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Harmonicity and minimality of distributions on

Riemannian manifolds via the intrinsic torsion

José Carmelo González-Dávila

Abstract. We consider a q-dimensional distribution as a section of the
Grassmannian bundle Gq(M

n) of q-planes and we derive, in terms of the
intrinsic torsion of the corresponding S(O(q)×O(n−q))-structure, the con-
ditions that this map must satisfy in order to be critical for the function-
als energy and volume. Using this it is shown that invariant Riemannian
foliations of homogeneous Riemannian manifolds which are transversally
symmetric determine harmonic maps and minimal immersions. In parti-
cular, canonical homogeneous fibrations on rank one normal homogeneous
spaces or on compact irreducible 3-symmetric spaces provide many exam-
ples of harmonic maps and minimal immersions of compact Riemannian
manifolds.

1. Introduction

A q-dimensional distribution on an n-dimensional oriented Riemannian manifold
(M, g) can be view as a section of the Grassmannian bundle π : Gq(M) → M
of q-planes in TM. Because Gq(M) is diffeomorphic to the homogeneous fibre
bundle SO(M)/ S(O(q) × O(n − q)), where SO(M) is the the principal SO(n)-
bundle of oriented orthonormal frames of (M, g), it is endowed with a natural
Riemannian metric gK related with g known as the Kaluza–Klein metric [29].
It makes π : (Gq(M), gK) → (M, g) a Riemannian submersion with totally geodesic
fibres. If moreover M is compact, since the fibres are also compact submanifolds,
(Gq(M), gK) is a compact Riemannian manifold.

The energy functional of a distribution σ is then defined as the energy of the
map σ : (M, g) → (Gq(M), gK) and its volume Vol(σ) as the volume of the corres-
ponding submanifold σ(M) in (Gq(M), gK).
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The energy of a map σ : (M, gM ) → (N, gN ) between Riemannian manifolds,M
being compact and oriented, is the integral

(1.1) E(σ) = 1

2

∫
M

traceLσ dvgM ,

where Lσ is the (1, 1)-tensor field determined by (σ∗gN)(X,Y ) = gM (LσX,Y ), for
all X,Y ∈, where X(M) is the Lie algebra of C∞ vector fields on M, and dvgM
denotes the volume form on (M, gM ). The volume Vol(σ) of an immersion σ : M →
(N, gN ) is the volume of the Riemannian manifold (M,σ∗gN). If we choose a
metric gM on M then

Vol(σ) =

∫
M

√
det Lσ dvgM .

The Euler–Lagrange equations of the corresponding variational problems give rise
to the definition of the tension of a map and the mean curvature of an immersion.
When M is moreover closed, their vanishing characterizes harmonic maps and
minimal immersions, respectively. We refer to [6], [7], and [25] for more information
about the energy and volume functional.

We also consider q-dimensional oriented distributions on M as sections of the
Grassmannian bundle π : Gor

q (M) → M of oriented q-planes in TM. Gor
q (M) is

diffeomorphic to the homogeneous fibre bundle SO(M)/(SO(q)× SO(n− q)) and,
with respect to the corresponding Kaluza–Klein metrics, Gor

q (M) and Gq(M) are
locally isometric. Hence, the conditions characterizing harmonicity and minimal-
ity for oriented or unoriented distributions as maps into Gor

q (M) or Gq(M) are
the same.

The Grassmannian bundle Gor
q (M) can be identified with a subbundle of the

bundle π : Λq(M) → M of all q-vectors on M. This allows us to see Gor
q (M) as a

Riemannian submanifold of Λq(M) equipped with a Riemannian metric gS , which
generalizes the Sasaki metric of the tangent bundle; see [2]. We shall show in The-
orem 3.2 that the Riemannian metrics gK and gS on Gor

q (M) determine the same
Riemannian structure. Hence, studies of the harmonicity for distributions made
by viewing them as maps into (Gq(M), gK), as in [5] and [28], among others; or
for oriented distributions by viewing them as maps into (Gor

q (M), i∗gS), as in [4],
[8], [20] and [22], yield the same theory.

In terms of G-structures, q-dimensional distributions are in one-to-one corres-
pondence with S(O(q)×O(n−q))-reductions of the SO(n)-bundle π : SO(M) →M ,
see [23]. In the present work, we analyze the energy functional of a distribution σ
considered as a map σ : (M, g̃) → (Gq(M), gK), where g̃ is an arbitrary metric
on M, and we show the central role played by the intrinsic torsion of the S(O(q)×
O(n− q))-structure in the characterization of critical points for the energy and the
volume functional (Theorem 3.4).

The use of the intrinsic torsion has made possible deeper study of the harmo-
nicity of G-structures (see [10] and [11]). Here, we focus attention on Riemannian
homogeneous manifolds (M = G /K, g) equipped with a G-invariant integrable dis-
tribution F whose transverse geometry is locally modeled on a symmetric space,
called a transversally symmetric invariant foliation, and, using tools developed for
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the intrinsic torsion of S(O(q)×O(n−q))-structures, we show that F is a harmonic
distribution, a critical point of the energy functional restricted to Γ∞(Gq(M)),
and a minimal immersion into the Grassmannian bundle (Gq(M), gK). When F is
moreover a Riemannian foliation, see [21], we will be able to show that it deter-
mines a harmonic map σ : (M, g) → (Gq(M), gK) (Theorem 4.2). This yields new
examples of harmonic maps between compact Riemannian manifolds.

A standard way of constructing transversally symmetric invariant foliations on
(M = G /K, g) consists in taking as the leaves the fibres of a homogeneous fibration

F = L /K →M = G /K
π→ N = G /L : gK �→ g L,

where (G,L) is a symmetric pair. In fact, if G is semisimple, any of these invariant
foliations becomes precisely a homogeneous fibration of the type above. Using a
different method, when G, L and K are compact Lie groups and the metric g is a
suitable homogeneous Riemannian metric, known as binormal, the harmonicity of
the transversally symmetric fibration is proved in [5]. Here, we extend this result
not only to harmonicity but also to minimality of homogeneous fibrations with
respect to any invariant metric on the total space M = G /K .

Compact rank one normal homogeneous spaces ([13], [26]) and irreducible 3-
symmetric spaces of types A3II and A3III ([9], [12], [14], [27]) admit canonical fi-
brations over (irreducible) symmetric spaces of compact type which are constructed
in this way. On compact rank one homogeneous spaces, they are all the generalized
Hopf fibrations (see Chapter 9H of [1]) together with the two exceptional fibrations

RP 5 → B13 → CP 4, RP 3 →W 7 → CP 2,

where B13 and W 7 denote respectively the Berger and Wilking spaces [26]. On
compact irreducible 3-symmetric spaces, we give the complete list of the canonical
fibrations and we show that for any homogeneous Riemannian metric on the total
space, all these fibrations determine harmonic maps and minimal immersions into
their Grassmannian bundles (Theorems 5.3, 5.4, and 5.6).

2. Intrinsic torsion of distributions

Let π : Gq(M) =
⋃

x∈M Gq(TxM) → M be the Grassmannian bundle of the q-di-
mensional linear subspaces in the tangent bundle TM of a n-dimensional ori-
ented Riemannian manifold (M, g). For each x ∈ M, the fibre Gq(TxM) is a
(n − q)q-dimensional compact homogeneous manifold diffeomorphic to Gq(Rn) =
SO(n)/ S(O(q)×O(n− q)).

Let πSO(n) : SO(M) →M be the principal SO(n)-bundle of oriented orthonor-
mal frames of (M, g). A point p of SO(M) is a pair (x; p1, . . . , pn) where x ∈ M
and {p1, . . . , pn} is an oriented and orthonormal basis of (TxM, gx) and the ac-
tion of SO(n) on the right on SO(M) is given by p · a = (x; ap1, . . . , apn), where
api = ajipj and a = (aij) ∈ SO(n).

Factoring the map SO(M) → Gq(M), p = (x; p1, . . . , pn) �→ R{p1, . . . , pq} by
the Lie subgroup S(O(q) × O(n − q)) of SO(n), Gq(M) is diffeomorphic to the
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orbit space SO(M)/ S(O(q) × O(n − q)) and so, it is naturally isomorphic to the
associated bundle SO(M) ×SO(n) Gq(Rn) via the map

[(p, a S(O(q)×O(n− q)))] �→ p · a S(O(q)×O(n− q)).

Moreover, the orbit map ρ : SO(M) → SO(M)/ S(O(q)×O(n− q)) is a principal
S(O(q)×O(n− q))-bundle and we have πSO(n) = π ◦ ρ. Hence, each σ ∈ Γ∞(GqM)
determines a reduction of SOσ(M) ⊂ SO(M) to S(O(q)×O(n− q)) where

SOσ(M) = {(x; p1, . . . , pn) ∈ SO(M) | σ(x) = R{p1, . . . , pq}}

and conversely. Then there is a one-to-one correspondence between the set of
S(O(q) × O(n − q))-structures and the manifold Γ∞(Gq(M)) of all q-dimensional
distributions of (M, g). Moreover, the pair (Vσ = σ,Hσ = σ⊥), where σ⊥ is the
orthogonal distribution of σ on (M, g), determines a Riemannian almost-product
(AP ) structure, i.e., an orthogonal (1, 1)-tensor field Pσ on (M, g) with P 2

σ = Id
and Pσ �= ±Id. The vertical and horizontal distributions Vσ and Hσ are the
corresponding ±1-eigendistributions of Pσ.

In similar way, if we consider the Grassmannian bundle Gor
q (M) of the

q-dimensional oriented linear subspaces of TM, with fibres diffeomorphic to the
Grassmannian manifold Gor

q (Rn) = SO(n)/ SO(q) × SO(n − q), one obtains that
each SO(q) × SO(n − q)-structure corresponds with a q-dimensional oriented dis-
tribution.

Each of the Grassmannian manifolds Gq(Rn) and Gor
q (Rn) is a Riemannian

symmetric space equipped with the normal homogeneous Riemannian metric that,
up to a scalar, is induced on so(n) by the inner product 〈X,Y 〉 = − 1

2 traceXY.
The associated orthogonal symmetric Lie algebra is the pair (so(n), s), s being
the involutive automorphism s(X) = PXP of so(n), given by conjugation by the
matrix

P =

(
Iq 0
0 −In−q

)
.

Then so(n) = (so(q) ⊕ so(n − q)) ⊕ m is a reductive decomposition, where m is
the −1-eigenspace of s, the subspace of so(n) generated by the matrices {Ba

j =
Eq+j,a−Ea,q+j : a = 1, . . . , q; j = 1, . . . , n−q}. Here, Eij denotes the n×n-matrix
with a 1 in the ith row and jth column, and all of other entries equal to 0. These
matrices form an orthonormal basis on m with respect to 〈·, ·〉.

Let so(M) be the subbundle of End(TM) of endomorphisms skew-symmetric
with respect to g. It may be expressed as SOσ(M)×S(O(q)×O(n−q)) so(n), for each
σ ∈ Γ∞(Gq(M)). We consider the subbundle mσ = SOσ(M) ×S(O(q)×O(n−q)) m.
Then mσ consists of those skew-symmetric endomorphisms A of the tangent bundle
such that APσ = −PσA, where Pσ is the AP-structure associated to σ.

An oriented Riemannian manifold (M, g) equipped with a G-structure σ admits
a unique G-connection ∇σ = ∇ − ξσ, the minimal connection, where ∇ is the
Levi-Civita connection of (M, g), and the intrinsic torsion ξσ of the G-structure
belongs to T ∗M⊗mσ, [3]. Next we determine the minimal connection and intrinsic
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torsion of an oriented distribution in terms of the corresponding Riemannian AP-
structure, using the identification of SO(q)×SO(n−q)-structures as q-dimensional
oriented distributions. Because SO(q)× SO(n− q) is the connected component of
the identity of S(O(q)×O(n− q)), these are also the minimal connection and the
intrinsic torsion of the corresponding unoriented distribution.

Proposition 2.1. The minimal connection of a q-dimensional distribution σ co-
incides with the Schouten connection ∇σ = ∇− ξσ, where the intrinsic torsion ξσ
is given by

(2.1) (ξσ)XY = −1

2
Pσ(∇XPσ)Y, X, Y ∈ X(M).

Proof. This follows from the identities

∇σPσ = ∇σg = 0 and Pσ ◦ (ξσ)X = −(ξσ)X ◦Pσ, for all X ∈ X(M). �

Let

p1 =
1

2
(Id + P ) : TM → V and p2 =

1

2
(Id− P ) : TM → H

be the canonical projections. Then, from (2.1), the intrinsic torsion ξ of σ is
determined by

(2.2)
ξUV = p2(∇UV ), ξUX = p1(∇UX),

ξXU = p2(∇XU), ξXY = p1(∇XY ).

Here, and in what follows, U, V and W denote elements of V ; X, Y and Z denote
elements of H and, when a distribution σ is fixed, we omit the subscript and we
simply write ξ, P, H, V , . . . The second fundamental forms (symmetric tensors)
hV : V×V → H and hH : H×H → V , and the integrability tensors (skew-symmetric
tensors) AV : V × V → H and AH : H ×H → V are defined in terms of ξ by the
following formulas:

hV(U, V ) = 1
2 (ξUV + ξV U), AV(U, V ) = 1

2 (ξUV − ξV U),

hH(X,Y ) = 1
2 (ξXY + ξYX), AH(X,Y ) = 1

2 (ξXY − ξYX).

In view of the identities AV(U, V ) = 1
2p2[U, V ] and AH(X,Y ) = 1

2p1[X,Y ], the
distribution V (resp., H) is integrable, i.e., it determines a foliation, if and only
if AV = 0 (resp., AH = 0). The distribution V (resp., H) is said to be geodesic
if hV = 0 (resp., hH = 0). This means that all geodesics with initial vector in V
(resp. H) remain in V (resp. H) for all time. Note that if ξ is totally skew-
symmetric, i.e., ξAA = 0 for all A ∈ TM, then ξ = 0.

A foliation on (M, g) is said to be Riemannian if each geodesic orthogonal to a
leaf at some point remains orthogonal to every leaf it meets. Tbus, a Riemannian
foliation is determined by an integrable distribution V whose orthogonal distri-
bution H is totally geodesic, or equivalently, has intrinsic torsion ξ satisfying
ξUV = ξV U and ξXY = −ξYX. Locally the leaves are the fibres of a Rieman-
nian submersion.
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3. Harmonic and minimal distributions

The Kaluza–Klein metric gK relative to (g, 〈·, ·〉) on the Grassmannian bundles
Gq(M) and Gor

q (M) makes the projection π onto (M, g) a Riemannian submersion
with totally geodesic fibres. It is defined on Gq(M) – in similar way on Gor

q (M) –
as follows, [29]: let TGq(M) = V ⊕H, where

V = Ker π∗ = ρ∗(Ker (πSO(n))∗), H = ρ∗(Ker ω),

and ω is the so(n)-valued connection form of the Levi-Civita connection on SO(M).
Then, for each p ∈ SO(M), a vector in Vρ(p) may be written as ρ∗pA∗

p, for some
A ∈ m, A∗ being the fundamental vector field on SO(M).

We consider the canonical bundle mSO(M) = SO(M) ×S(O(q)×O(n−q)) m asso-
ciated to ρ with fibre m. Then the map ι : V → mSO(M), ρ∗pA∗

p �→ [(p,A)], is a
vector bundle isomorphism, which may be extended to K : TGq(M) → mSO(M)

by saying that K(η) = 0 for all η ∈ H and K(η) = ι(η) for all η ∈ V . Denoting
also by 〈·, ·〉 the fibre metric on mSO(M) induced by the inner product on m, the
metric gK is then characterized by

gK(η1, η2) = g(π∗η1, π∗η2) + 〈K(η1),K(η2)〉.
With respect to the corresponding Kaluza–Klein metrics on Gor

q (M) and Gq(M),
the projection pr : Gor

q (M) → Gq(M), [(p, a SO(q)× SO(n− q))] �→ [(p, a S(O(q)×
O(n− q)))], is a local isometry.

On the other hand, we can think of Gor
q (M) as a subbundle of the bundle

π : Λq(M) → M of all skew-symmetric contravariant tensors of order q; or briefly,
of all q-vectors on M (see [8]). This allows us to see Gor

q (M) as a Riemannian

submanifold of Λq(M) equipped with a Riemannian metric gS , generalizing the
Sasaki metric of the tangent bundle, see [2]. For σ ∈ Λq(M) and η1, η2 ∈ TσΛ

q(M),
gS is defined by

(3.1) gS(η1, η2) = g(π∗η1, π∗η2) + g(K(η1),K(η2)),

where g also denotes the natural extension of the metric g of M to q-vectors and
K : TΛq(M) → Λq(M) is the connection map on Λq(M) induced by the Levi-
Civita connection ∇ of g. If σ is a smooth section, σ ∈ Γ∞(Λq(M)), one obtains
that K(σ∗X) = ∇Xσ, for all X ∈ X(M). Then, from (3.1), we get

(3.2) (σ∗gS)(X,Y ) = g(X,Y ) + g((∇σ)t ◦ (∇σ)(X), Y ),

where ∇σ is the map ∇σ : X(M) → Γ∞(Λq(M)), (∇σ)(X) = ∇Xσ, and (∇σ)t :
Γ∞(Λq(M)) → X(M) is the adjoint operator of ∇σ with respect to g defined by

g((∇σ)tϕ,X) = g(ϕ,∇Xσ), ϕ ∈ Γ∞(Λq(M)), X ∈ X(M).

Let Σor
q (Rn) be the set of all decomposable q-vectors σ of Rn such that ‖σ‖ = 1.

Then σ may be written as σ = e1∧· · ·∧eq where {e1, . . . , eq} are the first q vectors
of a positive orthonormal basis {ei}ni=1 of Rn. The natural action of SO(n) on Rn

determines a transitive action on Σor
q (Rn) given by a·σ = ae1∧· · ·∧aeq, a ∈ SO(n).

Write σ0 = u1∧· · ·∧uq, where {ui}ni=1 is the canonical basis of Rn. Then, we have:
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Lemma 3.1. The map Φ : Gor
q (Rn) → Σor

q (Rn), a(SO(q)× SO(n− q)) �→ a ·σ0, is
an isometry, where Σor

q (Rn) is considered as Riemannian submanifold of Λq(Rn).

Proof. The tangent space TσΣ
or
q (Rn) at σ = e1∧· · ·∧ eq is the subspace of Λq(Rn)

generated by

{σa
j = (−1)a+1eq+j ∧ e1 ∧ · · · ∧ êa ∧ · · · ∧ eq | a = 1, . . . , q; j = 1, . . . , n− q}

(see Section 3 in [8]), where {eq+1, . . . , en} are chosen such that they complete
{e1, . . . , eq} to a positive orthonormal basis of Rn and êa means that ea is omitted.
With respect to the induced metric on Σor

q (Rn) ⊂ Λq(Rn), the {σa
j } form an

orthonormal basis of TσΣ
or
q (Rn). Moreover, this metric is SO(n)-invariant and

Σor
q (Rn) becomes a homogeneous Riemannian manifold. Hence we must show that

for the corresponding inner products, Φ∗o : m → TσoΣ
or
q (Rn) is a linear isometry,

or equivalently, Φ∗oBa
j = (σ0)

a
j , where o is the origin of the homogeneous space

SO(n)/ SO(q)× SO(n− q). Now, we have

Φ∗oBa
j =

d

dt |t=0
etB

a
j · σ0 =

q∑
b=1

(
u1 ∧ · · · ∧ d

dt |t=0
etB

a
j ub ∧ · · · ∧ uq

)
.

Then, taking into account that etB
a
j ua = cos t ua + sin t uq+j and etB

a
j ub = ub, for

b �= a, it follows that

Φ∗oBa
j = (−1)a+1 d

dt |t=0
(cos t ua +sin t uq+j)∧ u1 ∧ · · · ∧ ûa ∧ · · · ∧uq = (σ0)

a
j . �

Let Σor
q (M) =

⋃
x∈M Σor

q (TxM) be the subbundle of Λq(M) comprising unit
norm decomposable forms. It can be expressed as the associated bundle SO(M)
×SO(n)Σ

or
q (Rn) of πSO(n). Then, we have:

Theorem 3.2. The map Φ̃ : (Gor
q (M), gK) → (Σor

q (M), i∗gS) given by

Φ̃([(p, a SO(q)× SO(n− q))]) = [(p,Φ(a SO(q)× SO(n− q)))],

is an isometry.

Proof. By Lemma 3.1, the proof reduces to showing that Φ̃∗(XH) is horizontal,
where XH denotes the horizontal lift in Gor

q (M) of X ∈ X(M). Let α = α(t)
be a curve in M and let {E1, . . . , En} be an oriented orthonormal frame field
along α obtained by parallel translation with respect to the Levi-Civita connection.
Then t �→ (α(t);E1(t), . . . , En(t)) gives a horizontal curve in SO(M) and, via ρ,
the map t �→ U(t) = R{E1(t), . . . , Eq(t)} determines a curve in Gor

q (M) tangent

to the horizontal distribution H. Its image under Φ̃ is the curve t �→ σ(t) =
E1(t) ∧ · · · ∧ Eq(t) in Σor

q (M). Since

∇σ(t)
dt

=

q∑
a=1

E1(t) ∧ · · · ∧ ∇Ea(t)

dt
∧ · · · ∧ Eq(t),

σ(t) is parallel along α, or equivalently, a horizontal lift of α. Hence, Φ̃ sends
horizontal lifts of a curve α in M to horizontal lifts of the same curve α. �
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Remark 3.3. Denote by Σq(Rn) the orbit space Σor
q (Rn)/± 1 and by Σq(M) the

associated bundle SO(M) ×SO(n) Σq(Rn) of πSO(n). Then Φ̃ induces an isometry
between (Gq(M), gK) and (Σq(M), i∗gS), where i∗gS also denotes the metric on
Σq(M) making Σor

q (M) → Σq(M), [(p, σ)] �→ [(p, [σ])], a local isometry.

Under the identification above, Gor
q (M) is the subbundle of Λq(M) compris-

ing unit norm decomposable forms, and each q-dimensional oriented distribution
σ ∈ Γ∞(Gor

q (M)) can be considered as a global smooth section of the tensor bundle
Λq(M). It can be expressed locally as σ = E1∧· · ·∧Eq , where {E1, . . . , En} is a pos-
itive orthonormal local frame such that the E1, . . . , Eq span σ and the Eq+1, . . . , En

span σ⊥, section of Gor
n−q(M). Such a local frame {E1, . . . , Eq;Eq+1, . . . , En} will

be called a local frame adapted to the distribution.
In what follows, the following convention for the indices is used: i ∈ {1, . . . , n},

a, b, c, · · · ∈ {1, . . . , q} and j, k, l, · · · ∈ {1, . . . , n − q}. Then, with respect to an
adapted local frame and using the summation convention, we have

(3.3) ∇Xσ = E1 ∧ · · · ∧ ∇XEa ∧ · · · ∧ Eq = g(ξXEa, Eq+j)σ
a
j .

Since g(σa
j , σ

b
k) = δkj δ

b
a, taking into account (2.2) we obtain

(3.4) g(∇Xσ,∇Y σ) = g(ξXEa, Eq+j)g(ξY Ea, Eq+j) =
1

2
g(ξX , ξY ).

If M is compact and oriented, the energy functional of an oriented distribu-
tion σ is defined as the energy E(σ) of the map σ : (M, g) → (Gor

q (M), gK) ∼=
(Σor

q (M), i∗gS). Using (3.2) and (3.4), the tensor field Lσ defined in Section 1 can
be expressed as

Lσ = Id +
1

2
ξtσ ◦ ξσ,

where ξσ is considered as the C∞(M)-map ξσ : X(M) → Γ∞(mσ), ξσX = (ξσ)X .
Hence, the energy E(σ) and the volume Vol(σ) of σ are given in terms of the
intrinsic torsion by

(3.5) E(σ) = n

2
Vol(M) +

1

4

∫
M

‖ξσ‖2dvg , Vol(σ) =

∫
M

√
det(Id +

1

2
ξtσ ◦ ξσ)dvg.

In view of our applications, we also consider σ as a map σ : (M, g̃) → (Λq(M), gS),
where g̃ is an arbitrary metric on M, which may be different from g. Denote
by Eg̃(σ) the energy of σ as a map between these Riemannian manifolds. Let Lσ,g̃

and Qg̃ be the automorphism fields determined, respectively by

(σ∗gS)(X,Y ) = g̃(Lσ,g̃X,Y ), g̃(X,Y ) = g(Qg̃X,Y ).

Then Lσ = Qg̃ ◦Lσ,g̃ and the energy of σ can be written as

(3.6) Eg̃(σ) = 1

2

∫
M

trace(Q−1
g̃

◦Lσ)
√

detQg̃ dvg.
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In particular, for g̃ = g, E(σ) = Eg̃(σ) is the energy of the section σ, and, for
g̃ = σ∗gS , we have Qg̃ = Lσ and so

(3.7) Vol(σ) =
2

n
E(σ∗gS)(σ).

Denote by τg̃(σ) the tension field of σ, i.e., the vector field along σ given locally by

τg̃(σ) = ∇S
Ẽi
σ∗Ẽi − σ∗∇̃Ẽi

Ẽi,

where ∇̃ and ∇S denote the Levi-Civita connections of g̃ and gS, respectively,
(∇S is considered as the connection of gS on the induced vector bundle σ∗TΛq(M))

and {Ẽi}ni=1 is a local g̃-orthonormal frame. In [8], τg̃(σ) has been characterized
as follows:

τg̃(σ) = (Xσ,g̃)
hor ◦σ + (ησ,g̃)

vert ◦σ,

where (Xσ,g̃)
hor is the horizontal lift on Λq(M) of Xσ,g̃ = (Rσ,g̃)

� + τg̃(Id), Rσ,g̃ is
the one-form on M defined locally by

(3.8) Rσ,g̃(X) = g(RX Ẽi
σ,∇Ẽi

σ),

τg̃(Id) is the tension of Id : (M, g̃) → (M, g), and (ησ,g̃)
vert is the vertical lift of

ησ,g̃ ∈ Γ∞(Λq(M)), defined on the domain of {Ẽi} by

ησ,g̃ = ∇τg̃(Id)σ + (∇2σ)ẼiẼi
.

Here RXY σ = ∇[X,Y ]σ−∇X∇Y σ+∇Y ∇Xσ and (∇2σ)XY = ∇X∇Y σ−∇(∇XY )σ.
Hence, the map σ : (M, g̃) → (Λq(M), gS) is harmonic if and only if Xσ,g̃ = 0

and ησ,g̃ = 0. For g̃ = g, putting Rσ = Rσ,g, σ is harmonic if and only if Rσ = 0
and ∇∗∇σ = 0, where ∇∗∇σ = −(∇2σ)EiEi is the connection Laplacian (or rough
Laplacian)[17], {Ei}ni=1 being a local g-orthonormal frame. Because for compactM
the connection Laplacian of σ vanishes if and only if σ is parallel (see page 154
of [17]), the harmonicity condition for σ is equivalent to σ being parallel.

Next, let Kσ,g̃ be the C∞(M)-linear map Kσ,g̃ : X(M) → Γ∞(Λq(M)) given by

Kσ,g̃ =
√

detQg̃ (∇σ) ◦Q−1
g̃ .

Then, in [8] it is proved that

(3.9) ∇∗Kσ,g̃ = −√
detQg̃ ησ,g̃,

where ∇∗Kσ,g̃ is defined locally by ∇∗Kσ,g̃ = −(∇EiKσ,g̃)Ei. Since for the case
g̃ = σ∗gS , the condition ησ,g̃ = 0 implies that Xσ,g̃ = 0, [8], one obtains from (3.7)
and (3.9) that the immersion σ : M → (Λq(M), gS) is minimal if and only if
∇∗Kσ = 0, where Kσ is given by

(3.10) Kσ =
√
detLσ (∇σ) ◦L−1

σ .
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Denote by S0
σ(x) the subspace of Λq(TxM) generated by σ(x), by S1

σ(x) to the

tangent space Tσ(x)Σ
or
q (TxM), generated by σa

j , a = 1, . . . , q, j = 1, . . . , n− q, and

by S2
σ(x) the subspace generated by

{σab
jk(x) | 1 ≤ a < b ≤ q; 1 ≤ i < j ≤ n− q},

where σab
jk(x) = (−1)a+beq+j∧eq+k∧e1∧· · ·∧êa∧· · ·∧êb∧· · ·∧eq. Then, using (3.3),

for every σ ∈ Γ∞(Σq(M)) we have

(∇∗Kσ,g̃)(x) ∈ S0
σ(x) ⊕ S1

σ(x) ⊕ S2
σ(x).

Since the harmonicity of σ viewed as map into Σor
q (M) is determined by the van-

ishing of the projection onto TσΣ
or
q (TxM) of the tension, the map σ : (M, g̃) →

(Gor
q (M), gK) is harmonic if and only if Xσ,g̃ = 0 and g(∇∗Kσ,g̃, σ

a
j ) = 0. In

particular, σ : (M, g) → (Gor
q (M), gK) is harmonic if and only if Rσ = 0 and

g(∇∗∇σ, σa
j ) = 0. A critical point σ of the energy functional Eg̃ restricted to

Γ∞(Gor
q (M)) is called a g̃-harmonic distribution (or simply harmonic distribu-

tion if g̃ = g); it is characterized by the vanishing of the vertical component of
τg̃(σ) : g(∇∗Kσ,g̃, σ

a
j )=0.

When the immersion σ : M → (Gor
q (M), gK) is minimal, σ is called a minimal

distribution. Then the minimality condition for a distribution σ is determined
by g(∇∗Kσ, σ

a
j ) = 0.

For general Riemannian manifolds (M, g), not necessarily closed and oriented,
we extend the above definitions for distributions satisfying such conditions.

Next, given a (1, 2)-tensor field ψ on M, we denote by d∗ψ its coderivative,
which is defined by

(d∗ψ)x(X) = −(∇eiψ)eiX,

where {e1, . . . , en} is any orthonormal basis of TxM.

Theorem 3.4. Let σ ∈ Γ∞(Gor
q (M)) be an oriented q-dimensional distribution on

a Riemannian manifold (M, g) with intrinsic torsion ξ. Then, for any metric g̃,
we have:

(i) the map σ : (M, g̃) → (Gor
q (M), gK) is harmonic if and only if the following

conditions are satisfied:

(a) Rσ,g̃(X) + g(τg̃(Id), X) = 0, for all X ∈ X(M), where Rσ,g̃ is expressed
locally as Rσ,g̃(X) = 1

2g(RXẼi
, ξẼi

), and

(b) d∗κσ,g̃(Vσ) ⊂ Vσ (or equivalently, d∗κσ,g̃(Hσ) ⊂ Hσ), where

κσ,g̃ =
√
detQg̃ ξ ◦Q−1

g̃ .

In particular, the map σ : (M, g) → (Gor
q (M), gK) is harmonic if and only if

d∗ξ = 0 and Rσ = 0;
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(ii) the condition (b) characterizes g̃-harmonic distributions, and d∗ξ = 0 char-
acterizes harmonic distributions;

(iii) the immersion σ : M → (Gor
q (M), gK) is minimal if and only if

d∗κσ(Vσ) ⊂ Vσ (or equivalently, d∗κσ(Hσ) ⊂ Hσ),

where κσ =
√
detLσ ξ ◦L−1

σ and Lσ = Id + ξt ◦ ξ.

Remark 3.5. Because the projection pr : Gor
q (M) → Gq(M) is a local isome-

try with respect to the corresponding Kaluza–Klein metrics, the conditions which
a (unoriented) distribution σ : (M, g̃) → (Gq(M), gK) must satisfy in order that
σ be a harmonic map, or a g̃-harmonic distribution, or the immersion σ : M →
(Gq(M), gK) be minimal, are, respectively, the conditions (i), (ii) or (iii) of Theo-
rem 3.4 for oriented distributions. The condition that σ be a harmonic distribution
is also equivalent to [Pσ,∇∗∇Pσ ] = 0, where [·, ·] denotes the commutator bracket
of endomorphisms (see [28]).

For the proof of Theorem 3.4, we shall need the following lemmas.

Lemma 3.6. Let σ be a q-dimensional oriented distribution on a Riemannian
manifold (M, g) and let A be a (1, 1)-tensor field on M. We have:

(i) d∗(ξ ◦A) ∈ Γ∞(so(M)) and, if [ξEi , ξAEi ] = 0, then d∗(ξ ◦A) ∈ Γ∞(mσ);

(ii) g((d∗(ξ ◦A)Ea, Eq+j) = g(∇∗(∇σ ◦A), σa
j ).

Proof. Because ξ ∈ Γ∞(mσ), we obtain d∗(ξ ◦A) ∈ Γ∞(so(M)). For U, V ∈ Vσ,
using (2.2), one gets

g(d∗(ξ ◦A)U, V ) = g(ξAEi∇EiU, V )− g(∇EiξAEiU, V )

= g(ξAEiU, ξEiV )− g(ξEiU, ξAEiV ) = −g([ξEi , ξAEi ]U, V ).

In the same way, g(d∗(ξ ◦A)X,Y ) = −g([ξEi , ξAEi ]X,Y ), for allX,Y ∈ Hσ. Hence,
if [ξEi , ξAEi ] = 0, then d∗(ξ ◦A)Vσ ⊂ Hσ and d∗(ξ ◦A)Hσ ⊂ Vσ, which proves (i).
Next, we show (ii). From (3.3) we get

(3.11) ∇X∇Y σ = Xg(ξYEa, Eq+j)σ
a
j + g(ξY Ea, Eq+j)∇Xσ

a
j

and the projection of ∇Xσ
a
j onto S1

σ is given by

g(∇XEq+j , Eq+k)σ
a
k − g(∇XEb, Ea)σ

b
j .

Then, we have

g(∇X∇Y σ, σ
a
j ) = g(∇XξY Ea, Eq+j) + g(ξY Ea,∇XEq+j)

− g(ξYEa, Eq+k)g(∇XEq+j , Eq+k) + g(∇XEa, Eb)g(ξY Eq+j , Eb)

= g(∇XξY Ea, Eq+j) + g(∇XEa, ξY Eq+j).
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Hence, one gets g(∇X∇Y σ, σ
a
j ) = g((∇XξY )Ea, Eq+j). Then, using again (3.3),

(3.12) g((∇X(∇σ ◦A))Y, σa
j ) = g((∇X(ξ ◦A))Y Ea, Eq+j)

and this proves (ii). �

Lemma 3.7. We have:

(i) g(RXYEa, Eq+j) = g(RXY σ, σ
a
j );

(ii) Rσ,g̃(X) = g(RXẼi
Ea, ξẼi

Ea) = g(RXẼi
Eq+j , ξẼi

Eq+j) =
1
2g(RXẼi

, ξẼi
).

Proof. A straightforward calculation, using (2.2), gives

g(RXY Ea, Eq+j) = g((∇Y ξ)XEa − (∇Xξ)Y Ea, Eq+j).

Because g(RXY σ, σ
a
j ) = g(∇2

Y Xσ −∇2
XY σ, σ

a
j ), (i) is obtained from (3.12). From

this, and using (3.3), we get Rσ,g̃(X) = g(RXẼi
Ea, Eq+j)g(ξẼi

Ea, Eq+j). Then (ii)
is also proved. �

Proof of Theorem 3.4. The map σ : (M, g̃) → (Gor
q (M), gK) is harmonic if and only

if Xσ,g̃ = 0 and g(∇∗Kσ,g̃, σ
a
j ) = 0. From the definition of Xσ,g̃, it vanishes if and

only if Rσ,g̃(X)+g(τg̃(Id), X) = 0, for all X ∈ X(M), where, using Lemma 3.7 (ii),
Rσ,g̃ is expressed in terms of the intrinsic torsion as Rσ,g̃(X) = 1

2g(RXẼi
, ξẼi

).
On the other hand, from Lemma 3.6, we obtain

g(∇∗Kσ,g̃, σ
a
j ) = g(∇∗(∇σ ◦ (

√
detQg̃ Q

−1
g̃ )), σa

j )

= g((d∗κσ,g̃)Ea, Eq+j) = −g(Ea, (d
∗κσ,g̃)Eq+j).

Hence, the vanishing of g(∇∗Kσ,g̃, σ
a
j ) is equivalent to each of the conditions for

d∗κσ,g̃ given in (b), and we have proved (i). Now, the rest of the proof is a direct
consequence of this statement.

4. Transversally symmetric invariant foliations

Let (M, g) be a connected homogeneous Riemannian manifold. Then (M, g) can
be expressed as a coset space G /K, where G is a Lie group, which assumed to
be connected, acting transitively and effectively on M ; K is the isotropy subgroup
of G at some point o ∈M, the origin of G /K; and g is a G-invariant Riemannian
metric. We say that g is a homogeneous Riemannian metric of M. Moreover, we
can assume that G /K is a reductive homogeneous space, i.e., there is an Ad(K)-
invariant subspace m of the Lie algebra g of G such that g = k ⊕ m, k being the
Lie algebra of K . Then, under the identification m ∼= ToM, g corresponds with an
Ad(K)-invariant inner product 〈·, ·〉 on m. When there exists an Ad(G)-invariant
inner product on g, which we also denote by 〈·, ·〉, whose restriction to m = k⊥

is 〈·, ·〉, the space (M = G /K, g) is called normal homogeneous.
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Let T̃ denote the torsion tensor and R̃ the curvature tensor of the canonical con-
nection ∇̃ of (M, g) adapted to the reductive decomposition g = k⊕m (see [16], II,
page 190). At the origin, they are given by

(4.1) T̃o(X,Y ) = −[X,Y ]m , R̃o(X,Y ) = ad[X,Y ]k ,

where [X,Y ]m and [X,Y ]k denote respectively the m- and k-component of [X,Y ]
for all X,Y ∈ m. For each X ∈ m, consider X+, the G-invariant vector field
defined on a small neighborhood of o in M = G /K such that X+

o = X , [18].
Then [X+, Y +]o = [X,Y ]m and the G-invariant connection ∇̃ is determined by
∇̃XY

+ = 0. Using the Koszul formula, the Levi-Civita connection ∇ is given by

(4.2) 2〈∇XY
+, Z〉 = −〈X, [Y, Z]m〉 − 〈Y, [X,Z]m〉+ 〈Z, [X,Y ]m〉,

for X,Y, Z ∈ m. Let U : m×m → m be the symmetric bilinear mapping defined by

(4.3) 2〈U(X,Y ), Z〉 = 〈[Z,X ]m, Y 〉+ 〈[Z, Y ]m, X〉.
Then the homogeneous structure S = ∇−∇̃ associated to g = k⊕m [24] is given by

(4.4) SXY = ∇XY
+ =

1

2
[X,Y ]m + U(X,Y ), for all X,Y ∈ m.

Note that 〈SXY, Z〉+ 〈Y, SXZ〉 = 0. When U = 0, (M = G/K, g) is said to be na-
turally reductive. Using (4.1), we have the following expression for the Riemannian
curvature R of ∇ at the origin:

(4.5) RXY = ad[X,Y ]k + S[X,Y ]m − [SX , SY ].

A q-dimensional distribution σ on (M = G /K, g) is said to be G-invariant
if a∗xσ(x) = σ(a · x), for all a ∈ G and x ∈ M, where a∗x denotes the differ-
ential map of a at x. Since the linear isotropy representation, i.e., the differen-
tial of the action of K on ToM, corresponds, under the identification m ∼= ToM,
with the adjoint representation Ad(K) of K on m, there exists a bijection between
Ad(K)-invariant subspaces p = σ(o) ⊂ m and G-invariant distributions on (M, g).
The 〈·, ·〉-orthogonal complement n of p in m is also Ad(K)-invariant and the pair
(p, n) determines an invariant orthogonal distribution (Vσ,Hσ). Hence, the intrinsic
torsion is invariant and the existence of invariant distributions implies that G /K
must be isotropy-reducible. Moreover, if {Ea;Eq+j} is an adapted orthonormal
basis of m = p⊕n, then {E+

a ;E
+
q+j} is a local orthonormal frame around the origin

adapted to (Vσ,Hσ).
From (2.2) and (4.4), we have:

Lemma 4.1. Let (M = G /K, g) be a homogeneous Riemannian manifold with
adapted reductive decomposition g = k⊕m and let σ be a q-dimensional invariant
distribution determined by the pair (p, n). Then the intrinsic torsion ξ at the origin
of σ is given by

(4.6)
ξUV = (SUV )n, ξUX = (SUX)p,

ξXU = (SXU)n, ξXY = (SXY )p,

for all U, V ∈ p and X,Y ∈ n.
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Hence, σ is

(i) totally geodesic if and only if U(p, p) ⊂ p;

(ii) integrable if and only if [p, p]m ⊂ p. Moreover, the foliation is Riemannian if
and only if U(n, n) ⊂ n.

Then any G-invariant Riemannian AP-structure on a naturally reductive ho-
mogeneous space is totally geodesic, i.e., both distributions V and H are totally
geodesic. If a G-invariant distribution is integrable, the corresponding foliation F
is a G-invariant foliation, meaning a·Lx = La·x, for all a ∈ G and x ∈M, where Lx

denotes the leaf through x, and conversely, and, by Lemma 4.1 (ii), l = k⊕ p is a
Lie subalgebra of g. We shall denote by L the connected Lie subgroup of G with
Lie algebra l.

A foliation F on a differentiable manifold M is called transversally symmetric
if there exists a symmetric pair (G,L) such that its transversal geometry is locally
modeled on G /L . This means that F can be defined by a family of local submer-
sions fi : Ui → G /L such that {Ui} is an open covering of M and fj = aji · fi
with aji∈G .

In the context of G-invariant foliations, we say that a G-invariant foliation F
determined by an Ad(K)-invariant subspace p ⊂ m is transversally symmetric if
(g, s) is an orthogonal symmetric Lie algebra, where s is the involutive automor-
phism of g whose ±1-eigenspaces are l and n, respectively. Then the brackets
satisfy

(4.7) [p, n] ⊂ n, [n, n]m ⊂ p.

Since the connected Lie subgroup L̃ of the universal covering G̃ of G with Lie
algebra l is closed, (G̃, L̃) is a symmetric pair associated with (g, s) (see Propo-
sition 3.6, Chapter IV, in [15]). Hence, if F on M is a transversally symmetric
invariant foliation then it is in fact locally modeled on the simply connected sym-
metric space G̃/L̃.

Another homogeneous Riemannian metric g̃ on M is said to be adapted to the
AP-structure (V ,H), if the distributions V and H are g̃-orthogonal. It is clear
that if an invariant foliation is transversally symmetric, it is also transversally
symmetric for any adapted homogeneous Riemannian metric.

Using (4.7) and substituting in (4.3), one gets U(p, p) ⊂ p. Hence, transversally
symmetric G-invariant foliations are totally geodesic, but not necessarily Riemann-
ian foliations. In the next section we shall give examples of non-Riemannian
transversally symmetric foliations. By Lemma 4.1 (ii), the foliation is Riemannian
if and only if U(n, n) = 0, or equivalently, SXY = 1

2 [X,Y ]m, for all X,Y ∈ n.

Theorem 4.2. Let σ be the distribution tangent to a transversally symmetric
G-invariant foliation F of (M = G /K, g). For any adapted homogeneous Rieman-
nian metric g̃ on G /K, σ is a g̃-harmonic distribution. In particular, σ provides
a minimal immersion into the Grassmannian bundle (Gq(M), gK). If moreover F
is Riemannian, then σ : (M, g) → (Gq(M), gK) is a harmonic map.
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Proof. Let p ⊂ m the Ad(K)-invariant subspace that determines the distribution σ.
Then,

(4.8) Spp ⊂ p, Spn ⊂ n.

Moreover, by (4.7), U(n, n) ⊂ p and U(p, n) ⊂ n, and this implies

(4.9) Snn ⊂ p, Snp ⊂ n.

Hence, with these hypotheses, one gets

(4.10) ξp = 0, ξn = Sn.

Since g and g̃ are G-invariant Riemannian metrics, the automorphism field Qg̃ is
also G-invariant and so it is determined by the Ad(K)-invariant linear isomorphism

Qo : m → m defined by 〈̃u, v〉 = 〈Qou, v〉, where 〈̃·, ·〉 denotes the Ad(K)-invariant
inner product on m corresponding to g̃. Taking into account that the subspaces p

and n of m must be orthogonal with respect to 〈̃·, ·〉, it follows that the decomposi-
tion m = p ⊕ n is Qo-invariant. Hence, we can take the adapted 〈·, ·〉-orthonormal
basis {Ea;Eq+j} in m as a basis of eigenvectors of Qo. Then, applying (4.10) and
also (4.8) and (4.9), we get

d∗(ξ ◦Q−1
o ) = −(∇Eio

ξQ−1
o Ei

− ξQ−1
o ∇Ei

Ei
− ξQ−1

o Ei
∇Ei)

= [ξQ−1
o Ei

, SEi ] + ξQ−1
o SEi

Ei
= [ξQ−1

o Eq+j
, SEq+j ] = 0.

Hence, using Theorem 3.4, σ is a g̃-harmonic distribution. For g̃ = σ∗gS we have
Qg̃ = Lσ. Then g̃ is a homogeneous Riemannian metric on M and, from (4.10),
adapted to the AP-structure (Vσ,Hσ). Thus Theorem 3.4 also implies that σ is
minimal.

From (4.5), and from (4.8) and (4.9), one gets 〈RXY U,Z〉 = 0, for all U ∈ p,
and X,Y, Z ∈ n. Then, (Rσ)o(n) = 0. On the other hand, for each U ∈ p, apply-
ing (4.10) and Lemma 3.7, together with the Riemannian condition for the foliation
and (4.5), we obtain

(Rσ)o(U) = 〈RUEq+jEq+k, ξEq+jEq+k〉
= 〈S[U,Eq+j ]Eq+k + SEq+jSUEq+k, ξEq+jEq+k〉
= 〈ξEq+j ([U,Eq+k] + SUEq+k), ξEq+jEq+k〉
= −〈[U,Eq+k] + SUEq+k, ξ

2
Eq+j

Eq+k〉.
Because ξ2Eq+j0

is a symmetric endomorphism with respect to 〈·, ·〉 and preserves n,

for each j0 ∈ {1, . . . , n− q}, we can take {Eq+1, . . . , En} as a basis of eigenvectors
of ξ2Eq+j0

. Denote by δq+k the corresponding eigenvalues. Then, using again that F
is a Riemannian foliation, we obtain

〈[U,Eq+k] + SUEq+k, ξ
2
Eq+j0

Eq+k〉 = δq+k〈[U,Eq+k] + SUEq+k, Eq+k〉 = 0.

Thus, Rσ = 0 and, applying again Theorem 3.4, σ is a harmonic map. �
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Finally we consider transversally symmetric invariant foliations F on (M =
G /K, g) such that the connected Lie subgroup L of G with Lie algebra l = k ⊕ p

is closed. This is the case if the center of g is {0} (see the proof of Proposition 3.6
in Chapter IV of [15]), in particular, when g is semisimple. With this hypothesis
we have:

Proposition 4.3. The leaves of the foliation F of M = G /K are the fibres of the
homogeneous fibration

F = L /K →M = G /K
π→ N = G /L : gK �→ g L .

The foliation F is moreover Riemannian if and only if the restriction 〈·, ·〉n of 〈·, ·〉
to n is Ad(L)-invariant. Then π : (M, g) → (N, gN) is a Riemannian submersion
and (N, gN ) is a locally Riemannian symmetric space, where gN is the G-invariant
metric on N induced by 〈·, ·〉n.

Proof. From the uniqueness of maximal integral submanifolds through a point,
L /K is the leaf through the origin o ∈ M. For another point gK ∈ G /K, we use
the following property: π−1(aL) = a · L /K, for each a ∈ G .

The metric 〈·, ·〉n is Ad(L)-invariant if and only if 〈[X,U ], Y 〉 = 〈X, [U, Y ]〉, for
all X,Y ∈ n and U ∈ p. From (4.3), this is equivalent to the condition U(n, n) ⊂ n,
i.e., the foliation is Riemannian. For the last part of the proposition we use Propo-
sition 3.6 in Chapter IV of [15]. �

5. Examples of transversally symmetric fibrations

A homogeneous fibration π : G /K → G /L as in Proposition 4.3 is called a trans-
versally symmetric fibration. Given a G-invariant metric g on M, π is said to be
g-Riemannian (or Riemannian with respect to g) if the foliation determined by its
fibres is Riemannian. Next, we give a useful method for obtaining many examples
of Riemannian and non-Riemannian transversally symmetric fibrations.

Let G be a connected compact Lie group and let K and L be connected closed
subgroups of G such that K � L � G . We consider the natural projection π : M =
G /K → N = G /L, gK �→ g L . Then π gives a homogeneous fibration with
fibre type F = L /K . Let B be an Ad(G)-invariant inner product B on the Lie
algebra g of G, and let m, p and n be subspaces of g making B-orthogonal the
following decompositions: g = k ⊕ m, l = k ⊕ p and g = l ⊕ n. Then m = p ⊕ n is
also a B-orthogonal decomposition.

Lemma 5.1. The B-orthogonal decompositions l = k⊕ p and g = l⊕ n determine
reductive decompositions for F and N, respectively, and m = p ⊕ n is Ad(K)-
invariant.

Proof. Because p is orthogonal to k, it is in fact a subspace of m and, since l is
a Lie subalgebra, we get [k, p] + [p, p] ⊂ l. Then, [p, p]m = [p, p]p ⊂ p and, taking
into account that g = k ⊕ m is a reductive decomposition, it follows that [k, p] is
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orthogonal to k and so, [k, p] ⊂ p. Next, since B is Ad(G)-invariant, we obtain
B([k, n], p) = −B([k, p], n) = 0 and B([p, n], p) = −B([p, p], n) = 0. This implies
that [k, n] ⊂ n and [p, n] ⊂ n, and consequently [l, n] ⊂ n. Now, using the inclusions
[k, p] ⊂ p, [k, n] ⊂ n and [l, n] ⊂ n, together with the connectedness of K and L, the
result follows. �

The isotropy group K acts on m by the adjoint map and induces a splitting

m = p⊕ n = (p0 ⊕ p1 ⊕ · · · ⊕ pr)⊕ (n0 ⊕ n1 ⊕ · · · ⊕ ns),

where K acts trivially on m0 = p0⊕n0 and irreducibly on pi and nj , for i = 1, . . . , r
and j = 1, . . . , s. If the isotropy representations on pi and nj are inequivalent, any
G-invariant Riemannian metric onM = G /K is determined by an Ad(K)-invariant
inner product on m of the form

(5.1) 〈·, ·〉 = 〈·, ·〉0|m0
+

r∑
i=1

λiB|pi
+

s∑
j=1

μjB|nj
,

〈·, ·〉0 being an arbitrary inner product on m0 and λi, μj > 0, i = 1, . . . , r, and
j = 1, . . . , s. Hence, using Lemma 5.1 and taking into account that the subspace
n ⊂ m is Ad(L)-invariant, the following proposition is proved.

Proposition 5.2. We have:

(i) If p0 = {0} or n0 = {0} then any homogeneous Riemannian metric on M =
G/K is adapted to the G-invariant AP-structure generated by the pair (p, n).

(ii) For any homogeneous Riemannian metric adapted to (p, n), the fibration
π : M = G /K → N = G /L is transversally symmetric if and only if
[n, n] ⊂ l.

(iii) If the linear isotropy representation of K on n is irreducible, the fibration π
is g-Riemannian for any homogeneous Riemannian metric g on M.

5.1. Compact rank one normal homogeneous spaces

Homogeneous spaces admitting a normal invariant metric of strictly positive curva-
ture are called compact rank one normal homogeneous spaces (see, for example, [13]
and [26], and the references therein). They are in fact compact and the positive
normal homogeneous metric has rank one. In the simply connected case, a compact
rank one normal homogeneous space is diffeomorphic to

(i) the sphere Sn or one of the projective spaces CPm, HPm and CaP 2, or

(ii) one of the Berger spaces

B7 = Sp(2)/ SU(2) and B13 = SU(5)/((Sp(2)× S1)/{±(Id, 1)}), or

(iii) the Wilking space W 7 = (SO(3)× SU(3))/U•(2).
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G K dim G /K isotropy repr.

(1) SO(m+ 1) SO(m) m irred.

(2) SU(m+ 1) SU(m) 2m+ 1 m = p10 ⊕ n

(3) U(m+ 1) U(m) 2m+ 1 m = p10 ⊕ n

(4) Sp(m+ 1) Sp(m) 4m+ 3 m = p30 ⊕ n

(5) Sp(m+ 1)× Sp(1) Sp(m)× Sp(1) 4m+ 3 m = p31 ⊕ n

(6) Sp(m+ 1)×U(1) Sp(m)×U(1) 4m+ 3 m = p20 ⊕ p11 ⊕ n

(7) Spin(9) Spin(7) 15 m = p⊕ n

(8) Spin(7) G2 7 irred.

(9) G2 SU(3) 6 irred.

Table 1.

The (compact) Lie groups acting transitively on the sphere have been classified by
D. Montgomery and H. Samelson, and A. Borel, see [19]. They are given, together
with the isotropy representation, in Table 1. In Table 2, those corresponding to
the exceptional cases are described. Here, the superscript represents the dimension
of the subspace.

The unique projective space admitting an isotropy-reducible quotient expres-
sion is CP 2m+1 = Sp(m+1)/ Sp(m)×U(1) [19]. Its isotropy representation deter-
mines the decomposition m = p21⊕n ∼= p21⊕Hm. All the homogeneous Riemannian
metrics on these homogeneous spaces are obtained from inner products as in (5.1)
and the following transversally symmetric homogeneous fibrations result:

(i) S1 → S2m+1 = SU(m+ 1)/ SU(m) → CPm,

(ii) S2 → CP 2m+1 = Sp(m+ 1)/ Sp(m)×U(1) → HPm,

(iii) S3 → S4m+3 = Sp(m+ 1)/ Sp(m) → HPm,

(iv) S7 → S15 = Spin(9)/ Spin(7) → S8,

(v) RP 5 → B13 → CP 4,

(vi) RP 3 →W 7 → CP 2.

Because in all cases the subspace n ⊂ m is irreducible under the linear isotropy
action, it follows from Proposition 5.2 that the above six homogeneous fibrations
are all Riemannian with respect to any invariant metric. The case (i) corres-
ponds with the classical Hopf fibration. Note that the sets of SU(m+ 1)-invariant
and of U(m + 1)-invariant metrics coincide on S2m+1. The Sp(m + 1) × Sp(1)-
invariant and Sp(m + 1) ×U(1)-invariant metrics on S4m+3, according to their
corresponding isotropy representations, cases (5) and (6) in Table 1, are special
classes of Sp(m+1)-invariant metrics, as in case (4). Moreover, except for case (iii),
any homogeneous Riemannian metric on the total space is binormal.
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G K G /K isotropy repr.

Sp(2) SU(2) B7 irred.

SU(5) (Sp(2)× S1)/± (Id, 1) B13 m = p5 ⊕ n8

SO(3)× SU(3) U•(2) W 7 m = p3 ⊕ n4

Table 2.

From Theorem 4.2, we have:

Theorem 5.3. For any homogeneous Riemannian metric on the total space of the
homogeneous fibrations (i)-(vi), the distribution tangent to the fibres is minimal
and determines a harmonic map into their Grassmannian bundles.

5.2. Compact irreducible 3-symmetric spaces

A Riemannian 3-symmetric space (see [14], [27] and also [9], [12]) is defined to be
a triple (M = G /K, θ, 〈·, ·〉) satisfying the following conditions:

(1) G is a connected Lie group and θ is an automorphism of G of order 3,

(2) K is a closed subgroup of G such that Gθ
o ⊆ K ⊆ Gθ, where Gθ = {x ∈ G |

θ(x) = x} and Gθ
o denotes its identity component,

(3) 〈·, ·〉 is an Ad(K)- and θ-invariant inner product on m = Ker φ, where φ is
the endomorphism of g given by φ = 1 + θ + θ2.

If there exists θ satisfying (1) and (2), we shall say that G /K is a 3-symmetric
coset space. The automorphism J = 1√

3
(2θ|m + Id|m) on m is Ad(K)-invariant and

so it determines a G-invariant almost complex structure on G /K, known as the
canonical almost complex structure. It makes the 3-symmetric space a quasi-Kähler
homogeneous manifold.

We will focus on compact irreducible Riemannian 3-symmetric spaces (M =
G /K, θ, 〈·, ·〉) of type A3, meaning that G is a compact connected simple Lie group
acting effectively and θ is an inner automorphism on the Lie algebra g of G .

We need some general results about complex simple Lie algebras. See Chap-
ter III in [15] for more details. Let gC be a simple Lie algebra over C and let hC

be a Cartan subalgebra. Let Δ denote the set of nonzero roots of gC with respect
to hC and let Π = {α1, . . . , αl} be a system of simple roots. For each α ∈ Δ, there
exists a unique element Hα ∈ hC such that C(H,Hα) = α(H), for all H ∈ hC,
where C is the Cartan–Killing form of gC. Moreover, we have hC =

∑
α∈Δ CHα

and C is strictly positive definite on hR =
∑

α∈Δ RHα. We can choose root vectors
{Eα}α∈Δ such that gC = hC +

∑
α∈ΔCEα and, if α + β �= 0, Eα and Eβ are

orthogonal under C and C(Eα, E−α) = 1.

Denote by Δ+ the set of positive roots of Δ with respect to some lexicographic
order in Π. Then each α ∈ Δ+ may be written as α =

∑l
k=1 nk(α)αk, where
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Type θ mi Π(H)

A3I Ad
exp 2π

√−1
3 Hi

1 {αk ∈ Π | k �= i}
A3II Ad

exp 2π
√−1

(Hi+Hj)

3

mi = mj = 1 {αk ∈ Π | k �= i, k �= j}
A3III Ad

exp 4π
√−1
3 Hi

2 {αk ∈ Π | k �= i}
A3IV Adexp 2π

√−1Hi
3 {αk ∈ Π | k �= i} ∪ {−μ}

Table 3.

nk(α) ∈ Z, nk(α) ≥ 0, for all k = 1, . . . , l. The R-linear subspace g of gC given by

g = h+
∑

α∈Δ+(R U0
α + R U1

α)

is a compact real form of gC, where h =
∑

α∈Δ R
√−1Hα and U0

α = Eα − E−α =

−U0−α and U1
α =

√−1(Eα+E−α) = U1−α (see Theorem 6.3 in Chapter III of [15]).

Let μ =
∑l

i=1miαi be the maximal root of Δ and consider Hi ∈ hC, i = 1, . . . , l,
given by

αj(Hi) =
1
mi
δij , i, j = 1, . . . , l.

An inner automorphism θ of order 3 on gC can be written, up to conjugation,
as θ = Adexp 2π

√−1H , where H = 1
3miHi with 1 ≤ mi ≤ 3 or H = 1

3 (Hi + Hj)
with mi = mj = 1. Then there are four classes for θ with corresponding simple
root systems Π(H) for gθ

C
, namely types A3I–A3IV, given in Table 3. We have

h ⊂ k = gθ and
k = h+

∑
α∈Δ+(H)(R U0

α + R U1
α),

where Δ+(H) denotes the positive root system generated by Π(H). Hence, each
Ad(K)-invariant inner product 〈·, ·〉 on m is also θ-invariant and so, every 3-
symmetric coset space G /K with θ of type A3 is a Riemannian 3-symmetric space
for any G-invariant metric. Moreover, {U0

α, U
1
α | α ∈ Δ+ \Δ+(H)} is an orthonor-

mal basis for (m, B|m), where B = − 1
2C.

Compact irreducible 3-symmetric spaces of type A3I are Hermitian symmetric
spaces. Together with those of type A3IV , they are isotropy irreducible. So, in
order to obtain homogeneous fibrations, we consider only irreducible 3-symmetric
spaces of types A3II and A3III.

If M = G /K is of type A3II then mi = mj = 1, for some i, j ∈ {1, . . . , l},
i < j. Let Δp,q = {α ∈ Δ | ni(α) = p, nj(α) = q}, 0 ≤ p, q ≤ 1, and consider the
subspaces of m:

(5.2)

V1 =R{Ua
α | α ∈ Δ+

1,1; a = 0, 1},
V2 =R{Ua

α | α ∈ Δ+
1,0; a = 0, 1},

V3 =R{Ua
α | α ∈ Δ+

0,1; a = 0, 1}.
Then m = V1 ⊕ V2 ⊕ V3 is a B-orthogonal decomposition as isotropy-irreducible
subspaces stable under J, satisfying ([12])

(5.3) [Vk,Vk] ⊂ k, k = 1, 2, 3; [Vk,Vr] ⊂ Vs, (k, r, s) a permutation of (1, 2, 3).
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Theorem 5.4. Let M = G /K be a 3-symmetric coset space of type A3II. For
any homogeneous Riemannian metric g on M, the G-invariant distribution asso-
ciated to each Vk ⊂ m, k = 1, 2, 3, determines a harmonic map σk : (M, g) →
(Gqk (M), gK), where qk = dimVk. Moreover, σk : M → (Gqk(M), gK) is a mini-
mal immersion. The corresponding transversally symmetric fibrations are:

(i) CGri,rj → SU(n)
S(U(r1)×U(r2)×U(r3))

→ CGrk,n−rk , where ri ≥ 1, r1+r2+r3 = n,

and (i, j, k) is a cyclic permutation of (1, 2, 3);

(ii) CPn−1 → SO(2n)
U(n−1)×SO(2) → SO(2n)

U(n) , n ≥ 4;

(iii) SO(2(n−1))
U(n−1) → SO(2n)

U(n−1)×SO(2) → RG2(n−1),2, n ≥ 4;

(iv) RG2,8 → E6

SO(8)×SO(2)×SO(2) → E6

SO(10)×SO(2) .

Proof. Put p = Vk, for k = 1, 2, 3, and n = Vr⊕Vs. ¿From (5.3), we have [p, p] ⊂ k,
[n, n] ⊂ p and [p, n] ⊂ n. Then, using Lemma 4.1, the G-invariant distribution
determined by p is integrable and the foliation is transversally symmetric for anyG-
invariant metric onM. From Theorem 4.2, it is a harmonic totally geodesic foliation
and a minimal immersion into its Grassmannian bundle. The irreducibility of Vk

implies that each G-invariant metric on M = G/K is determined by an Ad(K)-

invariant inner product of the form 〈·, ·〉 =
∑3

r=1 λrB|Vr
on m, for λr > 0, r =

1, 2, 3, and its corresponding homogeneous structure S satisfies

(5.4) SVk
Vk = 0, SVk

Vr ⊂ Vs,

where (k, r, s) is a permutation of (1, 2, 3). From this and (4.5), since ξp = 0
and ξn = Sn,

Rσ(U) = 〈ξEiEa, RUEiEa〉 = 〈SEq+jEa, RUEq+jEa〉 = 〈SEq+jEa, S[U,Eq+j ]mEa〉,

for all U ∈ p. Then, using (5.3) and (5.4) and taking {Eq+1, . . . , En} as a 〈·, ·〉-
orthonormal basis of n adapted to the decomposition n = Vr ⊕ Vs we obtain
Rσ(U) = 0. Because for any transversally symmetric G-invariant foliation, Rσ

vanishes on n, it follows that Rσ = 0 and then, by Theorem 4.2, σ is a harmonic
map.

If θ is of type A3II, the complex simple Lie algebra gC is an−1 (n ≥ 3), dn
(n ≥ 4) or e6. On an−1, a set Δ+ of positive roots is given by Δ+ = {αp,q =
αp + · · · + αq | 1 ≤ p ≤ q ≤ n − 1}. Then, for θ = Adexp 2π

√−1H , with H =
1
3 (Hi +Hj), 1 < i < j < n − 1, we obtain Δ+(H) = Δ+

1 (H) ∪Δ+
2 (H) ∪Δ+

3 (H)

where Δ+
1 (H) = {αp,q | 1 ≤ p ≤ q < i}, Δ+

2 (H) = {αp,q | i < p ≤ q < j} and
Δ+

3 (H) = {αp,q | j < p ≤ q ≤ n−1}. Then k is of type ai−1⊕aj−i−1⊕an−1−j⊕T2.
Hence M is the quotient manifold SU(n)/ S(U(i)×U(j − i)×U(n− j)).

On m =
∑

α∈Δ+\Δ+(H) RU
a
α, we consider the orthogonal decomposition m =

V1 ⊕ V2 ⊕ V3, given in (5.2), where Δ+
1,1 = {αp,q | p ≤ i < j ≤ q}, Δ+

1,0 = {αp,q |
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1 ≤ p ≤ i ≤ q < j} and Δ+
0,1 = {αp,q | i < p ≤ j ≤ q ≤ n − 1}. Then, putting

lk = k⊕ Vk, k = 1, 2, 3, it follows that lk can be written as lk = l1k ⊕ l2k, where

l1 =
(∑

α∈{αi,...,αj−1} R
√−1Hα +

∑
α∈Δ+

2 (H) RU
a
α

)
⊕(∑

α∈Δ+
1,1

R
√−1Hα +

∑
α∈Δ+

1,1∪Δ+
1 (H)∪Δ+

3 (H) RU
a
α

)
,

l2 =
(∑

α∈Δ+
1,0

R
√−1Hα +

∑
α∈Δ+

1,0∪Δ+
1 (H)∪Δ+

2 (H) RU
a
α

)
⊕(∑

α∈{αj ,...,αn−1} R
√−1Hα +

∑
α∈Δ+

3 (H) RU
a
α

)
,

l3 =
(∑

α∈Δ+
0,1

R
√−1Hα +

∑
α∈Δ+

0,1∪Δ+
2 (H)∪Δ+

3 (H) RU
a
α

)
⊕(∑

α∈{α1,...,αi} R
√−1Hα +

∑
α∈Δ+

1 (H) RU
a
α

)
.

Therefore l2
∼= su(j) ⊕ su(n − j) ⊕ T1 and l3

∼= su(n − i) ⊕ su(i) ⊕ T1. More-
over, it is clear that l11

∼= su(j − i) ⊕ T1. Next, we show that l21 is isomor-
phic to su(n + i − j). Denote by πn−1+i−j a system of simple roots πn−1+i−j =
{β1, . . . , βn−1+i−j} of an−1+i−j. Let φ be the map φ(β1) = α1, . . . , φ(βi−1) = αi−1,
φ(βi) = αi,j , φ(βi+1) = αj+1, . . . , φ(βn−1+i−j) = αn−1 between πn−1+i−j and
{α1, . . . , αi−1, αi,j , αj+1, . . . αn−1}. Then φ can be extended by linearity to a bi-
jection from Δ+

an−1+i−j
to Δ+

1,1 ∪Δ+
1 (H)∪Δ+

3 (H), where Δ+
an−1+i−j

is the positive
root set of an−1+i−j generated by πn−1+i−j . It gives the isomorphism, also de-
noted by φ, between l21 and su(n+ i− j) by setting φ(

√−1Hβs) =
√−1Hφ(βs) and

φ(Ua
βs
) = Ua

φ(βs)
, for s = 1, . . . , n− 1 + i− j.

Taking r1 = i, r2 = j − i and r3 = n− j, we have the fibrations given in (i).
On dn (n ≥ 4),

1
◦

αn−1 ,

�����

1
◦
α1

2
◦
α2 . . .

2
◦

αn−2

�������

1
◦
αn

the automorphism θ of type A3II is determined by H = 1
3 (Hn−1+Hn). The other

possibilities forH, i.e., H = 1
3 (Hn+Hn−1) orH = 1

3 (H1+Hn), give automorphisms
conjugate to the first one. Here, a set Δ+ of positive roots is given by

Δ+ =
{
αp (1 ≤ p ≤ n), αp,q (1 ≤ p < q < n), α̃p,q = αp,n−2 + αq,n

(1 ≤ p < q ≤ n, p ≤ n− 2)
}
.

Then Δ+(H) = {αp,q (1 ≤ p ≤ q ≤ n− 2)} and k is of type an−2 ⊕T2. Hence M is
the quotient manifold SO(2n)/U(n−1)×SO(2). Next, we consider the orthogonal
decomposition m = V1⊕V2 ⊕V3 where the corresponding subsets of positive roots
are given by

Δ+
1,1 = {α̃p,q | 1 ≤ p < q ≤ n− 1}, Δ+

1,0 = {αp,n−1 | 1 ≤ p ≤ n− 1},
Δ+

0,1 = {αn, α̃p,n | 1 ≤ p ≤ n− 2}.
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Putting again lk = k⊕ Vk, k = 1, 2, 3, we have:

l1 = (
∑

α∈Δ+
1,1

R
√−1Hα +

∑
α∈Δ+

1,1∪Δ+(H) RU
a
α)⊕ R

√−1Hαn

∼= so(2(n− 1))⊕ T1,

l2 =
∑

α∈π R
√−1Hα +

∑
α∈Δ+

1,0∪Δ+(H) RU
a
α
∼= u(n),

l3 =
∑

α∈π R
√−1Hα +

∑
α∈Δ+

0,1∪Δ+(H) RU
a
α
∼= u(n).

Here, the isomorphism between
∑

α∈Δ+
1,1

R
√−1Hα +

∑
α∈Δ+

1,1∪Δ+(H) RU
a
α and

so(2(n − 1)) is obtained from the bijection φ : πn−1 → {α1, . . . , αn−2, α̃n−2,n−1},
given by φ(βi) = αi, i = 1, . . . , n − 2, and φ(βn−1) = α̃n−2,n−1, where πn−1 =
{β1, . . . , βn−1} is a simple system of positive roots for dn−1. Then the fibrations (ii)
and (iii) are determined; (ii) corresponds with the vertical distributions V2 and V3

and (iii) with V1.
Finally, a system of positive roots Δ+ on e6,

2
◦
α2

1
◦
α6

2
◦
α5

3
◦
α4

2
◦
α3

1
◦
α1 ,

is given by

Δ+ =
{
α1, α2; αp,q (3 ≤ p ≤ q ≤ 6); α1,p, α2,p (4 ≤ p ≤ 6);

α1 + α3,p (3 ≤ p ≤ 6); α2 + α4,p (4 ≤ p ≤ 6);

α4 + αp,q (p = 1, 2; q = 5, 6); α1,6 + αp,q (3 ≤ p < q ≤ 5); α2,6 + α4,5,

α1,5 + α3,4, α1,6 + α3,5 + α4, μ = α1,6 + α2,5 + α4

}
and the automorphism θ of type A3II is determined by H = 1

3 (H1 +H6). Hence
we get

Δ+(H) = {α2, αp,q (3 ≤ p ≤ q ≤ 5), α2,4 , α2,5 , α2 + α4, α2 + α4,5 , α4 + α2,5},
Δ+

1,1 = {α1,6 , α1 + α3,6 , α4 + α1,6 , α1,6 + αp,q (3 ≤ p < q ≤ 5),

α1,6 + α3,5 + α4, μ},
Δ+

1,0 = {α1, α1,p (p = 4, 5), α1 + α3,p (3 ≤ p ≤ 5), α4 + α1,5 , α1,5 + α3,4},
Δ+

0,1 = {αp,6 (3 ≤ p ≤ 6), α2,6 , α2 + α4,6 , α4 + α2,6 , α4,5 + α2,6}.

Then the Lie subalgebras lk = k⊕ Vk, k = 1, 2, 3, are

l1 = (
∑

α∈Δ+
1,1

R
√−1Hα +

∑
α∈Δ+

1,1∪Δ+(H) RU
a
α)⊕ R

√−1Hα6 ,

l2 = (
∑

α∈π\{α6} R
√−1Hα +

∑
α∈Δ+

1,0∪Δ+(H) RU
a
α)⊕ R

√−1Hα6 ,

l3 = (
∑

α∈π\{α1} R
√−1Hα +

∑
α∈Δ+

0,1∪Δ+(H) RU
a
α) + R

√−1Hα1 .



270 J. C. González-Dávila

Using the corresponding Dynkin diagrams, one gets l2 ∼= l3
∼= so(10)⊕T1. Next we

also show that
∑

α∈Δ+
1,1

R
√−1Hα +

∑
α∈Δ+

1,1∪Δ+(H) RU
a
α is isomorphic to so(10).

Let Δ+
d5

be the positive root set for d5 generated by a system of simple roots
π5 = {β1, . . . , β5}. Let φ be the bijection φ : π5 → {α1 + α3,6 , α2 , . . . , α5}, given
by φ(β1) = α1+α3,6, φ(β2) = α2, φ(β3) = α4, φ(β4) = α5 and φ(β5) = α3. Then φ
can be extended to Δd5 → Δ(H) ∪Δ1,1 by linearity and the result follows as in
the preceding cases. Hence, the fibration (iv) can be constructed. �

Remark 5.5. Because the base space of these fibrations is an irreducible symme-
tric space of compact type, it must be isotropy irreducible and so, up to homoth-
eties, it admits a unique invariant metric. Then, using Proposition 4.3, a fibration
as in Proposition 5.4 with p = Vk and n = Vr ⊕ Vs, k = 1, 2, 3, is Riemannian if
and only if the homogeneous metric on the 3-symmetric space is determined by an
inner product 〈·, ·〉 = ∑3

i=1 λiB|Vi
, such that λr = λs.

Next suppose that θ has type A3III. Then mi = 2 (H = 2
3Hi), for some

i = 1, . . . , l. Consider the subspaces of m:

H = R{Ua
α | α ∈ Δ+

1 , ; a = 0, 1}, V = R{Ua
α | α ∈ Δ+

2 ; a = 0, 1},

where Δ+
p = {α ∈ Δ+ | ni(α) = p}, p = 0, 1, 2. Then Δ(H) = Δ0 and m = V ⊕H

is an orthogonal decomposition of isotropy-irreducible subspaces stable under J ,
and satisfying, [12],

(5.5) [H,H]m ⊂ V , [V ,V ] ⊂ k, [V ,H] ⊂ H.

Theorem 5.6. Let M = G /K be a 3-symmetric coset space of type A3III. For
any homogeneous Riemannian metric g on M, the G-invariant distribution V de-
termines a harmonic map σ : (M, g) → (Gq(M), gK). Moreover, the immersion
σ : M → (Gq(M), gK) is minimal. The corresponding transversally symmetric
(Riemannian) fibrations are:

(i) SO(2i)
U(i) → SO(2n+1)

U(i)×SO(2(n−i)+1) → RG2i,2(n−i)+1, (n > 2, i > 1);

(ii) Sp(i)
U(i) → Sp(n)

U(i)×Sp(n−i) → HGi,n−i, (n ≥ 2, i < n);

(iii) SO(2i)
U(i) → SO(2n)

U(i)×SO(2(n−i)) → RG2i,2(n−i), (n ≥ 4, 2 ≤ i ≤ n− 2);

(iv) S2 → G2

U(2) → G2

SU(2)×SU(2) ;

(v) S2 → F4

Sp(3)×SO(2) → F4

Sp(3)×SU(2) ;

(vi) RG2,7 → F4

SO(7)×SO(2) → F4

SO(9) ;

(vii) CG1,5 → E6

S(U(5)×U(1))×SU(2) → E6

SU(6)×SU(2) ;

(viii) S2 → E6

SU(6)×T 1 → E6

SU(6)×SU(2) ;
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(ix) S2 → E7

SO(12)×SO(2) → E7

SO(12)×SU(2) ;

(x) CG1,7 → E7

S(U(7)×U(1)) → E7

SU(8) ;

(xi) RG2,10 → E7

SU(2)×SO(10)×SO(2) → E7

SO(12)×SU(2) ;

(xii) S2 → E8

E7 × SO(2) → E8

E7 × SU(2) ;

(xiii) RG2,14 → E8

SO(14)×SO(2) → E8

SO(16) .

Proof. From (5.5), the distribution V is integrable and the G-invariant foliation is
transversally symmetric. Moreover, by Proposition 5.2, it is Riemannian. So it
follows from Theorem 4.2 that V determines a harmonic map and a minimal im-
mersion.

If θ is of type A3III, one gets that gC is one of the following: bn (n ≥ 2), cn
(n ≥ 2), dn (n ≥ 4), g2, f4, e6, e7 and e8.

In similar way as for type A3II, we can determine on these complex simple
Lie algebras the sets of positive roots Δ+ and Δ+

p , for p = 0, 1, 2, and the Lie
subalgebra l = k⊕V , which now can be expressed as l = h+

∑
α∈Δ+

0 ∪Δ+
2
RUa

α. Here,

we only consider exceptional Lie algebras. This involves the fibrations (iv)–(xiii).
For bn, cn and dn, the sets Δ+ and Δ+

p , p = 0, 1, 2, are described in [12].
For g2,

g2 :

3
◦
α1

���
2
◦
α2 ,

a set of positive roots is given by Δ+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2,
μ = 3α1 + 2α2}. In this case H = 2

3H2, Δ
+
2 = {μ} and Δ+(H) = {α1}. Then

l = (R
√−1Hμ ⊕ RUa

μ) ⊕ (R
√−1Hα1 ⊕ RUa

α1
) ∼= su(2) ⊕ su(2). Hence F is the

2-sphere S2 and the fibration (iv) is obtained. On f4,

2
◦
α1

3
◦
α2

��
4
◦
α3

2
◦
α4 ,

μ = 2α1,4 + α2,3 + α3 and a set of positive roots is given by

Δ+ = {αp,q (1 ≤ p ≤ q ≤ 4), α2,3 + α3, α1,q + αp,3 (p = 2, 3; q = 3, 4),

α2,4 + α3,q (q = 3, 4), α14 + αp4 (p = 2, 3), α1,4 + α2,q + α3 (q = 3, 4),

α1,4 + α2,4 + αp,3 + α3 (p = 2, 3), μ}.

Here H = 2
3H1 or H = 2

3H4. For H = 2
3H1, one gets

Δ+(H) = {αp,q (2 ≤ p ≤ q ≤ 4), α2 + 2α3, α2 + 2α3 + α4, α2 + 2α3 + 2α4},
which coincides with a positive root set for c3. Then, Δ

+
2 = {μ} and we have

l = (R
√−1Hμ ⊕ RUa

μ)⊕ (R{√−1Hα2 ,
√−1Hα3 ,

√−1Hα4}
⊕∑

α∈Δ+(H) RU
a
α)

∼= su(2)⊕ sp(3).
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This gives the fibration (v). For H = 2
3H4, one gets

Δ+(H) = {αp,q (1 ≤ p ≤ q ≤ 3), α2 + 2α3, α1 + α2 + 2α3, α1 + 2α2 + 2α3}
Δ+

2 = {α2,4 + α3,4, α1,4 + αp,4 (p = 2, 3), α1,4 + α2,4 + α3,
α1,4 + α2,4 + αp,3 + α3 (p = 2, 3), μ}.

Putting β1 = α2,4 + α3,4, β2 = α1, β3 = α2 and β4 = α3, {β1, . . . , β4} is a
system of simple roots of b4 and the positive root set generated by it coincides
with Δ+(H) ∪Δ+

2 . Hence l ∼= so(9) and we obtain (vi).

On e6, H = 2
3H3 and H = 2

3H5 determine conjugate automorphisms of type
A3III. Also H = 2

3H2 determines an automorphism of type A3III. We start with
H = 2

3H3. Then

Δ+(H) = {α1, α2, αp,q (4 ≤ p ≤ q ≤ 6), α2 + α4,p (4 ≤ p ≤ 6)},
Δ+

2 = {α1,5 + α3,4 , α1,6 + α3,4 , α1,6 + α3,5 , α1,6 + α3,5 + α4, μ}.
Let Δ+

a5
be the positive root set for a5 generated by a system of simple roots

π5 = {β1, . . . , β5}. Let φ be the bijection φ : π5 → {α2, α4, α5, α6, α1,5 + α3,4},
given by φ(β1) = α2, φ(β2) = α4, φ(β3) = α5, φ(β4) = α6 and φ(β5) = α1,5 +α3,4.
Then φ can be extended by linearity to a homomorphism from su(6) to l and one
gets

l =
( ∑

α∈Δ̃+

RUa
α +

∑
α∈Δ+

2

R
√−1Hα

)
⊕ (R

√−1Hα1 ⊕ RUa
α1
) ∼= su(6)⊕ su(2).

Hence we get the fibration given in (vii). Next, we consider H = 2
3H2. This implies

that
Δ+(H) = {α1, αp,q (3 ≤ p ≤ q ≤ 6), α1 + α3,p (3 ≤ p ≤ 6)}

and Δ+
2 = {μ}. Since Δ+(H) is a root set for a5 and {α1, α3, . . . , α6} a simple

system, we have l ∼= su(6)⊕ su(2). This gives the fibration in (viii).
On e7,

2
◦
α2

1
◦
α7

2
◦
α6

3
◦
α5

4
◦
α4

3
◦
α3

2
◦
α1 ,

a positive system of roots is given by

Δ+= {α1, α2; αp,q (3 ≤ p ≤ q ≤ 7); α1,p , α2,p (4 ≤ p ≤ 7); α1 + α3,p (3 ≤ p ≤ 7);

α2 + α4,p (4 ≤ p ≤ 7); α4 + αp,q (p = 1, 2; q = 5, 6, 7); α1,6 + αp,q

(3 ≤ p < q ≤ 5); α2,p + α4,5 (p = 6, 7), α4,6 + α2,7, α1,7 + αp,6 (p = 3, 4),

α1,7 + αp,q (3 ≤ p < q ≤ 5), α1,5 + α3,4, α1,6 + αp,5 + α4 (p = 2, 3),

α1,7 + αp,q + α4 (p = 2, 3; q = 5, 6), α1,7 + αp,6 + α4,5 (p = 2, 3),

α1,7 + α2,6 + αp,5 + α4 (p = 3, 4), μ}.
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The possible automorphisms of type A3III are determined by H = 2
3H1, H = 2

3H2

or H = 2
3H6. If H = 2

3H1, then

Δ+(H) = {α2; αp,q (3 ≤ p ≤ q ≤ 7); α2,p (4 ≤ p ≤ 7); α2 + α4,p (4 ≤ p ≤ 7);

α4 + α2,q (q = 5, 6, 7); α2,p + α4,5 (p = 6, 7), α4,6 + α2,7},
and Δ+

2 = {μ}. Using Dynkin diagrams, Δ+(H) is a root set for d6 with simple
system {β1, . . . , β6}, where βk = α8−k, k = 1, . . . , 6. Hence, l ∼= so(12) ⊕ su(2).
This gives the fibration in (ix). If H = 2

3H2, then

Δ+(H) = {α1, αp,q (3 ≤ p ≤ q ≤ 7); α1 + α3,p (3 ≤ p ≤ 7)},
Δ+

2 = {α1,6 + α2,5 + α4, α1,7 + α2,q + α4 (q = 5, 6), α1,7 + α2,6 + α4,5,

α1,7 + α2,6 + αp,5 + α4 (p = 3, 4), μ} .
Put β1 = α1, β2 = α3, β3 = α4, β4 = α5, β5 = α6, β6 = α7 and β7 = α1,6 + α2,5

+α4. Then {β1, . . . , β7} is a system of simple roots of a7 and the positive root set
generated by them coincides with Δ+(H)∪Δ+

2 . Hence l
∼= su(8) and we obtain (x).

If H = 2
3H6, then

Δ+(H)={α1, α2; αp,q (3 ≤ p ≤ q ≤ 5); α7, α1,p, α2,p (p = 4, 5); α1 + α3,p

(p = 3, 4, 5); α2 + α4,p (p = 4, 5); α4 + αp,5 (p = 1, 2); α1,5 + α3,4},
Δ+

2 ={α2,7 + α4,6, α1,7 + αp,6 (p = 3, 4), α1,7 + αp,6 + α4 (p = 2, 3),

α1,7 + αp,6 + α4,5 (p = 2, 3), α1,7 + α2,6 + αp,5 + α4 (p = 3, 4), μ}.
Let Δ+

d6
be the positive root set for d6 generated by a system of simple roots

π6 = {βk | k = 1, . . . 6}. Let φ be the bijection φ : π6 → {α2,7 + α4,6 , α1, . . . , α5},
given by φ(β1) = α2,7 +α4,6, φ(β2) = α1, φ(β3) = α3, φ(β4) = α4, φ(β5) = α2 and

φ(β6) = α5. Then φ can be extended by linearity to Δ+
d6

→ Δ̃+ = Δ+
2 ∪ (Δ+(H) \

{α7}) and so,

l =
( ∑

α∈Δ̃+

RUa
α +

∑
α∈Δ+

2

R
√−1Hα

)
⊕ (R

√−1Hα7 ⊕ RUa
α7
) ∼= so(12)⊕ su(2)

Thus we get the fibration (xi). On e8, 3
◦
α2

2
◦
α8

3
◦
α7

4
◦
α6

5
◦
α5

6
◦
α4

4
◦
α3

2
◦
α1 ,

we consider the automorphisms θ of type A3III determined by H = 2
3H1 and

H = 2
3H8. If H = 2

3H8, Δ
+(H) is the set of positive roots of e7 and Δ+ =

Δ+(H) ∪ {μ} ∪ {α, μ− α}, where μ = 2α1,8 +α2,7 +α3,6 + α4,5 + α4 and α is any
element of the following set:

{αp,8 (1 ≤ p ≤ 8), α1,8 + α3,q, α1,8 + α4,q, α2,8 + α4,q (4 ≤ q ≤ 7),

α3,8 + α1, α4,8 + α2, α1,8 + α3,q + α4 (5 ≤ q ≤ 7),

α1,8 + α2,q + α4 (5 ≤ q ≤ 6), α1,8 + α2,6 + α4,5}.
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Since Δ+
2 = {μ}, l ∼= e7 ⊕ su(2). This gives the fibration (xii). If H = 2

3H1, we
have

Δ+(H) = {α2, αp,q (3 ≤ p ≤ q ≤ 8), α2,p (4 ≤ p ≤ 8), α4 + α2,p (5 ≤ p ≤ 8),

α2 + α4,p (4 ≤ p ≤ 8), α2,p + α4,5 (6 ≤ p ≤ 8),

α2,p + α4,6 (p = 7, 8), α2,8 + α4,7},
Δ+

2 = {μ, μ− α},

where α is any element of

{α2, αp,q (3 ≤ p ≤ q ≤ 8), α2,p (4 ≤ p ≤ 8), α2 + α4,8, α2,8 + α4,p (4 ≤ p ≤ 8)}.

Put β1 = μ − (α2,8 + α4,8) = α1,7 + α1,6 + α3,5 + α4 and βk = α10−k, for k ∈
{2, . . . , 8}. Then {β1, . . . , β8} is a system of simple roots of d8 and the positive
root set generated by it coincides with Δ+(H) ∪ Δ+

2 . Hence l ∼= so(16) and we
obtain the fibration (xiii). �
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