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An optimal transportation problem with a cost
given by the Euclidean distance plus
import /export taxes on the boundary

José M. Mazon, Julio D. Rossi and Julian Toledo

Abstract. In this paper we analyze a mass transportation problem in a
bounded domain in which there is the possibility of import/export mass
across the boundary paying a tax in addition to the transport cost that
is assumed to be given by the Euclidean distance. We show a general
duality argument and for the dual problem we find a Kantorovich poten-
tial as the limit as p — oo of solutions to p-Laplacian type problems with
nonlinear boundary conditions. In addition, we show that this limit en-
codes all the relevant information for our problem. It provides the masses
that are exported and imported from the boundary and also allows the
construction of an optimal transport plan. Finally we show that the ar-
guments can be adapted to deal with the case in which the mass that can
be exported/imported is bounded by prescribed functions.

1. Introduction.

Mass transport problems have been widely considered in the literature recently.
This is due not only to their relevance for applications but also because of the
novelty of the methods needed for their solution. The origin of such problems is
an article from 1781 by Gaspard Monge, Mémoire su la théorie des déblais et des
remblais, where he formulated a natural question in economics which deals with
the optimal way of moving a mass distribution from one location to another so
that the total work done is minimized. Here the cost of moving one unit of mass
from z to y is measured with the Euclidean distance and the total work done is the
sum (integral) of the transport cost, |z — y|, times the mass that is moved from x
to y. Evans and Gangbo in [7] used a PDE approach to prove the existence of an
optimal transport map for the classical Monge problem, different to the first one
given by Sudakov in 1979 using probabilistic methods ([11]; see also [2] and [4]).
For general reference on transport problems we refer to [13] and [14].
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The result by Evans and Gangbo was the first motivation for the present work.
Let © be an open bounded domain of RY. Although it is not necessary for our
mathematical results, we will assume (2 is convex, because this is more convenient
for the transport interpretation. Alternatively, one can use the geodesic distance
inside the domain as the transport cost, but we prefer to restrict ourselves to the
Euclidean distance to avoid technicalities that may obscure the main arguments.
Let f € L*™*°(Q) and N < p < +00. Given g; € C(99), with g1 < g2 on 99, we set

ngf?gz () ={uecWh?(Q):9; <u<gy ondQ in the sense of traces}

and consider the functional
p
U, (u) = / Nul@)l” dx — / f(@)u(z) dz.
Q p Q

Since WP (Q) is a closed convex subset of W'?(2) and the functional ¥, is

convex, lower semicontinuous, and coercive, the variational problem

(1.1) min ~ U,(u)
uEWqis, (2)

has a minimizer u, in ngf‘?gz (©), which is a least energy solution of the obstacle
problem

(1.2) { —Ayu=f inQ,

g1 <u<gs on .

This minimizer is unique in the case [, f # 0; in the case [, f = 0, there can be
multiple minimizers, but any two of them differ by a constant and this can happen
only if there are two different constant functions between ¢g; and go. Note that
when every minimizer coincides with ¢g; on some part of the boundary and with go
on another part of the boundary, then the minimizer is unique.

Let us also assume that g; and gy satisfy the following condition:

(1.3) g1(r) —g2(y) < |z —y| Va,yec o

Under this assumption we can take the limit as p — oo, see Theorem 3.1, and
obtain that u, — us uniformly, and that the limit u., is a maximizer of the
variational problem

(1.4) max {/Qw(x)f(m) de: w € WS, (), [ Vol <1}

At this point it is natural to ask the following question, that constitutes the main
problem addressed in this paper:

Main problem: Let fy and f_ be the positive and negative parts of f; that is
f = fy— f=, with fy being L™ masses. Can us, the limit of the sequence up,
that is a mazimizer for (1.4), be interpreted as a kind of Kantorovich potential for
some transport problem involving f+ and f_?
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The answer to this question is affirmative. Let us explain briefly and informally
the mass transport problem that is related to this limit procedure; see §2.2 for more
details. We have to transport some amount of material represented by fy in Q
(f+ encodes the amount of material and its location) to a hole with a distribution
given by f_ also defined in 2. The goal is to transport all the mass (the penalty
for not transporting the total mass is an infinite cost) f to f_ or to the boundary
(exporting the mass out of ). In doing this, we pay the transport costs given
by the Euclidean distance ¢(z,y) = | — y| and when a unit of mass is left on a
point y € 0N an additional cost given by T.(y), the export taxes. We also have the
constraint of filling the hole completely (there is also an infinite-cost penalty for
not covering all the mass in f_), that is, we have to import product, if necessary,
from the exterior of Q (paying the transport costs plus the extra cost T;(x), the
import taxes, for each unit of mass that enters Q at the point x € 99Q). We
have the freedom to chose to export or import mass provided we transport all the
mass in fi and cover all the mass of f_. The main goal here is to minimize the
total cost of this operation, that is given by the transport cost plus export/import
taxes. Note that in this transport problem there appear two masses on 92 that
are unknowns (the ones that encode the mass that is exported and the mass that
is imported). Also note that the usual mass balance condition

/Q fi(a)do = /Q f-(y) dy,

is not imposed since we can import or export mass through the boundary if nec-
essary. This means that we can use J) as an infinite reserve/repository, we can
take as much mass as we wish from the boundary, or send back as much mass as
we want, provided we pay the transportation cost plus the import/export taxes.

Our ideas can be adapted to deal with a more realistic situation. With a cost
such as that described above (the Euclidean distance plus import/export taxes)
we can impose the restriction of not exceeding the pointwise quantity M. (z) (that
we assume to be nonnegative) when we export some mass through z € 99 and we
can also impose a pointwise restriction M;(z) (which is also assumed nonnegative)
for import from 0€2. Thus, in this case we do not assume that the boundary is an
infinite reserve/repository, but we bound the quantities that can be exported or
imported. For doing this the natural constraint that must be satisfied is given by

— M, < — —f) < M;.
[ < /Q(f+ f)<

o

This says that one can transport all the positive mass in f, and also that one can
satisfy all the consumer demand (covering the whole of f_). Hence the mass trans-
port problem is feasible, and the problem becomes, as before, to minimize the cost.
Two limit situations are as follows. When T; = T. = 0 we have limited importa-
tion/exportation but without taxes. On the other hand, by assuming M;(x) =0
or M.(z) = 0 on certain zones of the boundary, we preclude importation or ex-
portation in these zones; if we impose these conditions on the whole boundary
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(assuming fQ f+ = fQ f—) we obtain again a solution to the classical Monge—
Kantorovich mass transport problem. This was solved by Evans and Gangbo by
taking limits of p-Laplacian problems with homogeneous Dirichlet boundary con-
ditions in a large ball. For simplicity and since the main mathematical difficulties
are present without restricting the mass that can be exported/imported through
the boundary, we present the details for this case and at the end of the article
we sketch the necessary changes and adaptations that are needed to deal with the
more realistic case.

A variant of this transport problem (allowing the possibility of import/export
mass from/to 9€) was recently proposed in [9]. In [9] the transport cost is given by
|z —y|? (which is strictly convex) with zero taxes on the boundary. The authors use
this transport problem to define a new distance between measures and study the
gradient flow of a particular entropy that coincides with the heat equation, with
Dirichlet boundary condition equal to 1 (see [1] and [3] for related results concern-
ing the relation between flows and transport problems). Here we deal with the
cost given by the Euclidean distance |z — y| (which is not strictly convex) and al-
low for nontrivial import/export taxes. In addition, we perform an approximation
procedure using the p-Laplacian (as was done by Evans and Gangbo), something
that is not needed for a quadratic cost. See also [6] and [8] for regularity results
for a partial mass transport problem in which there is no boundary involved but
the amount of mass that has to be transported is prescribed (here there is also
considered a quadratic transport cost, |z — y|?).

We briefly summarize the contents of this paper. In §2 we recall some well
known facts, terminology, and notations related to the usual Monge—Kantorovich
problem and its dual formulation, and, in §2.2, we describe the mass transport
problem in which we are interested and study its dual formulation. The next sec-
tion is devoted to obtaining the Kantorovich potential as a limit of the solutions
of some obstacle problem associated with the p-Laplacian operator, to giving a
complete proof of the duality, to obtaining the import/export masses from those
p-Laplacian problems, and to showing how to construct optimal transport plans
via optimal transport maps. In §4, to illustrate our results, we give some simple
examples in which the solution to the mass transport problem described in §2.2
can be explicitly computed. Finally in §5 we deal with the case of limited impor-
tation/exportation.

2. Statement of the mass transport problem

To state the problem more precisely we need some notation. Given a Borel subset
X C RV, let M(X) denote the space of nonnegative Borel measures on X with
finite total mass. A measure v € M(X) and a Borel map 7 : X — R¥ induce a
Borel measure T'#-, the pushforward measure of vy via T', defined by (T#~)[B] =
y[T~Y(B)]. When we write T#f = g, where f and g are nonnegative functions,
this means that the measure having density f is pushed forward to the measure
having density g¢.
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2.1. Mass transport theory

The Monge problem. Given two measures v1,v2 € M(X) satisfying the mass
balance condition

(2.1) 71(X) = 12(X),
is the infimum

inf x— T (x)|dy(z
pit [ o= T@lan @)
attained among mappings T which push vy forward to ~s ? In the case that v, and v
represent the distributions for production and consumption of some commodity, the
problem is then to decide which producer should supply each consumer to minimize
the total transport cost.

In general, the Monge problem is ill-posed. To overcome the difficulties of the
Monge problem, in 1942, L.V. Kantorovich ([10]) proposed to study a relaxed
version of the Monge problem and, what is more relevant here, introduced a dual
variational principle.

We will use the usual convention of denoting by m; : RV x RV — R the
projections, m1 (z,y) := x and me(x,y) := y. Given a Radon measure p in X x X,
its marginals are defined by proj,(u) := m#p and proj, (1) := ma#fp.

The Monge-Kantorovich problem. Fizx two measures v1,v2 € M(X) satis-
fying the mass balance condition (2.1). Let II(y1,72) be the set of transport plans
between 1 and 2, that s, the set of nonnegative Radon measures p in X x X
such that proj,(n) = v1 and proj, (1) = v2. The Monge—Kantorovich problem is to
find a measure pu* € I(y1,72) which minimizes the cost functional

K() = /X = slduta.).

on the set (y1,7v2). A minimizer u* is called an optimal transport plan between 1
and 3.

Linearity makes the Monge-Kantorovich problem simpler than the original
Monge problem; a continuity-compactness argument at least guarantees the ex-
istence of an optimal transport plan.

It is well known that linear minimization problems such as the Monge-Kan-
torovich problem admit dual formulations. In the context of optimal mass trans-
portation, this was introduced by Kantorovich in 1942 ([10]). He established the
following result.

Kantorovich duality. Fiz two measures y1,72 € M(X) satisfying the mass
balance condition (2.1). For (p,v) € L'(dy1) x LY(dvs), define

J(,0) ::/Xsodv1+/xwdw,
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and let ® be the set of all measurable functions (p,v) € L*(dy1)x L' (dvyz) satisfying
@) +¢Y(y) < |z —y| for vy X v2 — almost all (x,y) € X x X.

Then

inf  K(u)= sup J(p,9).
pEIL(v1,72) (p,)EP

The above result is true for more general cost functions than those correspond-
ing to the Euclidean distance |z — y|. Now, for cost functions associated with
lower semicontinuous distances there is a more precise result (see for instance The-
orem 1.14 in [13]), which for the Euclidean distance can be written as follows.

Kantorovich—Rubinstein theorem. Let 1,72 € M(X) be two measures satis-
fying the mass balance condition (2.1). Then,

(2.2)  min{K(p) : peIl(y,v2)} =sup { /Xud(% —Y) : ué€ Kl(X)},

where
Ki(X)={u: X >R : |ulx) —u)| <|lr—y| Ve,ye X}

1s the set of 1-Lipschitz functions in X.

The maximizers u* of the right-hand side of (2.2) are called Kantorovich (trans-
port) potentials.

In the particular case where v; = f LY and vo = f_ LN, for adequate Lebesgue
integrable functions fi and f_, Evans and Gangbo in [7] find a Kantorovich po-
tential as a limit, as p — oo, of solutions to the p-Laplace equation with Dirichlet
boundary conditions in a sufficiently large ball B(0, R):

{ ~Ayup = fr—f- i B(0,R),

(2.3)
up =0 on 0B(0,R).

Moreover, they characterize the Kantorovich potential by means of a PDE.

Evans—Gangbo theorem. Let f,,f_ € LY(Q) be two nonnegative Borel func-
tions satisfying the mass balance condition fQ f+ = fQ f— . Assume additionally
that fy and f_ are Lipschitz continuous functions with compact support such that
supp(f4) Nsupp(f-) = 0. Let u, be the solution of (2.3). Then the u, converge
uniformly to u* € K1(Q) as p — oo. The limit u* verifies

/Qu*(l“)(ﬂr(l“) = [-(2)) de = maX{/ w(@)(f+(z) = f-(2))dz : ue Kl(Q)},

Q

and moreover, there exists 0 < a € L>(Q) such that
f+ — f- = =div(aVu*) in D'(Q).

Furthermore, [Vu*| =1 a.e. in the set {a > 0}.
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The function a that appears in the Evans—Gangbo theorem is the Lagrange
multiplier corresponding to the constraint |Vu*| < 1, and it is called the transport
density. Moreover, what is very important from the point of view of mass transport
is that Evans and Gangbo used this PDE to find a proof of the existence of an
optimal transport map for the classical Monge problem, different to the first one
given by Sudakov in 1979 by means of probabilistic methods ([11]; see also [2]
and [4]).

2.2. The mass transport problem with import/export taxes

Assume (following [13]) that a businessman produces some product in some fac-
tories represented by f1 in  (note that fy encodes the amount produced and its
location). There are also some consumers of the product in £ with a distribution
given by f_ also defined in Q. The goal of the businessman is to transport all the
mass (there is an infinite-cost penalty for not transporting the total mass) f; to f—
(to satisfy the consumers) or to the boundary (to export the product). In doing
this, he pays the transport costs (given by the Euclidean distance) and when a
unit of mass is left at a point y € 9 an additional cost given by T,(y), the export
taxes. He also has the constraint of satisfying the demand of the consumers (there
is also an infinite-cost penalty for not covering the demand), that is, he has to
import product, if necessary, from the exterior (paying the transport costs plus
the extra cost T;(x), the import taxes, for each unit of mass that enters 2 at the
point x € Q). He has the freedom to choose to export or import mass provided
he transports all the mass in f and covers all the mass of f_, and of course the
transport must satisfy the natural balance of masses. Observe also that, by assum-
ing that €2 is convex, we guarantee that the boundary of §2 is not crossed when the
mass is transported inside €2. This is the only point where we use the fact that Q
is convex.

His main goal is to minimize the total cost of this operation (distribution of
production to satisfy consumers with export/import payment if convenient, mini-
mizing the total cost that is given by the transport cost plus export/import taxes).
In other words, the main goal is, given the set

MT(QAxQ): LQ=f.LVLQ
A(f+,f_>::{ pe MU D) mApul 8= . }
and moF#ulL Q= f_LYLQ
to obtain
min{/ﬁ ﬁ|9c—y|du—|—/é}QTid(ﬂ'H#éu)—i—/aQTed(ﬂ'g?%ﬁu) : uGA(f+,f_)}.

As we will see in the next section, this is the description of the mass transport
problem involved in the above maximization problem obtained by the limiting
procedure on (1.1) as p — oo.

To clarify this relation, let us give the following argument. A clever fellow
proposes to the businessman to leave to him the planning and offers him the
following deal: to pick up a unit of product at 2 €  he will charge him ¢(x), and
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to pick it up at € 99Q, T;(x) (paying the taxes the clever fellow); and to leave
a unit of product at the consumer’s location y € Q he will charge him (y), and
for leaving it at y € 99, T.(y) (paying the taxes the clever fellow). Moreover, he
proposes that he will do all this in such a way that

(2.4) p(z) +¥(y) < |z —yl
and
(2.5) —T;<¢ and —T, <1 on Q.

In addition he guarantees some compensation (assuming negative payments if nec-
essary; that is, ¢ and 1 are not necessarily nonnegative). Note that (2.4) is a
natural requirement since, otherwise, the businessman could do the job by him-
self and that (2.5) is also natural since, otherwise, the fellow makes a gift to the
businessman. Observe also that (2.4) and (2.5) imply

(26) 7Tl(1') 7Te(y) S |1'7y| Vm,y€89,

which is a natural condition because it says that if one imports some mass from x
and exports it to y, he gets no benefit. This condition, for z = y € 012, says that

E(JT) + Te(l‘) Z 07

i.e., at a given point the sum of exportation and importation taxes is nonnegative.
We now introduce the operator J : C(Q) x C(Q2) — R, defined by

(o, t) = / (@) fo () dr + / $(y)f— () dy,

and let

B(T;,T.) = { (%) € CO) x C@) : () + () < |~ yl, }

*Ti S 2 7Te S Z/f on 99
The aim of the fellow that helps the businessman is to obtain

sup {J(,9) : (¢,9) € B(T;, Te)} -

Now, given (¢, 9) € B(T;,T.) and u € A(f+, f—) we have

() = / (@) f4 (x) da + / $(y)f—(y) dy
:/ﬁw(m)dﬁ#ﬂf/m <Pd7f1#/~t+/§w(y)dﬂz#u*/m Ydmadp
S/§X§|»’U—y|du+/mTid(7T1#u)+/89Ted(772#u).
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Therefore,

suplJ(9,9) + (¢,0) € BT, T.)}
en <wf{ [ fomidut [ T+ [ Tt pe Al s}

This inequality will imply that the businessman accepts the offer. However, in
fact, there is no gap between the two costs as we will see in the next duality result
whose proof uses ideas from [13].

Theorem 2.1. Assume that T; and T, satisfy
(2.8) —Ti(z) —Te(y) < |z —y| Va,ye .
Then,

sup {J(,%) : (¢, ¢) € B(T3,Te) }

(29 = min{/ﬁ |z —yldu Jr/mTidm#,u +/E}QTed7r2#,u P pE A(f+,f,)}.

xQ
Proof. By (2.8), there exist g, € C(Q), voj90 < Ti and 1oy < T, such that
(2.10) —wo(x) —tholy) <lr—y| Vr,yel
In fact, let L < 1 (close to 1) be such that

—Ti(x) = Te(y) < Llz —y|  Va,y € 09,

and let
wo(z) = min {Ti(y) + Llz —yl}.

Taking x = y € 0f) we obtain

pu(e) = min {T(y) + Llz — yl} < Ti(@).

Now, we have
*Ti(fﬂ)*L|$*y| <Te(y) Vm,y€69,
and there exists a small € > 0 such that
—Ti(z) — Lz —y| +e < Te(y) Va,yec o
Hence

Yo(y) = — ;gia%(ﬂ(fv) + Llz —y| — &) < Te(y).

Finally, we have,
wo(x) +vo(y) = min {Ti(2) + L|z — 2[} - erelgg)(Ti(Z) +Llz—vyl) +e

>—Llz—y|l+e>—|z—y|
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Now, the proof follows the ideas of the proof of the Kantorovich duality theorem
given in [13]. Let us introduce operators

0,V :C(QxQ)—[0,+0cq].
The operator O is defined by

0 if u(z,y) >~z -yl
+oo else.

O(u) == {
Before defining the operator ¥, let us define, for u € C(Q x Q),
Ay =] V)€ C(Q) x C(Q) = u(z,y) = ¢(w) +1(y),
- T, >¢ T.>¢pondQ |

In the case A(u) # ), we have that there exists

(2.11) min / (@) o () da + / B(w) () dy.

(p,9)€A(u)
In fact, fix (¢,v) € A(u). Then, for any (¢, 1)) € A(u), we have
(p(iﬂ) - (ﬁ(it) = &(y) - 1/1(?/) =« vxvy € ﬁv

consequently
/Q (@) o () dir + / W) f- () dy = / (@) fo () da + / D) f- () dy
+a / (fo(@) — f-(z)) dr.
Q

Moreover,

a =) - @) <Ti(z) - p(x) <k
and

a=(y) —p(y) > P(y) — Te(y) > —ko.

Therefore, given a sequence {(¢n,¥,)} minimizing (2.11), since

Qp = Qﬁn(iﬂ) - @(x) = &(y) - 1/%(2/)7

with —kg < a, < ky, if we let

a:= lim ay,
n—oo

and ~

p=¢+ta, Yv=9%-a
we have that (p,) is a minimizer of (2.11).
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Having in mind (2.11), the operator ¥ is defined by

U(u) = <w,$gi\<u>/99"<m)f+<m) d$+/9¢(y)f—(y) dy if A(u) #

+00 if A(u) =

Clearly, © and ¥ are convex functionals on C(2 x Q). By (2.10), for ug(z,y) :=
wo () + Yo(y), Alug) # 0 and ¥(ug) < oo. Moreover, since ug(z,y) > —|z — yl,
we have ©(ug) = 0 and O is continuous at ug. Then, we can apply the Fenchel-
Rockafellar duality theorem (see for instance Theorem 1.9. in [13]) to get

(2.12) max  [~©°(—p) — W) = inf  [O(u) + U(u)],
HEM(QX) ueC(2xN)

where ®* and ©* are the Legendre—Fenchel transforms of the operator ® and ©,
respectively.

Now, we compute both sides of (2.12). For the right-hand side we obtain,

inf _ [O(u) + ¥(u)] = inf _ U(u)
ueC(2xQ) u?xeyfgfﬁl:y\
A # 0
-t [ e@n@dos [ swr-w.
@, € C(Q) : Q Q

e(z) + ) =2 —l= —yl
T; > ¢, Te > 1 on 9Q

from which it follows that

(2.13) uec%(nﬁfxﬁ) [O(u) + ¥ (u)] = —sup{J(p,v) : (p,v) € B(T;,Te)} .

For the left-hand side of (2.12) we first compute the Legendre-Fenchel transforms
of the operators © and ¥. For u € M(Q x Q), we have

O (-n) = sw (= [ ule.g)duta.y) - Ow)

u€C(QxQ)

= sup —/ u(z,y) dp(z, y).

u € C(Q x Q) aQxQ
u(w,y) 2 —|z -yl

Hence,

0% (—p) = L |z —yldu(z,y) if pe MH(QxQ)

QxQ
+00 otherwise.
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On the other hand,

U™ ()
— Ui;}:{xé?) (/ﬁxﬁuw,y) du(z,y) *(¢’$érj(u)/§2¢(m)f+(m) dx +/Qw(y)f’(y) dy)
= o (e vt = [ e@ate)ds= [ st

on 9Q

= s ([edmn e vim) = [ o@f@de— [ 00)f-() du).

e, € C(Q) Q
Ty 2 ¢, Te 2 ¢
on 99

Hence,
* swp [ (et v it we AL L)
Vi) =9 025 ST on 700
+00 otherwise.
Therefore,
max _[=O0%(—p) =¥ (p) = -  min _[07(—p) + ¥ (u)]
HEM(Q2XQ) HEM(O2XQ)
=—  min _ /_ _ |z —yldu(z,y) +/ Tidmy#pu +/ Tedm# .
neMt@x) JOxq a0 o0
ne AU )
Then, from the above expression, (2.13) and (2.12), we get (2.9). O

Remark 2.2. We remark that we can prove the above result for any lower semicon-
tinuous cost function. Nevertheless, we have restricted ourselves to the Euclidean
distance for the sake of clarity.

3. Duality, Kantorovich potentials and optimal export/im-
port masses

In this section we prove the main results of this paper. As we have mentioned in
the introduction, our approach is based on taking the limit, as p goes to infinity, of
least energy solutions of the p-Laplacian problem (1.2). This will give a complete
proof of the duality theorem (note that this proof is different from the previous
one). Moreover, this approach also gives more detailed information for the trans-
port problem under consideration. It provides an explicit approximation of the
Kantorovich potential u., and describes the required import/export masses on the
boundary. In addition, we obtain transport plans constructed via transport maps.

First, we prove that we can take the limit of the functions wu, solving the
minimization problem (1.1) as p — oo.
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Theorem 3.1. Assume that g1 and go satisfy (1.3). Then, there is a sequence
Di — 400 such that upy, — Use uniformly as i — 0o, and ues is a mazimizer of the
variational problem

max{/ﬁw(m)f(x) dx: we W;;?;Jg)v [V w]| oo ) < 1}.

Proof. Assume p > N. We first show that there exists a function w € W% ()
with [|[Vw| pe ) < 1. Define

w(z) = max {91(y) — [z —y[}.

We have that |w(z) — w(y)| < |z — y| and (taking © = y € I in the definition
of w)
w(z) > gi1(x) for x € ON.

Moreover, as (1.3) holds, we have
91(y) =z —yl < ga(x) Va,y € 09,
and hence we obtain

w(z) = max {91(y) =z —y|} < gox) Ve

Therefore, w € W;;?;Q(Q) with ||[Vw|| ) < 1. Moreover, for any such w,

61 - [ <t [wur- [ e [iver- [ B g

As a consequence of Theorem 2.E in [12], there holds Morrey’s inequality
(3.2) [ ul| Lo () < CallVullrry for any u € WyP(Q), p> N,

with a constant Cq not depending on p. Since (u,—maxsq g2)", (up—minga g1)~ €
WO1 P(Q), applying inequality (3.2), we get

lug [l (0) < Co lVupll o) + | max ga,

and
[up l[L=(0) < Co l[VupllLe(o) + [min g .

Hence, we have
upll Lo () < 2Ca|[VupllLe@) + 1911l 00) + 192l L (902)-
That is,

(3.3) [upllLo () < C1[[Vup|lLeo) + Co,
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where the constants C; are independent of p. Moreover, from (3.1), using Hélder’s
inequality and having in mind (3.3), we get

1
: / Vupl? < Cs (Jupllrey + 1) < Ca ([ Vupl oy + 1),

from which it follows that
(3.4 IVl <pCs ¥p> N,

with all the constants C; independent of p. From (3.3) and (3.4), we obtain that
the WP (Q)-norms of the wu, are uniformly bounded for p > N in R. As a simple
consequence, we have that

|up(x) = up(y)| < Co | —y|' NP,

with Cg not depending on p. Then, by the Morrey—Sobolev embedding theorem
and the Arzela—Ascoli compactness criterion we can extract a sequence p; — 00
such that

Up, = Uso uniformly in Q.

Moreover, by (3.4), we obtain that
([Vtoo|loo < 1.

Finally, passing to the limit in (3.1), we get

/Quoo(x)f(m) dr = max{/gw(m)f(x) dr: w e ngl"f;z(Q), [Vl o) < 1},

whic is what we wanted to prove. O

Now we present the general duality result that proves that the businessman
and his business partner pay the same total cost under the natural condition (2.6)
(note that the strict inequality is not necessary), giving a positive answer to the
main problem stated in the introduction. In this result the role of T; is played
by —¢1, and the role of T,, by g2 ((2.6) is, then, equivalent to (1.3)).

Theorem 3.2. If g1 and go satisfy (1.3) then
[ @7 (0) £ (@) =50 (T(0,0) + (0,0) € Bl-gn.2)

(3.5) = min{/ﬁxﬁu —y|du —/émgldm#u —|—/69g2d772#u : ueA(f+,f_)},

where Uy s the mazimizer given in Theorem 3.1.

Before proving this result we make the following observation.
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Remark 3.3. Fix u € A(f+, f-), a minimizer of (3.5). If p; := m#u, t = 1,2, by
the Kantorovich-Rubinstein theorem, we have

min{/ﬁxﬁ|mfy| dv:ve H(ul,ug)}
(3.6) :max{/ﬁud(ul —p2): uE Kl(ﬁ)}.

We show that u is an optimal transport plan for (3.6). Indeed, if v, € TI(p1, p2)
is an optimal transport plan for (3.6), then, as u € II(u1, pe),

/77|m—y|duug/77|m—y|d,u.
QxQ QxQ

Now, since

/ g1d7r1#vu—/ gzdﬂz#vuz/ gldm—/ g2 dpia,
o0 o0 o0 o0

/_ _|x—y|dz/u—/ g1 dﬂl#l/#Jr/ g2 dmaFtv,,
axa aQ a0

S/ﬁilm—yldu—/ gldu1+/ g2 dpia.
OxQ o0 o0

On the other hand, since v, € A(f4, f-),

/77Imfy|du*/ g1du1+/ g2 dpio
QxQ o0 o0

S/_ _Iw—yldvu—/ gldﬂl#l/u-i-/ g2 dma#v,,.
o0 20

QxQ

we have

Therefore, the above inequality is an equality and then

/, ,Iw—yIdMZL |z —yldv,,
QxQ QxQ

and consequently p is an optimal transport plan for (3.6).
Let u* be a Kantorovich potential in (3.6). Then

/_ _Iw—yldu=/_U*d(u1—uz)-
QxQ Q

Hence,

/uoo(f+*ff)dw:/_ _Iw*yldu*/ g1du1+/ g2 djz
Q QxQ o0 o0

=/_u*d(u1—uz)—/ gldu1+/ g2 dpia,
Q o0 o
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and, then,

/ﬁ“ood(ﬂl_ﬂ2) > /Quoo(er—f—)der/mgldul—/mgﬂm Z/ﬁU*d(Ml—m)-

That is, ue is also a Kantorovich potential for (3.6). From this last expression we
also deduce that
Uoo = gi on supp(p; L0Q), i=1,2.

We point out that there is an important difference between the problem we
are studying and the classical transport problem; there are masses, the ones that
appear on the boundary, that are unknown variables. We will see in the next
result that by taking the limit of u,, minimizers of (1.1), we obtain, not only the
potential 1., but also these masses. This result also proves Theorem 3.2. This is
an alternative proof of Theorem 2.1 (note that in the previous proof the Kan-
torovich potentials were not used). Note that we first assume the more restrictive
condition (3.7), that is, a strict inequality in (1.3), and then we obtain the result,
assuming (1.3), by an approximation argument (see below).

Theorem 3.4. Assume that g1 and g2 verifies
(3.7) 91(z) — g2(y) < lx —y| Va,y €.

(1) Let u, be a minimizer of the problem (1.1), and set X, := |Duy|P~2Du,.
The distribution X, - 1 defined by

(38) (X)) = /Q X, V- /Q fo forpe CR®Y),

is a Radon measure supported on Of).

(2) There exist Radon measures X in Q and V in O, and a sequence p; — +00,

such that
Xp, = X weakly™ in the sense of measures in €,
Xp, -n =V weakly* in the sense of measures in O,
(3.9) / VpdX :/ f<pd:c+/ edV Yy e CHQ).
Q Q oQ

(3) Let ux be as stated in Theorem 3.1. Then, us is a Kantorovich poten-
tial for the classical transport problem for the measures f+ LN L Q + VT and
f-LNLQ+ V.

Proof. We begin by proving (1). Remember that we are considering p > N.
Let u, be a minimizer of the problem (1.1), which is a solution of the obstacle
problem (1.2), and let X, = |Du,|P~2Du,. Then, we know that

(3.10) —div(X,) = f in the sense of distributions in Q.
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This implies that the &), -1 defined in (3.8) is a distribution supported on 9. We
show that, in fact,

(3.11)  supp(X,-n) C {z € I : up(x) = g1(x)} U{z € 0Q : up(z) = g2(x)}.

Let ¢ be a smooth function such that

supp(p) N ({2 € 992 : up(x) = g1(x)} U{z € 00 : up(x) = ga(2)}) = 0.

Then, there exists 6 > 0 such that u, + t¢ € Wy (Q) for all [t| < §. Hence,

since u,, is a minimizer of the problem (1.1), we have

/f(“p+t80)d$_/fupdm</ |Vup—|—tV<p|P /|Vup|p
Q Q

Dividing by ¢ and taking the limit as t — 0, we get

/Xp~Vg0d:c:/f<pdm,
Q Q

from which it follows, having in mind (3.10), that
(X -m,) = 0.

Consequently (3.11) holds.

On the other hand, if ¢ is a positive smooth function whose support does not
touch {z € 99 : up(x) = go(x)} (which is separated from {x € 90 : u,(x) = g1(2)}
by the continuity of u, and the strict inequality in (3.7)) then there exists § > 0
such that u, +tp € WLP (Q) for all 0 < ¢t < §. Working as above we get

91,92
(X, - m,9) > 0.

And similarly, if ¢ is a positive smooth function whose support does not touch
{z € 0Q : up(x) = g1(x)},
(X -m,) <0.

Consequently, &), - 1 is a Radon measure. The proof of this fact follows by writing
X, n =T+ Te with (T}, p) = (X, - 0, pp;) with ¢; € C5°(RY) such that
1, ze€dQ, up(z) = q1(z),
p1(z) =
0, z€099Q, up(z) = g2(z),
and

(1 2e w0
P2 - 0, = 8Q7 ’u,p(l') = gl(m),

and noticing that the above arguments show that 77 and —7T, are nonnegative
distributions and so Radon measures. Moreover,

(3.12) supp((&X, - 1)) C {z € 90 : uy(z) = g1(2)},
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and

(3.13) supp((Xp - 1)7) C {z € 90 : up(x) = ga(x)}.

In addition, we have that (3.8) is satisfied for test functions ¢ € WP(Q) and
we can rewrite it as

(3.14) [avo=[ro+ [ wd,-n.
Q Q a0
Proof of (2). Using (3.7), there is 0 < L < 1 such that
g1(z) —g2(y) < Llxz —y| Va,y € oN.
Therefore, if we define
= iInf Llz —
w() = inf (92(y) + Llz —yl),
we have that w is an L-Lipschitz function in § satisfying
g1(x) < w(x) < golx) Va e .

By (3.14), (3.11), (3.12), and (3.13), we have
[ =wr= [ %V, —w) = [ w—wai,n)
= [ & - V(up —w) — 1 —w)d (X, -n)"
Lo [ e
—w)d(Xp-n)".
" /{ e wd ()

Then, since g3 — w < —¢, with ¢ > 0, and g2 — w > 0, by Holder’s and Young’s
inequalities, it follows that

[vwrse [ a@ent< [ w-wrs [ 2 v
Q o0 Q Q
1/p’ , L 1
§C+(/ |Vup|p> T Lo §C+—,/ (Vu,l? + = |9
Q P Jo p

Hence,
LY N 1
(1==7) [IVwl+e [ a@,-m*<c+-9l.
p Q o9 p
Therefore, since 0 < L < 1 and ¢ > 0, we obtain that there exist positive con-
stants A; and As, such that

(3.15) /|Vup|p§A1, Vp>N+1,
Q
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and

(3.16) d(X, -t <Ay, Vp>N+1
o0

Moreover, working similarly, replacing the function w by the function

w(x) = sup (g1(y) — Llz — yl),
yeoIN

we get

(3.17) d(X,-n)~ <Az, Vp>N+1
oN

As consequence of (3.15), we have that
(3.18) the measures X,LYLQ are equibounded in €,

and from (3.16) and (3.17), we have that

(3.19) the measures X, -nHY 1L 90 are equibounded on Of).

295

From (3.18) and (3.19), there exists a sequence p; — oo, which we consider as
subsequence of that in Theorem 3.1 and denote in the same way, and there exist

Radon measures X in 2 and V in 02 such that

(3.20) X,, = X  weakly™ as measures in ,
and
(3.21) Xy, -n—V weakly” as measures on 0f.

Moreover, we have that (3.9) holds true. That is, formally,

—div(X)=f inQ
X-n=V on 0f).

Proof of (3). For the above sequence {p;}, Theorem 3.1 states

Up, = Uso uniformly in Q, with ||V |e < 1.

Set ¢ = U in (3.14) with p = p;. Then taking the limit as ¢ — oo and having

in mind (3.21), we get

(3.22) lim Xp, - Voo = / fuoo —|—/ Uoo AV.
Q Q Ele)

1—00

Let v, be smooth functions converging uniformly to us as € N\, 0 and satisfying

[[Vve]|loo < 1. By (3.14), we have

/QXpi~Vuoo:/Qf(uoofvE)Jr/m(uoo—vE)d(Xpi~77)+/QV1)Ed(Xpi~77).
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Then, by (3.20), (3.21), and (3.22), taking the limit in the above equality as i — oo,
we obtain

(3.23) /quooJr/muoodV:/Qf(uoo—ve)Jr/m(uoo—vE)dVJr/QVvédX.

Now we are going to show that, as € \ 0,

X
(3.24)  Vwu. converges in L?(|X]) to the Radon-Nikodym derivative 3k
To do so we use the technique used in Theorem 5.2 of [2]. We first notice that the
functional ¥ : [C(Q,RY)]* — R defined by

u):éh%_ﬂ%w

is lower semicontinuous with respect to weak convergence of measures for any
w € C(,RY). Next, we observe that

X, 2
3.25 lim limsu /‘ Pi Vo d|&,,| =0
(3.25) 0t el o 1T, ] |
where the v, are smooth functions converging uniformly to us with [|[Vu,|le < 1.
Indeed,
X, 2 -V,
/ ’ P d|X,,| < 2/ [Vuy, pi’l(l — M) dr
< 2/ |V, |Pi 2 (|Vupl.|2 — Ve ~Vupl.) dz + wp,
_Q/fuilh dl‘""/ (upi_vﬁ)dxpi'n'i_wpw
o0

where wy, 1= sup;5( ¥ ! — ¥ tends to 0 as i — co. Then, having in mind (3.21)

and the uniform convergence of u,, and v. to us, we obtain (3.25). Now, from
(3.25), taking into account the lower semicontinuity of ¥ and passing to the limit

as i — 0o, we obtain
X
lim / ’— — Vv
e—0t O |X|

Consequently, (3.24) holds true.
Now, having in mind (3.24), if we take the limit in (3.23) as € \, 0, we get

(3.26) /fuoo / uoodehm/VvE d|X| /d|X|.
o9 Q

Given a function ¢ € C*(Q) with ||[Vip|l« < 1, by (3.9) and (3.26), we have

=0.

X
L/uwfdw+/1ude::/dmﬂz/n——~V@ﬂX|
Q o0 Q Q |X|
=/VWX5/WM+/¢W.
Q Q o0
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Then, by approximation, given a Lipschitz continuous function w with | Vwl|s < 1,

we obtain
/uoofdm—i—/ uoodVZ/wfdx—i-/ wd).
Q o0 Q G}

Therefore u., is a Kantorovich potential for the classical transport problem asso-
ciated to the measures f, LVNLQ + VYVt and f_ LVLQ + V~. Observe that the
total masses of both measures are the same. O

This provides a proof of Theorem 3.2, and moreover we have that YVt and YV~
are import and export masses in our original problem. In fact, they correspond
to the import/export measures once we consider the suitable associated trans-
port plan.

Proof of Theorem 3.2. Tt is enough to show that
@) (fil@) = 1 @) da
=min{[ 7|m—y|du—/ gldm#qu/ godmaFp @ € A(f+,f—)}-
a0 a0

QxQ

Let us first assume that
g1(z) —g2(y) < |z —y| Vaz,y €,

and take f; := LY Q4 VTt and foi= f_LYLQ+ V™, V being the measure
found in Theorem 3.4. We have that

/_uood(fl—f;): min /__|x—y|du=/__|m—y|duo,
Q vell(fi,f2) JOxQ QxN

for some vy € H(fl, ﬁ) Then, since m1 #1900 = VT and mo#1pyLoQ =V,

/uoo(f+*f7):/7 7|=’E*y|d1/0*/ gldﬂl#VoJr/ go dma vy,
Q QxQ o0 o0

and consequently, since vy € A(f4, f-), the above equality together with (2.7)
gives

inf{/ﬁXQIx*yldu*/E}Qg1d7r1#u+/mgzdﬂz#u : /~L€u4(f+7f7)}

- / Usolfy — 1) da,
Q

and the above infimum is in fact a minimum attained at vyg.
The result under condition (1.3) now follows by approximation. Indeed, let g1 p,
and g2, be continuous functions on the boundary 95} satisfying

gl,n(m) - gZ,n(y) < |£C - y| vxvy S aQ»

and
gin = g; uniformly on 09, i=1,2.
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By the previous argument, there exist us , € WH(Q), with ||[Vesenlleo < 1
and g1.n < Uoo,n < g2,, 00 0, and there exist measures p, € A(f4, f—) satistying

/ oo (@) (f1 (2) — f— () da
Q

= /7 _ |1' - y| d:un - / gl,nd’]rl#/"fn +/ g2,nd7r2#/4’fn
Q o0 o0

xXQ

(3.27) = min{/ﬁ _z—yldu _/g}QgLndﬂ-l#u —l—/émgzmdﬂz#u : uEA(f+,f_)}.

xQ

By the Morrey—Sobolev embedding theorem and the Arzela—Ascoli compactness
criterion we can suppose that, passing to a subsequence if necessary,

Uso,n = Uso  Uniformly in €.

Moreover,
[Vusslloo <1, and g1 < oo < ga on 99,

On the other hand, we show that

(3.28) udﬁxﬁ)gl¥ﬁ¢w+f4mpm ¥neN
Indeed,
(3.29) M@x@:éﬁ@ﬂﬁwﬁwwm

Now, if we define
fin, = iy, — L L(OQ x OQ),

we have fi,, € A(f+, f-), and

/7 _ |z — y| djin, — / g1 dm1 i + / go dma#fin
QxQ o0 o0

:/7 7|ﬂc*y|dun7/ gldm#unJr/ g2 dmofpin
QxQ o0 o0

- / (2 = ] — gun@) + g2.0(4)) dpin.
OOxON

Hence, since
[z =yl = g1.n(2) + g2.n(y) >0 Va,y € 09,

from (3.27), we deduce that

[1n (D9 x O9) = 0.
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That is, there is not transportation of mass directly between the boundary, and
hence all the mass exported will come from fi (so, mo#un (0Q) < [, f+), and all
the mass imported will go to cover f_ (so, m#u,(9Q) < [, f-):

/Q f4 (@) do + mipn (09)
= Mn(ﬁ x ﬁ) > Mn(ﬁ x 08Q) + pn (99 x ﬁ) — pn (02 x 09)
= 0  09) (09 % T) = motan (09) + 1 s (99),

and we get

Todbpin (00) < /Q f4(@) dz,

(similarly, we get m#u,(0Q) < [, f-(x)dz). Consequently, by (3.29), we ob-
tain (3.28).

Now, we can assume that g, — o weakly* as measures in Q x Q, with uo €
A(f4, f-). Then, passing to the limit in (3.27) we conclude the proof. O

3.1. Construction of transport plans via transport maps

Once a possible pair of export/import masses on the boundary is fixed, call it
(V*,V7), and an optimal transport plan p is taken for fLLNL Q + V* and
F-LNLQ+ V~, which can be chosen such that (09 x 092) = 0 because of con-

dition (1.3), we know which part of f,, we call it f,, is going to be exported and
which part of f_, we call it f_, is covered by imported material,

fr=m#pLQx0Q) and f_ =m#(ulLoQ x Q).

Now, we state two facts.

1. Existence of optimal maps. Since f+ and f, are absolutely continuous
with respect to the Lebesgue measure, by the Sudakov theorem (see Theorem 6.2
in [2]), there exists an optimal map 3 : supp(f4) — 99 pushing f forward to V7,
and there exists an optimal map t; : supp(f_) — 9Q an optimal map pushing f_
forward to V. These maps are described by

go(t2(z)) + o — ta(@)] = min(go(y) + |z —yl) for ace. 2 € supp(f+),

gi(tr(@)) — o = t1(2)] = max(g1(y) — o —y|) forae xe supp(f-)-

Moreover, there exists an optimal map o : supp(f4) — € pushing f; — f+ forward

to fo— f_.
All these maps are such that the measure defined, for p € C(Q x Q), by

/_ (@, y)du* (@, y) = /_ (@, ta(2) . (2)da
Q Q

Qx

T /_ (@ to (@) ([ (2)— o (2)der + /_ (1 (9), 1) F- (v)dy,
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that we write formally as (we will use this formal notation afterwards)

15 (@) = f4(@)0ymty (@) + (F+(@) = Fr(2))6y—to @) + = ) 0umtr (9

is an optimal transport plan for our problem, which is given in terms of transport
maps.

2. Kantorovich potentials. The limit u., is a Kantorovich potential, in the
classical sense, for each of the three transport problems that appears in the above
description, the transport of f+ to VT on 99, of V= on 89 to f_, and of f+— f+
to f_ — f_ inside €. In fact, there hold

Uoo () = g2(ta(x)) + | — ta(z)|  for a.e. x € supp( ~+),

Uoo(x) = g1(t1(x)) — | — t1(x)|  for a.e. x € supp(f-),
Uoo () = Uoo (to(x)) + |z — to(x)| for a.e. x € supp(fy — fy).

Hence, on the support of the mass that is exported from  and on the support of
the mass that is covered by mass imported from 02, the potential is given only in
terms of g2 and g1, respectively:

Uso(T) = ;gé%(gQ(y) + |z —y|) for a.e. z € supp(fy),

Uoo(T) = ;Iel%}é(gl (y) — |z —y|) for a.e. z € supp(f_).

To show this claim we argue as follows. Let tg, ¢t; and t2 be any optimal
transport plans given as above. Then it follows that

15 (@) = f(@)0ymty (@) + (F+(@) = Fr(2))0ymto @) + = W) 0umrr(y)

is an optimal transport plan for our problem. Now, we can take, for each x €
supp(f+) a point y, € 9Q where minyecan(g92(y) + |z — y|) is attained in such
a way that 3(z) = vy, is Borel measurable (see for example [5]), and for each
x € supp(f_) a point z, € 92 where max,coa(g1(y) — |z — y|) is attained in such
a way that t;(z) = 2, is Borel measurable. Then there hold

92(t2(2)) + |z — t2(2)] = ga2(ta(@)) + | — T2(2)),

91(t1(2)) — |z = ti(2)] < g1(t1(2)) — | — E(2))],
and the cost of the transport for the plan

Fr(@)6ycty ) + (F (@) = Fr(2))0y—to(a) + - )00ty ()

is, in fact, equal to the one for p*. Hence, the above inequalities are equalities.

On the other hand, by substituting this particular p* in (3.5), a careful com-
putation, using that |Vus| < 1 and that us = g1 in supp(V ") and ue = g2 in
supp(V7), gives that us is a Kantorovich potential for the transport of f+ to VT
on 99, of V= on dQ to f_, and of f+— f+ to f_ — f_ inside Q. Alternatively, one
can use the Dual Criteria for Optimality and Remark 3.3.

Then, from these facts, we conclude that all the relevant information to build
transport maps (transport rays and sets; see [13], [14]) for this problem is encoded
by the limit function .
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4. Examples

In this section we provide simple examples for which the solution to the mass
transport problem described in §2.2 can be explicitly computed.

Example 4.1. Let Q := (0, 1), f1 := X(0,1/2), f~ := X(3/4,1), 91 = 0, and go = 1/2.
For these data the equality (3.5) becomes

1/2 1
dx — d
L Jmax /0 u(x)dx /3 u(x)dx

@)~ uw) < 2~ yl /4
0% u(©), u(®) < 1/2

. 1
(41)  =min { / @ = yldp + 5 (r2#41(0) + mo#tp(1)) : € A+, ff)}'
[0,1]x[0,1]
It is easy to see that the maximum in (4.1) is taken at the function u., defined by

[ a+1/2 if ze0,1/4],
Uso(z) = 1—z if xell/4,1],

for which
1/2 1 9
/ Uoo(T)dx 7/ Uoo(T)dr = —.
0 3/4 32

Moreover, for pu(z,y) = X(0,1/4)(%) 6y=0 + X(1/4,1/2) (%) Oy—z+1/2, @ simple calcula-
tion shows that mi#u = fy and ma#u = f— 4 do/4, and
9

1
/ |z — yldp + = (ma#u(0) + mo#u(l)) = —.
[0,1]x(0,1] 2 32

Therefore p is a minimizer in (4.1). This optimal plan exports the mass in (0,1/4)
to the point 0 on the boundary and transports the mass from (1/4,1/2) to (1/2,1).
Observe that importing mass from the point 1 in the boundary is tax free.
Nevertheless, to import a little mass from that point would imply exporting more
mass to the point 0 where the taxes are sufficiently large to increase the total price
of the operation. Nevertheless if we decrease a little bit the taxes on 0 the situation
changes. Consider g1 =0 and go = 1/2 — b (0 < b < 1/2); for these data,

r+1/2—b if z€0,(b+1)/4],
Uoo(x) =< 1—2—b/2 if ze[(b+1)/4,1—b/4],
z—1 if xe[l-b/4,1],

and

p(z,y) = X(0,641)/4) (%) Sy=0 + X((b41)/4,1/2) () Oy=at1/2—b/4 + X(1-b/4,1) (¥) dx=1

realizes the maximum and the minimum in (3.5) with cost 9/32—b(b + 2)/10. Now
this optimal plan exports the mass in (0, (b 4+ 1)/4) to the point 0 on the boundary,
transports the mass from ((b+1)/4,1/2) to (3/4,1 — b/4), and imports the mass
to cover (1 —b/4,1) from the point 1 on the boundary.
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On the contrary, let us now increase the taxes on 0. Take g1 =0, g2(0) = 1/2+b
(0<b<1/2), and g2(1) =a (0 < a <1). In this case,

Uoo () =

x+1/2+0b if z€[0,1/4—(b—a)t/2],
aNb—(z—1) if z€[1/4—(b—a)t/2,1],

and

w(m,y) = X(0,1/4—(b—a)+/2) (T) dy=0
+ X (14— (b—a)t /2,1 /2— (—a)+ /2) (T) Oy—z g1 72— (b—a)t 2 T X(1/2— (b—a)*+ /2,1 /2) (T) Oy=1

realizes the maximum and the minimum in (3.5) with total cost 9/32 + b/4 —
((b—a)*)?/4. In this case we are exporting the mass in (0,1/4 — (b—a)*/2)
to 0, transporting the mass in (1/4—(b—a)*/2,1/2—(b—a)*/2) to (3/4,1), and
exporting the mass in (1/2— (b—a)*/2,1/2) to 1.

In the above example the masses fi and f_ do not satisfy the mass balance
condition. We now give another example in which the mass balance condition
on the masses is satisfied, in order to show the difference between this transport
problem and the classical one.

Example 4.2. Let Q := (0,1), f1 := X(0,1/2), f- := X(1/2,1), 91 = 0,and go = 1/2.
For these data, the maximum and the minimum in (3.5) are taken at

x+1/2 if z€][0,1/8],
Uoo(x) =¢ —x+3/4 if x€[1/8,7/8],
x—1 if xe(7/8,1],
and p(z,y) = X(0,1/8) (%) dy=0 + X(1/8,1/2)(¥) Oy—at3/8 + X(7/8,1)(y) 02=1, and the
cost of this transport problem is 7/32. This optimal plan exports the mass in
(0,1/8) to the point 0 on the boundary, transports the mass from (1/8,1/2) to
(1/2,7/8), and imports the mass to cover (7/8, 1) from the point 1 on the boundary.

This transport problem would have coincided with the classical one if we had
put g2 = 1.

Finally, we give an example in which the import/export taxes coincide.

Example 4.3. Let Q := (0,1), f1 = X0,1/2), f- = X210, 91 = g2 = g,
g(0) :== 0, and g(1) := 1/2. Now, the maximum and the minimum in (3.5) are
taken in
x if z€][0,3/8],
Uso(z) =<¢ —x+3/4 if x€[3/8,5/8],
x—1/2 if x€[5/8,1],

and pu(z,y) = X(0,3/8) (%) dy=0 + X(3/8,1/2)(¥) Oy—at1/8 + X(5/8,1)(y) 02=1, and the
total cost of the transport process is —1/32. This optimal plan exports the mass
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in (0,3/8) to the point 0 on the boundary, transports the mass from (3/8,1/2)
to (1/2,5/8), and imports the mass to cover (5/8,1) from the point 1 on the
boundary. Observe that in this case the taxes are good enough to get benefits
from exporting/importing some mass.

5. Limited importation/exportation

In this section we show how to adapt the previous ideas to handle the case in which
to the previous setting we add pointwise restrictions on the amount of mass that
can be exported /imported.

Now, we only consider on the taxes T; and T, the restriction T; + T, > 0 on 9f)
and we take two functions M;, M. € L*°(99Q) with M;, M. > 0 that are going
to represent the limitations on importation/exportation mass across the bound-
ary. Accordingly, consider that the businessman has the restriction of limiting
the amount of mass by the pointwise quantities of M,(x) for export at = € 9
and M;(x) for import at x on the boundary. We then need to impose

- BQMeS—/Q(hfff)S M,

[2]9]

that says that the interplay with the boundary (that is, importation/exportation)
is possible. Now, the main goal is, given the new set

peEMTQxQ): m#ulLQ=fLVNLQ,

Ae(f+, =) = To#ul Q= f_LVLQ, ,
T 00 < M;, mo#ul0Q < M,

to obtain

min{ [ fe—sldu+ [ T+ [ Tadttn) : we A ).

xQ

In this situation, the dual problem proposed by the clever fellow is similar to the
previous one but with the following new conditions on the payments ¢ and 1. The
fellow proposes that he will undertake the transaction in such a way that (2.4) is
satisfied, but now his charges will not necessarily satisfy (here is the main difference
with the previous case) (2.5). Nevertheless he will pay the following compensation
when ¢ < —T; or ¢ < —T, on the boundary, in the amount of

Mi(_@_n)+ + Me(_w_Te)+-
o0 o0
We introduce the new functional J, : C(Q) x C(Q) — R, defined by
atow)i= [ofe+ [wr= [ Mico-1y - [ Mcw-1,
o Q 0

o0
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and the set
B = {(p, 1) € C(Q) x C[Q) : o) + (y) < [z —y]} .

Then the aim of the fellow is to obtain

sup Je(p, ).
(%1/1)635

In this situation we also get

sup Jie(p, )
(%1/1)635

< inf x — d+/ T:.d Jr/ T.d ,
ueAz(f+,f_){/QXQ| yldp (m1#n) - (Wz#u)}

and again we can show that there is no gap between the costs. In fact, if we now
consider the energy functional

wwi= [T [ @t [ i),

M;(x)(=Ti(x) —r) ifr < -=T;(x),
jlx,r)=4¢ 0 if —Ti(z) <r<T.(x),
Mc(z)(r — Te(x))  if r > Te(z),

the variational problem

where

5.1 in W
(5.1) eriin o e(u)

has a minimizer u, in W?(Q), which is a least energy solution (in an adequate
sense; see (5.5)) of the nonlinear boundary problem

—Apu=f in Q,
[VulP=2Vu -+ 9j(-u()) 30 on 9.
Then, we have the following result:

Theorem 5.1. Given the solutions u, to (5.1), there is a sequence p; — oo such
that up, — Uso uniformly. Moreover, u is a mazimizer of the variational problem

(5.2) max{/ﬂw(x)f(:c)dm—/émj(:c,w(:c)): w € Wh2(Q), | V|| 0y < 1}.

Proof. The proof is analogous to the proof of Theorem 3.1. Note that here we do
not need to impose a condition like (1.3), since to obtain u, we are minimizing over
all of WHP(Q) without any pointwise constraint, therefore we can use any w with
[Vw||Le() <1 as a test to obtain the required uniform bounds for ||Vu,| rr(q)-

Finally, we observe that to show (5.2) we use the fact that j(x,-) is lower
semicontinuous. O
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Theorem 5.2. Assume that T; and T, satisfy T;(x) + Te(z) > 0 on 0. Then,
there holds the duality result

[l @) = f-@de = [ ()

o0
=sup {Je(p,¥) : (o, %) € B}

(53) = min{/_ e —yldu+/ Tidm#w/ Todmottin: € Adlfy, )}
axa oQ oQ

Remark 5.3. Fix p € Ay(fy, f-) a measure at which the minimum in (5.3) is

assumed. If u; := m#p, ¢ = 1,2, by the Kantorovich-Rubinstein theorem, we

have

(5.4) {/ﬁ | —yldv:ve H(ul,ug)} = max{/ﬁud(m —f2): u€ Kl(ﬁ)}.

axQ Q
Following the lines of Remark 3.3 we have that p is an optimal transport plan

for (5.4), and us is a Kantorovich potential for (5.4). Moreover, us < —T; on
supp(p1 L 0€Q?) and use > Te on supp(pe L 0€).

The proof of Theorem 5.2 uses the following result and an approximation ar-
gument for the case T;(x) + Te(x) > 0 similar to that given for Theorem 3.1.

Theorem 5.4. Assume that T; and T, satisfy
Ti(x)+ Te(z) >0 Vaze ol

Let u, be a minimizer of the problem (5.1). Then:
(1) There exist Xp -n € L>®(0Q), —X, -1 € 0j(x,up) a.e. x € QN such that

(5.5) /{m Xy -np = /Q |Duy[P~2Duy, - Vo — /Q fo  forall p € WHP(Q).

There exists a sequence p; — 400 such that X, - n converges weaklyx in
L>®(09Q) to a function V € L*>®(9Q) with VT < M; and V= < M,.

(2) ueo is a Kantorovich potential for the classical transport problem for the
measures f4 LY L Q4+ VT dHN 1L 00 and f_ LY L Q+ V™ dHVN1LOQ.

Proof. The proof is similar to that of Theorem 3.4. Again, us, is a Kantorovich
potential for the new transport problem, and moreover, the variational approach
provides the required import/export masses on the boundary, V* and V™.

The only difference occurs when performing the following computations (we use
here the same notations as in the proof of Theorem 3.4).

We have that &), - 1 is a Radon measure with

supp((X, - n) ") C {z € 0Q 1 up(2) < ~Ti(2)},

(5.6) supp((Xp - m)7) C {z € 0N : up(x) > Te(x)}.
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We show that

(5.7) (X, -t < M,
and
(5.8) (%) < M.

For a positive smooth function ¢ we have

/ j(maup+t90)_j('r’up)
a0 t

(Xp - m, ) > limsup —
t—0t

Now, we observe that

7/ j(xvup+t<p) 7.7.(1"“1))
o

t
> — / My
{z€dQup(x)>Te(x)}
1
- —/ M (up +to —Te),
t J{weoniu, (@) +to(2)>Te (@) >up (@)}
> — / My
{z€dQup(x)>Te(x)}
- / Mep — — Meep.
{2€0Q:u, (2) +te(2)>Te (x) >up (x)} {2€0Q:uy(2)>Te (2)}

Hence,
Xp > —=McXqu,>1.y, 80 (Xp 1)~ < MeX{u,>T.}

Since we have (5.6), we get (5.8). Similarly, we obtain (5.7).

Consequently, we have that (5.5) holds true.

Taking ¢ = u, in (5.5) we get, taking into account the L>°-boundedness of u,,
(5.7), and (5.8), that there exists a constant C' such that

/|Vup|p:/fup+/ Xp-nu, < C.
Q Q o9

That is the measures XPEN L_Q are equibounded in . Therefore, there exists a
sequence p; — oo such that

Up, = Uso uniformly in Q,  with ||V |e < 1,

X,, — X weakly” as measures in (2,

and
Xy, - —V weakly” in L>(99).

Moreover, we have that

/VgodX:/ﬂpdm—k/ Vo Ye Q).
Q Q o0
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That is, formally,
—div(X)=f inQ
X-n=YV ondf.

From this point the proof is the same as that of Theorem 3.4.

Note that the proof of the approximation argument in this case is even simpler
since the measures V* and V~ are uniformly bounded by |[M;||s and || M.||oo
on 0f). ]

We remark that we have taken M; and M. to be L°°-functions only for sim-
plicity.

Finally, we give a simple example in which the limit on the export/import mass
increases the total cost and modifies the Kantorovich potential and the optimal
transport plan.

Example 5.5. Let Q := (0,1), f1 := X(0,1/2), f- := X(1/2,1), 91 = 0, and go = 1/2.
For the first case studied, in which we do not limit the amount of mass that enters
or leaves the domain (say M; = M, = 4+00), in Example 4.2 we explicitly compute
that the cost of the transport problem is 56/162 and that it is obtained with the
Kantorovich potential

c+1/2  if zel0,1/8],
Uso() =¢ —x+3/4 if ©€[1/8,7/8],
x—1 if ze(7/8,1];

in this case an optimal transport plan is

w(x,y) = X(0,1/8) (%) Oy=0 + X(1/8,1/2) () Oy=z43/8 + X(7/8,1)(Y) Oo=1.

Now, we consider the limiting functions M; = M, = 1/16. In this case the
transport cost is 58/162. It is attained at

z+5/8 if «€10,1/16],
Uso(z) = ¢ —x+3/4 if z€[1/16,15/16],
x—9/8 if xz€[15/16,1],

and an optimal transport plan is given by

w(,y) = X(0,1/16)(x) Oy=0 + X(1/16,1/2)(T) dy—zt7/16 + X(15/16,1) (V) Oz=1
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