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Normalizers in groups and in their profinite
completions

Luis Ribes and Pavel A. Zalesskii

Abstract. Let R be a finitely generated virtually free group (a finite
extension of a free group) and let H be a finitely generated subgroup of R.
Denote by R the profinite completion of R and let H be the closure of H
in R. It is proved that the normalizer N #(H) of H in R is the closure
in R of Ng(H). The proof is based on the fact that R is the fundamental
group of a graph of finite groups over a finite graph and on the study of
the minimal H-invariant subtrees of the universal covering graph of that
graph of groups. As a consequence we prove results of the following type:
let R be a group that is an extension of a free group by finite solvable
group, and let z,y € R; then x and y are conjugate in R if their images
are conjugate in every finite quotient of R.

Let R be a residually finite abstract group. Then R is embedded naturally in

its profinite completion .
R= (h‘m R/U,
Ueu

where U denotes the collection of all normal subgroups U of finite index in R. Given
a subset X of R, denote its topological closure in R by X. This paper is concerned
with the following problem: if H is a finitely generated subgroup of R, what is
the relationship between the normalizer Ng(H) of H in R and the normalizer
Ny (H) of H in R? Originally this question arose in [10] while studying conjugacy
separability in groups that arise as iterations of amalgamated free products of
certain groups. In [10] the question is answered when R is a finite extension of a

polycyclic group; and then the answer is the desirable one: Ny(H) is the closure
in R of N r(H). Perhaps not completely surprising given the nature of polycyclic
groups, the proof of that result is ‘arithmetic’ and eventually it relies on number
theoretic results and methods.

In this paper we deal with the case when R is a finitely generated abstract
virtually free group, i.e., a finite extension of a free group ®. Such a group is
residually finite. In fact our results are placed in a more general setting: we
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consider a group R that contains a free normal subgroup ® such that R/® is a
group in a given class C of finite groups which is an extension-closed variety of
finite groups, i.e., C is a nonempty class of finite groups closed under subgroups,
homomorphic images and extensions. For example, C could be the class of all
finite groups, the class of all finite solvable groups, or the class of all finite p-
groups, where p is a fixed prime number. Then instead of the profinite completion
of R we study the problem mentioned above for the pro-C completion

Re= Jm R/U

U4R,R/UeC

of R. Tt turns out that in this case R is also canonically embedded in R, so that
the question mentioned above has a natural analog in this new setting. The answer
is again formally the same: Ng,(H) is the closure in Rs of Ng(H). However the
methods are completely different. In this case one needs a ‘combinatorial’ approach
based on the Bass—Serre theory [16] of groups acting on trees and its counterpart for
profinite groups [4], [18]. By results of Serre (cf. Part II, Proposition 12 in [16]) and
Karrass, Pietrowski and Solitar (cf. Theorem 1 in [7]), finitely generated virtually
free groups are precisely the fundamental groups II3"(G, A) of graphs of finite
groups over a finite graph A. In the case we consider here the vertex groups of
this graph of groups are in the class C. Associated with a graph of groups there
is a tree S2P% its universal (or standard) covering on which II#"(G, A) operates.
Similarly there is a pro-C fundamental group II; (G, A) associated with this graph
of finite groups, and a corresponding pro-C tree S which is also a topological space.
In the case we are interested in, II; (G, A) is the pro-C completion of II5P%(G, A),
and S?"% is embedded as a dense subgraph of S.

Our method, which is perhaps the key original contribution of the present paper
that makes the proofs work, is based on the study of the relationship between these
two trees. First we show that for a closed (in the pro-C topology) finitely generated
infinite subgroup H of I15%(G, A), S contains a unique minimal H-invariant
subtree whose closure in S is the unique minimal H-invariant pro-C subtree of S.
This leads to the proof of our main result when H is infinite. When H is finite,
the basic result needed, that has independent interest, is that H; N Hy = H; N Hy
in Rs, for closed, finitely generated subgroups H; and Hs of R. This is proved
again using combinatorial methods: the key argument is based on the study of the
tree canonically attached to an amalgamated product of abstract groups, and its
counterpart in the category of pro-C groups.

We also apply our method to study the Tits straight line L; in a tree (cf.
Serre [16], Part I, Prop. 24) of the form S corresponding to the graph of groups
(G, A) of residually finite groups G(m) (m € A) over a finite graph A; Ly is the
minimal (b)-invariant subtree of S2b5 where b € TI5P5(G, A) acts freely on S2bs.
We prove that then L is the unique minimal @—invariant subtree of the profinite
tree S, where S is the universal covering profinite tree associated with the graph
of profinite groups (G, A) such that each G(m) is a profinite completion of G(m).
We accomplish this by first showing that the profinite fundamental group I1;(G, A)
can be expressed as an inverse limit of virtually free profinite groups.
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We finish the paper with an application of the above results to the following
version of conjugacy separability. Let R be a finitely generated abstract group that
contains a normal free subgroup ® such that R/® is in a fixed extension-closed
variety of finite groups C. Then we show that two elements x and y of R are
conjugate in R if and only if their images in every quotient group C' of R that
is in C are conjugate; in other words, = and y are conjugate in R if and only if
they are conjugate in R;. The result was known (proved by Baumslag and Taylor)
when R = @ is a free abstract group (cf. Proposition 4.8 in [8]). When C is the
class of all finite groups, this is the well-known result that free-by-finite groups are
conjugacy separable (Dyer [2]), and it was proved by Toinet [17] when C is the
variety of finite groups consisting of all finite p-groups, for a fixed prime number p.

Notation

Generally, we follow the notation of [14], which can be consulted for the main
concepts and results related to profinite groups used in this paper; alternatively,
the reader may consult [15], for example. Throughout the paper we shall assume
that C is a variety of finite groups closed under extensions, i.e., C is a nonempty
collection of (isomorphism classes of) finite groups closed under the operations of
taking subgroups, homomorphic images and extensions. For example, C can be the
class of all finite groups, the class of all finite p-groups for a fixed prime number p,
or the class of all finite solvable groups. A ‘pro-C group’ G is an inverse limit
of groups in C; this is a compact, Hausdorff, and totally-disconnected topological
group with the property G/U € C, whenever U is an open normal subgroup of G.

Let R be an abstract group. Recall that the (full) ‘pro-C topology’ of R is the
unique topology that makes R into a topological group in such a way that the
set U of all normal subgroups U of R with R/U € C form a fundamental system
of neighbourhoods of the identity element 1. One says that R is ‘residually C’ if
this topology is Hausdorff, i.e., if (), U = 1. The ‘pro-C completion’ R; of R is
the pro-C group

Rs = <h_R/ U.
veu

The natural homomorphism R — R is continuous (R is endowed with its pro-C
topology). If R is residually C, this homomorphism is an injection, and we iden-
tify R with its image in Rs, so that R < Rs. In this case the topology on R
induced by the topology of R is precisely its pro-C topology. If X C R, we denote
the closure of X in R by CI(X), and the closure of X in R by X; we note that

Cl(X)=RNX and X = Cl(X) (cf. Section 3 of [11]).

If A and B are pro-C groups, we will denote by AIl B their free pro-C product,
i.e., their coproduct in the category of pro-C groups (cf. Section 9.1 of [14]).

We shall often be interested in abstract groups R that are free-by-C; that is, R
contains a normal free subgroup ® such that R/® € C, or equivalently, ® is open
in the pro-C topology of R. It turns out that such a group R is residually C (see
Lemma 0.4 below). When C is the class of all finite groups, we revert to the usual
terminology ‘free-by-finite’ (or ‘virtually free’) rather than free-by-C.
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0. Preliminaries

We begin by recalling the definitions of the fundamental group and universal cov-
ering graph of a graph of groups, using a language and a notation common to
the abstract and profinite settings that is convenient for our purposes. With this
in mind, we shall not attempt to give these definitions in the most general set-
ting. Instead we shall consider only graphs of groups (G, A) over finite connected
graphs A (in the abstract case this does not make an important difference, but in
the profinite case the finiteness of A makes the definitions much simpler). We also
include here some consequence of well-known results. We refer to the papers [4]
and [20] for basic definitions and results.

We only consider oriented graphs (cf. Chapter I of [1]; in the language of [16],
we choose a specific ‘orientation’ of a graph). A graph I' is a set together with a dis-
tinguished subset of ‘vertices’ V' = V(I') together with two maps do,d; : I' — V,
that restrict to the identity on V. This graph is called ‘profinite’ if I' is a profi-
nite space (i.e., a compact, Hausdorff, and totally-disconnected topological space),
V is a closed subset of I', and the mappings d; are continuous. If e € T', we
say that dp(e) and di(e) are the origin and terminal vertex of e, respectively.
E=E[)=T-V(T) is called the set (space) of ‘edges’ of I. For basic concepts
such as connectedness or when a graph is a tree see Chapter I of [1] or Part I
of [16], for abstract graphs; and in the profinite case, [4] or [20]. If v and w are
elements of a tree (respectively, a pro-C tree) T, we denote by [v,w] the smallest
subtree (respectively, pro-C subtree) of T' containing v and w.

A group H is said to act on a graph I' if it acts on it as a set and in addition
di(hm) = hd;(m), for all h € H and m € T (i = 0,1); if I" is a profinite graph
and H a profinite group, we assume that the action is continuous. The quotient
H\T inherits a natural graph structure (respectively, profinite graph structure).

Let A be a connected finite graph. A ‘graph of groups’ (G, A) over A consists
of a group G(m) for each m € A, and monomorphisms 9; : G(e) — G(d;(e)) for
each edge e € E(A). If each G(m) is a pro-C group and the monomorphisms 0;
are continuous, we say that (G,A) is a ‘graph of pro-C groups’. The ‘abstract
fundamental group’

Habs _ H?bs(g, A)

of the graph of groups (G, A) is defined by means of a universal property. Namely,
I12P% is an abstract group together with the following data and conditions:

(i) a maximal subtree T of A;

(ii) a collection of homomorphisms
Um : G(m) — TI?P (m € A),

and a map E(A) — I1#P% | written e — t. (e € E(A)), such that t, = 1, if
e € E(T), and

(Vao(e)00) () = te(va, (01 (@)t: ", Vo € Gle), e € B(A);
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(iii) the following universal property is satisfied: whenever one has the data
- H is an abstract group,
- Bm : G(m) — TI? (m € A) a collection of homomorphisms,
-amap e S, (e € E(A)) with s, =1, if e € E(T),

- and

(0.1) (Bao(e)00) () = sc(Baye01)(x)s. ', Vo € Gle), e € B(A),

then there exists a unique homomorphism 6 : 118> — H such that §(t.) = s.
(e € E(A)), and for each m € A the diagram

Habs

commutes.

In Chapter I, Definition 7.3 and Corollary 7.5 of [1], and in Part I, Sections 5.1
and 5.2 of [16], the fundamental group IT1*"* is defined explicitly in terms of gen-
erators and relations; there it is also proved that the definition given above is
independent of the choice of the maximal subtree T', and furthermore it is proved
that the homomorphisms vy, : G(m) — II*P* are injective for every m € A. We
use the notation I1***(m) = Im(vy, ); so II**$(m) = G(m), for m € A.

The definition of the ‘pro-C fundamental group’

II=11,(G,A)

of a graph (G,A) of pro-C groups over a finite graph A is formally as before:
one simply assumes that all the conditions take place in the category of pro-C
groups, i.e., all groups involved are pro-C and all homomorphisms are assumed
to be continuous. For the construction of II, see [20]. However, the canonical
homomorphisms v, : G(m) — II (m € A) are not embeddings in general (cf.
Examples 9.2.9 and 9.2.10 in [14]). We use the notation II(m) = Im(v, ) for m € A.

Associated with the graph of groups (G, A) there is a corresponding standard
graph (or universal covering graph) S*’ = () TI*"*/I12P%(m), and the vertices
of S2P% are those cosets of the form gIT*"(v), with v € V(A) and g € I1?P%; finally,
the incidence maps of S2b® are given by the formulas:

do (911" (e)) = gII*™(do(e));  di (911" (e)) = gtII*™(du(e)) (e € E(A)).
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In fact S is a tree (cf. Chapter I, Theorem 7.6 in [1], or part I, Section 5.3
in [16]). There is a natural left action of TI*** on S2>% and clearly T1#P%\ §2Ps = A,
Analogously, there is a profinite standard graph S = ) II/II(m) associated with
a graph of pro-C groups (G, A), with space of vertices and with incidence maps
defined as above. In fact S is a pro-C tree (cf. [20]). II acts continuously on S and
s = A.

Next we describe explicitly a useful connection between the standard tree
Gabs = Gabs(G A) of a graph of abstract groups (G,A) over a finite graph A,
and the standard pro-C tree S = S(G,A) of a graph of pro-C groups (G, A) that
we described presently, after we make some basic assumptions. We shall assume
that the fundamental group I1?P% = TI#P%(G, A) is residually C; we denote by II the
pro-C completion of I1?P. For each m € A, the pro-C topology of IIP* induces
on I12P%(m) a certain pro-C topology (which is not necessarily its full pro-C topol-
ogy) and so on G(m). Define G(m) to be the completion of G(m) with respect to
this topology. Then the monomorphisms 9; : G(e) — G(d;(e)) induce continu-
ous monomorphisms which we again denote by 9; : G(e) — G(d;(e)) (i = 0,1).
We have then a graph (G,A) of pro-C groups over A. The canonical injection
G(m) — TI*" induces an injection G(m) — II (m € A); furthermore, if we de-
note by II(m) the image of G(m) on IT under this injection, then II(m) = II2bs(m),
the closure of I1*"*(m) in L.

Clearly
Bo(g) = tedi(g)ts" (g € Gle),e € E(A))

in TI (there a certain abuse of notation here, as we are identifying G(v) with its
image in I1, and similarly we are using the same notation for the original elements ¢,
(e € E(A)) and their images in II, which is justified since with our assumptions
[1#Ps < II). Furthermore, one checks immediately the following result.

Proposition 0.1. The pro-C completion 11 of 1P s the fundamental pro-C group
1(G,A) of the graph of pro-C groups (G,A). The canonical homomorphisms
G(m) — I =T11,(G, A) are injective (m € A).

We make a further assumption, namely that for each m € A, TI*P%(m) is closed
in the pro-C topology of TI*** (or, equivalently, II(m) NII2P* = I128P%(m)). Consider
the natural morphism of graphs

R e
which on vertices and edges is

gHabs(,U) N gH(v), gHabs(e) — gH(e) (g c HabS),U c V(A),e S E(A))

Under these assumptions ¢ is an injection of graphs; we think of S2b® as a subgraph
of S. Moreover it is clear that S is dense in S. We collect all of this in the
following proposition.
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Proposition 0.2. Let (G, A) be a graph of abstract groups over a finite connected
graph A. Assume that its abstract fundamental group I1*P = TI3>5(G, A) is resid-
ually C and that each TI***(m) is closed in the pro-C topology of TI5%5(G, A). Con-
sider the graph (G, A) of pro-C groups over A such that each G(m) is the completion
of G(m) with respect to the topology induced by the pro-C topology of TI**. Then
the standard (or universal covering) tree S®bS = S33(G A) of the graph of groups
(G, A) is canonically embedded in the standard pro-C tree S = S(G, A) of the graph
of pro-C groups (G,A), and S**° is dense in S.

Remark 0.3. The assumptions that we have made in Propositions 0.1 and 0.2
for the graph of groups (G,A) and for the abstract fundamental group I1#bS =
I1; (G, A) are automatically satisfied if C is the variety of all finite groups and if the
groups G(m) are finite for all m € A; indeed, in this case II** is residually finite
(cf. Part 11, Proposition 11 in [16]), and obviously the groups II*"*(m) = G(m) are
closed in the profinite topology of II*P* since they are finite. In this situation I1#PS
is in fact a finitely generated free-by-finite group. See Lemma 1.5 for a case valid
for a more general variety of finite groups C.

In the following lemma we consider a particular type of residually C groups
that will be of interest to us later.

Lemma 0.4. Let R be a finitely generated abstract free-by-C group: say <R, &
is a free group and R/® € C. Then the pro-C topology of R is Hausdorff, i.e., R is
residually C.

Proof. Let 1 # x € R. We need to prove the existence of a normal subgroup U
of R such that R/U € C and x € U. If © € ¥, choose U = ®. Assume x € d. The
pro-C topology of ® coincides with the topology induced by the pro-C topology
of R (cf. Lemma 3.1.4 (a) in [14]). On the other hand, the pro-C topology of a free
abstract group is Hausdorff (cf. Proposition 3.3.15 in [14]). Hence there exists a
normal subgroup U of R with R/U € C, U < ® and x ¢ U. O

1. Minimal subtrees

In this section we study cases when the tree SP has a unique minimal H-invariant
subtree D*"% and correspondingly when the pro-C tree S has a unique H-invariant
pro-C subtree D. We are interested in the relationship between D*** and D. This
will be a basic tool in our study of normalizers in the next section.

For ease of reference we first state some results obtained elsewhere.

Lemma 1.1 (Lemma 3.2 in [13]). Let H be an abstract group that acts freely on
an abstract tree T. Endow H with its pro-C topology. Let K be a closed subgroup
of H and let A be a finite subgraph of K\T. Then there exists an open subgroup V
of H containing K such that the natural map of graphs

v : K\T — V\T

1s injective on A.



172 L. RIBES AND P. A. ZALESSKII

Lemma 1.2. Let H be a pro-C group that acts continuously on a pro-C tree T'.
Then

(a) T has always a minimal H-invariant pro-C subtree D; moreover it is unique
if |D| > 1. In particular D is unique if H is infinite and the stabilizer of
each vertex is finite.

(b) Assume that H is infinite and the stabilizer of each vertex is finite. Let D be
the unique minimal H-invariant pro-C subtree of T, and let N be an infinite

normal subgroup of H. Then D is also the unique minimal N -invariant pro-C
subtree of T.

Proof. Part (a) appears in Lemma 1.5 of [19]. To prove (b), let B be the unique
minimal N-invariant pro-C subtree of T. By (a), B C D. Let h € H; then hB is
also a minimal N-invariant pro-C subtree of T'; hence hB = B. So B is H-invariant.
Therefore, by the minimality of D, B = D, as required. O

Lemma 1.3. Let H be an infinite abstract group that acts on an abstract tree T
so that the stabilizer of each vertex is finite. Then T cannot contain disjoint
H -subtrees. Consequently, if T has a minimal H-invariant subtree, it is unique.

Proof. Let Ty and T be disjoint H-subtrees of T'. Consider the graph T obtained
from T by collapsing Ty and T5 to distinct vertices vy and vs, respectively. Then T
is a tree (cf. Part I, Corollary 2 to Proposition 13 in [16]) on which H acts with finite
vertex stabilizers except for the vertices v; and vo, which are fixed by H. Let p
be a path joining vy and wvs in T. Tt follows that one can choose h € H so that P
and hp are different paths joining v; and vy in 7. One gets a contradiction with
the fact that 7 is a tree by observing that p U hp contains a nontrivial cycle. O

Consider now the following situation. Let H be an abstract group which is
embedded as a dense subgroup in an infinite pro-C group H. Assume that 7% is an
abstract tree which is embedded as a dense subgraph of a pro-C tree T'. We assume
further that H acts continuously on the pro-C tree T in such a way that T2 is H-
invariant and such that H\72* is a finite graph, and suppose that the H-stabilizer
of each vertex is finite (in reality we only need some condition to be certain of
uniqueness of minimal invariant subtrees in case they exist for the abstract case;
according to Lemma 1.3, this is guaranteed by the above condition).

Lemma 1.4. Assume in addition that the natural epimorphism of graphs
H\T?® — H\T
is an isomorphism. Then there exists a unique minimal H-invariant subtree D*P®

of T2 and its closure D = Dabs in T is the unique minimal H -invariant pro-C
subtree of T; moreover DS = T*s N D and H\D** = H\D is finite.

Proof. We shall identify H\T?"* with H\T. Consider the commutative diagram:
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Tabs( T
T]abs /
H\T?» = H\T
where 7*”* and 7 are the canonical quotient maps of graphs. We observe that

this means that if z,y € 7% and € Hy, then x € Hy. The H-invariant
subgraphs of T2 have the form (n**)~!(R) for some subgraph R of H\T?2,
and, similarly, H-invariant subgraphs of T have the form n~1(R). Since H \Tabs is
a finite graph, we deduce that 7?P* has a minimal H-invariant subgraph, which is
unique by Lemma 1.3. We remark that if 77 is an H-invariant pro-C subtree of T,
then T2P* N T’ is obviously H-invariant, and T2 N T’ # @ (for (n***)~1(n(T"))
C T* N T’), so that T2 N T" is a subtree of T2 (for if v and w are vertices of
T2 N T’ then [v,w] C T” and also [v,w] C T?"). Furthermore, T2bs N\ T = T".
Indeed, let ¥’ be a O-transversal of n(7”) in T with respect to the H-action (i.e.,
an H-transversal with do(m) € ¥/, for each m € ¥’). Then, by our hypothesis, ¥’
is also a O-transversal of (T”) in T with respect to the H-action. Hence T*P*NT" =
HY' and T" = HY', and in particular T#bs N T7 = T".

Let D be the unique H-invariant pro-C subtree of T' (see Lemma 1.2). Put
D?bs = 72bs 1 D, We claim that D" is the unique minimal H-invariant subtree
of 7?5, Indeed, if A*® were a proper H-invariant subtree of D" we would be
able to choose O-transversals X" and %/ of n*P$(A#P%) and 1*P$(D?b%), respectively,
under the action of H, so that ¥ C ¥’. Then by the above remark and the above
observation, HX" would be a proper H-invariant subtree of D, contradicting the
minimality of D. This, together with Lemma 1.3, proves the claim.

Finally, since H\D*® C H\T*> and H\D C H\T, we deduce that H\D?"
H\D and this graph is finite.

o

We apply this result to trees that arise as standard graphs (or covering graphs)
of certain graphs of groups.

Trees associated with virtually free groups

Let R be a finitely generated abstract free-by-C group. We explain next the con-
struction of an abstract tree S and a pro-C tree S associated with R and with
the pro-C completion R of R, respectively, so that S2bs is a dense subgraph of S.

Lemma 1.5. Let R be a finitely generated abstract free-by-C group. Then:

(a) R is the abstract fundamental group T1*P5 = TI3P5(G, A) of a graph of groups
(G, A) over a finite graph A such that each G(m) (m € A) is a finite group
n C;

(b) the pro-C fundamental group II = II1(G,A) of (G,A) is the pro-C comple-
tion Rs of R;

(c) in this case the canonical homomorphisms vy, : G(m) — II  (m € A) are
embeddings.
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Proof. To fix the notation, let ® be a normal free subgroup of R such that R/® € C.

(a) According to a result of Karrass—Pietrowski-Solitar (cf. Theorem 1 in [7]),
R is the abstract fundamental group II?** = TI3P%(G, A) of a graph of groups
(G, A) over a finite graph A such that each G(m) (m € A) is a finite group. The
isomorphic image I12%5(m) of G(m) (m € A) is a subgroup of R = I1*P*. On the
other hand, a finite subgroup of R is isomorphic to a subgroup of R/®, and so it
isin C.

(b) Let vy, : G(m) — 1125 = R be the inclusion (m € A). Then I1*P* together
with the maps v, and a map E(A) — TI**, written e + t., satisfies the uni-
versal property described in Section 0. By Lemma 0.4, R is residually C so that
R < R;. By abuse of notation we also write v, : G(m) — R; and e > t. for the
compositions G(m) < R < Rz and E(A) — R — R;. We shall show that R;
together with these maps satisfies the universal property in the category of pro-C
groups that characterizes the pro-C fundamental group II = I (G, A). Let H be
a pro-C group and let f,, : G(m) — H (m € A) be homomorphisms and e — s,
a map F(A) — H satisfying the condition (0.1) in Section 0. Since R = II#Ps,
there exists a unique homomorphism 6 : R — H with dv,,, = 8, (m € A) and
d(te) = se (e € E(A)). Put Hy = Im(d). Let U be an open normal subgroup
of H. Then R/§~Y(U) = H,/HiNU < HJ/U € C, so that R/6~1(U) € C. Hence
§71(U) is open in the pro-C topology of R, i.e., § : R — H is continuous. There-
fore § extends uniquely to a continuous homomorphism 0 : Rs — H. Obviously
OVm = B (m € A) and (t.) = s (e € E(A)); moreover, 6 is the unique contin-
uous homomorphism Rs; — H satisfying these conditions, for § is determined by
its restriction to the dense subgroup R of R;.

(c) This follows trivially from (a) and (b). O

We continue with the assumptions and the notation of this lemma. Since in
the present situation G(m) is finite, we have G(m) = I1**(m) = II(m) (m € A).
In particular, IT***(m) is closed in the pro-C topology of R. This together with the
fact that R = I1?P% <gense Rs = 1I implies that the natural map of graphs

55— 5

given by gII***(m) + gIl(m) (m € A), is a dense embedding of the abstract
tree S2P% in the pro-C tree S (see Proposition 0.2).

Proposition 1.6. Let H = (hy,...,h,) be an infinite subgroup of R = TI2b3
that is finitely generated and closed in the pro-C topology of R, and let H be its
closure in the pro-C group Rs =I1. Then 52bs has a unique minimal H-invariant
subtree D™, and its closure D in S is the unique minimal H-invariant pro-C
subtree of S. Furthermore, S?** N D = D3 Dabs = D and H\D**® = H\D is
finite.

Proof. Choose a vertex v of A, and denote by @y the vertex oy = 1112%5(vg) =
1(vg) in S&P% C S. Define a subgraph T2 of S&bs by

T2 = | J H{[do, hiti].
i=1
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Let L = [J;_, [0, hiTo]. This is obviously a finite connected graph. Then T2 =
HL. Since LNh;L #0 (i =1,...,7), we have that T%* is a connected subgraph
of the tree S2P%, and so T2 is a tree. Clearly it is H-invariant. Hence its closure
in S,

T
T =T = | | Hbo, hito),
i=1
is a pro-C subtree of S; clearly it is H-invariant.
Since H is infinite and each G(m) is finite, our result will follow from Lemma 1.4

after we show that the epimorphism of graphs H\T®* — H\T is in fact an
isomorphism. To see this we distinguish two cases.

Case 1. Assume that H < ®.

Since the R-stabilizers of the elements of S#P* are finite groups, we have that ®
acts freely on S®P5. By Lemma 1.1, there exist an open subgroup V of ® (and so
of 112b%) containing H such that the map of graphs

H\Tabs SN H\Sabs N V\Sabs

is injective. Next observe that for every m € A, we have the following equality of
double cosets:

VAL /IT* (m) = V\IL/I(m)

because I1°**(m) = II(m), V has finite index in IT*"%, and IT is the pro-C completion
of IT***. Hence, one deduces that V\S2P% = V\ S from the definitions of b and S
(see Section 0). Therefore, from the commutative diagram

H\Tabs R H\S'abs R V\sabs

o

A\T a\s 7\S

we deduce that H\T? = H\T, proving the result in this case.

Case 2. General case.

Define K = ® N H. Note that K is closed in ® and that K\T?"* is finite
(because K has finite index in H). So Lemma 1.1 can be used. Mimicking the
argument in Case 1 one shows that K\T?" = K\T. What this says is that if
t,t' € T?% and Kt = Kt', then Kt = Kt'.

Now since K has finite index in H, we have finite unions H = |J Kz; and
H =) Kz; (some x; € H). Let t,t' € T and assume that Ht = Ht'. We want
to show that Ht = Ht'. By hypothesis we have | J Kz;t = |J Kz;t'. So for each i,
there are some i’ and ¢ such that Kz;t = Kzt and Kz;t' = Kx;vt; hence Kzt =
Kzyt' and Ka;t' = Kayit. Therefore, | Kt = | Kt ie., Ht = Ht'. O
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Standard tree of a finite graph of residually finite groups and the tits
line

Next we consider the case of a tree that arises as the standard graph of a more gen-
eral graph of abstract groups (G, A), but we shall restrict the type of the groups H
for which we seek minimal H-invariant subtrees and we only envision the profinite
topology. We refer to Section 0 for the notation.

A subtree L of an abstract tree is called a straight line if it is a doubly infinite
chain of the form

Next we recall a result of J. Tits that we state in a manner convenient for us.
We maintain the notation and the assumptions of Proposition 0.2. We say that
an element b € II1*P% is hyperbolic if it does not fix any vertex of the tree S*s. If v
and w are vertices of S2P%, we denote by I(v,w) the length of the unique reduced
path joining v and w.

Lemma 1.7 (Proposition 24 in Part I of [16]). Let b € TI*®S be a hyperbolic
element. Write

m = inf{l(v,bv) | v € V(S?™®) and L, = {vec V(5°")|i(v,bv) = m}.

Then

(a) Ly is the set of vertices of a (b)-invariant straight line (the ‘Tits straight line
corresponding to b’) which we denote again by Ly; in fact the action of b
on Ly is a translation with amplitude m;

(b) Ly is contained in any (b)-invariant subtree of S*; in fact Ly is the unique
minimal (b)-invariant subtree of S*S;

(¢) if v € Ly, then Ly = (b)[v, bv].
The aim of this subsection is to prove the following result.

Proposition 1.8. Let A be a finite connected graph and let (G, A) be a graph of
abstract groups over A. Assume that its fundamental group TI**S = TI3>5(G, A) is
residually finite and each T1**(m) is closed in the profinite topology of TI**S. As
in Proposition 0.1, let (G, A) be the graph of profinite groups over A, where G(m)
is the completion of G(m) with respect to the topology induced from the profinite
topology of TI**S. Let TI = TI;(G, A) be the corresponding profinite fundamental
group. Let S (respectively, S) be the standard (respectively, standard profinite)
tree of this graph of groups. Let b € II*P be a hyperbolic element of TI*P* such
that the subgroup (b) is closed in the profinite topology of 1I*PS, and let Ly, be the
corresponding Tits straight line. Then

(a) (b)\Ly = (b)\Ls;

(b) Ly is the unique minimal (b)-invariant profinite subtree of S, and Ly N S*P
= Ly.
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Before embarking on the proof of this proposition, we need two auxiliary results
which are valid in more generality than is necessary for our purposes; for these
results we consider the pro-C topology, where C is an extension-closed variety of
finite groups. The first one (Proposition 1.9) was proved in [12], but we record it
here for the convenience of the reader. The strategy in the proof of Proposition 1.8
above is to find a way to use Proposition 1.6; one cannot use it directly because it
assumes that the fundamental group II*P® is free-by-C. However, we show in our
second auxiliary result (Proposition 1.10) that, under the hypotheses of the above
proposition, IT can be expressed as an inverse limit of pro-C fundamental groups
which are the pro-C completions of abstract free-by-C groups.

Proposition 1.9. (Proposition 2.9 in [12]) Assume that the abstract fundamental
group TI*P = TI35(G, A) of a graph of groups (G,A) over a finite graph A is
residually C and that TI***(m) is closed in the pro-C topology of II{**(G, A). Let
b € 1P be hyperbolic. Then (b) acts freely on the standard pro-C tree S = S(G, A)
of the graph of pro-C groups (G, A).

Proposition 1.10. Let (G, A) be a graph of abstract groups over a finite connected
graph A such that TIPS = T15P5(G, A) is residually C and each T1**(m) is closed in
the pro-C topology of TI3P5(G, A). Let U be the collection of all open (in the pro-C
topology) mormal subgroups of TI*PS = TI3P(G, A). Then there is an inverse system
of graphs of groups (Gu,A) over A such that:

(a) Each Gy(m) is a group in C (m € A) and (G, A) (Gu, A), where (G, A)

= lim
%
Uveu

18 as in Proposition 0.2.

(b) For each U € U, let Iy = 1(Gu,A) be the pro-C fundamental group of
the graph of groups (Gu,A), and let Sy = S(Gu,A) be the corresponding
standard pro-C tree. Then

H:<li_mHU and S:<li_mSU,

veu veu

where 11 is the fundamental pro-C group of (G,A), and where S is the corre-
sponding standard pro-C tree.

(c) For each U € U, the abstract fundamental group 112 = II§*(Gy, A) of
the graph of groups (Gu,A) contains an open (in its pro-C topology) free
subgroup, so that according to Lemma 1.5, Iy is the pro-C completion of

HanS, and the standard abstract tree S;}bs corresponding to (Gu, A) is densely
embedded in Sy .

(d) The canonical projections oy : Il — Iy and vy : S — Sy are compatible
with the actions of I on S and of Iy on Sy, i.e., Yy (ga) = pu(g)vu(a),
(9 € U,a € 9); furthermore, oy (I12P%) = TI2PS and 1y (S2P%) = Sabs, for
each U € U.

(e) Let H be a closed subgroup of 1L that acts freely on S. Then there exists
some U € U such that for all V € U with V < U one has that oy (H) acts
freely on Sy .
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Proof. For each U € U, consider the graph of groups (Gy, A) over A with
Gy (m) = TIPS (m) /TI** (m) NU ~ (m € A).

The only parts that require an explicit proof are (¢) and (e), for (a), (b) and (d)
are immediate consequences of the definitions.

(c) For U € U, denote by U the subgroup of I1#P* generated by the U-stabilizers
of the vertices of S2%% i.e.,

U= (Ungll*™™w)g~t v e V(A),g e T1*b).

Clearly U < T12P*. Then U\S2P® is a tree (this follows from [16], Corollary 1 to
Theorem 13, page 55; explicitly, see Exercise 2 on that page). Now, I12b3/ U acts
on U\ S and

(Habs/ﬁ)\(ﬁ\sabs) — Habs\Sabs = A.

Furthermore the T1?P% /U-stabilizer of the vertex U1112P%(m) of U\ S2* is
UTIP (m) /U = 11 (m) /U N 11 (m) = 1122 (m) /U 0 112 (m).
Therefore,
1P /U = T3> (Gy, A) = TIfP* and  SpP* = U\ S

(cf. Theorem 13, page 55, in [16]). Finally observe that U/U acts freely on the tree
U\S%P*, and hence it is free (cf. Theorem 4, page 27, in [16]). Obviously U/U is
open in the pro-C topology of IT&P%, since (I12P/U)/(U/U) = 11** /U € C.

(e) Let Y (respectively, Yy, where U € U) be the compact subspace of the
points of S (respectively, Sy) fixed by H (respectively, oy (H)); clearly

Y = Jim Y.

€

<
<

Since H acts freely on S, Y = (). By compactness, there exists some U € U such
that Yy = () whenever V € U and V < U (cf. Proposition 1.1.4 in [14]). This
means that ¢y (H) acts freely on Sy for all such V. O

Proof of Proposition 1.8. We only need to prove part (a) (part (b) then follows
from (a) and Lemma 1.4). Since b is hyperbolic, it has infinite order. According to
Proposition 1.9, (b) acts freely on the profinite tree S = S(G, A). We continue with
the notation of Proposition 1.10. Let by = ¢y (b) denote the image of b in II;;. By
Proposition 1.10 (e), there exists some U € U such that (by) acts freely on Sy for
every V < U. In particular we may assume that each by has infinite order. We
claim that m =~ Z. To see this it suffices to show that the profinite topology of
I12P% induces on (by) its full profinite topology. Let Fyy be an open (in the profinite
topology) free subgroup of TI#*S (see Proposition 1.10 (c)). Then ITI2P induces on
Fy its full profinite topology (cf. Lemma 3.1.4 in [14]). Now by a result of M. Hall,

Fv N (by) is a free factor of a subgroup of finite index in Fy (cf. Theorem 3.10 in
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Chapter I of [8]). Therefore the profinite topology of Fy, (and so of II#P%) induces
on (by) its full profinite topology (cf. Lemma 3.1.4 and Corollary 3.1.6 in [14]),
proving the claim. One deduces that the natural epimorphism (b) — (by) is an
isomorphism.

By assumption I12%%(m) is closed in II*** (m € A), and so we have S#’* C §
(see Proposition 0.2). Similarly, note that each II#P*(m) is a finite group and so
closed in the profinite topology of Hans. By Proposition 1.10, ITj; is the profinite
completion of I1#P%, and S&P* C Sy. Moreover, oy (I187%) = T12PS and 1y (S2P5) =
Sabs. For every U € U, ¢y (Ly) is connected and so is a subtree of the tree S
which is (by)-invariant (see Part (d) of Proposition 1.10); therefore, Ly, C oy (Ls).

Choose a vertex v € V(Ly) of Ly. Since [v, bv] is finite and since S = <h‘m Su,

there exists some Uy € U such that the restriction of ¢y to [v,bv] is an injection
for every U < Uy. Choose U’ < Uy N U. Then ¢y sends Ly = (b)[v, bv] onto
Yo (Ly) = (b ) [ty (v), byrer (v)] bijectively and hence 1+ (L) is minimal. Since
Ly, € ou (Ly), we deduce that 1y sends the @—spaee Ly to the (by)- space Ly,
isomorphically; similarly gy (Ly) = Ly, . Since (bys) is closed in the profinite

topology of 12, by Proposition 1.6, (by)\Ls,, = (bu)\Ls,,. Hence (b)\L, =

(b)\Ly. This completes the proof of (a). O

2. Closure of normalizers

Let R be an abstract group which is residually C and let H be a finitely generated
closed (in the pro-C topology of R) subgroup of R. In this section we study the
relationship between the normalizer Ng(H) = {x € R |2 'Hx = H} of H in R
and the normalizer Ng, (H) of H in R, where H is as usual the closure of H in Rs.
When R is finitely generated and contains an open free abstract subgroup, we show
(Theorem 2.6) that the first normalizer is dense in the latter. In particular this is
the case if R is free-by-finite and H is any finitely generated subgroup, when C is
the class of all finite groups (Corollary 2.9). The crucial point for the proof of this
result is that we can use ‘combinatorial’ methods, in the form of groups acting on
trees, and the interrelation between abstract and profinite groups and graphs that
we have developed in Section 1, precisely for this type of group R.

Lemma 2.1. Let R be an abstract group which is residually C. Let H and K be
subgroups of R, which are closed in the pro-C topology of R. Then

RN Ng(H)= Ng(H).
Proof. First we claim that Ng(H) = Ng(H). Clearly Ng(H) < Ng(H). Con-
versely, let k € N (H); then if h € H, we have k~'hk € HN R = H, since H is
closed in the profinite topology of R; therefore k € Ny (H). This proves the claim.
Since K is also closed in the pro-C topology of R, we have RN K = K. It follows

that RN Ng(H) = Nx(H) = Nk (H). O
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Lemma 2.2. Let C € C be a group of prime order p. Let R = ®xC be a semidirect
product, where ® is a finitely generated abstract free group. Let H be a subgroup
of R of order p. Then there is a free factor ®1 of ® such that

(a) NR(H):HX (I)l andNRc,(H) = H x ((I)l)(f;
and

(b) Co(H) = @1 and Cp,(H) = (®1)s, where Co(H)={r € ® | vth = hx,Yhe H}
is the centralizer of H in ®.

Consequently,

(a') Nr(H) = Ng,(H);

(b) Co(H) = Cg(H).

Proof. By a theorem of Dyer—Scott (cf. Theorem 1 in [3]) the group R is a free
product,
R = [*_1(Ci x ®;)] = L,

where L and each ®; are free groups and the C; are groups of order p. One deduces
that

Re = [J](Ci x (@:)¢)] 1 L.
i=1
Since every finite subgroup of R of order p is conjugate to one of the C;, we may
assume without loss of generality that H = C} is in the first factor. Then Ng(H) =
H x ®, and Ng,(H) = H x (®1)s (cf. Theorem B’ in [6] or Theorem 9.1.12
in [14]), which is its closure. Observe that each ®; is a subgroup of ® because
C; x No(C;) = Nr(C;) = Cr(C;) = C; x ®; (ct. Corollary 4.1.5 in [9]) so that
Cr(C;) is finitely generated. Notice that Co(H) = Cr(H)N® = (HxP1)ND = Py,
since ®; < @, and similarly Cg,(H) = (®1)s. Now, Cs(H) is the subgroup of
fixed points of ® under the action of H, and so Cy(H) = @1 is a free factor of &
(cf. Theorem 2 in [3]). This implies that (®1); = ®; (cf. Corollary 3.1.6 in [14]).
This concludes the proof of the lemma. O

Recall (see Lemma 0.4) that if R is an abstract group which contains a normal
free subgroup ® with R/® € C, then R is residually C, and in particular R < R.

Proposition 2.3. Let R be a finitely generated abstract free-by-C group, endowed
with the pro-C topology. Let Hy and Hy be finitely generated closed subgroups of R.
Then

HiNHy=H NHy inR;.

Proof. Obviously H; N Hy < H; N Hy, so it is enough to prove that
(2.1) H, NH, < H NH,.

Say @' is an open free group subgroup of R. By Corollary 3.3 in [11], there exists
an open subgroup ® of ® such that ® = (H; N ®') « M = (H; N ®) = M, for
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some subgroup M of ®. Note that the pro-C topology of the clopen subgroup ®
coincides with the topology induced from the pro-C topology of R (cf. Lemma 3.1.4
in [14]), so that ® = ®; < Rs. Hence, if X C @, the notation X is unambiguous:
it represents both the closure in ®; or in Re.

We claim that to prove (2.1) it suffices to prove that

(22) (H1 ﬂq))ﬂ(Hgﬁq)):HlﬂHgﬁq).

Indeed, assume that (2.2) holds. Since H; N® is open in H;, one has a finite union

H;, = U;i:l(Hiﬂ@)g§i), where gf), ce gg? € H;. Therefore H; = Uiz, (Hin Q))g;i)
(i = 1,2). To prove (2.1), let w € Hy N Hy. Then u = ajhy = ashs (a; € H; N @,
hi € H;) (i =1,2). So,

aytay = hihy' € (H, N®)(Hy N ®) N R.

Observe that (Hy N®)(Hy,N®) = (H;N®)(He N®). By Theorem 5.1 in [11],
(H1N®)(H2N®P) is a closed subset in the pro-C topology of ®, so (H1 N ®)(Hz N P)N
R = (H,N®)(H,N®). We deduce that aj'az = hihy ' = by 'by, where b; € H;N®
(i = 1,2). Therefore, byhy = boha € Hy N Hy. Also, using assumption (2.2),
v = blal_1 = b2a2_1 € (HiNR)N(HaNR)=HyNHyNR. Thus,

w=aih; =v 'bhy € H N H,,

proving the claim.

It remains to prove (2.2). To simplify the notation we shall restate (2.2) in
the following manner: assume that ® is a free abstract group of finite rank, H;
and Hs are closed finitely generated subgroups of ®, and ® = H; *x M, where M
is a subgroup of ®; then (2.2) says H; N Hy = H; N Hy. We shall prove this.

Let H = H1 N Hy. Note that H is also finitely generated by Howson’s theorem
(cf. [8], page 18). We need to prove

H = H; N H,.

To do this we embed ® in an appropriately chosen larger group L which we con-
struct as follows: consider an isomorphic copy ® of ® under an isomorphism

p:d— P

If @ is an element (respectively, a subset) of ®, we denote by a’ the corresponding
element p(a) (respectively, subset) of ® under that isomorphism. Furthermore, we
assume that this isomorphism is the identity on Hq, i.e., it identifies Hy with Hj,
so that ® U @' is an amalgam of groups with ® N ®' = H;. Let

L:(I)*Hl (I)/,

be the amalgamated product of the groups ® and ®' amalgamating H;. Obvi-
ously, L is a free group of finite rank. In fact,

(2.3) L=MxH «M =®xM =M xd.
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By the Kurosh subgroup theorem for subgroups of free products (cf. for exam-
ple [8]) applied to (2.3) we have

H2 = (Hl OHQ) *+ A and Hé = (H1 ﬂHg)*A',

where A is a subgroup of Hs.

Observe that the subgroups ®,®’, Hy, Hy, H), H = Hy N Hy = H', A and A’
are all finitely generated. Furthermore, they are closed in the pro-C topology of L
and their pro-C topologies coincide with the topologies induced from the pro-C
topology of L. Indeed, ®, ® and H; are free factors of L, and so for these groups
the statements follow from Corollary 3.1.6 in [14]. In the case of Hy and H, we
know that these subgroups are closed in R, and so for these groups the statements
follow from Corollary 3.3 in [11]; the argument is similar for Hj; finally A and A’
are closed since they are free factors of Ho and HJ, respectively, and so closed. In
particular the notation ®, H;, Ha, etc., is unambiguous: it has the same meaning
whether these closures are taken in Ls, @5, etc. Hence, from now on, closures are
assumed to be taken in L, and they coincide with their own pro-C completions:
Hjy = (Hj)g, ete. Therefore we have

Lo = H(Hl)é (I)Ié =0 Hﬁa’
the pro-C amalgamated product, and
Lo=MUE U = U = M

(here IT stands for free pro-C product).
Consider the subgroup P = (Hs, Hj) of L generated by Hy and H). Then

P = <H2,Hé> = H2 *H{NHs Hé = Ax (H1 N HQ) * A/.
Next we assert that
PN®=H, and PN® = H).
To see this define a continuous epimorphism ¢ : Ls; — ® by sending ® to P
identically, and &’ to ® by means of p~!. Note that p(P) = H,. The assertions
follow. We deduce that
PNH,=PNH NH =PN®NY¥NH, =H,NH,NH, = HyNH,

(the last equality holds since, by the definition of &, one has Hy N H; = EQE)

We claim that P is closed in the pro-C topology of L, i.e., that
(2.4) P=LNP.

To prove this we use the standard tree S associated with the amalgamated
product L = ® xg, ', and the standard pro-C tree S associated with the amal-
gamated pro-C product Ls = @ Il ¢’ which we described in Section 0. In these
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cases L = ® xg, ®" and L; = ) HITI@ are the abstract and pro-C fundamental
groups of graphs of groups over a graph A with a single edge and two different
vertices. We recall the explicit definitions of S2P® and S in these specific situations:
the vertices of S2b* are the elements of L/® U L/®" and its set of edges is L/H;;
moreover, the origin of an edge xH; (x € L) is do(vHy) = «®, and its terminal
vertex is di(zH,) = x®’. Similarly, the pro-C tree S has vertices Ls/® Ls/®’
and edges Ls/Hy, with do(zH;) = 2® and dy (zH,) = z®’, where 2 € Ls. Now,
the map S*P% — S given by 2® + 2®, 2® > 2® and xH; + zH; (v € L) is
an embedding of graphs because by assumption the subgroups ®, ®' and H; are
closed in the pro-C topology of L (see Proposition 0.2). We think of S*"* as being
a dense subgraph of S. Denote by e € S52bs C S the edge e = 1H; = 1H;, so that
Sabs = L{e,do(e),di(e)} and S = Ls{e, do(e), d1(e)}.

Choose g € LN P. To prove (2.4) we need to show that g € P. Note that
ge € Pe C S. Denote by [e, ge] the smallest pro-C subtree of S containing e and
ge. Since e,ge € 525 [e, ge] is a finite subtree of S2b%: it is the subtree of S
underlying the unique reduced path of S joining e and ge. Note that Hy fixes
do(e) = 1® and H} fixes di(e) = 1®'. Since P is generated topologically by Hy and
H}, and since the segment {e, do(e), d;(e)} is obviously connected, we deduce that
P{e,do(e),dy(e)} is a pro-C subtree of S. Therefore, [e,ge] C P{e,do(e),di(e)}.
Now, since [e, ge] is finite, it consists of a finite sequence of edges

€,p1€,P1P2€, D1P2P3e, . .., P1D2 * * - Pn€ = gE,

where the elements p1, pa, .. ., P, belong to ® or ® (alternating). Since this path
is also in P{e,do(e), d1(e)}, we have that p1, p1p2, P1Paps, . - - P12 - - - Pn € P; hence
one deduces inductively that p1, po, ..., p, are elements of either PN ® = Hs or of
PNd = ?é Furthermore g = p1ps - - - pnh, where h € Hy, since the L s-stabilizer
of e is Hj.

Now, since the subgroups Hy, Hs and H) are finitely generated and closed in
the pro-C topology of the free abstract group L, we have that any finite product
Ky---K,Hy, with K; € {Ho, H}}, is closed (cf. Theorem 5.1 in [11]). Hence
K, ---K,H =Ln (E . K_nE) Since g € L, we deduce that g = pips - - pph,
where the elements py, po, . .., p, belong to either Hy or HS, and h € H;. So, since
g € P, we have

hEPﬂlepﬂEﬂHl :EmEﬂHl :EmleHgﬂHl,

because Hy and H; are closed. Thus g € P, as required. This proves the claim.
Therefore

P=Ps=As 1l (HyNHy)s 1AL = AL (Hy 0 Hy) LA,

Also _
Ho=(H NHy)TA and Hj= (H,NHy) 1A,

We deduce that L
HyNH) = HyNHo.
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Thus, since HiNHy,=H N Fﬁ, we obtain
HiNnHy=H NH,NH NH,=H NH,.

This verifies (2.2), as required. O

Corollary 2.4. Let H be a finite subgroup of R and let ® be a normal free sub-
group ® of R which is open, i.e., R/® € C. Then Cy(H) = Cg(H).

Proof. Observe that H € C since H is isomorphic to a subgroup of R/®. We use
induction on the order of H. Assume first that H has prime order p. Then we
may assume that R = H® = ® x H, because H® is open in R, so that its pro-C
topology coincides with the topology induced by the pro-C topology of R, and
(H®)s < Rs. Then the result is the content of Lemma 2.2 (b').

If H is cyclic and its order is not a prime number, choose a maximal subgroup M
of H. Then, since Cs(H) < Cy(M), one deduces that Cs(H) = Ce(M)NCsx(H) =
Ceyny(H). Note that Cy(M) is closed and finitely generated, and therefore so
is Co(M)H. Hence the induced pro-C topology on ®H is its full pro-C topology
(this follows from Corollary 3.3 in [11]). Thus we may assume that ® = Cg (M)
and R = ® x H, and therefore M is a finite normal subgroup centralizing .
Thus factoring out M and identifying ® with its image modulo this factorization
it suffices to prove the equality Co(H/M) = Cg(H/M). Since the order of H/M
smaller than the order of H, the result follows from the induction hypothesis.

If H is noncyclic, take M; and M5 to be two distinct maximal subgroups of H.
By Proposition 2.3

C@(H) = C@(Ml) n C@(Mz) = C@(Ml) N C@(Mg)

Now, by the induction hypothesis, the latter expression coincides with Cg(M7) N
C3 (M) = Cg(H), as needed. O

In [5], Marshall Hall proved that a finitely generated subgroup H of a free
abstract group @ is closed in the profinite topology of ®. It easily follows that a
finitely generated subgroup of a virtually free abstract group R is automatically
closed in the profinite topology of R. Therefore we deduce:

Corollary 2.5. (Proposition 2.4 in [18]) Let R be a finitely generated virtually free
(or free-by-finite) abstract group. Let Hy and Hsy be finitely generated subgroups
of R. Then

Hy N Hy = Hy N Ha,

where if X C R, then X denotes the closure of X in the profinite completion R
of R.

Theorem 2.6. Let R be a finitely generated free-by-C abstract group. Consider
a finitely generated subgroup H of R which is closed in the pro-C topology of R.
Then
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Proof. Obviously Nr(H) < Ng, (H). We need to prove the opposite containment.

We continue with the notation of sections 0 and 1. By Lemma 1.5, we have
that R = II3P%(G, A) = 1P| where (G, A) is a graph of finite groups in C over a
finite graph A. Let S#P% be the standard tree associated with this graph of groups
and let S be the standard pro-C tree associated with (G, A), considered as a graph
of pro-C groups.

Case 1. H is infinite. By Proposition 1.6, S*** has a unique minimal H-inva-
riant subtree D" and its closure D = Dabs in S is the unique minimal H-invariant
subtree of S.

If a € Ng, (H), then aD = D, because aD is also a minimal H-invariant pro-C

subtree of S. In other words, Ng,(H) acts on D; in particular Ng_(H) acts on D.
Similarly, Ng(H) acts on D", Next we claim that the natural epimorphism of
graphs

Ng(H)\D** — Ng, (H)\D

is injective. Let § = sII?**(m), 5 = $'TI***(m) € D** (s,s' € R,m € A), and
assume there exists a € Ng,(H) such that § = a8. Then s’ 'asII®**(m) =
25 (m), i.e., s'~las € [1**%(m) < 11*b% = R. Therefore, by Lemma 2.1,

(IGRDNRC(H) :NR(H),

proving the claim.
Since H\D?*"* is finite, so is Ng(H)\D**. Choose m € A, and t; = 111**%(m),
to, ..., 1, € D? such that

D™ = Ng(H)t1 Y- - U Ng(H)t,.

Since this union is finite, taking closures we have

D:NR(H)hU"'UNR(H)tT :NRé(H)t1U~~~UNRé(H)tT

(the last equality holds since Nr(H) < Ng,(H)). By the claim these unions

are disjoint. So, in particular, Nr(H)t; = Ng,(H)t1. Hence, if a € Ng,(H),

there exists b € Ng(H) such that all*"(m) = bII***(m). Therefore b=la = z €
2% (m) < R. Using Lemma 2.1,

.Z‘GRQNRC(H) :NR(H).

Thus a € Ng(H). This proves that Ng,(H) < Ng(H), as required.

Case 2. H is finite. Observe that Cr,(H) is the kernel of the natural ho-
momorphism Ng, (H) — Aut(H); therefore, since Aut(H) is finite, Cr, (H) has
finite index in Npg,(H), so that Ng,(H) is finite if and only if Cr,(H) is finite.
Similarly, Nr(H) is finite if and only if Cr(H) is finite.

Subcase 2 (a). Ng(H) is finite. Let ® be a normal free abstract subgroup of R
such that R/® € C. Then Ng(H) = ® N Ngr(H) = 1; in particular Ce(H) = 1.
By Corollary 2.4, Cp.(H) = 1. Hence Ng,(H) is finite. Then, by Theorem 3.10
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in [20], Ng,(H) is conjugate to a subgroup of some vertex group II(v) = II**5(v),
so that we may assume that it is contained in II(v). Thus

Ngr,(H) = Nn(v)(H) = Nr(H) = Nr(H),

proving the result in this case.

Subcase 2 (b). Ngr(H) is infinite. Hence so is Cy(H). Since R is finitely gen-
erated, so is ®. Note that Cy(H) is the subgroup of elements of the free group ®
fixed by the finite group H (as a group of automorphisms). Therefore Cy(H) is
a free factor of @ (cf. Theorem 2 in [3]). Hence Cg(H) is finitely generated; it is
also closed in the pro-C topology of ®, and so of R (cf. Corollary 3.1.6 (b) in [14]).
It follows that Nr(H) is finitely generated and closed in the pro-C topology of R.
Therefore we may invoke Proposition 1.6 to see that there is a unique minimal
Ng(H)-invariant subtree D*P* of S8 whose closure D = Dabs is the unique min-
imal Ng(H)-invariant subtree of S. Furthermore, Ng(H)/D** = Ng(H)/D is
finite.

We claim that Ng,(H) also acts on D: since Ng(H) is infinite and the stabi-
lizers of vertices of D are finite, we can apply Lemma 1.2 to conclude that D is
the unique Cg (H )-invariant pro-C subtree of S. Now, by Corollary 2.4 Cg(H) =

Cg(H ), and again by Lemma 1.2, D is in fact the unique minimal Np, (H )-invariant
subtree of S. This proves the claim.

Next we proceed as in Case 1. One sees, as in that case, that the natural map
Ngr(H)\D** — Ng,(H)\D is injective; one deduces that Nr(H)t; = Ng,(H)t
where t; = 11I°"*(m), for some m € A; and this implies that Ng,(H) < Ng(H),
as needed. O

Lemma 2.7. Let R be a finitely generated abstract free-by-C group. Say ® is a
normal subgroup of R which is free and such that R/® € C. Let H be a cyclic
subgroup of ®. Then

Cr(H) = Cr(CI(H)),
where CU(H) denotes the closure of H in the pro-C topology of R.

Proof. Note that CI(H) is also the closure of H in the pro-C topology of ®, since ®
is closed in R. By Proposition 3.4 in [11], CI(H) is cyclic and contains H as a
subgroup of finite index. Say CI(H) = (x) and H = (2). Now, if a € R and
a~'az"a = 2™, then both a~'za and z are n-th roots of ™. Since in a free abstract

group n-th roots are unique, we deduce that a~'za = z. The result follows. O

Corollary 2.8. Let R be a finitely generated abstract group that contains a normal
subgroup ® which is free and such that R/® € C. If H is an infinite cyclic closed
subgroup of R, then

Cr, (H) = Cr(H).

Moreover, this equality also holds for any (not necessarily closed) cyclic sub-
group H of ®.
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Proof. Consider the natural homomorphism
¢: Nr(H) — Aut(H) 2 Z/2Z.

Then Ker(y) = Cr(H). Note that

Cr(H) < Cr,(H) < Np,(H) = Ngr(H)

(for the last equality we use Theorem 2.6). Since the index of Cr(H) in Ng(H)
is at most 2, the result follows immediately: suppose Cr,(H) = Ng(H) and let
r € Ng(H); then r € Cr,(H), and so r € Cr(H), i.e., Cr(H) = Ngr(H). Hence
Cr(H) = Cr, ().

Assume now that H is a cyclic subgroup of ®, not necessarily closed. By
Lemma 2.7, Cr(H) = Cr(CIl(H)). Therefore using the result above for the closed

subgroup CI(H),

Cr(H) = Cr(Cl(H)) = Cr,(CI(H)) = Cr,(H),

since H = CI(H). O

Using the result of M. Hall mentioned above, one deduces immediately the
following consequence to Theorem 2.6.

Corollary 2.9. Let R be a finitely generated virtually free (or free-by-finite) ab-
stract group, and let H be a finitely generated subgroup. Then

3. Conjugacy C-separability

An abstract group R is said to be conjugacy C-separable if for any pair of nonconju-
gate elements z and y of R, there is a quotient group of R which is in C, and where
the images of x and y are not conjugate. In this section we prove the conjugacy
C-separability of a finitely generated free-by-C abstract group R. This generalizes
Theorem 1.7 in [17], where it is proved for the class C of all finite p-groups, for a
fixed prime p. This result was proved by G. Baumslag and T. Taylor when R is a
free abstract group (cf. Proposition 4.8 in [8]). Our result assumes the theorem of
Baumslag—Taylor and it is based on Theorem 2.6 above.

Note that if R is residually C, then conjugacy C-separability of R means that for
any pair of elements of R, they are conjugate in R if and only if they are conjugate
in the pro-C completion R of R.

Lemma 3.1. Let R be a finitely generated free-by-C abstract group and let H be
a finitely generated closed (in the pro-C topology of R) subgroup of R. Then the
pro-C topology of H coincides with the topology induced by the pro-C topology of R,
i.e., H(f = H
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Proof. Let ® be an abstract free normal subgroup of R such that R/® € C. Since ®
is open in R and ® N H is open in H, it suffices to prove that the pro-C topology
of @ induces on ® N H its pro-C topology (cf. Lemma 3.1.4 (b) in [14]). This is the
content of Corollary 3.3 (ii) in [11]. O

Theorem 3.2. Let R be a finitely generated free-by-C abstract group. Then R is
conjugacy C-separable.

Proof. To fix the notation, say that ® < R, where ® is an abstract free group
such that R/® € C. By Lemma 0.4, R is residually C. Let z,y € R and let
7 =y, where v € Rs. We have to show that x and y are conjugate in R. We
may assume that x # 1. Since Ry = R®s, we have v = rn, for some 1 € @4,
r € R. So replacing x by 2" and « by 7, we may assume that v is in ®;. Then
y € (@)PsNR = (x)®NR = (2)(®NR) = (xr)P. Hence, from now on, we may
also assume that R = (x)®. Note that Rs = (z)®;. Since R;/®; is abelian, we
have x~ 1y~ 1oy € s, ie., 2®s = 27®s. On the other hand, the natural map
p:R/® — Rs/Ps is a bijection. Since p(y®) = y®s = 2705 = 20 = p(x®),
we deduce that y® = x®. From now on we assume that

(3.1) R=(x)®, y=2"cR, withy € ®;s, and y® = 2.

Now we distinguish two cases.

Case 1. The order of x is infinite. Let n be a positive integer such that " € ®.
So y™ € ® and y™ = (2™)7. From the Baumslag—Taylor result mentioned above
we deduce that y™ and " are conjugate in ®. Say f~'z"f = y", where f € ®.
Replacing = with fzf~!, we may assume that y™ = 2™. Therefore v € Cr,(2").

Since 2" € ®, we may apply Corollary 2.8 to get that Cg, (") = Cgr(2™). Thus

we have z,y,v € Cg(a™).

Note that Cr(z™) N ® = Cg(x™). Since 2™ # 1 and ® is free, Cy(2™) is cyclic,
say Cp(2™) = (z) and 2™ = ™, for some natural number m. Using the uniqueness
of mth roots in ®, we get that Cr(z") = Cr(z) (see the argument in the proof of
Lemma 2.7). Hence = € Cg(2), i.e., z and z commute.

Since R = (x)®, we obtain that Cr(z") = (x)Cs(z™) = (z)(z). Therefore

Cr(z™) is abelian, and hence so is Cr(z™). This implies that = y. Thus the
result follows in this case.

Case 2. The order of x is finite. Observe that (z) is isomorphic to a subgroup
of R/®, and so (z) € C. We proceed by induction on the order of z.

Subcase 2 (a). The order of x is p, a prime. As in the proof of Lemma 2.2, we
have

R=(x)® = [*"_(C; x ®;)] *L, and R, = []_[(ci X (@:)0)] 11 L,
i=1

where L and each ®; are free groups and the C; are groups of order p. Since every
finite subgroup of R of order p is conjugate in R to one of the C; (cf. [16], Part I,
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Corollary 1 of Proposition 2), we can assume that C; = (y). Since R = (x)®,
there exists some f € ® such that (z)/ = Cj, for some j with 1 < j < n.
Replacing = with #/ and v with f~1v, we can assume that (z) = Cj; note that
the conditions (3.1) still hold. Since x and y are conjugate in R;, we deduce that
x =y (cf. Theorem 9.1.12 in [14]). Hence the result holds in this case.

Subcase 2 (b). The order of x is finite but not a prime. Choose a natural
number n such that the order of ™ is a prime. By the subcase above, replacing x
by a certain conjugate in R, we may assume that " = y™, and so -y centralizes x".
Hence v € Cgp,(z") = Cp(2™) (the last equality is the content of Lemma 2.2 (b')).
Put H = (2)Cs(2™). Since x normalizes Cy(z™), H is a subgroup of R. By
Lemma 2.2, Cg(z™) is a free factor of @, and so it is closed in ®. Hence Cg(2™)
is closed in R. Since (z) is finite, H is closed in R, so by Lemma 3.1, Hs = H.
Therefore, H; = H = (z)Cq(z"). It follows that =,y € H and v € Hs. Hence
we may assume that R = H = (z)Cq(x™). Moreover, conditions (3.1) still hold,
where now Cg(z™) plays the role of ®. Note that then (z™) is a central subgroup
of R, and R/(z") = ((x)/(z™))Cs(z™), where, with a certain abuse of notation,
we identify Cg(2™) with its isomorphic image in R/(z™). Denote by & and g
the images of x and y in R/(z™), respectively. So R/{(z™) = (Z)Cg(z™). Note
that the order of = is strictly smaller than the order of z, namely, y = 7, with
v € Cp(a™), and Cp(a™) is a finitely generated free normal subgroup of R/{z™)
such that (R/(z™))/Cas(2™) = (Z) € C. By the induction hypothesis, there exists
some f € Cg(2™) such that § = /. Replacing  with 27 and v with f~'v, we may
assume that § = Z; observe that conditions (3.1) still hold, with Cg({z™)) playing
the role of ®. Therefore y = x¢, for some ¢ € (™). Since xCs((z™)) = yCo((x™)),
and Cg(2™) is a free group, we have ¢ = 1. Thus z = y, and the result follows. O
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