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Normalizers in groups and in their profinite

completions

Luis Ribes and Pavel A. Zalesskĭı

Abstract. Let R be a finitely generated virtually free group (a finite
extension of a free group) and let H be a finitely generated subgroup of R.
Denote by R̂ the profinite completion of R and let H̄ be the closure of H
in R̂. It is proved that the normalizer NR̂(H̄) of H̄ in R̂ is the closure

in R̂ of NR(H). The proof is based on the fact that R is the fundamental
group of a graph of finite groups over a finite graph and on the study of
the minimal H-invariant subtrees of the universal covering graph of that
graph of groups. As a consequence we prove results of the following type:
let R be a group that is an extension of a free group by finite solvable
group, and let x, y ∈ R; then x and y are conjugate in R if their images
are conjugate in every finite quotient of R.

Let R be a residually finite abstract group. Then R is embedded naturally in
its profinite completion

R̂ = lim←−
U∈U

R/U,

where U denotes the collection of all normal subgroups U of finite index in R. Given
a subset X of R, denote its topological closure in R̂ by X̄. This paper is concerned
with the following problem: if H is a finitely generated subgroup of R, what is
the relationship between the normalizer NR(H) of H in R and the normalizer
NR̂(H̄) of H̄ in R̂? Originally this question arose in [10] while studying conjugacy
separability in groups that arise as iterations of amalgamated free products of
certain groups. In [10] the question is answered when R is a finite extension of a
polycyclic group; and then the answer is the desirable one: NR̂(H̄) is the closure

in R̂ of NR(H). Perhaps not completely surprising given the nature of polycyclic
groups, the proof of that result is ‘arithmetic’ and eventually it relies on number
theoretic results and methods.

In this paper we deal with the case when R is a finitely generated abstract
virtually free group, i.e., a finite extension of a free group Φ. Such a group is
residually finite. In fact our results are placed in a more general setting: we
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consider a group R that contains a free normal subgroup Φ such that R/Φ is a
group in a given class C of finite groups which is an extension-closed variety of
finite groups, i.e., C is a nonempty class of finite groups closed under subgroups,
homomorphic images and extensions. For example, C could be the class of all
finite groups, the class of all finite solvable groups, or the class of all finite p-
groups, where p is a fixed prime number. Then instead of the profinite completion
of R we study the problem mentioned above for the pro-C completion

RĈ = lim←−
U�R,R/U∈C

R/U

of R. It turns out that in this case R is also canonically embedded in RĈ , so that
the question mentioned above has a natural analog in this new setting. The answer
is again formally the same: NRĈ(H̄) is the closure in RĈ of NR(H). However the
methods are completely different. In this case one needs a ‘combinatorial’ approach
based on the Bass–Serre theory [16] of groups acting on trees and its counterpart for
profinite groups [4], [18]. By results of Serre (cf. Part II, Proposition 12 in [16]) and
Karrass, Pietrowski and Solitar (cf. Theorem 1 in [7]), finitely generated virtually
free groups are precisely the fundamental groups Πabs

1 (G,Δ) of graphs of finite
groups over a finite graph Δ. In the case we consider here the vertex groups of
this graph of groups are in the class C. Associated with a graph of groups there
is a tree Sabs, its universal (or standard) covering on which Πabs

1 (G,Δ) operates.
Similarly there is a pro-C fundamental group Π1(G,Δ) associated with this graph
of finite groups, and a corresponding pro-C tree S which is also a topological space.
In the case we are interested in, Π1(G,Δ) is the pro-C completion of Πabs

1 (G,Δ),
and Sabs is embedded as a dense subgraph of S.

Our method, which is perhaps the key original contribution of the present paper
that makes the proofs work, is based on the study of the relationship between these
two trees. First we show that for a closed (in the pro-C topology) finitely generated
infinite subgroup H of Πabs

1 (G,Δ), Sabs contains a unique minimal H-invariant
subtree whose closure in S is the unique minimal H̄-invariant pro-C subtree of S.
This leads to the proof of our main result when H is infinite. When H is finite,
the basic result needed, that has independent interest, is that H1 ∩H2 = H1 ∩H2

in RĈ , for closed, finitely generated subgroups H1 and H2 of R. This is proved
again using combinatorial methods: the key argument is based on the study of the
tree canonically attached to an amalgamated product of abstract groups, and its
counterpart in the category of pro-C groups.

We also apply our method to study the Tits straight line Lb in a tree (cf.
Serre [16], Part I, Prop. 24) of the form Sabs corresponding to the graph of groups
(G,Δ) of residually finite groups G(m) (m ∈ Δ) over a finite graph Δ; Lb is the
minimal 〈b〉-invariant subtree of Sabs where b ∈ Πabs

1 (G,Δ) acts freely on Sabs.
We prove that then Lb is the unique minimal 〈b〉-invariant subtree of the profinite
tree S, where S is the universal covering profinite tree associated with the graph
of profinite groups (Ḡ,Δ) such that each Ḡ(m) is a profinite completion of G(m).
We accomplish this by first showing that the profinite fundamental group Π1(Ḡ,Δ)
can be expressed as an inverse limit of virtually free profinite groups.
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We finish the paper with an application of the above results to the following
version of conjugacy separability. Let R be a finitely generated abstract group that
contains a normal free subgroup Φ such that R/Φ is in a fixed extension-closed
variety of finite groups C. Then we show that two elements x and y of R are
conjugate in R if and only if their images in every quotient group C of R that
is in C are conjugate; in other words, x and y are conjugate in R if and only if
they are conjugate in RĈ . The result was known (proved by Baumslag and Taylor)
when R = Φ is a free abstract group (cf. Proposition 4.8 in [8]). When C is the
class of all finite groups, this is the well-known result that free-by-finite groups are
conjugacy separable (Dyer [2]), and it was proved by Toinet [17] when C is the
variety of finite groups consisting of all finite p-groups, for a fixed prime number p.

Notation

Generally, we follow the notation of [14], which can be consulted for the main
concepts and results related to profinite groups used in this paper; alternatively,
the reader may consult [15], for example. Throughout the paper we shall assume
that C is a variety of finite groups closed under extensions, i.e., C is a nonempty
collection of (isomorphism classes of) finite groups closed under the operations of
taking subgroups, homomorphic images and extensions. For example, C can be the
class of all finite groups, the class of all finite p-groups for a fixed prime number p,
or the class of all finite solvable groups. A ‘pro-C group’ G is an inverse limit
of groups in C; this is a compact, Hausdorff, and totally-disconnected topological
group with the property G/U ∈ C, whenever U is an open normal subgroup of G.

Let R be an abstract group. Recall that the (full) ‘pro-C topology’ of R is the
unique topology that makes R into a topological group in such a way that the
set U of all normal subgroups U of R with R/U ∈ C form a fundamental system
of neighbourhoods of the identity element 1. One says that R is ‘residually C’ if
this topology is Hausdorff, i.e., if

⋂
U∈U U = 1. The ‘pro-C completion’ RĈ of R is

the pro-C group

RĈ = lim←−
U∈U

R/U.

The natural homomorphism R −→ RĈ is continuous (R is endowed with its pro-C
topology). If R is residually C, this homomorphism is an injection, and we iden-
tify R with its image in RĈ , so that R ≤ RĈ . In this case the topology on R
induced by the topology of RĈ is precisely its pro-C topology. If X ⊆ R, we denote
the closure of X in R by Cl(X), and the closure of X in RĈ by X̄; we note that

Cl(X) = R ∩ X̄ and X̄ = Cl(X) (cf. Section 3 of [11]).

If A and B are pro-C groups, we will denote by A
B their free pro-C product,
i.e., their coproduct in the category of pro-C groups (cf. Section 9.1 of [14]).

We shall often be interested in abstract groups R that are free-by-C; that is, R
contains a normal free subgroup Φ such that R/Φ ∈ C, or equivalently, Φ is open
in the pro-C topology of R. It turns out that such a group R is residually C (see
Lemma 0.4 below). When C is the class of all finite groups, we revert to the usual
terminology ‘free-by-finite’ (or ‘virtually free’) rather than free-by-C.
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0. Preliminaries

We begin by recalling the definitions of the fundamental group and universal cov-
ering graph of a graph of groups, using a language and a notation common to
the abstract and profinite settings that is convenient for our purposes. With this
in mind, we shall not attempt to give these definitions in the most general set-
ting. Instead we shall consider only graphs of groups (G,Δ) over finite connected
graphs Δ (in the abstract case this does not make an important difference, but in
the profinite case the finiteness of Δ makes the definitions much simpler). We also
include here some consequence of well-known results. We refer to the papers [4]
and [20] for basic definitions and results.

We only consider oriented graphs (cf. Chapter I of [1]; in the language of [16],
we choose a specific ‘orientation’ of a graph). A graph Γ is a set together with a dis-
tinguished subset of ‘vertices’ V = V (Γ) together with two maps d0, d1 : Γ −→ V ,
that restrict to the identity on V . This graph is called ‘profinite’ if Γ is a profi-
nite space (i.e., a compact, Hausdorff, and totally-disconnected topological space),
V is a closed subset of Γ, and the mappings di are continuous. If e ∈ Γ, we
say that d0(e) and d1(e) are the origin and terminal vertex of e, respectively.
E = E(Γ) = Γ− V (Γ) is called the set (space) of ‘edges’ of Γ. For basic concepts
such as connectedness or when a graph is a tree see Chapter I of [1] or Part I
of [16], for abstract graphs; and in the profinite case, [4] or [20]. If v and w are
elements of a tree (respectively, a pro-C tree) T , we denote by [v, w] the smallest
subtree (respectively, pro-C subtree) of T containing v and w.

A group H is said to act on a graph Γ if it acts on it as a set and in addition
di(hm) = hdi(m), for all h ∈ H and m ∈ Γ (i = 0, 1); if Γ is a profinite graph
and H a profinite group, we assume that the action is continuous. The quotient
H\Γ inherits a natural graph structure (respectively, profinite graph structure).

Let Δ be a connected finite graph. A ‘graph of groups’ (G,Δ) over Δ consists
of a group G(m) for each m ∈ Δ, and monomorphisms ∂i : G(e) −→ G(di(e)) for
each edge e ∈ E(Δ). If each G(m) is a pro-C group and the monomorphisms ∂i
are continuous, we say that (G,Δ) is a ‘graph of pro-C groups’. The ‘abstract
fundamental group’

Πabs = Πabs
1 (G,Δ)

of the graph of groups (G,Δ) is defined by means of a universal property. Namely,
Πabs is an abstract group together with the following data and conditions:

(i) a maximal subtree T of Δ;

(ii) a collection of homomorphisms

νm : G(m) −→ Πabs (m ∈ Δ),

and a map E(Δ) −→ Πabs, written e �→ te (e ∈ E(Δ)), such that te = 1, if
e ∈ E(T ), and

(νd0(e)∂0)(x) = te(νd1(e)∂1)(x)t
−1
e , ∀x ∈ G(e), e ∈ E(Δ);
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(iii) the following universal property is satisfied: whenever one has the data

- H is an abstract group,

- βm : G(m) −→ Πabs (m ∈ Δ) a collection of homomorphisms,

- a map e �→ se (e ∈ E(Δ)) with se = 1, if e ∈ E(T ),

- and

(0.1) (βd0(e)∂0)(x) = se(βd1(e)∂1)(x)s
−1
e , ∀x ∈ G(e), e ∈ E(Δ),

then there exists a unique homomorphism δ : Πabs −→ H such that δ(te) = se
(e ∈ E(Δ)), and for each m ∈ Δ the diagram

Πabs

δ

��

G(m)

νm

�����������

βm ���
��

��
��

��

H

commutes.

In Chapter I, Definition 7.3 and Corollary 7.5 of [1], and in Part I, Sections 5.1
and 5.2 of [16], the fundamental group Πabs is defined explicitly in terms of gen-
erators and relations; there it is also proved that the definition given above is
independent of the choice of the maximal subtree T , and furthermore it is proved
that the homomorphisms νm : G(m) −→ Πabs are injective for every m ∈ Δ. We
use the notation Πabs(m) = Im(νm); so Πabs(m) ∼= G(m), for m ∈ Δ.

The definition of the ‘pro-C fundamental group’

Π = Π1(G,Δ)

of a graph (G,Δ) of pro-C groups over a finite graph Δ is formally as before:
one simply assumes that all the conditions take place in the category of pro-C
groups, i.e., all groups involved are pro-C and all homomorphisms are assumed
to be continuous. For the construction of Π, see [20]. However, the canonical
homomorphisms νm : G(m) −→ Π (m ∈ Δ) are not embeddings in general (cf.
Examples 9.2.9 and 9.2.10 in [14]). We use the notation Π(m) = Im(νm) form ∈ Δ.

Associated with the graph of groups (G,Δ) there is a corresponding standard
graph (or universal covering graph) Sabs =

⋃. Πabs/Πabs(m), and the vertices
of Sabs are those cosets of the form gΠabs(v), with v ∈ V (Δ) and g ∈ Πabs; finally,
the incidence maps of Sabs are given by the formulas:

d0(gΠ
abs(e)) = gΠabs(d0(e)); d1(gΠ

abs(e)) = gteΠ
abs(d1(e)) (e ∈ E(Δ)).
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In fact Sabs is a tree (cf. Chapter I, Theorem 7.6 in [1], or part I, Section 5.3
in [16]). There is a natural left action of Πabs on Sabs, and clearly Πabs\Sabs = Δ.
Analogously, there is a profinite standard graph S =

⋃. Π/Π(m) associated with
a graph of pro-C groups (G,Δ), with space of vertices and with incidence maps
defined as above. In fact S is a pro-C tree (cf. [20]). Π acts continuously on S and
Π\S = Δ.

Next we describe explicitly a useful connection between the standard tree
Sabs = Sabs(G,Δ) of a graph of abstract groups (G,Δ) over a finite graph Δ,
and the standard pro-C tree S = S(Ḡ,Δ) of a graph of pro-C groups (Ḡ,Δ) that
we described presently, after we make some basic assumptions. We shall assume
that the fundamental group Πabs = Πabs

1 (G,Δ) is residually C; we denote by Π the
pro-C completion of Πabs. For each m ∈ Δ, the pro-C topology of Πabs induces
on Πabs(m) a certain pro-C topology (which is not necessarily its full pro-C topol-
ogy) and so on G(m). Define Ḡ(m) to be the completion of G(m) with respect to
this topology. Then the monomorphisms ∂i : G(e) −→ G(di(e)) induce continu-
ous monomorphisms which we again denote by ∂i : Ḡ(e) −→ Ḡ(di(e)) (i = 0, 1).
We have then a graph (Ḡ,Δ) of pro-C groups over Δ. The canonical injection
G(m) −→ Πabs induces an injection Ḡ(m) −→ Π (m ∈ Δ); furthermore, if we de-

note by Π(m) the image of Ḡ(m) on Π under this injection, then Π(m) = Πabs(m),
the closure of Πabs(m) in Π.

Clearly

∂0(g) = te∂1(g)t
−1
e (g ∈ Ḡ(e), e ∈ E(Δ))

in Π (there a certain abuse of notation here, as we are identifying Ḡ(v) with its
image in Π, and similarly we are using the same notation for the original elements te
(e ∈ E(Δ)) and their images in Π, which is justified since with our assumptions
Πabs ≤ Π). Furthermore, one checks immediately the following result.

Proposition 0.1. The pro-C completion Π of Πabs is the fundamental pro-C group
Π1(Ḡ,Δ) of the graph of pro-C groups (Ḡ,Δ). The canonical homomorphisms
Ḡ(m) −→ Π = Π1(Ḡ,Δ) are injective (m ∈ Δ).

We make a further assumption, namely that for each m ∈ Δ, Πabs(m) is closed
in the pro-C topology of Πabs (or, equivalently, Π(m)∩Πabs = Πabs(m)). Consider
the natural morphism of graphs

ϕ : Sabs −→ S

which on vertices and edges is

gΠabs(v) �→ gΠ(v), gΠabs(e) �→ gΠ(e) (g ∈ Πabs, v ∈ V (Δ), e ∈ E(Δ)).

Under these assumptions ϕ is an injection of graphs; we think of Sabs as a subgraph
of S. Moreover it is clear that Sabs is dense in S. We collect all of this in the
following proposition.
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Proposition 0.2. Let (G,Δ) be a graph of abstract groups over a finite connected
graph Δ. Assume that its abstract fundamental group Πabs = Πabs

1 (G,Δ) is resid-
ually C and that each Πabs(m) is closed in the pro-C topology of Πabs

1 (G,Δ). Con-
sider the graph (Ḡ,Δ) of pro-C groups over Δ such that each Ḡ(m) is the completion
of G(m) with respect to the topology induced by the pro-C topology of Πabs. Then
the standard (or universal covering) tree Sabs = Sabs(G,Δ) of the graph of groups
(G,Δ) is canonically embedded in the standard pro-C tree S = S(Ḡ,Δ) of the graph
of pro-C groups (Ḡ,Δ), and Sabs is dense in S.

Remark 0.3. The assumptions that we have made in Propositions 0.1 and 0.2
for the graph of groups (G,Δ) and for the abstract fundamental group Πabs =
Π1(G,Δ) are automatically satisfied if C is the variety of all finite groups and if the
groups G(m) are finite for all m ∈ Δ; indeed, in this case Πabs is residually finite
(cf. Part II, Proposition 11 in [16]), and obviously the groups Πabs(m) ∼= G(m) are
closed in the profinite topology of Πabs since they are finite. In this situation Πabs

is in fact a finitely generated free-by-finite group. See Lemma 1.5 for a case valid
for a more general variety of finite groups C.

In the following lemma we consider a particular type of residually C groups
that will be of interest to us later.

Lemma 0.4. Let R be a finitely generated abstract free-by-C group: say Φ � R, Φ
is a free group and R/Φ ∈ C. Then the pro-C topology of R is Hausdorff, i.e., R is
residually C.
Proof. Let 1 �= x ∈ R. We need to prove the existence of a normal subgroup U
of R such that R/U ∈ C and x �∈ U . If x �∈ Φ, choose U = Φ. Assume x ∈ Φ. The
pro-C topology of Φ coincides with the topology induced by the pro-C topology
of R (cf. Lemma 3.1.4 (a) in [14]). On the other hand, the pro-C topology of a free
abstract group is Hausdorff (cf. Proposition 3.3.15 in [14]). Hence there exists a
normal subgroup U of R with R/U ∈ C, U ≤ Φ and x �∈ U . �

1. Minimal subtrees

In this section we study cases when the tree Sabs has a unique minimal H-invariant
subtree Dabs, and correspondingly when the pro-C tree S has a unique H̄-invariant
pro-C subtree D. We are interested in the relationship between Dabs and D. This
will be a basic tool in our study of normalizers in the next section.

For ease of reference we first state some results obtained elsewhere.

Lemma 1.1 (Lemma 3.2 in [13]). Let H be an abstract group that acts freely on
an abstract tree T . Endow H with its pro-C topology. Let K be a closed subgroup
of H and let Δ be a finite subgraph of K\T . Then there exists an open subgroup V
of H containing K such that the natural map of graphs

τV : K\T −→ V \T
is injective on Δ.
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Lemma 1.2. Let H be a pro-C group that acts continuously on a pro-C tree T .
Then

(a) T has always a minimal H-invariant pro-C subtree D; moreover it is unique
if |D| > 1. In particular D is unique if H is infinite and the stabilizer of
each vertex is finite.

(b) Assume that H is infinite and the stabilizer of each vertex is finite. Let D be
the unique minimal H-invariant pro-C subtree of T , and let N be an infinite
normal subgroup of H. Then D is also the unique minimal N -invariant pro-C
subtree of T .

Proof. Part (a) appears in Lemma 1.5 of [19]. To prove (b), let B be the unique
minimal N -invariant pro-C subtree of T . By (a), B ⊆ D. Let h ∈ H ; then hB is
also a minimalN -invariant pro-C subtree of T ; hence hB = B. So B isH-invariant.
Therefore, by the minimality of D, B = D, as required. �

Lemma 1.3. Let H be an infinite abstract group that acts on an abstract tree T
so that the stabilizer of each vertex is finite. Then T cannot contain disjoint
H-subtrees. Consequently, if T has a minimal H-invariant subtree, it is unique.

Proof. Let T1 and T2 be disjoint H-subtrees of T . Consider the graph T̃ obtained
from T by collapsing T1 and T2 to distinct vertices v1 and v2, respectively. Then T̃
is a tree (cf. Part I, Corollary 2 to Proposition 13 in [16]) on whichH acts with finite
vertex stabilizers except for the vertices v1 and v2, which are fixed by H . Let p
be a path joining v1 and v2 in T̃ . It follows that one can choose h ∈ H so that p
and hp are different paths joining v1 and v2 in T̃ . One gets a contradiction with
the fact that T̃ is a tree by observing that p ∪ hp contains a nontrivial cycle. �

Consider now the following situation. Let H be an abstract group which is
embedded as a dense subgroup in an infinite pro-C group H̃ . Assume that T abs is an
abstract tree which is embedded as a dense subgraph of a pro-C tree T . We assume
further that H̃ acts continuously on the pro-C tree T in such a way that T abs is H-
invariant and such that H\T abs is a finite graph, and suppose that the H-stabilizer
of each vertex is finite (in reality we only need some condition to be certain of
uniqueness of minimal invariant subtrees in case they exist for the abstract case;
according to Lemma 1.3, this is guaranteed by the above condition).

Lemma 1.4. Assume in addition that the natural epimorphism of graphs

H\T abs −→ H̃\T

is an isomorphism. Then there exists a unique minimal H-invariant subtree Dabs

of T abs and its closure D = Dabs in T is the unique minimal H̃-invariant pro-C
subtree of T ; moreover Dabs = T abs ∩D and H\Dabs = H̃\D is finite.

Proof. We shall identify H\T abs with H̃\T . Consider the commutative diagram:



Normalizers in groups and in their profinite completions 173

T abs �
� ��

ηabs

����
���

���
���

T

η
�����

���
���

��

H\T abs = H̃\T

where ηabs and η are the canonical quotient maps of graphs. We observe that
this means that if x, y ∈ T abs and x ∈ H̃y, then x ∈ Hy. The H-invariant
subgraphs of T abs have the form (ηabs)−1(R) for some subgraph R of H\T abs,
and, similarly, H̃-invariant subgraphs of T have the form η−1(R). Since H\T abs is
a finite graph, we deduce that T abs has a minimal H-invariant subgraph, which is
unique by Lemma 1.3. We remark that if T ′ is an H̃-invariant pro-C subtree of T ,
then T abs ∩ T ′ is obviously H-invariant, and T abs ∩ T ′ �= ∅ (for (ηabs)−1(η(T ′))
⊆ T abs ∩ T ′), so that T abs ∩ T ′ is a subtree of T abs (for if v and w are vertices of

T abs ∩ T ′, then [v, w] ⊆ T ′ and also [v, w] ⊆ T abs). Furthermore, T abs ∩ T ′ = T ′.
Indeed, let Σ′ be a 0-transversal of η(T ′) in T abs with respect to the H-action (i.e.,
an H-transversal with d0(m) ∈ Σ′, for each m ∈ Σ′). Then, by our hypothesis, Σ′

is also a 0-transversal of η(T ′) in T with respect to the H̃-action. Hence T abs∩T ′ =
HΣ′ and T ′ = H̃Σ′, and in particular T abs ∩ T ′ = T ′.

Let D be the unique H̃-invariant pro-C subtree of T (see Lemma 1.2). Put
Dabs = T abs ∩D. We claim that Dabs is the unique minimal H-invariant subtree
of T abs. Indeed, if Δabs were a proper H-invariant subtree of Dabs, we would be
able to choose 0-transversals Σ′′ and Σ′ of ηabs(Δabs) and ηabs(Dabs), respectively,
under the action of H , so that Σ′′ ⊂ Σ′. Then by the above remark and the above
observation, H̃Σ′′ would be a proper H̃-invariant subtree of D, contradicting the
minimality of D. This, together with Lemma 1.3, proves the claim.

Finally, since H\Dabs ⊆ H\T abs and H̃\D ⊆ H̃\T , we deduce that H\Dabs =
H̃\D and this graph is finite. �

We apply this result to trees that arise as standard graphs (or covering graphs)
of certain graphs of groups.

Trees associated with virtually free groups

Let R be a finitely generated abstract free-by-C group. We explain next the con-
struction of an abstract tree Sabs and a pro-C tree S associated with R and with
the pro-C completion RĈ of R, respectively, so that Sabs is a dense subgraph of S.

Lemma 1.5. Let R be a finitely generated abstract free-by-C group. Then:

(a) R is the abstract fundamental group Πabs = Πabs
1 (G,Δ) of a graph of groups

(G,Δ) over a finite graph Δ such that each G(m) (m ∈ Δ) is a finite group
in C;

(b) the pro-C fundamental group Π = Π1(G,Δ) of (G,Δ) is the pro-C comple-
tion RĈ of R;

(c) in this case the canonical homomorphisms νm : G(m) −→ Π (m ∈ Δ) are
embeddings.
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Proof. To fix the notation, let Φ be a normal free subgroup of R such that R/Φ ∈ C.
(a) According to a result of Karrass–Pietrowski–Solitar (cf. Theorem 1 in [7]),

R is the abstract fundamental group Πabs = Πabs
1 (G,Δ) of a graph of groups

(G,Δ) over a finite graph Δ such that each G(m) (m ∈ Δ) is a finite group. The
isomorphic image Πabs(m) of G(m) (m ∈ Δ) is a subgroup of R = Πabs. On the
other hand, a finite subgroup of R is isomorphic to a subgroup of R/Φ, and so it
is in C.

(b) Let νm : G(m) −→ Πabs = R be the inclusion (m ∈ Δ). Then Πabs together
with the maps νm and a map E(Δ) −→ Πabs, written e �→ te, satisfies the uni-
versal property described in Section 0. By Lemma 0.4, R is residually C so that
R ≤ RĈ . By abuse of notation we also write νm : G(m) −→ RĈ and e �→ te for the
compositions G(m) ↪→ R ↪→ RĈ and E(Δ) −→ R ↪→ RĈ . We shall show that RĈ
together with these maps satisfies the universal property in the category of pro-C
groups that characterizes the pro-C fundamental group Π = ΠC

1 (G,Δ). Let H be
a pro-C group and let βm : G(m) −→ H (m ∈ Δ) be homomorphisms and e �→ se
a map E(Δ) −→ H satisfying the condition (0.1) in Section 0. Since R = Πabs,
there exists a unique homomorphism δ : R −→ H with δνm = βm (m ∈ Δ) and
δ(te) = se (e ∈ E(Δ)). Put H1 = Im(δ). Let U be an open normal subgroup
of H . Then R/δ−1(U) ∼= H1/H1 ∩ U ≤ H/U ∈ C, so that R/δ−1(U) ∈ C. Hence
δ−1(U) is open in the pro-C topology of R, i.e., δ : R −→ H is continuous. There-
fore δ extends uniquely to a continuous homomorphism δ̃ : RĈ −→ H . Obviously

δ̃νm = βm (m ∈ Δ) and δ̃(te) = se (e ∈ E(Δ)); moreover, δ̃ is the unique contin-
uous homomorphism RĈ −→ H satisfying these conditions, for δ̃ is determined by
its restriction to the dense subgroup R of RĈ .

(c) This follows trivially from (a) and (b). �

We continue with the assumptions and the notation of this lemma. Since in
the present situation G(m) is finite, we have G(m) ∼= Πabs(m) = Π(m) (m ∈ Δ).
In particular, Πabs(m) is closed in the pro-C topology of R. This together with the
fact that R = Πabs ≤dense RĈ = Π implies that the natural map of graphs

Sabs −→ S

given by gΠabs(m) �→ gΠ(m) (m ∈ Δ), is a dense embedding of the abstract
tree Sabs in the pro-C tree S (see Proposition 0.2).

Proposition 1.6. Let H = 〈h1, . . . , hr〉 be an infinite subgroup of R = Πabs

that is finitely generated and closed in the pro-C topology of R, and let H̄ be its
closure in the pro-C group RĈ = Π. Then Sabs has a unique minimal H-invariant
subtree Dabs, and its closure D in S is the unique minimal H̄-invariant pro-C
subtree of S. Furthermore, Sabs ∩ D = Dabs, Dabs = D, and H\Dabs = H̄\D is
finite.

Proof. Choose a vertex v0 of Δ, and denote by ṽ0 the vertex ṽ0 = 1Πabs(v0) =
1Π(v0) in S

abs ⊆ S. Define a subgraph T abs of Sabs by

T abs =

r⋃
i=1

H [ṽ0, hiṽ0].
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Let L =
⋃r

i=1[ṽ0, hiṽ0]. This is obviously a finite connected graph. Then T abs =
HL. Since L ∩ hiL �= ∅ (i = 1, . . . , r), we have that T abs is a connected subgraph
of the tree Sabs, and so T abs is a tree. Clearly it is H-invariant. Hence its closure
in S,

T = T abs =

r⋃
i=1

H̄ [ṽ0, hiṽ0],

is a pro-C subtree of S; clearly it is H̄-invariant.

SinceH is infinite and each G(m) is finite, our result will follow from Lemma 1.4
after we show that the epimorphism of graphs H\T abs −→ H̄\T is in fact an
isomorphism. To see this we distinguish two cases.

Case 1. Assume that H ≤ Φ.

Since the R-stabilizers of the elements of Sabs are finite groups, we have that Φ
acts freely on Sabs. By Lemma 1.1, there exist an open subgroup V of Φ (and so
of Πabs) containing H such that the map of graphs

H\T abs −→ H\Sabs −→ V \Sabs

is injective. Next observe that for every m ∈ Δ, we have the following equality of
double cosets:

V \Πabs/Πabs(m) = V̄ \Π/Π(m)

because Πabs(m) = Π(m), V has finite index in Πabs, and Π is the pro-C completion
of Πabs. Hence, one deduces that V \Sabs = V̄ \S from the definitions of Sabs and S
(see Section 0). Therefore, from the commutative diagram

H\T abs ��

��

H\Sabs

��

�� V \Sabs

||
��

H̄\T �� H̄\S �� V̄ \S

we deduce that H\T abs = H̄\T , proving the result in this case.

Case 2. General case.

Define K = Φ ∩ H . Note that K is closed in Φ and that K\T abs is finite
(because K has finite index in H). So Lemma 1.1 can be used. Mimicking the
argument in Case 1 one shows that K\T abs = K̄\T . What this says is that if
t, t′ ∈ T abs, and K̄t = K̄t′, then Kt = Kt′.

Now since K has finite index in H , we have finite unions H =
⋃. Kxi and

H̄ =
⋃. K̄xi (some xi ∈ H). Let t, t′ ∈ T abs, and assume that H̄t = H̄t′. We want

to show that Ht = Ht′. By hypothesis we have
⋃
K̄xit =

⋃
K̄xit

′. So for each i,
there are some i′ and i′′ such that K̄xit = K̄xi′t

′ and K̄xit′ = K̄xi′′ t; henceKxit =
Kxi′t

′ and Kxit′ = Kxi′′t. Therefore,
⋃
Kxit =

⋃
Kxit

′, i.e., Ht = Ht′. �
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Standard tree of a finite graph of residually finite groups and the tits
line

Next we consider the case of a tree that arises as the standard graph of a more gen-
eral graph of abstract groups (G,Δ), but we shall restrict the type of the groups H
for which we seek minimal H-invariant subtrees and we only envision the profinite
topology. We refer to Section 0 for the notation.

A subtree L of an abstract tree is called a straight line if it is a doubly infinite
chain of the form

· · · • • • • · · ·
Next we recall a result of J. Tits that we state in a manner convenient for us.

We maintain the notation and the assumptions of Proposition 0.2. We say that
an element b ∈ Πabs is hyperbolic if it does not fix any vertex of the tree Sabs. If v
and w are vertices of Sabs, we denote by l(v, w) the length of the unique reduced
path joining v and w.

Lemma 1.7 (Proposition 24 in Part I of [16]). Let b ∈ Πabs be a hyperbolic
element. Write

m = inf{l(v, bv) | v ∈ V (Sabs) and Lb = {v ∈ V (Sabs) | l(v, bv) = m}.
Then

(a) Lb is the set of vertices of a 〈b〉-invariant straight line (the ‘Tits straight line
corresponding to b’ ) which we denote again by Lb; in fact the action of b
on Lb is a translation with amplitude m;

(b) Lb is contained in any 〈b〉-invariant subtree of Sabs; in fact Lb is the unique
minimal 〈b〉-invariant subtree of Sabs;

(c) if v ∈ Lb, then Lb = 〈b〉[v, bv].
The aim of this subsection is to prove the following result.

Proposition 1.8. Let Δ be a finite connected graph and let (G,Δ) be a graph of
abstract groups over Δ. Assume that its fundamental group Πabs = Πabs

1 (G,Δ) is
residually finite and each Πabs(m) is closed in the profinite topology of Πabs. As
in Proposition 0.1, let (Ḡ,Δ) be the graph of profinite groups over Δ, where Ḡ(m)
is the completion of G(m) with respect to the topology induced from the profinite
topology of Πabs. Let Π = Π1(Ḡ,Δ) be the corresponding profinite fundamental
group. Let Sabs (respectively, S) be the standard (respectively, standard profinite)
tree of this graph of groups. Let b ∈ Πabs be a hyperbolic element of Πabs such
that the subgroup 〈b〉 is closed in the profinite topology of Πabs, and let Lb be the
corresponding Tits straight line. Then

(a) 〈b〉\Lb = 〈b〉\Lb;

(b) Lb is the unique minimal 〈b〉-invariant profinite subtree of S, and Lb ∩ Sabs

= Lb.
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Before embarking on the proof of this proposition, we need two auxiliary results
which are valid in more generality than is necessary for our purposes; for these
results we consider the pro-C topology, where C is an extension-closed variety of
finite groups. The first one (Proposition 1.9) was proved in [12], but we record it
here for the convenience of the reader. The strategy in the proof of Proposition 1.8
above is to find a way to use Proposition 1.6; one cannot use it directly because it
assumes that the fundamental group Πabs is free-by-C. However, we show in our
second auxiliary result (Proposition 1.10) that, under the hypotheses of the above
proposition, Π can be expressed as an inverse limit of pro-C fundamental groups
which are the pro-C completions of abstract free-by-C groups.

Proposition 1.9. (Proposition 2.9 in [12]) Assume that the abstract fundamental
group Πabs = Πabs

1 (G,Δ) of a graph of groups (G,Δ) over a finite graph Δ is
residually C and that Πabs(m) is closed in the pro-C topology of Πabs

1 (G,Δ). Let
b ∈ Πabs be hyperbolic. Then 〈b〉 acts freely on the standard pro-C tree S = S(Ḡ,Δ)
of the graph of pro-C groups (Ḡ,Δ).

Proposition 1.10. Let (G,Δ) be a graph of abstract groups over a finite connected
graph Δ such that Πabs = Πabs

1 (G,Δ) is residually C and each Πabs(m) is closed in
the pro-C topology of Πabs

1 (G,Δ). Let U be the collection of all open (in the pro-C
topology) normal subgroups of Πabs = Πabs

1 (G,Δ). Then there is an inverse system
of graphs of groups (GU ,Δ) over Δ such that:

(a) Each GU (m) is a group in C (m ∈ Δ) and (Ḡ,Δ) = lim←−
U∈U

(GU ,Δ), where (Ḡ,Δ)

is as in Proposition 0.2.

(b) For each U ∈ U , let ΠU = Π1(GU ,Δ) be the pro-C fundamental group of
the graph of groups (GU ,Δ), and let SU = S(GU ,Δ) be the corresponding
standard pro-C tree. Then

Π = lim←−
U∈U

ΠU and S = lim←−
U∈U

SU ,

where Π is the fundamental pro-C group of (Ḡ,Δ), and where S is the corre-
sponding standard pro-C tree.

(c) For each U ∈ U , the abstract fundamental group Πabs
U = Πabs

1 (GU ,Δ) of
the graph of groups (GU ,Δ) contains an open (in its pro-C topology) free
subgroup, so that according to Lemma 1.5, ΠU is the pro-C completion of
Πabs

U , and the standard abstract tree Sabs
U corresponding to (GU ,Δ) is densely

embedded in SU .

(d) The canonical projections ϕU : Π −→ ΠU and ψU : S −→ SU are compatible
with the actions of Π on S and of ΠU on SU , i.e., ψU (ga) = ϕU (g)ψU (a),
(g ∈ Π, a ∈ S); furthermore, ϕU (Π

abs) = Πabs
U and ψU (S

abs) = Sabs
U , for

each U ∈ U .
(e) Let H be a closed subgroup of Π that acts freely on S. Then there exists

some Ũ ∈ U such that for all V ∈ U with V ≤ Ũ one has that ϕV (H) acts
freely on SV .
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Proof. For each U ∈ U , consider the graph of groups (GU ,Δ) over Δ with

GU (m) = Πabs(m)/Πabs(m) ∩ U (m ∈ Δ).

The only parts that require an explicit proof are (c) and (e), for (a), (b) and (d)
are immediate consequences of the definitions.

(c) For U ∈ U , denote by Ũ the subgroup of Πabs generated by the U -stabilizers
of the vertices of Sabs, i.e.,

Ũ = 〈U ∩ gΠabs(v)g−1 | v ∈ V (Δ), g ∈ Πabs〉.

Clearly Ũ � Πabs. Then Ũ\Sabs is a tree (this follows from [16], Corollary 1 to
Theorem 13, page 55; explicitly, see Exercise 2 on that page). Now, Πabs/Ũ acts
on Ũ\Sabs and

(Πabs/Ũ)\(Ũ\Sabs) = Πabs\Sabs = Δ.

Furthermore the Πabs/Ũ -stabilizer of the vertex Ũ1Πabs(m) of Ũ\Sabs is

ŨΠabs(m)/Ũ ∼= Πabs(m)/Ũ ∩ Πabs(m) = Πabs(m)/U ∩ Πabs(m).

Therefore,

Πabs/Ũ = Πabs
1 (GU ,Δ) = Πabs

U and Sabs
U = Ũ\Sabs

(cf. Theorem 13, page 55, in [16]). Finally observe that U/Ũ acts freely on the tree
Ũ\Sabs, and hence it is free (cf. Theorem 4, page 27, in [16]). Obviously U/Ũ is
open in the pro-C topology of Πabs

U , since (Πabs/Ũ)/(U/Ũ) ∼= Πabs/U ∈ C.
(e) Let Y (respectively, YU , where U ∈ U) be the compact subspace of the

points of S (respectively, SU ) fixed by H (respectively, ϕU (H)); clearly

Y = lim←−
U∈U

YU .

Since H acts freely on S, Y = ∅. By compactness, there exists some Ũ ∈ U such
that YV = ∅ whenever V ∈ U and V ≤ Ũ (cf. Proposition 1.1.4 in [14]). This
means that ϕV (H) acts freely on SV for all such V . �

Proof of Proposition 1.8. We only need to prove part (a) (part (b) then follows
from (a) and Lemma 1.4). Since b is hyperbolic, it has infinite order. According to
Proposition 1.9, 〈b〉 acts freely on the profinite tree S = S(Ḡ,Δ). We continue with
the notation of Proposition 1.10. Let bU = ϕU (b) denote the image of b in ΠU . By
Proposition 1.10 (e), there exists some Ũ ∈ U such that 〈bV 〉 acts freely on SV for
every V ≤ Ũ . In particular we may assume that each bV has infinite order. We
claim that 〈bV 〉 ∼= Ẑ. To see this it suffices to show that the profinite topology of
Πabs

V induces on 〈bV 〉 its full profinite topology. Let FV be an open (in the profinite
topology) free subgroup of Πabs

V (see Proposition 1.10 (c)). Then Πabs
V induces on

FV its full profinite topology (cf. Lemma 3.1.4 in [14]). Now by a result of M. Hall,
FV ∩ 〈bV 〉 is a free factor of a subgroup of finite index in FV (cf. Theorem 3.10 in
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Chapter I of [8]). Therefore the profinite topology of FV (and so of Πabs
V ) induces

on 〈bV 〉 its full profinite topology (cf. Lemma 3.1.4 and Corollary 3.1.6 in [14]),
proving the claim. One deduces that the natural epimorphism 〈b〉 −→ 〈bV 〉 is an
isomorphism.

By assumption Πabs(m) is closed in Πabs (m ∈ Δ), and so we have Sabs ⊆ S
(see Proposition 0.2). Similarly, note that each Πabs

U (m) is a finite group and so
closed in the profinite topology of Πabs

U . By Proposition 1.10, ΠU is the profinite
completion of Πabs

U , and Sabs
U ⊆ SU . Moreover, ϕU (Π

abs) = Πabs
U and ψU (S

abs) =
Sabs
U . For every U ∈ U , ϕU (Lb) is connected and so is a subtree of the tree Sabs

U

which is 〈bU 〉-invariant (see Part (d) of Proposition 1.10); therefore, LbU ⊆ ϕU (Lb).

Choose a vertex v ∈ V (Lb) of Lb. Since [v, bv] is finite and since S = lim←−SU ,

there exists some U0 ∈ U such that the restriction of ψU to [v, bv] is an injection
for every U ≤ U0. Choose U ′ ≤ U0 ∩ Ũ . Then ψU ′ sends Lb = 〈b〉[v, bv] onto
ψU ′(Lb) = 〈bU ′〉[ψU ′(v), bU ′ψU ′(v)] bijectively and hence ψU ′(Lb) is minimal. Since
LbU′ ⊆ ϕU ′(Lb), we deduce that ψU ′ sends the 〈b〉-space Lb to the 〈bU ′〉- space LbU′
isomorphically; similarly ϕU ′(Lb) = LbU′ . Since 〈bU ′〉 is closed in the profinite

topology of Πabs
U ′ , by Proposition 1.6, 〈bU ′〉\LbU′ = 〈bU ′〉\LbU′ . Hence 〈b〉\Lb =

〈b〉\Lb. This completes the proof of (a). �

2. Closure of normalizers

Let R be an abstract group which is residually C and let H be a finitely generated
closed (in the pro-C topology of R) subgroup of R. In this section we study the
relationship between the normalizer NR(H) = {x ∈ R | x−1Hx = H} of H in R
and the normalizerNRĈ(H̄) of H̄ in RĈ , where H̄ is as usual the closure of H in RĈ .
When R is finitely generated and contains an open free abstract subgroup, we show
(Theorem 2.6) that the first normalizer is dense in the latter. In particular this is
the case if R is free-by-finite and H is any finitely generated subgroup, when C is
the class of all finite groups (Corollary 2.9). The crucial point for the proof of this
result is that we can use ‘combinatorial’ methods, in the form of groups acting on
trees, and the interrelation between abstract and profinite groups and graphs that
we have developed in Section 1, precisely for this type of group R.

Lemma 2.1. Let R be an abstract group which is residually C. Let H and K be
subgroups of R, which are closed in the pro-C topology of R. Then

R ∩NK̄(H̄) = NK(H).

Proof. First we claim that NK(H) = NK(H̄). Clearly NK(H) ≤ NK(H̄). Con-
versely, let k ∈ NK(H̄); then if h ∈ H , we have k−1hk ∈ H̄ ∩ R = H , since H is
closed in the profinite topology of R; therefore k ∈ NK(H). This proves the claim.
Since K is also closed in the pro-C topology of R, we have R ∩ K̄ = K. It follows
that R ∩NK̄(H̄) = NK(H̄) = NK(H). �
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Lemma 2.2. Let C ∈ C be a group of prime order p. Let R = Φ×C be a semidirect
product, where Φ is a finitely generated abstract free group. Let H be a subgroup
of R of order p. Then there is a free factor Φ1 of Φ such that

(a) NR(H) = H × Φ1 and NRĈ(H̄) = H × (Φ1)Ĉ,

and

(b) CΦ(H) = Φ1 and CΦĈ (H) = (Φ1)Ĉ , where CΦ(H)={x ∈ Φ | xh = hx, ∀h∈H}
is the centralizer of H in Φ.

Consequently,

(a′) NR(H) = NRĈ(H);

(b′) CΦ(H) = CΦ̄(H).

Proof. By a theorem of Dyer–Scott (cf. Theorem 1 in [3]) the group R is a free
product,

R =
[∗ni=1(Ci × Φi)

] ∗ L,
where L and each Φi are free groups and the Ci are groups of order p. One deduces
that

RĈ =
[ n∐
i=1

(Ci × (Φi)Ĉ)
]
 LĈ .

Since every finite subgroup of R of order p is conjugate to one of the Ci, we may
assume without loss of generality that H = C1 is in the first factor. Then NR(H) =
H × Φ1 and NRĈ(H̄) = H × (Φ1)Ĉ (cf. Theorem B’ in [6] or Theorem 9.1.12
in [14]), which is its closure. Observe that each Φi is a subgroup of Φ because
Ci × NΦ(Ci) = NR(Ci) = CR(Ci) = Ci × Φi (cf. Corollary 4.1.5 in [9]) so that
CR(Ci) is finitely generated. Notice that CΦ(H) = CR(H)∩Φ = (H×Φ1)∩Φ = Φ1,
since Φ1 ≤ Φ, and similarly CΦĈ (H) = (Φ1)Ĉ . Now, CΦ(H) is the subgroup of
fixed points of Φ under the action of H , and so CΦ(H) = Φ1 is a free factor of Φ
(cf. Theorem 2 in [3]). This implies that (Φ1)Ĉ = Φ1 (cf. Corollary 3.1.6 in [14]).
This concludes the proof of the lemma. �

Recall (see Lemma 0.4) that if R is an abstract group which contains a normal
free subgroup Φ with R/Φ ∈ C, then R is residually C, and in particular R ≤ RĈ .

Proposition 2.3. Let R be a finitely generated abstract free-by-C group, endowed
with the pro-C topology. Let H1 and H2 be finitely generated closed subgroups of R.
Then

H1 ∩H2 = H1 ∩H2 in RĈ.

Proof. Obviously H1 ∩H2 ≤ H1 ∩H2, so it is enough to prove that

(2.1) H1 ∩H2 ≤ H1 ∩H2.

Say Φ′ is an open free group subgroup of R. By Corollary 3.3 in [11], there exists
an open subgroup Φ of Φ′ such that Φ = (H1 ∩ Φ′) ∗ M = (H1 ∩ Φ) ∗ M , for
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some subgroup M of Φ. Note that the pro-C topology of the clopen subgroup Φ
coincides with the topology induced from the pro-C topology of R (cf. Lemma 3.1.4
in [14]), so that Φ̄ = ΦĈ ≤ RĈ . Hence, if X ⊆ Φ, the notation X̄ is unambiguous:
it represents both the closure in ΦĈ or in RĈ .

We claim that to prove (2.1) it suffices to prove that

(2.2) (H1 ∩Φ) ∩ (H2 ∩ Φ) = H1 ∩H2 ∩ Φ.

Indeed, assume that (2.2) holds. Since Hi ∩Φ is open in Hi, one has a finite union

Hi =
⋃si

j=1(Hi∩Φ)g(i)j , where g
(i)
1 , . . . , g

(i)
si ∈ Hi. ThereforeHi =

⋃si
j=1(Hi ∩ Φ)g

(i)
j

(i = 1, 2). To prove (2.1), let u ∈ H1 ∩H2. Then u = a1h1 = a2h2 (ai ∈ Hi ∩ Φ,
hi ∈ Hi) (i = 1, 2). So,

a−1
1 a2 = h1h

−1
2 ∈ (H1 ∩Φ)(H2 ∩ Φ) ∩R.

Observe that (H1 ∩ Φ)(H2 ∩ Φ) = (H1 ∩Φ)(H2 ∩Φ). By Theorem 5.1 in [11],
(H1∩Φ)(H2∩Φ) is a closed subset in the pro-C topology of Φ, so (H1 ∩ Φ)(H2 ∩ Φ)∩
R = (H1∩Φ)(H2∩Φ). We deduce that a−1

1 a2 = h1h
−1
2 = b−1

1 b2, where bi ∈ Hi∩Φ
(i = 1, 2). Therefore, b1h1 = b2h2 ∈ H1 ∩ H2. Also, using assumption (2.2),
v = b1a

−1
1 = b2a

−1
2 ∈ (H1 ∩R) ∩ (H2 ∩R) = H1 ∩H2 ∩R. Thus,

u = a1h1 = v−1b1h1 ∈ H1 ∩H2,

proving the claim.
It remains to prove (2.2). To simplify the notation we shall restate (2.2) in

the following manner: assume that Φ is a free abstract group of finite rank, H1

and H2 are closed finitely generated subgroups of Φ, and Φ = H1 ∗M , where M
is a subgroup of Φ; then (2.2) says H1 ∩H2 = H1 ∩H2. We shall prove this.

Let H = H1 ∩H2. Note that H is also finitely generated by Howson’s theorem
(cf. [8], page 18). We need to prove

H̄ = H1 ∩H2.

To do this we embed Φ in an appropriately chosen larger group L which we con-
struct as follows: consider an isomorphic copy Φ′ of Φ under an isomorphism

ρ : Φ −→ Φ′.

If a is an element (respectively, a subset) of Φ, we denote by a′ the corresponding
element ρ(a) (respectively, subset) of Φ′ under that isomorphism. Furthermore, we
assume that this isomorphism is the identity on H1, i.e., it identifies H1 with H ′

1,
so that Φ ∪ Φ′ is an amalgam of groups with Φ ∩ Φ′ = H1. Let

L = Φ ∗H1 Φ
′,

be the amalgamated product of the groups Φ and Φ′ amalgamating H1. Obvi-
ously, L is a free group of finite rank. In fact,

(2.3) L =M ∗H1 ∗M ′ = Φ ∗M ′ =M ∗ Φ′.
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By the Kurosh subgroup theorem for subgroups of free products (cf. for exam-
ple [8]) applied to (2.3) we have

H2 = (H1 ∩H2) ∗A and H ′
2 = (H1 ∩H2) ∗A′,

where A is a subgroup of H2.
Observe that the subgroups Φ,Φ′, H1, H2, H

′
2, H = H1 ∩ H2 = H ′, A and A′

are all finitely generated. Furthermore, they are closed in the pro-C topology of L
and their pro-C topologies coincide with the topologies induced from the pro-C
topology of L. Indeed, Φ, Φ′ and H1 are free factors of L, and so for these groups
the statements follow from Corollary 3.1.6 in [14]. In the case of H2 and H , we
know that these subgroups are closed in R, and so for these groups the statements
follow from Corollary 3.3 in [11]; the argument is similar for H ′

2; finally A and A′

are closed since they are free factors of H2 and H ′
2, respectively, and so closed. In

particular the notation Φ̄, H1, H2, etc., is unambiguous: it has the same meaning
whether these closures are taken in LĈ ,ΦĈ , etc. Hence, from now on, closures are
assumed to be taken in LĈ , and they coincide with their own pro-C completions:

H2 = (H2)Ĉ , etc. Therefore we have

LĈ = ΦĈ 
(H1)Ĉ Φ′
Ĉ = Φ̄
H1

Φ′,

the pro-C amalgamated product, and

LĈ = M̄ 
H1 
M ′ = Φ̄
M ′ = M̄ 
 Φ′

(here 
 stands for free pro-C product).
Consider the subgroup P = 〈H2, H

′
2〉 of L generated by H2 and H ′

2. Then

P = 〈H2, H
′
2〉 = H2 ∗H1∩H2 H

′
2 = A ∗ (H1 ∩H2) ∗A′.

Next we assert that

P̄ ∩ Φ̄ = H2 and P̄ ∩ Φ̄′ = H ′
2.

To see this define a continuous epimorphism ϕ : LĈ −→ Φ̄ by sending Φ̄ to Φ̄

identically, and Φ̄′ to Φ̄ by means of ρ−1. Note that ϕ(P̄ ) = H2. The assertions
follow. We deduce that

P̄ ∩H1 = P̄ ∩H1 ∩H1 = P̄ ∩ Φ̄ ∩Φ′ ∩H1 = H2 ∩H ′
2 ∩H1 = H2 ∩H1

(the last equality holds since, by the definition of Φ′, one has H2∩H1 = H ′
2 ∩H1).

We claim that P is closed in the pro-C topology of L, i.e., that

(2.4) P = L ∩ P̄ .

To prove this we use the standard tree Sabs associated with the amalgamated
product L = Φ ∗H1 Φ′, and the standard pro-C tree S associated with the amal-
gamated pro-C product LĈ = Φ̄ 
H1

Φ′ which we described in Section 0. In these
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cases L = Φ ∗H1 Φ′ and LĈ = Φ̄ 
H1
Φ′ are the abstract and pro-C fundamental

groups of graphs of groups over a graph Δ with a single edge and two different
vertices. We recall the explicit definitions of Sabs and S in these specific situations:
the vertices of Sabs are the elements of L/Φ∪. L/Φ′ and its set of edges is L/H1;
moreover, the origin of an edge xH1 (x ∈ L) is d0(xH1) = xΦ, and its terminal
vertex is d1(xH1) = xΦ′. Similarly, the pro-C tree S has vertices LĈ/Φ̄∪. LĈ/Φ

′

and edges LĈ/H1, with d0(xH1) = xΦ̄ and d1(xH1) = xΦ′, where x ∈ LĈ . Now,

the map Sabs −→ S given by xΦ �→ xΦ̄, xΦ �→ xΦ′ and xH1 �→ xH1 (x ∈ L) is
an embedding of graphs because by assumption the subgroups Φ, Φ′ and H1 are
closed in the pro-C topology of L (see Proposition 0.2). We think of Sabs as being
a dense subgraph of S. Denote by e ∈ Sabs ⊆ S the edge e = 1H1 = 1H1, so that
Sabs = L{e, d0(e), d1(e)} and S = LĈ{e, d0(e), d1(e)}.

Choose g ∈ L ∩ P̄ . To prove (2.4) we need to show that g ∈ P . Note that
ge ∈ P̄ e ⊆ S. Denote by [e, ge] the smallest pro-C subtree of S containing e and
ge. Since e, ge ∈ Sabs, [e, ge] is a finite subtree of Sabs: it is the subtree of Sabs

underlying the unique reduced path of Sabs joining e and ge. Note that H2 fixes
d0(e) = 1Φ̄ and H ′

2 fixes d1(e) = 1Φ′. Since P̄ is generated topologically by H2 and
H ′

2, and since the segment {e, d0(e), d1(e)} is obviously connected, we deduce that
P̄{e, d0(e), d1(e)} is a pro-C subtree of S. Therefore, [e, ge] ⊆ P̄{e, d0(e), d1(e)}.
Now, since [e, ge] is finite, it consists of a finite sequence of edges

e, p̄1e, p̄1p̄2e, p̄1p̄2p̄3e, . . . , p̄1p̄2 · · · p̄ne = ge,

where the elements p̄1, p̄2, . . . , p̄n belong to Φ̄ or Φ′ (alternating). Since this path
is also in P̄{e, d0(e), d1(e)}, we have that p̄1, p̄1p̄2, p̄1p̄2p̄3, . . . p̄1p̄2 · · · p̄n ∈ P̄ ; hence
one deduces inductively that p̄1, p̄2, . . . , p̄n are elements of either P̄ ∩ Φ̄ = H2 or of
P̄ ∩Φ′ = H ′

2. Furthermore g = p̄1p̄2 · · · p̄nh̄, where h̄ ∈ H1, since the LĈ-stabilizer
of e is H1.

Now, since the subgroups H1, H2 and H ′
2 are finitely generated and closed in

the pro-C topology of the free abstract group L, we have that any finite product
K1 · · ·KnH1, with Ki ∈ {H2, H

′
2}, is closed (cf. Theorem 5.1 in [11]). Hence

K1 · · ·KnH1 = L ∩ (K1 · · ·KnH1). Since g ∈ L, we deduce that g = p1p2 · · · pnh,
where the elements p1, p2, . . . , pn belong to either H2 or H ′

2, and h ∈ H1. So, since
g ∈ P̄ , we have

h ∈ P̄ ∩H1 = P̄ ∩H1 ∩H1 = H2 ∩H1 ∩H1 = H2 ∩H1 = H2 ∩H1,

because H2 and H1 are closed. Thus g ∈ P , as required. This proves the claim.
Therefore

P̄ = PĈ = AĈ 
 (H1 ∩H2)Ĉ 
 A′
Ĉ = Ā 
 (H1 ∩H2)
 A′.

Also
H2 = (H1 ∩H2) 
 Ā and H ′

2 = (H1 ∩H2)
 A′.

We deduce that
H2 ∩H ′

2 = H1 ∩H2.
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Thus, since H1 ∩H2 = H1 ∩H ′
2, we obtain

H1 ∩H2 = H1 ∩H2 ∩H1 ∩H ′
2 = H1 ∩H2.

This verifies (2.2), as required. �

Corollary 2.4. Let H be a finite subgroup of R and let Φ be a normal free sub-
group Φ of R which is open, i.e., R/Φ ∈ C. Then CΦ(H) = CΦ̄(H).

Proof. Observe that H ∈ C since H is isomorphic to a subgroup of R/Φ. We use
induction on the order of H . Assume first that H has prime order p. Then we
may assume that R = HΦ = Φ × H , because HΦ is open in R, so that its pro-C
topology coincides with the topology induced by the pro-C topology of R, and
(HΦ)Ĉ ≤ RĈ . Then the result is the content of Lemma 2.2 (b′).

IfH is cyclic and its order is not a prime number, choose a maximal subgroupM
ofH . Then, since CΦ(H) ≤ CΦ(M), one deduces that CΦ(H) = CΦ(M)∩CΦ(H) =
CCΦ(M)(H). Note that CΦ(M) is closed and finitely generated, and therefore so
is CΦ(M)H . Hence the induced pro-C topology on ΦH is its full pro-C topology
(this follows from Corollary 3.3 in [11]). Thus we may assume that Φ = CΦ(M)
and R = Φ × H , and therefore M is a finite normal subgroup centralizing Φ.
Thus factoring out M and identifying Φ with its image modulo this factorization
it suffices to prove the equality CΦ(H/M) = CΦ(H/M). Since the order of H/M
smaller than the order of H , the result follows from the induction hypothesis.

If H is noncyclic, take M1 and M2 to be two distinct maximal subgroups of H .
By Proposition 2.3

CΦ(H) = CΦ(M1) ∩ CΦ(M2) = CΦ(M1) ∩ CΦ(M2).

Now, by the induction hypothesis, the latter expression coincides with CΦ̄(M1) ∩
CΦ̄(M2) = CΦ̄(H), as needed. �

In [5], Marshall Hall proved that a finitely generated subgroup H of a free
abstract group Φ is closed in the profinite topology of Φ. It easily follows that a
finitely generated subgroup of a virtually free abstract group R is automatically
closed in the profinite topology of R. Therefore we deduce:

Corollary 2.5. (Proposition 2.4 in [18]) Let R be a finitely generated virtually free
(or free-by-finite) abstract group. Let H1 and H2 be finitely generated subgroups
of R. Then

H1 ∩H2 = H1 ∩H2,

where if X ⊆ R, then X̄ denotes the closure of X in the profinite completion R̂
of R.

Theorem 2.6. Let R be a finitely generated free-by-C abstract group. Consider
a finitely generated subgroup H of R which is closed in the pro-C topology of R.
Then

NR(H) = NRĈ(H̄).
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Proof. Obviously NR(H) ≤ NRĈ(H̄). We need to prove the opposite containment.
We continue with the notation of sections 0 and 1. By Lemma 1.5, we have

that R = Πabs
1 (G,Δ) = Πabs, where (G,Δ) is a graph of finite groups in C over a

finite graph Δ. Let Sabs be the standard tree associated with this graph of groups
and let S be the standard pro-C tree associated with (G,Δ), considered as a graph
of pro-C groups.

Case 1. H is infinite. By Proposition 1.6, Sabs has a unique minimal H-inva-
riant subtree Dabs and its closureD = Dabs in S is the unique minimal H̄-invariant
subtree of S.

If a ∈ NRĈ(H̄), then aD = D, because aD is also a minimal H̄-invariant pro-C
subtree of S. In other words, NRĈ(H̄) acts on D; in particular NRĈ(H) acts on D.

Similarly, NR(H) acts on Dabs. Next we claim that the natural epimorphism of
graphs

NR(H)\Dabs −→ NRĈ(H̄)\D
is injective. Let s̃ = sΠabs(m), s̃′ = s′Πabs(m) ∈ Dabs (s, s′ ∈ R,m ∈ Δ), and
assume there exists a ∈ NRĈ(H̄) such that s̃′ = as̃. Then s′−1asΠabs(m) =

Πabs(m), i.e., s′−1as ∈ Πabs(m) ≤ Πabs = R. Therefore, by Lemma 2.1,

a ∈ R ∩NRĈ(H̄) = NR(H),

proving the claim.
Since H\Dabs is finite, so is NR(H)\Dabs. Choose m ∈ Δ, and t1 = 1Πabs(m),

t2, . . . , tr ∈ Dabs such that

Dabs = NR(H)t1 ∪. · · · ∪. NR(H)tr.

Since this union is finite, taking closures we have

D = NR(H)t1 ∪ · · · ∪NR(H)tr = NRĈ(H̄)t1 ∪ · · · ∪NRĈ(H̄)tr

(the last equality holds since NR(H) ≤ NRĈ(H̄)). By the claim these unions

are disjoint. So, in particular, NR(H)t1 = NRĈ(H̄)t1. Hence, if a ∈ NRĈ (H̄),

there exists b ∈ NR(H) such that aΠabs(m) = bΠabs(m). Therefore b−1a = x ∈
Πabs(m) ≤ R. Using Lemma 2.1,

x ∈ R ∩NRĈ(H̄) = NR(H).

Thus a ∈ NR(H). This proves that NRĈ(H̄) ≤ NR(H), as required.

Case 2. H is finite. Observe that CRĈ (H) is the kernel of the natural ho-
momorphism NRĈ(H) −→ Aut(H); therefore, since Aut(H) is finite, CRĈ (H) has
finite index in NRĈ(H), so that NRĈ (H) is finite if and only if CRĈ (H) is finite.
Similarly, NR(H) is finite if and only if CR(H) is finite.

Subcase 2 (a). NR(H) is finite. Let Φ be a normal free abstract subgroup of R
such that R/Φ ∈ C. Then NΦ(H) = Φ ∩ NR(H) = 1; in particular CΦ(H) = 1.
By Corollary 2.4, CΦĈ (H) = 1. Hence NRĈ(H) is finite. Then, by Theorem 3.10
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in [20], NRĈ(H) is conjugate to a subgroup of some vertex group Π(v) = Πabs(v),
so that we may assume that it is contained in Π(v). Thus

NRĈ(H) = NΠ(v)(H) = NR(H) = NR(H),

proving the result in this case.

Subcase 2 (b). NR(H) is infinite. Hence so is CΦ(H). Since R is finitely gen-
erated, so is Φ. Note that CΦ(H) is the subgroup of elements of the free group Φ
fixed by the finite group H (as a group of automorphisms). Therefore CΦ(H) is
a free factor of Φ (cf. Theorem 2 in [3]). Hence CΦ(H) is finitely generated; it is
also closed in the pro-C topology of Φ, and so of R (cf. Corollary 3.1.6 (b) in [14]).
It follows that NR(H) is finitely generated and closed in the pro-C topology of R.
Therefore we may invoke Proposition 1.6 to see that there is a unique minimal
NΦ(H)-invariant subtree Dabs of Sabs whose closure D = Dabs is the unique min-
imal NΦ(H)-invariant subtree of S. Furthermore, NΦ(H)/Dabs = NΦ(H)/D is
finite.

We claim that NRĈ(H̄) also acts on D: since NΦ(H) is infinite and the stabi-
lizers of vertices of D are finite, we can apply Lemma 1.2 to conclude that D is
the unique CΦ(H)-invariant pro-C subtree of S. Now, by Corollary 2.4 CΦĈ (H) =

CΦ(H), and again by Lemma 1.2,D is in fact the unique minimalNRĈ(H)-invariant
subtree of S. This proves the claim.

Next we proceed as in Case 1. One sees, as in that case, that the natural map
NR(H)\Dabs −→ NRĈ(H)\D is injective; one deduces that NR(H)t1 = NRĈ(H)t1

where t1 = 1Πabs(m), for some m ∈ Δ; and this implies that NRĈ(H) ≤ NR(H),
as needed. �

Lemma 2.7. Let R be a finitely generated abstract free-by-C group. Say Φ is a
normal subgroup of R which is free and such that R/Φ ∈ C. Let H be a cyclic
subgroup of Φ. Then

CR(H) = CR(Cl(H)),

where Cl(H) denotes the closure of H in the pro-C topology of R.

Proof. Note that Cl(H) is also the closure of H in the pro-C topology of Φ, since Φ
is closed in R. By Proposition 3.4 in [11], Cl(H) is cyclic and contains H as a
subgroup of finite index. Say Cl(H) = 〈x〉 and H = 〈xn〉. Now, if a ∈ R and
a−1xna = xn, then both a−1xa and x are n-th roots of xn. Since in a free abstract
group n-th roots are unique, we deduce that a−1xa = x. The result follows. �

Corollary 2.8. Let R be a finitely generated abstract group that contains a normal
subgroup Φ which is free and such that R/Φ ∈ C. If H is an infinite cyclic closed
subgroup of R, then

CRĈ (H̄) = CR(H).

Moreover, this equality also holds for any (not necessarily closed ) cyclic sub-
group H of Φ.
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Proof. Consider the natural homomorphism

ϕ : NR(H) −→ Aut(H) ∼= Z/2Z.

Then Ker(ϕ) = CR(H). Note that

CR(H) ≤ CRĈ (H̄) ≤ NRĈ(H̄) = NR(H)

(for the last equality we use Theorem 2.6). Since the index of CR(H) in NR(H)
is at most 2, the result follows immediately: suppose CRĈ (H̄) = NR(H) and let

r ∈ NR(H); then r ∈ CRĈ (H̄), and so r ∈ CR(H), i.e., CR(H) = NR(H). Hence

CR(H) = CRĈ (H̄).
Assume now that H is a cyclic subgroup of Φ, not necessarily closed. By

Lemma 2.7, CR(H) = CR(Cl(H)). Therefore using the result above for the closed
subgroup Cl(H),

CR(H) = CR(Cl(H)) = CRĈ (Cl(H)) = CRĈ (H̄),

since H̄ = Cl(H). �

Using the result of M. Hall mentioned above, one deduces immediately the
following consequence to Theorem 2.6.

Corollary 2.9. Let R be a finitely generated virtually free (or free-by-finite) ab-
stract group, and let H be a finitely generated subgroup. Then

NR(H) = NR̂(H̄).

3. Conjugacy C-separability
An abstract group R is said to be conjugacy C-separable if for any pair of nonconju-
gate elements x and y of R, there is a quotient group of R which is in C, and where
the images of x and y are not conjugate. In this section we prove the conjugacy
C-separability of a finitely generated free-by-C abstract group R. This generalizes
Theorem 1.7 in [17], where it is proved for the class C of all finite p-groups, for a
fixed prime p. This result was proved by G. Baumslag and T. Taylor when R is a
free abstract group (cf. Proposition 4.8 in [8]). Our result assumes the theorem of
Baumslag–Taylor and it is based on Theorem 2.6 above.

Note that if R is residually C, then conjugacy C-separability of R means that for
any pair of elements of R, they are conjugate in R if and only if they are conjugate
in the pro-C completion RĈ of R.

Lemma 3.1. Let R be a finitely generated free-by-C abstract group and let H be
a finitely generated closed (in the pro-C topology of R) subgroup of R. Then the
pro-C topology of H coincides with the topology induced by the pro-C topology of R,
i.e., HĈ = H̄.



188 L. Ribes and P.A. Zalesskĭı

Proof. Let Φ be an abstract free normal subgroup of R such that R/Φ ∈ C. Since Φ
is open in R and Φ ∩H is open in H , it suffices to prove that the pro-C topology
of Φ induces on Φ∩H its pro-C topology (cf. Lemma 3.1.4 (b) in [14]). This is the
content of Corollary 3.3 (ii) in [11]. �

Theorem 3.2. Let R be a finitely generated free-by-C abstract group. Then R is
conjugacy C-separable.

Proof. To fix the notation, say that Φ � R, where Φ is an abstract free group
such that R/Φ ∈ C. By Lemma 0.4, R is residually C. Let x, y ∈ R and let
xγ = y, where γ ∈ RĈ . We have to show that x and y are conjugate in R. We
may assume that x �= 1. Since RĈ = RΦĈ, we have γ = rη, for some η ∈ ΦĈ ,
r ∈ R. So replacing x by xr and γ by η, we may assume that γ is in ΦĈ . Then
y ∈ 〈x〉ΦĈ ∩ R = 〈x〉Φ̄ ∩ R = 〈x〉(Φ̄ ∩ R) = 〈x〉Φ. Hence, from now on, we may
also assume that R = 〈x〉Φ. Note that RĈ = 〈x〉ΦĈ . Since RĈ/ΦĈ is abelian, we
have x−1γ−1xγ ∈ ΦĈ , i.e., xΦĈ = xγΦĈ . On the other hand, the natural map
ρ : R/Φ −→ RĈ/ΦĈ is a bijection. Since ρ(yΦ) = yΦĈ = xγΦĈ = xΦĈ = ρ(xΦ),
we deduce that yΦ = xΦ. From now on we assume that

(3.1) R = 〈x〉Φ, y = xγ ∈ R, with γ ∈ ΦĈ , and yΦ = xΦ.

Now we distinguish two cases.

Case 1. The order of x is infinite. Let n be a positive integer such that xn ∈ Φ.
So yn ∈ Φ and yn = (xn)γ . From the Baumslag–Taylor result mentioned above
we deduce that yn and xn are conjugate in Φ. Say f−1xnf = yn, where f ∈ Φ.
Replacing x with fxf−1, we may assume that yn = xn. Therefore γ ∈ CRĈ (x

n).

Since xn ∈ Φ, we may apply Corollary 2.8 to get that CRĈ (x
n) = CR(xn). Thus

we have x, y, γ ∈ CR(xn).
Note that CR(x

n) ∩Φ = CΦ(x
n). Since xn �= 1 and Φ is free, CΦ(x

n) is cyclic,
say CΦ(x

n) = 〈z〉 and zm = xn, for some natural number m. Using the uniqueness
of mth roots in Φ, we get that CR(x

n) = CR(z) (see the argument in the proof of
Lemma 2.7). Hence x ∈ CR(z), i.e., x and z commute.

Since R = 〈x〉Φ, we obtain that CR(x
n) = 〈x〉CΦ(x

n) = 〈x〉〈z〉. Therefore
CR(x

n) is abelian, and hence so is CR(xn). This implies that x = y. Thus the
result follows in this case.

Case 2. The order of x is finite. Observe that 〈x〉 is isomorphic to a subgroup
of R/Φ, and so 〈x〉 ∈ C. We proceed by induction on the order of x.

Subcase 2 (a). The order of x is p, a prime. As in the proof of Lemma 2.2, we
have

R = 〈x〉Φ =
[∗ni=1(Ci × Φi)

] ∗ L, and RĈ =
[ n∐
i=1

(Ci × (Φi)Ĉ)
]

 LĈ,

where L and each Φi are free groups and the Ci are groups of order p. Since every
finite subgroup of R of order p is conjugate in R to one of the Ci (cf. [16], Part I,
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Corollary 1 of Proposition 2), we can assume that C1 = 〈y〉. Since R = 〈x〉Φ,
there exists some f ∈ Φ such that 〈x〉f = Cj , for some j with 1 ≤ j ≤ n.
Replacing x with xf and γ with f−1γ, we can assume that 〈x〉 = Cj ; note that
the conditions (3.1) still hold. Since x and y are conjugate in RĈ , we deduce that
x = y (cf. Theorem 9.1.12 in [14]). Hence the result holds in this case.

Subcase 2 (b). The order of x is finite but not a prime. Choose a natural
number n such that the order of xn is a prime. By the subcase above, replacing x
by a certain conjugate in R, we may assume that xn = yn, and so γ centralizes xn.
Hence γ ∈ CΦĈ (x

n) = CΦ(xn) (the last equality is the content of Lemma 2.2 (b′)).
Put H = 〈x〉CΦ(x

n). Since x normalizes CΦ(x
n), H is a subgroup of R. By

Lemma 2.2, CΦ(x
n) is a free factor of Φ, and so it is closed in Φ. Hence CΦ(x

n)
is closed in R. Since 〈x〉 is finite, H is closed in R, so by Lemma 3.1, HĈ = H̄ .

Therefore, HĈ = H̄ = 〈x〉CΦ(xn). It follows that x, y ∈ H and γ ∈ HĈ . Hence
we may assume that R = H = 〈x〉CΦ(x

n). Moreover, conditions (3.1) still hold,
where now CΦ(x

n) plays the role of Φ. Note that then 〈xn〉 is a central subgroup
of R, and R/〈xn〉 = (〈x〉/〈xn〉)CΦ(x

n), where, with a certain abuse of notation,
we identify CΦ(x

n) with its isomorphic image in R/〈xn〉. Denote by x̃ and ỹ
the images of x and y in R/〈xn〉, respectively. So R/〈xn〉 = 〈x̃〉CΦ(x

n). Note
that the order of x̃ is strictly smaller than the order of x, namely, ỹ = x̃γ , with
γ ∈ CΦ(x

n), and CΦ(x
n) is a finitely generated free normal subgroup of R/〈xn〉

such that (R/〈xn〉)/CΦ(x
n) ∼= 〈x̃〉 ∈ C. By the induction hypothesis, there exists

some f ∈ CΦ(x
n) such that ỹ = x̃f . Replacing x with xf and γ with f−1γ, we may

assume that ỹ = x̃; observe that conditions (3.1) still hold, with CΦ(〈xn〉) playing
the role of Φ. Therefore y = xc, for some c ∈ 〈xn〉. Since xCΦ(〈xn〉) = yCΦ(〈xn〉),
and CΦ(x

n) is a free group, we have c = 1. Thus x = y, and the result follows. �
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