sufficient to
show the following:

Fact 4. There is λ > 0 such that for all large i the segment conv(x, x+λu) contains
no wi.

For otherwise, from Fact 3, ∂g(x)/∂(u) = 0, whence the piecewise linearity of g
ensures that g vanishes on infinitely many wi of conv(x, x+λu) arbitrarily near x.
Any such wi belongs to X . Hence, by (3.1), j(wi) = 0, in contradiction with (3.3).

The proof of (i) is now complete.

(ii) Let H± be the two closed half-spaces of R2 determined by the line passing
through x and x+u. By (3.5), infinitely many wi lie in the same closed half-space,

say, H+. Without loss of generality, H+ ∩ int([0, 1]2) �= ∅. Let u⊥ be the vector
orthogonal to u such that x+ u⊥ ∈ H+.

Fact 5. For all small ε > 0,

∂g(x+ εu)

∂u⊥
> 0.
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Aiming at a contradiction, assume ∂g(x+ εu)/∂u⊥ = 0. Since g is piecewise
linear, by Facts 1 and 3, for suitably small η, ω > 0, the function g vanishes over
the triangle T = conv(x, x + ηu, x + ηu + ωu⊥). By (3.5), T contains infinitely
many wi. By (3.1), g(wi) = j(wi) = 0, contradicting (3.3).

Fact 6.
∂j(x)

∂u
> 0.

Otherwise, ∂j(x)/∂u = 0. Fact 5 yields a fixed integer h̄ such that, on a suitably
small triangle of the form T = conv(x, x + εu, x + εu + ωu⊥), we have h̄ � g ≥ j.
By (3.5), T contains infinitely many wi, again contradicting (3.3).

We now prove a strong form of Fact 4, showing that u is an outgoing tangent
vector:

Fact 7. For some λ > 0 the segment conv(x, x + λu) intersects X only at x.

Otherwise, from Facts 1 and 3 it follows that g vanishes on infinitely many
points of X ∩ conv(x, x + λu) converging to x. By (3.1), j � vanishes on all these
points. Since j is piecewise linear, ∂j(x)/∂u = 0, contradicting Fact 6.

By a rational line in Rn we mean a line passing through at least two distinct
rational points.

Fact 8. x is a rational point, and u is a rational vector.

As a matter of fact, Facts 6 and 2 yield a rational line L through x. On the
other hand, Facts 3 and 5 show that the line passing through x and x+u is rational
and different from L. Thus x is rational, hence so is the vector u.

We conclude that X has u as a Bouligand–Severi outgoing rational tangent
vector at the rational point x. �

Figure 1 is a sketch of the functions g and j in the foregoing proof.
Recalling Theorem 2.3 we now obtain:

Corollary 3.2. Let X ⊆ [0, 1]2 be a nonempty closed set. Then M(X) is not
strongly semisimple iff X has a Bouligand–Severi outgoing rational tangent vector u
at some rational point x ∈ X.

Examples. The above corollary provides many examples of 2-generator strongly
semisimple MV-algebras:

(i) Let κ ∈ [0, 1] be irrational. Let W be the arc of parabola {(x, y) ∈ [0, 1]
2 | y =

κx2}. Then M(W ) is strongly semisimple – for want of rational points in W .
One can similarly construct 2-generator strongly semisimple MV-algebras of
the form M(V ), by letting V be a closed subset of [0, 1]

2
without rational

points, or else, without outgoing rational tangents.

(ii) Following [13], let Q ⊆ [0, 1]
2

be a polyhedron in [0, 1]
2
, i.e., a finite union

of m-simplexes (m = 0, 1, 2) in [0, 1]
2
. Then Q does not have any outgoing

Bouligand–Severi tangent, whence M(Q) is strongly semisimple.
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Figure 1. A Bouligand–Severi outgoing tangent vector u to X at x, and two functions g
and j. The restriction g |̀X generates a principal ideal J ′ of M(X). The restriction
j |̀X does not belong to J ′, but belongs to the only maximal ideal I ′ of M(X) contain-
ing J ′, namely the set of all functions in M(X) vanishing at x. So the principal quotient
M(X)/J ′ is not semisimple.

(iii) (Generalizing (ii)). Let A be a 2-generator subalgebra of a semisimple tensor
product (see §9.4 in [8]) of the form [0, 1]⊗D, where D is a finitely presented
MV-algebra. Using Lemma 3.6 and Theorem 6.3 in [8], one sees that A
is isomorphic to an MV-algebra of the form M(Q) for some polyhedron

Q ⊆ [0, 1]
2
. Thus A is strongly semisimple.

4. The general case

The central role of finitely generated, and especially of 2-generator strongly semi-
simple MV-algebras among all strongly semisimple MV-algebras, is shown by the
following result:

Proposition 4.1. For any MV-algebra A the following conditions are equivalent:

(i) A is strongly semisimple;

(ii) A is the direct limit of a direct system S = {Ai, φij} of finitely generated
strongly semisimple algebras Ai, where all the homomorphisms φij : Ai → Aj

are embeddings;

(iii) each 2-generator subalgebra of A is strongly semisimple.

Proof. Recall that an MV-algebra is semisimple if and only if it has no infinitesi-
mals. For any MV-algebras C and D, and embedding φ : C → D, letting, for any
y ∈ C, 〈y〉C denote the ideal generated by y in C, we first make the following
elementary observations:
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(I) For each c ∈ C, the map φ̄ : C/〈c〉C → D/〈φ(c)〉D defined by x/〈c〉C �→
φ(x)/〈φ(c)〉D is an embedding. This immediately follows by observing that
φ(〈c〉C) = 〈φ(c)〉D ∩ φ(C).

(II) c ∈ C is an infinitesimal of C if and only if φ(c) is an infinitesimal of D.

(III) If D is strongly semisimple then so is C. As a matter of fact, for any c ∈ C,
the map φ̄ : C/〈c〉C → D/〈φ(c)〉D of (I) is an embedding. By hypothesis,
D/〈φ(c)〉D is semisimple, whence so is C/〈c〉C by (II).

We are now ready to prove the proposition.

(i)⇒(ii). Let A = {Ai ⊆ A | Ai is a finitely generated subalgebra of A}, and
let φij : Ai → Aj be the inclusion map whenever Ai ⊆ Aj . Then A together with
the homomorphisms φij is a direct system of MV-algebras, having A as its direct
limit. By (III), each Ai is strongly semisimple.

(ii)⇒(i). Let S = {Ai, φij} be a directed system of strongly semisimple MV-
algebras, indexed by the directed partially ordered set I, where each φij is an
embedding of Ai into Aj . Let A be the direct limit of S with the telescopic
maps φi∞ : Ai → A. Each φi∞ is an embedding. Suppose that A is not strongly
semisimple, (absurdum hypothesis), and let g ∈ A be such that A/〈g〉A is not
semisimple. Then there is an element e ∈ A such that e/〈g〉A is an infinitesimal of
A/〈g〉A. Since the partial order of the index set I is directed, for some i ∈ I there
are gi, ei ∈ Ai with φi∞(gi) = g and φi∞(ei) = e. The map φ̄i∞ : Ai/〈gi〉Ai →
A/〈g〉A of (I) is an embedding. By (II), ei/〈gi〉Ai is an infinitesimal element of
Ai/〈gi〉Ai , contrary to the hypothesis that Ai is strongly semisimple.

(i)⇒(iii). Immediate from (III).

(iii)⇒(i). If A is not strongly semisimple there are elements g, e ∈ A such that
e/〈g〉A is an infinitesimal in A/〈g〉A. Let B ⊆ A be the subalgebra of A generated
by g and e. By (I) and (II), e/〈g〉B is an infinitesimal element of B/〈g〉B, and B
is not strongly semisimple. �

5. Coda: one-generator MV-algebras

The following result is an easy consequence of Theorem 3.1. We include the elemen-
tary proof because it provides a technique for dealing with strong semisimplicity
independently of Bouligand–Severi tangents.

Theorem 5.1. Every one-generator semisimple MV-algebra A is strongly semi-
simple.

Proof. As in (1.1)–(1.2), let X ⊆ [0, 1] be a nonempty closed set such that A ∼=
M(X). For some g ∈ M([0, 1]) let J be the principal ideal of M([0, 1]) generated
by g, and let J � be the principal ideal of M(X) generated by g� = g |̀X.

The short argument immediately following (2.2) shows that J � = {l |̀X | l ∈ J}.
For every f ∈ M([0, 1]), letting f � = f |̀X we must prove: if f � belongs to all



200 M. Busaniche and D. Mundici

maximal ideals of M(X) to which g� belongs, then f � belongs to J �. By 3.6.6 in [4]
and 4.19 in [8], this amounts to proving

(5.1) if f = 0 on Zg ∩X, then f |̀X ∈ J �.

Let Δ be a triangulation of [0, 1] such that f and g are linear over every simplex
of Δ. The existence of Δ follows from the piecewise linearity of f and g, [13]. In
view of the compactness of X and [0, 1], it is sufficient to settle the following:

Claim. Suppose f ∈ M([0, 1]) vanishes over Zg ∩X . Then for all x ∈ X there is
an open neighbourhood Nx � x in [0, 1] together with an integer mx ≥ 0 such that
mx � g ≥ f on Nx ∩X.

We proceed by cases.

Case 1. g(x) > 0. Then for some integer r and open neighbourhood Nx � x we
have g > 1/r on Nx. Letting mx = r we have 1 = mx � g ≥ f on Nx, whence a
fortiori, mx � g ≥ f on Nx ∩X.

Case 2. g(x) = 0. Since f vanishes on Zg ∩ X , then f(x) = 0. Let T be a
1-simplex of Δ such that x ∈ T. Let Tx be the smallest face of T containing x.

Subcase 2.1. Tx = T . Then x ∈ int(T ). Since g is linear over T g vanishes
on T . By our hypotheses on f and Δ, f vanishes on T , whence 0 = g ≥ f = 0
on T . Letting Nx = int(T ) and mx = 1, we get mx �g ≥ f on Nx whence a fortiori,
the inequality holds on Nx ∩X.

Subcase 2.2. Tx = {x}. Then T = conv(x, y) for some y �= x. Without loss
of generality, y > x. We will exhibit a right open neighbourhood Rx � x and an
integer rx ≥ 0 such that rx � g ≥ f on Rx ∩ X. The same argument yields a left
neighbourhood Lx � x and an integer lx ≥ 0 such that lx � g ≥ f on Lx ∩X. One
then takes Nx = Rx ∪ Lx and mx = max(rx, lx).

Subsubcase 2.2.1. If both g and f vanish at y, then they vanish on T (because
they are linear on T ). Defining Rx = int(T ) ∪ {x} and rx = 1, we get rx � g ≥ f
on Rx, whence, in particular, on Rx ∩X.

Subsubcase 2.2.2. If both g and f are positive at y, then for all suitably large m
we have m � g ≥ f on T because f(x) = 0 and both f and g are linear on T .
Letting rx be the smallest such m and letting Rx = int(T ) ∪ {x}, we have the
desired inequality on Rx, and a fortiori on Rx ∩X .

Subsubcase 2.2.3. g(y) = 0, f(y) > 0. By our hypotheses on Δ, g is linear on T
and hence g = 0 on T . It follows that X ∩ T = {x}; for otherwise, our assumption
Zf ∩ X ⊇ Zg ∩ X together with the linearity of f on T would imply f(y) = 0,
contrary to our current hypothesis. Letting Rx = int(T )∪{x} and rx = 1 we have
rx � g ≥ f on Rx ∩X . �
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