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Bouligand—Severi tangents in MV-algebras

Manuela Busaniche and Daniele Mundici

Abstract. In their important recent paper published in the Annals of
Pure and Applied Logic, Dubuc and Poveda call an MV-algebra A strongly
semisimple if all principal quotients of A are semisimple. All boolean
algebras are strongly semisimple, and so are all finitely presented MV-
algebras. We show that for any 1-generator MV-algebra, semisimplicity
is equivalent to strong semisimplicity. Further, a semisimple 2-generator
MV-algebra A is strongly semisimple if and only if its maximal spectral
space u(A) C [0,1]* does not have any rational Bouligand-Severi tan-
gents at its rational points. In general, when A is finitely generated and
u(A) C [0,1]" has a Bouligand—Severi tangent then A is not strongly
semisimple. An MV-algebra A is strongly semisimple if and only if so is
every 2-generator subalgebra of A.

1. Introduction

We refer to [4] and [8] for background on MV-algebras. Following Dubuc and
Poveda [5], we say that an MV-algebra A is strongly semisimple if for every princi-
pal ideal I of A the quotient A/I is semisimple. Since {0} is a principal ideal of A,
every strongly semisimple MV-algebra is semisimple. The definition of “logically
complete” MV-algebras in [1] is a variant of this notion, where one further as-
sumes I # {0}. The paper [7] is devoted to the frame-theoretic variant of strongly
semisimple MV-algebras, called “Yosida frames”. These papers, together with
the results of the present paper, show that strong semisimplicity is a very inter-
esting purely algebraic counterpart of the simplicial, topological, and differential
structure of MV-algebras. Further, from the logical viewpoint, 4.3 in [9] shows
that strongly semisimple MV-algebras coincide with Lindenbaum algebras of the-
ories O in infinite-valued Lukasiewicz logic having the following property: for any
formula v, the set of syntactic consequences of © U {t¢} coincides with the set of
(Bolzano-Tarski) semantic consequences of © U {t}.
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From a classical result of Hay [6] and Wdjcicki [14] (see also 4.6.7 in [4] and 1.6
in [8]), it follows that every finitely presented MV-algebra is strongly semisimple.
Trivially, all hyperarchimedean MV-algebras, hence in particular all boolean al-
gebras, are strongly semisimple, and so are all simple and all finite MV-algebras
(see 3.5 and 3.6.5 in [4]).

For any real-valued function g we will write Zg = g=1(0) for its zero set.

Our paper is devoted to n-generator strongly semisimple MV-algebras. When
n = 1, strong semisimplicity is equivalent to semisimplicity (Theorem 5.1). To
deal with the general case, we first recall that the free n-generator MV-algebra is
the MV-algebra M([0,1]™) of all McNaughton functions f: [0,1]" — [0, 1], with
pointwise operations of negation -z = 1 — x and truncated addition x &y =
min(1,x +y). See 9.1.5 in [4].

For any nonempty closed set X C [0, 1]™ we let M(X) denote the MV-algebra
of restrictions to X of the functions in M([0,1]™). In symbols,

MX) = {f1X [ feM([0,1]")}.

By 3.6.7 in [4], M(X) is a semisimple MV-algebra; actually, up to isomorphism,
M(X) is the most general possible n-generator semisimple MV-algebra A. To see
this, pick generators {a1,...,a,} of A. Let m;: [0,1]" — [0,1] be the projection
functions in the free MV-algebra M([0,1]") for i = 1,...,n. Then the assignment
that maps m; — a; for each ¢ = 1,...,n, uniquely extends to a homomorphism
Na: M([0,1]") — A of the free n-generator MV-algebra onto A. Let b, = ker(n,)
be the kernel of this homomorphism and let

(11) Zy = n{Zf | f € ba}
be the intersection of the zero sets of the McNaughton functions in bh,. Then
(1.2) A= M(Z,).

A point & € R is said to be rational if so are all its coordinates. By a rational
vector we mean a nonzero vector w € R™ such that the line Rw C R™ contains at
least two rational points. An MV-algebra A is strongly semisimple if and only if so
is every 2-generator subalgebra of A (Proposition 4.1). A 2-generator MV-algebra
A = M(X), with nonempty closed X C [0, 1]2, is strongly semisimple if and only if
X has no rational outgoing Bouligand—Severi tangent vector at any of its rational
points, [2], [12], and [10]. See Theorem 3.1. As proved in Theorem 2.3, for any
closed X C [0, 1]™, having such a tangent is a condition sufficient for M(X') not to
be strongly semisimple.

Notation. Following p. 33 in [4] or p.21 in [8], for k € N, k.g stands for the k-fold
pointwise truncated addition of g.

2. Strong semisimplicity and Bouligand—Severi tangents

Severi (see §53, p.59 and p.392 of [11], as well as §1, p.99 of [12]) and indepen-
dently, Bouligand (p. 32 in [2]) called a half-line H C R" tangent to a set X C R™
at an accumulation point x of X if for all €, > 0 there is y € X different from x
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such that ||y — z|| < ¢, and the angle between H and the half-line through y
originating at = is < ¢. Here as usual, ||v|| is the length of the vector v € R™.

On §2, p.100 and §4, p.102 of [12], Severi noted that for any accumulation
point = of a closed set X there is a half-line H tangent to X at x.

Today (see, e.g., p. 16 in [3], or p. 1376 in [10]), Bouligand—Severi tangents are
routinely defined as follows.

Definition 2.1. Let x be an element of a closed subset X of R™, and u a unit
vector in R™. We then say that u is a Bouligand—Severi tangent (unit) vector to X

at x if X contains a sequence xg, x1, ... of elements, all different from x, such that
lim z; =2 and lim (x; —x)/||z; — z|| = w.
11— 00 1— 00

Observe that x is an accumulation point of X. We further say that u is outgoing
if for some A > 0 the segment conv(z, z + Au) intersects X only at z.

Already Severi noted that his definition of tangent half-line H = = + R>qu is
equivalent to Definition 2.1. More precisely:

Proposition 2.2. (§5, p. 103 of [12]). For any nonempty closed subset X of R™,
point x € X, and unit vector u € R™ the following conditions are equivalent:

(i) For all €,6 > 0, the cone coney s with apex x, axis parallel to u, verter
angle 20 and height € contains infinitely many points of X .

(ii) w is a Bouligand—Severi tangent vector to X at x.

When n = 1, coneg 4,5 is the segment conv(z, z+eu). When n = 2, coneg .5
is the isosceles triangle conv(z,a,b) with vertex x, basis conv(a,b), height equal
to e (and parallel to u), and vertex angle axb = 24.

The next two results provide necessary and sufficient geometric conditions on X
for the semisimple MV-algebra M(X) to be strongly semisimple. These conditions
are stated in terms of the nonexistence of Bouligand—Severi tangent vectors having
certain rationality properties.

Theorem 2.3. Let X be a nonempty closed set in [0,1]". Suppose X has a
Bouligand—Severi rational outgoing tangent vector u at some rational point x € X.
Then M(X) is not strongly semisimple.

Proof. Since u is outgoing, let A > 0 satisfy X N conv(z,x + Au) = {z}. Without
loss of generality x + Au € Q™. By Definition 2.1, our hypothesis yields a sequence
w1, we, ... of distinct points of X, all distinct from z, accumulating at x, at strictly
decreasing distances from z, in such a way that the sequence of unit vectors w;
given by (w; — x)/||w; — x|| tends to u as i tends to co. Let y = x + Au. Since
X Nconv(z,y) = {x}, no point w; lies on the segment conv(z,y), and we can
further assume that the sequence of angles w;zy is strictly decreasing and tends
to zero as 7 tends to oo.

Since both points = and y are rational, by 2.10 in [8], for some g € M([0,1]™)
the zero set

Zg={z<[0,1]" | g(z) = 0}
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coincides with the segment conv(z,y). Thus,

Jdg()
a(u)

Let J be the ideal of M([0,1]™) generated by g,

=0.

J={feM(0,1]") | f <k.gforsome k=0,1,2,...}.

Then for each f € J,

of(x) _

O(u)
Since the directional derivatives of f at z are continuous (meaning that the map
t— Of(x)/0t is continuous), it follows that

0f@) _ of)
o o)

(2.1)

Let ¢' = g X and let

J={fleMX)| f'<k.g for some k=0,1,2,...}
be the ideal of M(X) generated by ¢'. A moment’s reflection shows that
(2.2) J={l|X]|leJ}

One inclusion is trivial. For the converse inclusion, if f | X < (k.g) [ X then letting
l=fANkigwegetl <k.g. SoleJandl[X = fX, whence f|X is extendible
to some [ € J.

For any f € M([0,1]™), the piecewise linearity of f ensures that for all large
the value of the incremental ratio (f(w;) — f(2))/||w; — x|| coincides with the di-
rectional derivative 0f (z)/0u; along the unit vector u; = (w; —x)/||w; — z||. Thus
in particular, if f[X = f' € J', from (2.1)-(2.2) it follows that

o 1) = (@)

i—00 ||wl 7$||

=0.

Since x is rational, again by 2.10 in [8] there is j € M([0,1]") with Zj = {«}.
For some w > 0 we have Jj(x)/0(u) = w, whence
J'(wi) = j'(x)

lim ——————~ =

Therefore, j' ¢ J'. Since Zg N X = {z}, recalling 4.19 in [8] we see that the
only maximal ideal of M(X) containing J' is the set of all functions in M(X)
that vanish at . Thus, j' belongs to all maximal ideals of M(X) containing .J'.
By 3.6.6 in [4], M(X) is not strongly semisimple; specifically, j'/J’ is infinitesimal
in the principal quotient M(X)/J’. O
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3. A partial converse of Theorem 2.3

Theorem 3.1. Let X C [0,1]™ be a nonempty closed set. Suppose the MV-algebra
M(X) is not strongly semisimple.

(i) Then X has a Bouligand—Severi tangent vector u at some point x € X sat-
isfying the following nonalignment condition: there is a sequence of distinct
w; € X, all distinct from x such that
w; — X

lim w;, =2z, lim —— =
o0 i—oo ||w; — x|

u, w; ¢ conv(x,x +u) for all i.
(ii) In particular, if n = 2, then X has a Bouligand—Severi outgoing rational
tangent vector u at some rational point x € X.

Proof. (i) The hypothesis yields a function g € M([0,1]"), with its restriction
g =glX € M(X), in such a way that the principal ideal J' of M(X) generated
by g,

J={l'e M(X)|I'<Ek.g for some k=1,2,...}
is strictly contained in the intersection I of all maximal ideals of M (X)) contain-
ing J'. Thus for some j € M([0,1]™) letting j' = j | X we have j' € I\ J'. By 3.6.6
in [4] and 4.19 in [8],

(3.1) j'=0o0n Zg', ie, XNZj2XNZg

and

(3.2) Ym=0,1,..., Jzm € X, j'(zm) > m.g'(zm)-

There is a sequence of integers 0 < mg < mj < ... and a subsequence yg, Y1, - - -

of {z;, z2,...} such that y; # y; for i # 1 and

(3.3) VE=0,1,..., j'(ye) > mu.g'(y).

The compactness of X yields an accumulation point z € X of the y;. Without loss
of generality (taking a subsequence, if necessary) we can further assume

(3.4) llyo — || > |ly1 — =|| > -+, whence ilm Yi = T.

i

— 00
By (3.3), for all ¢, j'(y¢) > 0. Then by (3.1), ¢'(y:) > 0. For each ¢ = 0,1,...,
defining the unit vector u; € R™ by u; = (y; — x)/[|y; — z||, we obtain a sequence

of (possibly repeated) unit vectors u; € R™. Since the boundary of the unit ball
in R™ is compact, some unit vector u € R™ satisfies

Ve > 0 there are infinitely many 4 such that ||Ju; — u|| <e.
Some subsequence wy, wy, . .. of the y; will satisfy the condition

(3.5) Ve, 0 > 0 there is k such that for all i > k, w; € coneg -
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Correspondingly, the sequence vg,v1,... given by vy = (wr — x)/||wy — || will
satisfy
(3.6) lim v; = u.

1— 00

We have just proved that u is a Bouligand—Severi tangent to X at x.

To complete the proof of (i) we need the following:
Fact 1. ¢'(z) =0.

Otherwise, from the continuity of g, for some real p > 0 and suitably small
€ > 0, we have the inequality g(z) > p for all z in the open ball B, . of radius ¢
centered at x. By (3.5), By, contains infinitely many w;. There is a fixed integer
m > 0 such that 1 =m.g" > j' for all these w;, which contradicts (3.3).

Fact 2. j'(z) = 0.
This immediately follows from (3.1) and Fact 1.
Fact 3. dg(z)/0u = 0.

Aiming at a contradiction, suppose dg(z)/0u = 6 > 0. In view of the continuity
of the map ¢ +— 9Jg(z)/0t, let § > 0 be such that dg(x)/0r > 0/2, for any unit
vector 7 such that 7u < 4. Since, by Fact 2, j(x) = 0 and both g and j are piecewise
linear, there is an € > 0 together with an integer & > 0 such that k.g > j over
the cone C' = coney 4 ¢ 5. By (3.5), C contains infinitely many w;, in contradiction
with (3.3).

To conclude the proof of the nonalignment condition in (i), it is sufficient to
show the following;:

Fact 4. There is A > 0 such that for all large i the segment conv(x, x+Au) contains
no w;.

For otherwise, from Fact 3, dg(x)/0(u) = 0, whence the piecewise linearity of ¢
ensures that g vanishes on infinitely many w; of conv(z, x 4+ Au) arbitrarily near x.
Any such w; belongs to X. Hence, by (3.1), j(w;) = 0, in contradiction with (3.3).

The proof of (i) is now complete.

(ii) Let H* be the two closed half-spaces of R? determined by the line passing
through  and x4+ u. By (3.5), infinitely many w; lie in the same closed half-space,

say, H*. Without loss of generality, HT N int([0, 1]*) # 0. Let u be the vector
orthogonal to u such that z +ut € HT.

Fact 5. For all small € > 0,

dg(x + eu)

5o > 0.



STRONG SEMISIMPLICITY AND TANGENTS 197

Aiming at a contradiction, assume Og(x + eu)/Ou’ = 0. Since g is piecewise
linear, by Facts 1 and 3, for suitably small n,w > 0, the function g vanishes over
the triangle 7' = conv(z,z + nu,z + nu + wut). By (3.5), T contains infinitely
many w;. By (3.1), g(w;) = j(w;) = 0, contradicting (3.3).

Fact 6. 9i(x)
j(x
—— > 0.
ou
Otherwise, 0j(z)/0u = 0. Fact 5 yields a fixed integer h such that, on a suitably
small triangle of the form T' = conv(z,x + eu,x + eu + wu'), we have h.g > j.
By (3.5), T' contains infinitely many w;, again contradicting (3.3).
We now prove a strong form of Fact 4, showing that u is an outgoing tangent
vector:

Fact 7. For some A > 0 the segment conv(x,x + Au) intersects X only at x.

Otherwise, from Facts 1 and 3 it follows that g vanishes on infinitely many
points of X N conv(z, x + Au) converging to x. By (3.1), j' vanishes on all these
points. Since j is piecewise linear, 9j(z)/0u = 0, contradicting Fact 6.

By a rational line in R™ we mean a line passing through at least two distinct
rational points.

Fact 8. x is a rational point, and u is a rational vector.

As a matter of fact, Facts 6 and 2 yield a rational line L through x. On the
other hand, Facts 3 and 5 show that the line passing through = and x+w is rational
and different from L. Thus x is rational, hence so is the vector wu.

We conclude that X has u as a Bouligand—Severi outgoing rational tangent
vector at the rational point x. O

Figure 1 is a sketch of the functions ¢ and j in the foregoing proof.
Recalling Theorem 2.3 we now obtain:

Corollary 3.2. Let X C [0,1]? be a nonempty closed set. Then M(X) is not
strongly semisimple iff X has a Bouligand—Severi outgoing rational tangent vector u
at some rational point x € X.

Examples. The above corollary provides many examples of 2-generator strongly
semisimple MV-algebras:
(i) Let x € [0,1] be irrational. Let W be the arc of parabola {(z,y) € [0,1]* | y =
kx?}. Then M(W) is strongly semisimple —for want of rational points in 1.
One can similarly construct 2-generator strongly semisimple MV-algebras of
the form M(V), by letting V be a closed subset of [0,1]* without rational
points, or else, without outgoing rational tangents.
(i) Following [13], let Q@ C [0,1]* be a polyhedron in [0,1]%, i.c., a finite union
of m-simplexes (m = 0,1,2) in [0,1]°. Then Q does not have any outgoing
Bouligand—Severi tangent, whence M(Q) is strongly semisimple.
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7 X+U

FIGURE 1. A Bouligand-Severi outgoing tangent vector u to X at z, and two functions g
and j. The restriction g|X generates a principal ideal J’ of M(X). The restriction
j | X does not belong to J', but belongs to the only maximal ideal I’ of M(X) contain-
ing J’, namely the set of all functions in M (X) vanishing at x. So the principal quotient
M(X)/J' is not semisimple.

(iii) (Generalizing (ii)). Let A be a 2-generator subalgebra of a semisimple tensor
product (see §9.4 in [8]) of the form [0, 1] ® D, where D is a finitely presented
MV-algebra. Using Lemma 3.6 and Theorem 6.3 in [8], one sees that A
is isomorphic to an MV-algebra of the form M(Q) for some polyhedron
Q C o, 1]2 . Thus A is strongly semisimple.

4. The general case

The central role of finitely generated, and especially of 2-generator strongly semi-
simple MV-algebras among all strongly semisimple MV-algebras, is shown by the
following result:

Proposition 4.1. For any MV-algebra A the following conditions are equivalent:
(i) A is strongly semisimple;

(ii) A is the direct limit of a direct system S = {A;, ¢ij} of finitely generated
strongly semisimple algebras A;, where all the homomorphisms ¢;5: A; — A,
are embeddings;

(i) each 2-generator subalgebra of A is strongly semisimple.

Proof. Recall that an MV-algebra is semisimple if and only if it has no infinitesi-
mals. For any MV-algebras C' and D, and embedding ¢: C — D, letting, for any
y € C, (y)c denote the ideal generated by y in C, we first make the following
elementary observations:
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(I) For each ¢ € C, the map ¢: C/(c)c — D/{¢(c))p defined by z/{c)c
¢(z)/(¢p(c))p is an embedding. This immediately follows by observing that

¢({c)e) = (#(c))p N $(C).
(IT) ¢ € C' is an infinitesimal of C' if and only if ¢(c) is an infinitesimal of D.

(IIT) If D is strongly semisimple then so is C. As a matter of fact, for any c € C,
the map ¢: C/{c)c — D/{¢(c))p of (I) is an embedding. By hypothesis,
D/{¢(c))p is semisimple, whence so is C'/{c)c by (II).

We are now ready to prove the proposition.

(i)=(ii). Let A = {4; € A | A; is a finitely generated subalgebra of A}, and
let ¢i;: A; — A; be the inclusion map whenever 4; € A;. Then A together with
the homomorphisms ¢;; is a direct system of MV-algebras, having A as its direct
limit. By (III), each A; is strongly semisimple.

(i)=(1). Let S = {A;, ¢i;} be a directed system of strongly semisimple MV-
algebras, indexed by the directed partially ordered set I, where each ¢;; is an
embedding of A; into A;. Let A be the direct limit of S with the telescopic
maps Qi : A; — A. Each ¢, is an embedding. Suppose that A is not strongly
semisimple, (absurdum hypothesis), and let g € A be such that A/(g)a is not
semisimple. Then there is an element e € A such that e/{g) 4 is an infinitesimal of
A/{g)a. Since the partial order of the index set I is directed, for some i € I there
are gi,e; € A; with ¢iec(g;) = g and ¢isc(e;) = e. The map dino: Ai/{gi)a, —
A/{g)a of (I) is an embedding. By (II), e;/{(g;)a, is an infinitesimal element of
A;/{gi) a,, contrary to the hypothesis that A; is strongly semisimple.

(i)=(iii). Immediate from (III).

(iii)=(i). If A is not strongly semisimple there are elements g,e € A such that
e/{(g)a is an infinitesimal in A/(g)a. Let B C A be the subalgebra of A generated
by ¢ and e. By (I) and (II), e/(g) 5 is an infinitesimal element of B/(g)p, and B
is not strongly semisimple. O

5. Coda: one-generator MV-algebras

The following result is an easy consequence of Theorem 3.1. We include the elemen-
tary proof because it provides a technique for dealing with strong semisimplicity
independently of Bouligand—Severi tangents.

Theorem 5.1. Fvery one-generator semisimple MV-algebra A is strongly semi-
simple.

Proof. As in (1.1)—(1.2), let X C [0,1] be a nonempty closed set such that A =
M(X). For some g € M([0,1]) let J be the principal ideal of M(]0, 1]) generated
by g, and let J' be the principal ideal of M(X) generated by ¢' = g X.

The short argument immediately following (2.2) shows that J' = {I| X |l € J}.
For every f € M([0,1]), letting f' = f]X we must prove: if f' belongs to all
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maximal ideals of M(X) to which ¢' belongs, then f' belongs to J'. By 3.6.6 in [4]
and 4.19 in [8], this amounts to proving

(5.1) if f=0o0on ZgNX, then f|X € .J'.

Let A be a triangulation of [0, 1] such that f and g are linear over every simplex
of A. The existence of A follows from the piecewise linearity of f and g, [13]. In
view of the compactness of X and [0, 1], it is sufficient to settle the following:

Claim. Suppose f € M([0,1]) vanishes over Zg N X. Then for all x € X there is
an open neighbourhood N, 3 z in [0, 1] together with an integer m, > 0 such that
Mg «g > f on N, NX.

We proceed by cases.

Case 1. g(x) > 0. Then for some integer r and open neighbourhood N, 3 x we
have g > 1/r on N,. Letting m, = r we have 1 = m, .g > f on N, whence a
fortiori, my . g > f on N, N X.

Case 2. g(x) = 0. Since f vanishes on Zg N X, then f(x) = 0. Let T be a
1-simplex of A such that x € T. Let T, be the smallest face of T' containing x.

Subcase 2.1. T, = T. Then x € int(T). Since g is linear over T ¢ vanishes
on T. By our hypotheses on f and A, f vanishes on T, whence 0 =g > f =0
on T. Letting N, = int(T) and m, = 1, we get m,.g > f on N, whence a fortiori,
the inequality holds on N, N X.

Subcase 2.2. T, = {xz}. Then T = conv(zx,y) for some y # x. Without loss
of generality, y > z. We will exhibit a right open neighbourhood R, > z and an
integer 7, > 0 such that r, .¢g > f on R, N X. The same argument yields a left
neighbourhood £, > x and an integer [, > 0 such that I, .¢g > f on £, N X. One
then takes AV, = R, U L, and m, = max(ry,l;).

Subsubcase 2.2.1. If both g and f vanish at y, then they vanish on T' (because
they are linear on T'). Defining R, = int(T) U {z} and r, = 1, we get rp . g > f
on R, , whence, in particular, on R, N X.

Subsubcase 2.2.2. If both g and f are positive at y, then for all suitably large m
we have m.g > f on T because f(z) = 0 and both f and g are linear on T.
Letting r; be the smallest such m and letting R, = int(T) U {z}, we have the
desired inequality on R, and a fortiori on R, N X.

Subsubcase 2.2.3. g(y) =0, f(y) > 0. By our hypotheses on A, g is linear on T
and hence g = 0 on T'. It follows that X NT = {z}; for otherwise, our assumption
ZfNX D Zgn X together with the linearity of f on T would imply f(y) = 0,
contrary to our current hypothesis. Letting R, = int(7) U{z} and r, = 1 we have
reag>fonR,NX. O
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