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Global regularity for minimal sets near a T-set
and counterexamples

Xiangyu Liang

Abstract. We discuss the global regularity of 2-dimensional minimal
sets that are near a T-set (i.e., the cone over the 1-skeleton of a regular
tetrahedron centered at the origin), that is, whether every global mini-
mal set in Rn that looks like a T-set at infinity is a T-set or not. The
main point is to use the topological properties of a minimal set at a large
scale to control its topology at smaller scales. This is how one proves
that all 1-dimensional Almgren-minimal sets in Rn and all 2-dimensional
Mumford–Shah-minimal sets in R3 are cones. In this article we discuss two
types of 2-dimensional minimal sets: Almgren-minimal sets in R3 whose
blow-in limits are T-sets, and topological minimal sets in R4 whose blow-in
limits are T-sets. For the former we eliminate a potential counterexample
that was proposed by several people, and show that a genuine counterex-
ample should have a more complicated topological structure; for the latter
we construct a potential example using a Klein bottle.

0. Introduction

This paper deals with the global regularity of 2-dimensional minimal sets in R3

and R4 that look like a T-set at infinity in R3 and R4. The motivation is that we
want to decide whether all global minimal sets in Rn are cones.

This Bernstein type of problem is of interest for all kinds of minimizing prob-
lems in geometric measure theory and calculus of variations. It is natural to ask
what a global minimizer looks like, once we know local regularity for minimizers.
Well known examples are global regularity for complete 2-dimensional minimal
surfaces in R3, area or size minimizing currents in Rn, or global minimizers for the
Mumford–Shah functional. Some of them admit very nice descriptions. See [2],
[16], [15], and [3] for further information.

Now let us say something more precise about minimal sets. Briefly, a minimal
set is a closed set which minimizes the Hausdorff measure among a certain class
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of competitors. Different choices of classes of competitors give different kinds of
minimal sets. So we have the following general definition.

Definition 0.1 (Minimal sets). Let 0 < d < n be integers. A closed set E in Rn

is said to be minimal of dimension d in Rn if

(0.1) Hd(E ∩B) < ∞ for every compact ball B ⊂ Rn,

and

(0.2) Hd(E\F ) ≤ Hd(F\E) for any competitor F for E.

Remark 0.2. We can of course give the definition of locally minimal sets (and the
definitions of Almgren and topological competitors that will appear later) where
we replace Rn in Definition 0.1 by any open set U ⊂ Rn. This makes no difference
when we discuss local regularity, but for global regularity, the ambient space Rn

always plays an important role.

In this paper we will discuss the following two kinds of minimal sets, that is,
sets that minimize the Hausdorff measure among two classes of competitors.

Definition 0.3 (Almgren competitor, Al-competitor for short). Let E be a closed
set in Rn. An Almgren competitor for E is a closed set F ⊂ Rn that can be
written as F = ϕ(E), where ϕ : Rn → Rn is a Lipschitz map such that there exists
a compact ball B ⊂ Rn such that

(0.3) ϕ|BC = id and ϕ(B) ⊂ B.

Such a ϕ is called a deformation in B, and F is also called a deformation of E
in B.

Roughly speaking, we say that E is Almgren-minimal when there is no defor-
mation F = ϕ(E), where ϕ is Lipschitz and ϕ(x) − x is compactly supported, for
which the Hausdorff measure Hd(F ) is smaller than Hd(E) in large balls. The
definition of Almgren minimal sets was invented by Almgren [1] to describe the
behaviors of physical objects that span a given boundary with as little surface area
as possible, such as soap films.

The second type of competitors was introduced by the author in [10] and [12],
where she tried to generalize the definition of Mumford–Shah minimal sets (MS-
minimal for short) to higher codimensions. In both definitions, for MS competi-
tors and topological competitors, we ask that a competitor has certain topological
properties of the initial set. Sometimes this condition is easier to handle than the
deformation condition that is imposed for Al-competitors.

Definition 0.4 (Topological competitor). Let E be a closed set in Rn. We say
that a closed set F is a topological competitor of dimension d (d < n) of E, if there
exists a ball B ⊂ Rn such that

1) F\B = E\B;



Global regularity for T and counterexamples 205

2) For every Euclidean (n − d − 1)-sphere S ⊂ Rn\(B ∪ E), if S represents a
nonzero element in the singular homology group Hn−d−1(R

n\E;Z), then it
is also nonzero in Hn−d−1(R

n\F ;Z).

Remark 0.5. When d = n − 1, this is the definition of a MS-competitor, where
we impose a separation condition on the complement of the set.

The so-defined class of topological minimizers is contained in the class of Alm-
gren minimal sets (see [12], Corollary 3.17), and admits some good properties that
we are not able to prove for Almgren minimal sets.

Our goal is to show that a minimal set in Rn is a cone. Topological minimal sets
are automatically Almgren minimal, hence we start with Almgren minimal sets,
knowing that what we shall say below will also hold for topological minimal sets.

Let E be a d-dimensional reduced Almgren minimal set in Rn. Reduced means
that there are no unnecessary points. More precisely, we say that E is reduced if

(0.4) Hd(E ∩B(x, r)) > 0 for x ∈ E and r > 0.

Recall that the definition of minimal set is invariant modulo sets of measure
zero, and it is not hard to see that for each Almgren (resp. topological) minimal
set E, its closed support E∗ (the reduced set E∗ ⊂ E with H2(E\E∗) = 0) is a
reduced Almgren (resp. topological) minimal set. Hence we can restrict ourselves
to discussing only reduced minimal sets.

Now fix any x ∈ E, and set

(0.5) θx(r) = r−dHd(E ∩B(x, r)).

This density function θx is nondecreasing for r ∈ (0,∞) (see Proposition 5.16
in [4]). In particular the two values

(0.6) θ(x) = lim
t→0+

θx(t) and θ∞(x) = lim
t→∞ θx(t)

exist, and are called the density of E at x, and the density of E at infinity, respec-
tively. It is easy to see that θ∞(x) does not depend on x, hence we shall denote it
by θ∞.

Theorem 6.2 of [4] says that if E is a minimal set, x ∈ E, and θx(r) is a constant
function of r, then E is a minimal cone centered on x. Thus, by the monotonicity
of the density functions θx(r) for any x ∈ E, if we can find a point x ∈ E such
that θ(x) = θ∞, then E is a cone and we are done.

On the other hand, the possible values for θ(x) and θ∞ for any E and x ∈ E are
not arbitrary. By Proposition 7.31 of [4], for each x, θ(x) is equal to the density
at the origin of a d-dimensional Al-minimal cone in Rn. The argument given near
equation (18.33) of [4], which is similar to the proof of Proposition 7.31 of [4], gives
that θ(x) is also equal to the density at the origin of a d-dimensional Al-minimal
cone in Rn. In other words, if we denote by Θd,n the set of all possible numbers
that can be the density at the origin of a d-dimensional Almgren-minimal cone
in Rn, then θ∞ ∈ Θd,n, and, for any x ∈ E, θ(x) ∈ Θd,n.
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Figure 1. A Y-set (left); a T-set (right).

Thus we restrict the range of θ∞ and θ(x). Recall that the set Θd,n is possibly
very small for any d and n. For example, Θ2,3 contains only three values: 1 (the
density of a plane), 1.5 (the density of a Y-set, which is the union of three closed
half planes with a common boundary L, and that meet along the line L with 120◦

angles), and dT (the density of a T-set, i.e., the cone over the 1-skeleton of a regular
tetrahedron centered at 0). See Figure 1.

Recall that the reason why θ∞ has to lie in Θd,n is that, for any Al-minimal
set E, all its blow-in limits have to be Al-minimal cones (see the argument near
equation (18.33) of [4]). A blow-in limit of E is the limit of any converging (for
the Hausdorff distance) subsequence of

(0.7) Er = r−1E, r → ∞.

Hence the value of θ∞ implies that at sufficiently large scales, E looks like an
Al-minimal cone of density θ∞.

This is the same reason why θ(x) ∈ Θd,n. Here we look at the behavior of Er

when r → 0, and the limit of any converging subsequence is called a blow-up
limit (this might not be unique!). Such a limit is also an Al-minimal cone C ([4],
Proposition 7.31). This means that, at some very small scales around each x, E
looks like an Al-minimal cone C of density θ(x). In this case we call x a C type
point of E.

After the discussion above, our problem will be solved if we can prove that
every minimal cone C satisfies the following property:

(0.8)
there exists ε = εC > 0, such that for every minimal set
E, if d0,1(C,E) < ε, then there exists x ∈ E ∩ B(0, 1)
whose density θ(x) is the same as that of C at the origin.

Here dx,r stands for the relative distance in the ball B(x, r): for any closed
sets E and F ,

dx,r(E,F )

=
1

r
max

{
sup{d(y, F ) : y ∈ E ∩B(x, r)}, sup{d(y, E) : y ∈ F ∩B(x, r)}

}
.(0.9)

The discussion above uses only the values of densities at small scales and at
infinity. A geometric interpretation is: there exists x ∈ E ∩ B(0, 1) such that a
blow-up limit Cx of E at x admits the same density as C at the origin.



Global regularity for T and counterexamples 207

Remark 0.6. Note that Cx should also be a minimal cone. It is natural to ask
whether two minimal cones that admit the same density at the origin should be the
same cone (modulo isometry). This is too much to hope, because in [11] the author
gave a continuous family of minimal cones having the same density at the origin,
but for which any two cones in the family are nonisometric. However, the cones in
this family admit the same topology. We do not know whether two minimal cones
with the same density at the origin must admit the same topology.

Besides the global regularity, the property (0.8) helps also to control the relative
distances dx,r between a minimal set and minimal cones in the balls B(x, r) and
the local speed of decay of the density function θx(r), because this property gives
a lower bound on θx(r). When we prove (0.8) for a minimal cone C, we can get
nicer local regularity results, that is, if a minimal set is very near C in a ball, then
it should be equivalent to C in a smaller ball via a bi-Hölder homeomorphism (a
C1-diffeomorphism in good cases). See [5] for details.

So far we know many minimal cones that satisfy the property (0.8). For a plane
it is easily derived from the rectifiability of minimal sets; for a Y-set, the proof is
based on a topological argument (see [4], Proposition 16.24); for the unions of two
almost orthogonal planes in R4, the author proved in [14] the property (0.8) for
them, by constructing competitors with minimal graphs and using some regularity
results for solutions of elliptic systems.

We do not know any minimal cone that does not satisfy the property (0.8),
but there are at least two minimal cones for which we do not know whether (0.8)
holds: the T-set, and the sets Y × Y ∈ R4, whose minimality has recently been
proved in [13]. The topology of the set Y × Y is more complicated than that of
T-sets, but as we will see soon, the situation of T-sets is already tricky.

In this paper we will treat the property (0.8) for the minimal cones T under
the two types of definitions for “minimal”.

In Section 1, we discuss (0.8) for T-sets in R3, where the set E in (0.8) is
an Almgren-minimal set. Notice that for the T-set, no topological argument is
enough. There is an example E0 ⊂ B(0, 1) proposed by several people (see [17],
page 110, or [4], section 19), which is such that

(0.10) E0 ∩ ∂B(0, 1) = T ∩ ∂B(0, 1),

where T is a T-set centered at the origin, and E0 satisfies all the known local
regularity properties for Al-minimal sets, but E0 contains no T-point (see [4],
Section 19, for a description for E0). We will eliminate this potential counterex-
ample E0, and give some descriptions for real potential counterexamples if they
exist. In fact, the topological structure of E0 is too simple; the set of its Y type
points is a union of unknotted C1 curves. In this case we can easily deform E
along one of these unknotted curves to another set with less measure. Notice that,
for every minimal set, the set of type Y points is a union of C1 curves, hence a
potential counterexample should contain a knotted curve in the set of its type Y

points. See Proposition 1.2 and Corollary 1.4 for details.
From the author’s point of view, this complicated topology condition contra-

dicts the spirit of minimal sets. However, we will still give an example of a set
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that admits this complicated topology. Hence we are still not able to prove (0.8)
for T-sets and Almgren minimal sets.

In Section 2 we discuss the property (0.8) for T-sets in R4, with topological
minimal sets. Recall that in R3 this property has already been proved in [4]).
Topological minimality seems to be stronger than Al-minimality, and it is proved
in Section 18 of [4] that in R3 the property (0.8) holds for T-sets. In particular
Theorem 1.9 in [4] says that all the 2-dimensional topological minimal sets in R3

are cones. However, in R4, when the codimension is 2, things are complicated.
We do not know the list of minimal cones in this case. And even if we make some
additional assumption (see (2.1), which says that in R4 there is no 2-dimensional
minimal cone whose density is less than the density of a T-set other than a plane
or a Y-set), we still end up with a topological counterexample that satisfies all the
known local regularity properties.

Some of the results attributed in the present article to [4] can be found in other
(earlier) references, e.g. [19], but here, for simplicity, [4] is cited systematically.

Acknowledgement. I thank Guy David for many helpful discussions and for
his continual encouragement. Part of the results in this paper were part of the
author’s doctoral dissertation at University of Paris-Sud 11 (Orsay).

Some useful notation

In all that follows, minimal set means Almgren minimal set;
[a, b] is the line segment with end points a and b;
[a, b) is the half-line with initial point a and passing through b;
B(x, r) is the open ball with radius r and centered on x;
B(x, r) is the closed ball with radius r and center x;
−→
ab is the vector b− a;
Hd is the Hausdorff measure of dimension d;
dH(E,F ) = max{sup{d(y, F ) : y ∈ E, sup{d(y, E) : y ∈ F}} is the Hausdorff

distance between two sets E and F .
dx,r, the relative distance with respect to the ball B(x, r), is defined by

dx,r(E,F ) =
1

r
max{sup{d(y, F ) : y ∈ E∩B(x, r)}, sup{d(y, E) : y ∈ F∩B(x, r)}}.

1. Existence of a point of type T for a 2-dimensional Al-mini-
mal set in R3

1.1. Introduction

In this section we treat the old problem of the characterization of 2-dimensional
Al-minimal sets in R3, and restrict the class of potential Al-minimal sets that are
not cones.

Recall that this problem for 2-dimensional topological minimal sets in R3 (which
coincide with MS-minimal sets in this case) has been solved positively in [4],
where Theorem 1.9 says that all 2-dimensional MS-minimal sets in R3 are cones.
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The proof of this theorem consists essentially in proving the property (0.8) for all
2-dimensional MS-minimal cones in R3. There are only three types of minimal
cones in this case, namely, planes, Y-sets, and T-sets. In [4], (0.8) has been proved
for planes and Y-sets, only under the assumption of Almgren minimality. MS-
minimality is used to prove (0.8) for T-sets, for which Al-minimality seems to be
less powerful.

However, in Subsection 1.2 we are going to eliminate the well-known potential
counterexample (see [4], Section 19). Topologically this example satisfies all known
local regularity properties for Al-minimal sets, but we will still manage to give
another topological criterion (Proposition 1.2 and Corollary 1.4) for minimal sets
that look like a T-set at infinity, and use this property to prove that the potential
counterexample, as well as some other similar sets, cannot be Almgren-minimal.
This topological criterion seems to be really strange, and, intuitively, cannot be
satisfied by any global minimal set. However, topologically, sets that admit such
a property exist, and we construct such an example in Subsection 1.3.

In Subsection 1.4 we will treat another similar problem, that is, for a T-set T ,
is the set T ∩B(0, 1) the only minimal set E in B(0, 1) such that E ∩ ∂B(0, 1) =
T ∩∂B(0, 1)? While all the above arguments give some methods for controlling the
measure of a set by topology, in Subsection 1.4 we will give some way to control
the topology of a set by its measure.

1.2. A topological criterion for potential counterexamples

In this section we given a topological condition that must be satisfied by any
2-dimensional non-conical Almgren minimal set in R3.

First let us recall some facts about such sets. Let E be such a set. We look at
the sets

(1.1) E(r, x) =
1

r
(E − x)

where r tends to infinity.
For every sequence {tk}k∈N which tends to infinity and such that E(tk, x) con-

verges (in all compact sets, for the Hausdorff distance), the limit (called a blow-in
limit) should be a minimal cone C (see the arguments in [4] near equation (18.33)).
Now by the classification of singularities in [19], C should be a plane, a Y-set, or
a T-set. By [4], C cannot be a plane or a Y-set. Hence C is a T-set. Thus there
exists a T-set T centered at the origin, and a sequence {tk}k∈N such that

(1.2) lim
k→∞

tk = ∞ and lim
tk→∞ d0,tk(E, T ) = 0.

Denote the unit ball by B = B(0, 1). Denote by yi, 1 ≤ i ≤ 4, the 4 points
of type Y of T ∩ ∂B. Denote by C the convex hull of {yi, 1 ≤ i ≤ 4}, which is a
regular tetrahedron inscribed in B. Set TC = T ∩ C. A simple calculation gives

(1.3)
1

2
H2(∂C) =

4

3

√
3 < 2

√
2 = H2(TC).

Set δ = 1
4 (H

2(TC) − 1
2H

2(∂C)). Then a minor modification of the proof of
Lemma 16.43 of [4] gives:
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Lemma 1.1. There exists ε1 > 0 such that, if d0,2(E, T ) < ε1, then

(1.4) H2(E ∩ C) > H2(TC)− δ.

On the other hand, there exists ε2 > 0 such that if d0,1(E, T ) < ε2, then in the
annulus B(0, 3/2)\B(0, 1/2), E is a C1 version of T (see [4], Section 18). More
precisely, in B(0, 3/2)\B(0, 1/2), the set EY of points of type Y in E is the union
of four C1 curves ηi, 1 ≤ i ≤ 4. Each ηi is very near the half-line [o, yi), and around
each ηi, there exists a tubular neighborhood Ti of ηi, which contains B([0, yi), r) for
some r > 0, such that E is a C1 version of a Y-set in Ti. And for the part of E\EY ,
E∩B(0, 3/2)\B(0, 1/2) is composed of 6 flat surfaces Eij , 1 ≤ i < j ≤ 4. Each Eij

is very near Tij , where Tij is the cone over the great arc lij , which is the great arc
on ∂B that connects yi and yj . Thus each Eij is a locally minimal set that is near a
plane. Then by an argument similar to the proof of Proposition 6.14 of [11], outside
∪1≤i≤4Ti, Eij is the graph of a C1 function of Tij . Hence, in B(0, 3/2)\B(0, 1/2),
E is the image of T by a C1 diffeomorphism ϕ, whose derivative is very near the
identity.

Thus by (1.2), and possibly modulo a dilation, we can suppose that for tk = 2,

(1.5) d0,2(E, T ) < min{ε1, ε2},

which gives (1.4), and that in B(0, 3/2)\B(0, 1/2), E is a C1 version of T .
In particular, on the boundary of C, E ∩ ∂C admits the same topology as

T ∩∂C. That is, E∩∂C is composed of six piecewise C1 curves wij , 1 ≤ i < j ≤ 4.
The end points of each wij are bi and bj . In other words, for each 1 ≤ i ≤ 4,
the three curves wij , j 
= i meet at their common end point bi. Each bi is very
near yi, where yi, 1 ≤ i ≤ 4 are the 4 points of type Y of T ∩ ∂C. Then wij is very
near [bi, bj ]. Moreover, if we denote by Ωi, 1 ≤ i ≤ 4, the connected component of
∂C\E which is opposite to bi, bounded by the wkl, k, l 
= i, then we can ask that ε
is small enough so that

(1.6) for each 1 ≤ i ≤ 4, H2(Ωi) >
1

4
H2(∂C)− δ,

where 1
4H

2(∂C) is the measure of a face of ∂C (see Figure 2).
Now suppose that there is no point of type T in E ∩ C. Recall that EY is

the set of all points of type Y in E. Then by the C1 regularity around points of
type Y (see [5], Theorem 1.15 and Lemma 14.6), EY ∩C is composed of C1 curves,
whose endpoints are bi, 1 ≤ i ≤ 4. Then there exists two curves γ1, γ2 ⊂ EY

whose endpoints are the bi. Suppose, for example, that γ1 ∩ ∂C = {b1, b2}, and
γ2 ∩ ∂D = {b3, b4}.

Now by the C1 regularity for points of type Y (see [5], Theorem 1.15 and
Lemma 14.6), for each x ∈ γ1, there exists a neighborhood B(x, r) such that in
B(x, r), E is a C1 version of Y + x which cuts B(x, r) into 3 connected compo-
nents. Then by the compactness of γ1, there exists r > 0 such that in the tubular
neighborhood B(γ1, r) of γ1, E is a distorted Y set, whose singular set is γ1, and E
divides B(γ1, r) into three connected components. Each component is a long tube
that joins one of the three Ωi near b1 to one of the three Ωi near b2. Notice that if,
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Figure 2.

for i 
= j, Ωi and Ωj are connected by one of these long tubes, then they lie in the
same connected component of B\E. As a result, there exist 1 ≤ i, j ≤ 4, i 
= j such
that Ωi and Ωj are in the same connected component of B\E, and there exists a
long tube T along γ1 which connects Ωi and Ωj .

Now suppose that there exists a deformation f in C (see Definition 0.3), two
indices 1 ≤ i 
= j ≤ 4, and two points x ∈ Ωi, y ∈ Ωj , such that

(1.7) f(E) ⊂ C\[x, y].

It is then not hard to find a Lipschitz deformation g : C\B([x, y], r) → G :=
∂C\(Ωi∪Ωj) such that g = id on G. To construct of such a g, we can imagine that
we enlarge the “hole”B([x, y], r) and push every point in C\B([x, y], r) towards the
set G. For example we give, in Figure 3, a sketch illustrating what happens when
E ∩ ∂C = T ∩ ∂C. For any set E we have only to make some tiny modification,
since E∩∂C is a C1 version of T ∩∂C. Here for each half-plane D that is bounded
by the line containing [x, y], we just map D∩C\B([x, y], r) to the boundary G∩D
(the thicker segments or point in the figure).

Then the function h := g ◦ f sends E to a subset of G for t large, and more-
over, g does not move E ∩ C = ∪4

k=1∂Ωk.
The above argument implies that in C we can deform E to a subset of G.
Now by (1.4) and (1.6),

H2(h(E)) ≤ H2(G) = H2(∂C)−H2(Ωi)−H2(Ωj)

<
1

2
H2(∂C) + 2δ = H2(TC)− 2δ < H2(E ∩ C),

(1.8)

which contradicts the fact that E is minimal. As a result, if E does not contain
any T type point, then there is no deformation f of E in C such that C\f(E)
contains a segment that connects two different Ωi. On the other hand, if E contains
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Figure 3.

a T-point, then by the argument surrounding (0.6), E is in fact the T centered at
this T-point. In this case there is no such deformation f , either. We have therefore:

Proposition 1.2. Let E be a 2-dimensional Almgren-minimal set in R3 such that

1) d0,2(E, T ) < min{ε1, ε2};
2) E does not contain any T-point.

Let C and Ωi be as above. Then there exists no deformation f of E in C such that
C\f(E) contains a segment that connects two different Ωi, 1 ≤ i ≤ 4.

Remark 1.3. By Proposition 1.2, the tube T along γ1 cannot be too simple. For
example if there exists a Lipschitz homeomorphism f which is a deformation in C
such that

(1.9) f(γ1) = [b1, b2],

(in this case we say that γ1 is not “knotted”), then

(1.10) C\f(E) = f(C\E) ⊃ f(γ1) = [b1, b2],

which contradicts Proposition 1.2. Thus we get the following:

Corollary 1.4. If E contains no T-point, then γ1 and γ2 are “knotted”.

Because of this corollary, the potential counterexample E0 proposed in [4] is
not a real counterexample, since neither γi, i = 1, 2 in this example is knotted (in
the next section we shall explain what E0 looks like topologically). Thus we have:

Corollary 1.5. The set E0 given in Section 19 of [4] is not Almgren-minimal.

To sum up, if a minimal set E satisfies (1.2), then both γ1 and γ2 are knotted.
It is not easy to imagine how to knot a Y-set without producing new singularities.
However this kind of set does exist. We will construct an example in the next
section.
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Figure 4.

1.3. A set that admits two knotted Y-curves

The purpose of this subsection is to give a topological example of an E for which
both γ1 and γ2 are knotted. First we look at the well-known example E0, be-
cause such an example already requires a certain imagination. In this example
both γi, i = 1, 2 are not knotted.

We take a torus T0 (see Figure 4). Denote by C0 (the green circle in the figure)
the longest horizontal circle (the equator), and fix any vertical circle L0 in T0 (the
red circle in the figure). Denote by x0 their intersection. Take r0 > 0 such that
B0 = B(x0, r0) ∩ T0 (the blue circle) is a non-degenerate topological disc. Denote
by a1 and a2 the intersection of ∂B0 and C0, and by b1 and b2 the intersection of
∂B0 and L0.

Denote by ã1a2 = C0\B0 the arc between a1 and a2, and by b̃1b2 = L0\B0 the
arc between b1 and b2. Next denote by S2 the vertical planar domain bounded

by [b1, b2] ∪ b̃1b2. On the other hand, denote by P the plane containing C0, and
take a closed disk B1 ⊂ P which contains ã1a2 and whose boundary contains a1
and a2. Now denote by â1a2 = ∂B1\B0 the larger arc of ∂B1 between a1 and a2,
and denote by S1 ⊂ P the part between ã1a2 and â1a2.

Now we happily claim that the set (T0\B0)∪S1 ∪S2 is topologically the exam-
ple E0 given in Section 19 of [4]. Here a1, a2, b1, b2 are the four Y-points which cor-

respond to the four Y-points in E0∩∂B(0, 1), ã1a2 and b̃1b2 correspond to γ1 and γ2
respectively; â1a2 and [b1, b2], together with the four arcs on ∂B0 between ai and bj ,
i, j = 1, 2, correspond to the six curves of E0 ∩ ∂B(0, 1) (but of course we need to
deform this picture a lot). If we were to modify our topological example so that
the surfaces meet each other with 120◦ angles along the curves γi, then we would
get E0.

After the above discussion, we are now ready to construct (in R3) our ex-
ample E1, where γ1 and γ2 are both knotted. Moreover, in R3\E1 there is no
non-knotted curve that connects Ω1 to Ω2, or Ω3 to Ω4. The idea is to replace
the γ1 and γ2 in E0, which are a pair of cogenerators of π1(T0), by another pair of
knotted representatives of cogenerators of π1(T0) of the torus T0.
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Figure 5.

Let us first point out that the following example E1 is just a topological one,
and it is not very likely that E1 is minimal.

Still, take our torus T0. Let the notation be as before; that is, C0 denotes the
longest horizontal circle (the equator) and L0 is a vertical circle in T0. Denote
by x0 their intersection. Take r0 > 0 such that B0 = B(x0, r0) ∩ T0 (the blue
circle) is a non-degenerate topological disc. Denote by a1 and a2 the intersection
of ∂B0 and C0, and by b1 and b2 the intersection of ∂B0 and L0.

Denote by Γ = Z2 the integer lattice in R2. We identify T0 with the image of
π : R2 → R2/Z2. For any two integersm,n ∈ Z, denote by d(m,n) = [(0, 0), (m,n)]
the segments with endpoints (0, 0) and (m,n). Denote by K(m,n) = π(d(m,n)).
Then K(m,n) is a simple closed curve (that is, π is injective on d(m,n)) if and
only if the greatest common divisor (m,n) of m and n equals 1. For any integers
m,n, a, b with (m,n) = (a, b) = 1, K(m,n) and K(a, b) represent a pair of cogener-
ators of π1(T0) if and only if

∣∣det(m n
a b

)∣∣ = 1 (see [18]). Without loss of generality,
suppose that K(1, 0) = L0, and K(0, 1) = C0.

Take a pair of knotted curves K(2, 3) and K(3, 4) which represent a pair of
cogenerators of π1(T0). Then the two curves intersect at one point. Without
loss of generality, suppose this point of intersection is x0. Denote by Int(T0) and
Ext(T0) the two connected components of S3\T0.

First we want to construct two surfaces S1 and S2, such that S1 ⊂ Ext(T0),
S2 ⊂ Int(T0), ∂S1 = K(2, 3), and ∂S2 = K(3, 4).

Notice that the torus knot K(3, 2) is a trefoil knot (see Figure 5, left), which
bounds a nonorientable surface S′

1 ⊂ Int(T0) (see Figure 5, right). The pair
of topological spaces (Int(T0) ∪ T0, T0) is homeomorphic to (Ext(T0) ∪ T0, T0),
by some homeomorphism ϕ or S3 that sends the point ∞ to a point in Int(T0),
and ϕ(K(3, 2)) = K(2, 3). Thus K(2, 3) bounds a surface S1 = ϕ(S′

1) ⊂ Ext(T0).

The curve K(3, 4) intersects with the vertical circle L0 at four points p0, p1, p2
and p3 in clockwise order. Denote by s0 ⊂ Int(T0) the vertical planar disk whose
boundary is L0, and for θ ∈ [0, 2π], let sθ denote the vertical section disk of Int(T0)
with polar angle θ (see Figure 6). Then sθ also intersects K(3, 4) at four points,
and when θ < 2π, the intersection ofK(3, 4) with the tube ∪0≤α≤θsα is the disjoint
union of four curves. Then for each 0 ≤ i ≤ 3, there is a point on K(3, 4)∩sθ that is
connected to pi by one of these four curves. Denote by this point pi(θ). Notice that
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at the angle 2π, we have s0 = s2π, hence for each 0 ≤ i ≤ 3, pi(2π) is one of the two
points on s0 that is adjacent to pi, and {pi(2π), 0 ≤ i ≤ 3} = {pi(0), 0 ≤ i ≤ 3}.
Moreover, since K(3, 4) = ∪0≤i≤3pi([0, 2π)) is connected, if pi(2π) = pj, then
pj(2π) 
= pi. Under all these conditions, there are only two possibilities: either
pi(2π) = pi+1 for i = 0, 1, 2 and p3(2π) = p0, or pi(2π) = pi−1 for i = 1, 2, 3 and
p0(2π) = p3. Without loss of generality, suppose that pi(2π) = pi+1 for i = 0, 1, 2
and p3(2π) = p0.

Figure 6.

Take an isotopy f : [0, 2π] × s0 → Int(T0) ∪ T0 such that f0 = id, fθ(s0) =
f(θ, s0) = sθ, fθ(∂s0) = ∂sθ, and fθ(pi) = pi(θ). Then the image S′

2 = f([0, 3π/2]×
([p0, p1] ∪ [p2, p3])) is a surface inside T0, whose boundary is the curve{

K(3, 4) ∩
(⋃

0≤θ≤3π/2sθ
)}

∪ ([p0, p1] ∪ [p2, p3]) ∪ f3π/2([p0, p1] ∪ [p2, p3]).

Now we have to find a surface in the remainder, i.e., in ∪3π/2≤θ≤2πsθ, whose
boundary is {K(3, 4)∩(∪3π/2≤θ≤2πsθ)}∪([p0, p1]∪[p2, p3])∪f3π/2([p0, p1]∪[p2, p3]).
Notice that we cannot continue to use the image under ft, 3π/2 ≤ θ ≤ 2π, because
f2π([p0, p1]) will be something that connects p1 and p2, rather than a curve that
connects p0 to p1 or p2 to p3. However, we can find the solution by a saddle
surface S′′

2 . Refer to Figure 7, where ai denotes f3π/2(pi).
Denote by S2 = S′

2 ∪ S′′
2 ⊂ Int(T0), then ∂S2 = K(3, 4).

Now to sum up, we have found two surfaces S1 ∈ Ext(T0) and S2 ∈ Int(T0),
with ∂S1 = K(2, 3) and ∂S2 = K(3, 4).

Now we take a diffeomorphism of S3, which maps T0 to T0, Int(T0) to Int(T0),
and Ext(T0) to Ext(T0). Moreover we ask that the images l1 of K(2, 3) and l2 of
K(3, 4) satisfy that l1 ∩ l2 = x0; l1 ∩B0 = C0 ∩B0, the shorter arc of C0 between
a1 and a2; and l2 ∩ B0 = L0 ∩ B0 the arc of L0 between b1 and b2 that passes
through x0. Then the images of S1 and S2 are still two surfaces S3 and S4, with
∂S3 = l1, ∂S4 = l2, S3 ⊂ Ext(T0) and S4 ⊂ Int(T0).

We still need to make some modifications, because the two surfaces S3 and S4

meet each other at the boundary. So we take a homeomorphism ϕ of S3, which
fixes T0\B0, and satisfies ϕ(l1 ∩ B0) = â1, a2 and ϕ(l2 ∩ B0) = [b1, b2]. Then
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Figure 7.

S5 = ϕ(S3) ⊂ Ext(T0), and S6 = ϕ(S4) is contained in Int(T0)\C, where C
denotes the convex hull of {a1, a2, b1, b2, x0}.

Let E1 = (T0\B0) ∪ S5 ∪ S6. Let γ1 = l1\B0, and γ2 = l2\B0. These are two
knotted Y curves of E1, because as in E0, we have two surfaces, S5 and S6, such
that ∂S5 = γ1 ∪ â1, a2 and ∂S6 = γ2 ∪ [b1, b2]. We can deform E1 into B(0, 1),
such that E1 ∩ ∂B(0, 1) = T ∩ ∂B(0, 1) for some T-set T . Here a1, a2, b1, b2 are
the four Y-points which correspond to the four Y-points in E1 ∩ ∂B(0, 1), while
â1a2 and [b1, b2], together with the four arcs on ∂B0 between ai and bj, i, j = 1, 2
correspond to the six curves of E1 ∩ ∂B(0, 1).

Thus we have constructed an example whose set of Y-points is the union of two
knotted curves. Moreover, we cannot find any non-knotted curve inB(0, 1)\E1 that
connects a1 to a2, or b1 to b2. That is, there is no deformation f of E1 in B(0, 1)
such that B(0, 1)\f(E1) contains a segment that connects two different Ωi. While
this example E1 seems too complicated to be minimal, we do not know how to
prove this.

However, for another closely related problem, we can prove that a minimal set
does not admit a knotted Y curve. See the next section.

1.4. Another related problem

We take a T-set T centered at the origin. That is, T is the cone over the 1-skeleton
of a regular tetrahedron C centered at the origin and inscribed in the unit ball.

In this section we will discuss whether there exists a set E ⊂ B(0, 1) different
from T ∩ B(0, 1), that is minimal in B(0, 1), and such that E ∩ ∂B(0, 1) = T ∩
∂B(0, 1).

Denote by B = B(0, 1) ⊂ R3, and by B its closure. Then T divides the
sphere ∂B into four equal triangular open regions {Si}1≤i≤4, with

(1.11) ∪4
i=1 Si = ∂B and ∪4

i=1 Si = ∂B\T.
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Recall that T divides ∂C into four equal open planar triangles {Ωi}1≤i≤4. For
notational convenience we ask that for each i, Si and Ωi share the same three
vertices.

Denote by aj , 1 ≤ j ≤ 4, the four vertices of T ∩ ∂B, where aj = ∩i	=jSj ∩ ∂B
is the point opposite to Sj .

Proposition 1.6. Let E ⊂ B∩R3 be a closed, 2-rectifiable, locally Ahlfors regular
set with

(1.12) E ∩ ∂B = T ∩ ∂B.

Then:

1) If H2(E) < H2(T ∩B),

(1.13)
there exists 1 ≤ i < j ≤ 4, and four points a, b, c and d that
lie in a common plane such that a ∈ Si, d ∈ Sj, b, c ∈ B\E,
∠abc > π/2, ∠bcd > π/2 and [a, b] ∪ [b, c] ∪ [c, d] ⊂ B\E.

Here [x, y] denotes the segment with endpoints x and y, and ∠abc ∈ [0, π]
denotes the angle of the smaller sector bounded by ba and bc.

2) If E is a reduced minimal set in B and satisfies (1.12), then

(1.14) either E = T ∩B, or (1.13) is true.

Before we prove Proposition 1.6, we first give a corollary.

Corollary 1.7. Let E ⊂ B be a reduced minimal set in B and satisfying (1.12).
Then if E 
= T ∩B, we have

(1.15) H2(E) ≤ H2((T ∩B\C) ∪G) = H2(T ∩B)− (2
√
2− 4

√
3/3) (≈ 0.519).

Proof. Let E be such a set. Then by (1.14), (1.13) is true. Since (1.13) gives the
existence of a deformation f in B such that f(E) ⊂ B\[a, d], we can deform E on a
subset of (T ∩B\C◦)∪G (C◦ denotes the interior of C), where G = ∂C\(Ωi ∪Ωj)
(recall that Ωi and Ωj are the two faces of C corresponding to the two faces Si

and Sj of ∂B, where Si and Sj contain the points a and d).
Thus by (2.4),

(1.16) H2(E) ≤ H2((T ∩B\C) ∪G) = H2(T ∩B)− (2
√
2− 4

√
3/3). �

Proof of Proposition 1.6. We are going to prove 1) by contraposition. Suppose
that (1.13) is not true.

Denote by Pj the plane orthogonal to −→oaj and tangent to the unit sphere, and
denote by pj the orthogonal projection to Pj . Set Rj = pj(Sj) ⊂ pj(∪i	=jSi) ⊂ Pj .
Then for each 1 ≤ j ≤ 4 and each x ∈ Rj ,

(1.17) p−1
j (x) ∩ E 
= ∅.
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In fact if (1.17) is not true for some j, that is, Rj\pj(E) 
= ∅. As the projection
of a compact set, pj(E) is compact. Thus Rj\pj(E) is a nonempty open set. Note
that Rj\(∪i	=jpj(Si)) has measure zero, therefore

(1.18) (Rj\pj(E)) ∩ (∪i	=jpj(Si)) 
= ∅.

Take x ∈ (Rj\pj(E)) ∩ (∪i	=jpj(Si)). Then x 
∈ ∂Rj, because ∂Sj ⊂ E and
hence ∂Rj = ∂pj(Sj) = pj(∂Sj) ⊂ pj(E). As a result, p−1

j (x)∩B is a segment [a, d]
perpendicular to Pj , with a 
= d, a ∈ S◦

j and d ∈ ∪i	=jS
◦
i . Take b, c ∈ [a, d] such

that a, b, c and d are different. Then (1.13) holds, which contradicts our hypothesis.

Hence (1.17) holds. Now for each x∈Rj , denote by fj(x) the point in p−1
j (x) ∩ E

which is the nearest to Rj . In other words, fj(x) is the first point in E whose pro-
jection is x. This point exists by (1.17), and is unique, since p−1

j (x) is a line
orthogonal to Rj .

Let Aj = fj(Rj). Then Aj is measurable. In fact,

(1.19) Aj = {x ∈ E : ∀y ∈ E such that d(y, Pj) < d(x, Pj), |pj(y)− pj(x)| > 0}

=
⋂
p,q

{x ∈ E : ∀y∈E such that d(y, Pj) < d(x, Pj)−2−p, |pj(y)−pj(x)| > 2−q}.

Now E is rectifiable, hence Aj ⊂ E is also rectifiable. Therefore for almost
all x ∈ Aj , the approximate tangent plane TxAj of Aj at x exists. Denote by
vj =

−→oaj/|oaj | the unit exterior normal vector of Pj , and denote by wj(x) the unit
vector orthogonal to TxAj such that 〈vj , wj(x)〉 ≥ 0. Then wj(x) is well defined
for every x ∈ Aj with TxAj 
⊥ Pj .

Denote by

(1.20) Ej = {x ∈ Aj : TxAj 
⊥ Pj}.

Then wj is a measurable vector field on Ej . On the other hand, by Sard’s theorem,
H2(pj(Aj\Ej)) = 0. Since pj is injective on Aj , pj(Aj\Ej) = pj(Aj)\pj(Ej) =
Rj\pj(Ej), and thus

(1.21) H2(Rj\pj(Ej)) = 0.

Moreover, for almost all x ∈ Ej , TxAj = TxEj .

We are going to show that

(1.22)

∫
Ej

〈vj , wj(x)〉 dx = H2(Rj).

First, we apply the area formula for Lipschitz maps between rectifiable sets
(see 3.2.20 of [7]), with m = ν = 2, W = Ej , f = pj , g = 1Rj , and we get

(1.23)

∫
Ej

|| ∧2 apDpj(x)|| dH2x =

∫
Rj

N(pj , z) dH
2z.
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Moreover, by (1.17) and (1.21), N(pj , z) ≥ 1 for almost all z ∈ Rj . On the
other hand, N(pj , z) ≤ 1 since Ej is contained in the set Aj on which pj is injective.
Hence N(pj , z) = 1 for almost all z ∈ Rj . Therefore

(1.24)

∫
Rj

N(pj, z) dH
2z = H2(Rj).

For the left side of (1.23), take w1
j (x) to be a unit vector in TxEj such that

w1
j (x)//Rj , and w2

j (x) to be the unit vector in TxEj orthogonal to w1
j (x). Then

pj(w
1
j (x)) ⊥ pj(w

2
j (x)), by elementary geometry in R3. Therefore

|| ∧2 apDpj(x)|| = ||pj(w1
j (x)) ∧ pjj(w2(x))|| = |pj(w1

j (x))| |pj(w2
j (x))|

= |pj(w2
j (x))|.

(1.25)

The first inequality is because pj is a linear map from R2 to R2, the second in-
equality is because pj(w

1
j (x)) ⊥ pj(w

2
j (x)), and the last is because w1

j (x)//Sj .

Now set v2j (x) = pj(w
2
j (x))/|pj(w2

j (x))| ∈ Pj . This is well defined because

TxEj 
⊥ Pj and hence |pj(w2
j (x))| > 0. Then wj(x), w

2
j (x), vj , v

2
j (x) are all orthog-

onal to w1
j (x), and hence belong to a single plane, with wj(x) ⊥ w2

j (x), vj ⊥ v2j (x).
Therefore

(1.26) |〈wj(x), vj〉| = |〈w2
j (x), v

2
j (x)〉| = |pj(w2

j (x))|.

Since by definition 〈wj(x), vj〉 ≥ 0,

(1.27) 〈wj(x), vj〉 = |pj(w2
j (x))| = || ∧2 apDpj(x)||,

by (1.25). Combining (1.23), (1.24) and (1.27), we get (1.22). Note that vj does
not depend on E.

Now for x ∈ Aj\Ej , we define a measurable vector field wj(x) such that wj(x) ⊥
TxAj . Then 〈wj(x), vj〉 = 0 for almost all x ∈ Aj\Ej . Hence we have

(1.28)

∫
Aj

〈vj , wj(x)〉dx = H2(Rj).

We sum over j, and get

(1.29)

4∑
j=1

∫
Aj

〈vj , wj(x)〉 dx =

4∑
j=1

∫
Ej

〈vj , wj(x)〉 dx =

4∑
i=1

H2(Rj).

Next, set E0
j = Ej\ ∪i	=j Ei, Eij = (Ei ∩ Ej)\ ∪k 	=i,j Ek for i 
= j. We claim

that

(1.30) Ej\(E0
j ∪

⋃
i	=jEij) is of measure zero for all j.

Suppose (1.30) is not true. Then there exist three different i, j and k such that
Ei ∩ Ej ∩ Ek has positive measure. Suppose for example that i = 1, j = 2 and
k = 3, and set E123 = E1∩E2∩E3. Now since E123 is a measurable rectifiable set of
positive measure, and E123 ⊂ E, for almost all x ∈ E123, the approximate tangent
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plane TxE123 of E123 at x exists and equals TxE. Moreover, since E is locally
Ahlfors regular, TxE is a real tangent plane (see, for example, [3], Exercise 41.21,
page 277). We choose and fix such an x ∈ E123.

By definition of Aj , for j = 1, 2, 3, the segment [x, pj(x)] ∩ E = {x}. And
by definition of Ej , TxE 
⊥ Pj , and hence [x, pj(x)] ∩ (TxE + x) = {x}, since
[x, pj(x)] ⊥ Pj . The affine subspace TxE + x separates R3 into two half-spaces,
and since for j = 1, 2, 3, (x, pj(x)] ∩ (TxE + x) = ∅, there exist 1 ≤ i < j ≤ 3 such
that (x, pi(x)] and (x, pj(x)] are on the same side of TxE+x. Suppose for example
that i = 1 and j = 2.

For i = 1, 2, denote by αi the angle between [x, pi(x)] and TxE + x. Set α =
min{α1, α2}. Then since TxE is a real tangent plane, there exists r > 0 such that
for all y ∈ E ∩B(x, r),

(1.31) d(y, TxE + x) <
r

2
sinα.

Set b = [x, p1(x)] ∩ ∂B(x, r) and c = [x, p2(x)] ∩ ∂B(x, r). Then by definition
of α, d(b, TxE + x) ≥ r sinα, and d(c, TxE + x) ≥ r sinα. Since b and c are on
the same side of TxE + x, for all y ∈ [b, c], d(y, TxE + x) ≥ r sinα, and hence
[b, c] ∩ E = ∅, because of (1.31).

Now set a = p1(x) and d = p2(x). Note that in the triangle Δxbc, |xb| = |xc|,
which gives that ∠xbc = ∠xcb. But ∠xbc + ∠xcb + ∠bxc = π, ∠bxc > 0, Hence
∠xbc = ∠xcb < π/2. As a result, ∠abc = π −∠xbc > π/2 and ∠bcd = π −∠xcb >
π/2. Thus we have found four points a, b, c and d such that (1.13) is true, which
contradicts our hypothesis.

Thus we get (1.30). And consequently we have

(1.32) H2(∪4
j=1Ej) =

4∑
j=1

H2(E0
j ) +

∑
1≤i<j≤4

H2(Eij).

For estimating the measure, we are going to use the paired calibration method
(introduced in [9]). Recall that vj is the unit exterior normal vector of Pj . Thus
by (1.29),

4∑
i=1

H2(Rj) =
4∑

j=1

∫
Ej

〈vj , wj(x)〉 dx

=

4∑
j=1

∫
E0

j

〈vj , wj(x)〉 dx +
∑

1≤i<j≤4

∫
Eij

〈vi, wi(x)〉 + 〈vj , wj(x)〉 dx.(1.33)

For the first term,

(1.34)
∣∣∣ ∫

E0
j

〈vj , wj(x)〉 dx
∣∣∣ ≤ ∫

E0
j

∣∣〈vj , wj(x)〉
∣∣ dx ≤

∫
E0

j

|vj | |wj(x)| dx = H2(E0
j ),

and hence

(1.35)
∣∣∣ 4∑
j=1

∫
E0

j

〈vj , wj(x)〉 dx
∣∣∣ ≤ 4∑

j=1

∣∣∣ ∫
E0

j

〈vj , wj(x)〉 dx
∣∣∣ ≤ 4∑

j=1

H2(E0
j ).
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For the second term, observe that wi(x) = ±wj(x) for x ∈ Eij , hence we set
εx = wi(x)/wj(x). Then∣∣〈vi,wi(x)〉 + 〈vj , wj(x)〉

∣∣ = ∣∣〈vi + ε(x)vj , wi(x)〉
∣∣

≤ |vi + ε(x)vj | |wi(x)| = |vi + ε(x)vj | ≤ max{|vi + vj |, |vi − vj |}.
(1.36)

By definition of vj , the angle between vi and vj is the supplementary angle of
the angle θij between Pi and Pj . A simple calculus gives

(1.37) |vi + vj | =
2√
3
< 1, |vi − vj | =

2
√
2√
3

> 1.

Hence max{|vi + vj |, |vi − vj |} = |vi − vj | > 1. Denote by D this value. By (1.36),∣∣∣ ∫
Eij

〈vi,wi(x)〉+ 〈vj , wj(x)〉 dx
∣∣∣

≤
∫
Eij

∣∣〈vi, wi(x)〉 + 〈vj , wj(x)〉
∣∣ dx ≤ DH2(Eij),

(1.38)

and hence∣∣∣ ∑
1≤i<j≤4

∫
Eij

〈vi, wi(x)〉 + 〈vj , wj(x)〉 dx
∣∣∣

≤
∑

1≤i<j≤4

∣∣∣ ∫
Eij

〈vi, wi(x)〉+ 〈vj , wj(x)〉 dx
∣∣∣ = D

∑
1≤i<j≤4

H2(Eij).(1.39)

Combining (1.33), (1.35), and (1.39), we get

4∑
i=1

H2(Rj) ≤
4∑

j=1

H2(E0
j ) +D

∑
1≤i<j≤4

H2(Eij)

≤ D
[ 4∑
j=1

H2(E0
j ) +

∑
1≤i<j≤4

H2(Eij)
]

(since D > 1)

= DH2(∪4
j=1Ej) ≤ DH2(E).

(1.40)

On the other hand, we can do the same thing for T , the cone over the 1-skeleton
of the regular tetrahedron C. Since T separates the four faces of C, (1.13) is
automatically false for T . Then, by the foregoing, we can see that T 0

i = ∅ for all i,
εij = −1 for all i 
= j, and (vi − vj) ⊥ TxT for almost all x ∈ Tij , which implies
that

(1.41) 〈vi, wi(x)〉 + 〈vj , wj(x)〉 = D

for all x ∈ Tij . So briefly, the inequalities throughout the argument above are
equalities for T ∩B. As a result,

(1.42) DH2(E) ≥
4∑

i=1

H2(Rj) = DH2(T ∩B),
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Figure 8.

and hence

(1.43) H2(E) ≥ H2(T ∩B)

for all E that do not satisfy (1.13).

Now we prove 2). Let E be a reduced minimal set. Then it is rectifiable and
locally Ahlfors regular in B ([6]).

First note that H2(E) ≤ H2(T ∩ B). In fact, for each x ∈ B\T , there exists
1 ≤ i ≤ 4, such that x and Si belong to the same connected component of B\T .
Denote by f(x) the first intersection of x + [0, ai) with T . Then f : B → T is a
2-Lipschitz retraction (see Figure 8). Now if E is a minimal set that satisfies (1.12),
for each ε > 0, we define gε : ∂B∪E → T∪∂B by g(x) = f(x) for x ∈ E∩B(0, 1−ε),
g(x) = x for x ∈ ∂B. Then we can extend gε to a 2-Lipschitz map which sends B
to B, by Kirszbraun’s Theorem ([7], Thm. 2.10.43), see Figure 8. Thus gε deforms
E ∩B(0, 1− ε) to a subset of T ∩B(0, 1− ε). Thus we have

H2(gε(E)) = H2(gε(E ∩B(0, 1− ε))) +H2(gε(E\B(0, 1− ε)))

≤ H2(gε(T ∩B(0, 1− ε))) + Lip(gε)
2H2(E\B(0, 1− ε)

= H2(T ∩B(0, 1− ε)) + 4H2(E\B(0, 1− ε))

< H2(T ∩B) + 4H2(E\B(0, 1− ε)

(1.44)

The second term tends to 0 when ε tends to 0. That is, for any δ > 0, there exists
ε(δ) > 0 such that

(1.45) H2(gε(E)) < H2(T ∩B) + δ.

Now E is minimal, hence for any δ > 0,

(1.46) H2(E) ≤ H2(gε(δ)(E)) ≤ H2(T ∩B) + δ,

therefore

(1.47) H2(E) ≤ H2(T ∩B).
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Hence to prove 2), it is enough to prove that if (1.13) does not hold, and
H2(E) = H2(T ∩B), then E = T ∩B. In particular E contains a point of type T.

By the arguments in 1), if (1.13) is not true, and H2(E) = H2(T ∩ B), then
the inequalities (1.34)–(1.36) and (1.38)–(1.40) are all equalities. Thus we have

1) For almost all x ∈ Eij , TxEij ⊥ vi − vj . Denote by Pij the plane perpendic-
ular to vi − vj . Then for almost all x ∈ Eij , TxEij = Pij .

2) For all j, H2(E0
j ) = 0, since D > 1.

3) For all j, H2(Aj\Ej) = 0.

4) For all j, pj(E) = pj(Ej) = Rj .

Thus for almost all x ∈ E, TxE exists and is one of the Pij . If x is a point such
that TxE exists, by the C1 regularity ([5], Theorem 1.15 and Lemma 14.4), there
exists r = r(x) > 0 such that in B(x, r), E is the graph of a C1 function from TxE
to TxE

⊥, which implies that in B(x, r), the function f : E ∩ B(x, r) → G(3, 2),
f(y) = TyE is continuous. But for TyE we have only six choices Pij , 1 ≤ i < j ≤ 4,
which are isolated points in G(3, 2), and so TyE = TxE for all y ∈ B(x, r)∩E. As
a result E ∩B(x, r) = (TxE + x) ∩B(x, r), a disk parallel to Pij .

Still by the C1 regularity, the set EP = {x ∈ E ∩ B : TxE exists} is a C1

manifold, and is open in E. Thus we deduce that

(1.48)
each connected component of EP is part of a plane that is parallel
to one of the Pij .

Set EY = {x ∈ E : x is of type Y}. Then EY 
= ∅, because otherwise by (1.48),
E∩B is the intersection of B with a translation of one of the Pij , but then E∩∂B
is surely not T ∩ ∂B.

Now if x ∈ EY , by the C1 regularity around points of type Y ([5], Theorem 1.15
and Lemma 14.6), there exists r = r(x) > 0 such that in B(x, r), E is C1 equivalent
to a Y-set Y . Denote by LY the spine of Y , and by S1, S2 and S3 the three open
half-planes of Y . Then if we denote by ϕ the C1 diffeomorphism which sends Y
onto E in B(x, r), the ϕ(Si)∩B(x, r), 1 ≤ i ≤ 3, are connected C1 manifolds, and
hence each of them is a part of a plane parallel to Pij . Consequently, ϕ(Ly)∩B(x, r)
is an open segment passing through x and parallel to one of the Dj , 1 ≤ j ≤ 4,
where Dj = Pij ∩ Pjk.

Hence EY ∩B is a union of open segments I1, I2, . . . , each of which is parallel
to one of the Dj , and every endpoint is either a point in the sphere ∂B, or a point
of type T . Moreover,

(1.49)
for each x ∈ EY such that TxEY = Dj , there exists r > 0 such
that, in B(x, r), E is a Y-set whose spine is x+Dj.

Now if x ∈ E is a T-point, then by the arguments above, the blow-up limit CxE
of E at x is the set T (the set T defined at the very beginning of this section).
As a result, for each segment Ii, at least one of its endpoints is in the unit sphere.
In fact, if both of the endpoints x and y of Ii are of type T, then at least one of
the two blow-up limits CxE and CyE is not the set T , because two parallel T-sets
cannot be connected by a common spine.

Hence all the segments Ii touch the boundary.



224 X. Liang

Lemma 1.8. If x is a T-point (and hence CxE = T ), then (T + x) ∩B ⊂ E.

Proof. By the C1 regularity around points of type T , there exists r > 0 such that
in B(x, r), E is a C1 version of T + x. Then by (1.48) and (1.49), E ∩ B(x, r) =
(T + x) ∩ B(x, r). Denote by Li, 1 ≤ i ≤ 4, the four spines of T + x. Then
Li∩B ⊂ EY , because Li∩B(x, r) is part of a segment Ij ⊂ EY , which has already
an endpoint x that does not belong to the unit sphere, hence the other endpoint
must be in the sphere, which yields Ij = Li ∩B(0, 1).

Now we take a one parameter family of open balls Bs with radii r ≤ s ≤ 1,
with Br = B(x, r) and B1 = B(0, 1), such that

1) Bs ⊂ Bs′ for all s < s′;
2) ∩1>t>sBt = Bs and ∪t<sBt = Bs for all r ≤ s ≤ 1.

Set R = inf{s > r, (T + x) ∩Bs 
⊂ E}. We claim that R = 1.
Suppose this is not true. By definition of Bs, the four spines and the six faces

of T + x are never tangent to ∂Bs, r < s < 1, since B(x, r) ⊂ Bs.
Now for each y ∈ ∂BR ∩ (T + x), y is not a T-point. In fact, if y belongs to

one of the Li, then y is a Y point, since Li\{x} ⊂ EY and Li ∩ B ⊂ EY ; if y is
not a Y point, then there exist i and j such that y ∈ x + Pij . Thus there exists
ry > 0 such that B(y, ry) ∩ (x + T ) is a disk Dy centered at y. Now by definition
of R, for all s < R, Bs ∩ (T + x) ⊂ E, and hence BR ∩ (T + x) ⊂ E. Hence
D ∩BR ∩B(y, ry) ⊂ E, which means that y cannot be a point of type T.

If y is a point of type P (i.e., a planar point), suppose for example that y ∈
Pij + x. Then TyE = Pij . By (1.48), and since R < 1, there exists ry > 0 such
that E ∩B(y, ry) = (Pij + y) ∩B(y, ry). In other words,

(1.50) there exists ry > 0 such that E coincides with T + x in BR ∪B(y, ry).

If y is a point of type Y, then it is in one of the Li. By the same argument as
above, using (1.49), we get also (1.50).

Hence (1.50) is true for all y ∈ ∂BR ∩ (T + x). As ∂BR ∩ (T + x) is compact,
we have thus a uniform r > 0 such that for each y, (1.50) is true if we set ry = r.
However, this contradicts the definition of R.

Hence R = 1, but B1 ⊂ B is of radius 1, so B1 = B. Then by definition of R
we get the conclusion of Lemma 1.8. �

By Lemma 1.8, we know that if x is a T-point, then x has to be the origin,
because of (1.12). Hence T ∩ B ⊂ E. In this case, we have E = T ∩ B, because
H2(E) = H2(T ∩B).

We still have to discuss the case when there is no point of type T. In this case,
the same kind of argument as in Lemma 1.8 gives the following.

Lemma 1.9. Let x be a Y point in E, and TxEY = Dj. Denote by Yj the Y
whose spine is Dj. Then

(1.51) (Yj + x) ∩B ⊂ E.

But this is impossible, because E ∩ ∂B = T ∩ ∂B contains no full part of
(Yj + x) ∩ ∂B(0, 1) for any x and j.

Hence we have E = T ∩B, and thus (1.14). �
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2. Existence of a point of type T for a 2-dimensional topolog-
ical minimal set in R4

2.1. Introduction

In this section we discuss the property (0.8) for 2-dimensional topological minimal
sets in R4 whose blow-in limits are T-sets. This kind of set exists trivially because a
T-cone is topological minimal in R3, and by Proposition 3.18 of [11], it is topological
minimal in any Rn for n ≥ 3.

One wonders whether there is any other type of topological minimal sets in R4

that look at infinity like T-sets without themselves being T-sets. Recall that in R3

there are no such sets (see Proposition 18.1 of [4]). An important and useful
property of R3 is that in R3 there are only two kinds of minimal cones whose
densities are less than that of a T-set: the planes and the Y-sets. Hence if the
blow-in limits of a non-conical minimal set are T-sets, then by the monotonicity of
density, in this minimal set all points are of type P or Y, and hence there can hold
the same properties as those stated in (1.4)-(1.6) and Figure 2, and by the same
argument.

We do not know if there exists a minimal cone in R4 whose density is between
those of Y-sets and T-sets. However T-sets are the only minimal cones that admit
the simplest topology except for planes and Y-sets. Hence it is likely that in R4

there are no minimal cones between Y-sets and T-sets.
Consequently we make the following additional assumption. Denote by dT the

density of T-sets, and suppose that

(2.1)
the only minimal cones in R4 whose densities are less than dT
are the planes and the Y-sets.

We are going to discuss, under the assumption (2.1), the Bernstein type prop-
erty for topological minimal sets in R4 that look like a T-set at infinity.

2.2. A topological criterion for potential counterexamples

Throughout this subsection, we assume that (2.1) is true.
Let E be a 2-dimensional topological minimal set in R4 that looks like a T-set

at infinity. That is, there exists a T-set T centered at the origin, and a sequence
{rk}k∈N such that

(2.2) lim
k→∞

rk → ∞ and lim
k→∞

d0,rk(E, T ) = 0.

We want to find a type T point in the set E.
Now the set E is of codimension 2, hence the topological condition is imposed

on the group H1(R
4\E,Z).

Denote by {yi}1≤i≤4 the four Y-points in T ∩ ∂B(0, 1). Denote by lij ⊂ T ∩
∂B(0, 1) the great arc on the sphere that connects yi and yj . The cone T is
composed of 6 closed sectors {Tij}1≤i	=j≤4, where Tij is the cone over lij . Denote
by xij , 1 ≤ i 
= j ≤ 4, the middle point of lij . Denote by Pij the 2-plane orthogonal
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Figure 9.

to Tij and passing through xij . Set Bij = B(xij , 1/10) ∩ Pij , and denote by sij
the boundary of Bij . Then sij is a circle, that does not touch T , and Bij ∩ T =
Bij ∩ Tij = xij .

Fix an orthonormal basis {ei}1≤i≤4 of R4. We are going to give an orientation
to each sij , and denote these oriented circles by �sij .

For each Bij , there are two orientations σ1 = x ∧ y and σ2 = −x ∧ y, where x
and y are two mutually orthogonal unit vectors that belong to the plane contain-
ing Bij . Take the k ∈ {1, 2} such that det{ei}1≤i≤4

−−→oxij ∧−−→yiyj ∧σk > 0, and denote

by
−→
B ij the oriented disk Bij with this orientation. Denote by �sij = ∂

−→
B ij the

oriented circle, and by [�sij ] the element in H1(R
4\T ;Z) represented by �sij . The

six [�sij ], 1 ≤ i < j ≤ 4, are all different, however they are algebraically dependent.
Figure 9 gives an idea of the above definition (although it is drawn in R3).

Since T is contained in R3, if we fix an orientation of the complementary dimension
in R4, the orientation of Bij defined before corresponds to one of the orientation
of the line orthogonal to Tij in R3. And this orientation of the line corresponds to
the orientations of lij by the right-hand rule. Hence in Figure 9 we indicate the
orientation of lij with arrows to express the orientation of [�sij ]. In the figure, the
orientation Sij means [�sij ].

Thus we have

(2.3) �sij = −�sji, [�sij ] = −[�sji].

Note that {[�sij ], 1 ≤ i, j ≤ 4} is a set of generators of the group H1(R
4\T ;Z).

We say that [sij ] and [skl] (without the vector arrows) are different (in a ho-
mology group) if

(2.4) [�sij ] 
= ±[�skl],

and write sij ∼ skl if [�sij ] = ±[�skl].
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Return to the set E. Without loss of generality, we can suppose (modulo
replacing E by E/rk for some k large) that d0,3(E, T ) is small enough (for ex-
ample less than a certain ε0). Then (by the argument between (1.4) and (1.5))
in B(0, 5/2)\B(0, 1/2), E is a C1 version of T . Therefore in B(0, 5/2)\B(0, 1/2),
E is composed of six C1 faces Eij , that are very close to the Tij . The Eij meet
in threes, on four C1 curves ηi, 1 ≤ i ≤ 4, each ηi is very near the half-line [o, yi),
and near each ηi, there exists a tubular neighborhood Ti of ηi, which contains
B([oyi), r) for some r > 0, in which E is a C1 version of a Y-set. See Section 18
of [4] for details. In total, there is a C1 diffeomorphism ϕ, which is very near the
identity, such that in B(0, 5/2)\B(0, 1/2), E coincides with ϕ(T ), Eij corresponds
to ϕ(Tij), and ηi corresponds to ϕ([0, yi)).

In particular, since E is very near T in B(0, 5/2)\B(0, 1/2), sij ∩ E = ∅, and
Bij ∩ E = Bij ∩ Eij is also a one point set, so that locally each sij links Eij , and
hence is an element (possibly zero) in H1(R

4\E,Z), too.
Now we discuss the values in H1(R

4\E,Z) for these sij .

Lemma 2.1. Let E be an Al-minimal set that satisfies (2.2). Let the notation be
as above. Then if

(2.5) for all 1 ≤ i < j ≤ 4, [ �sij ] 
= 0 in H1(R
4\E,Z),

and

(2.6) at least 5 of the [sij ] are mutually different in H1(R
4\E,Z),

then E contains at least one point of type other than P and Y.

Proof. We prove this by contradiction. Suppose that there are only P and Y-points.
Then for all x ∈ E, the density θ(x) = limr→0 H

2(B(x, r) ∩ E)/r2 of E at x is
either 3/2 or 1. In other words, all singular points in E are of type Y.

Denote by EY the set of all the Y-points of E. Then EY ∩B(0, 2) are composed
of C1 curves, whose endpoints belong to ∂B(0, 2) (see [4], Lemma 18.11, and for
the C1 regularity around Y-points, see [5] Theorem 1.15 and Lemma 14.6).

The following argument is the same as following Lemma 18.11 in Section 18
of [4] (where the reader can find more details). Here we only sketch the argument.

Since E looks very much like T in B(0, 5/2)\B(0, 1/2), we have EY ∩∂B(0, 2) =
{a1, a2, a3, a4}, EY ∩ ∂B(0, 1) = {b1, b2, b3, b4}, where bi is the point among the bj ,
1 ≤ j ≤ 4, nearest to ai. Then through each ai there passes a curve in EY , and
hence locally ai lies in the intersection of three half surfaces Eij , j 
= i, 1 ≤ j ≤ 4.

But on the sphere ∂B(0, 2) we have four Y-points, hence, without loss of gen-
erality, we can suppose that there is a curve γ1 of EY that enters the ball B(0, 2)
at a1 and leaves the ball at a2, and another curve γ2 which enters the ball at a3
and leaves it at a4 (see Figure 10, where the green curves represent the γi, i = 1, 2,
and we do not know much about the structure of E in B1/2 = B(0, 1/2)). Near
each point x of γ1, there exists a C1-ball B(x, rx) of x, in which E is the image of
a Y set under a C1 diffeomorphism. By compactness of the curve γ1, there exists
a tubular neighborhood I1 of γ1 such that E ∩ I1 is composed exactly of three
surfaces that meet along the curve γ1.
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Figure 10.

Since γ1 connects a1 and a2, it passes through b1 and b2. Near each bi, the set E
is composed of three half surfaces Eij , j 
= i. Then since E is locally composed
of three half surfaces all along γ1, these three half surfaces connect E12, E13 and
E14 to E21, E23 and E24. Hence we know that s12, s13 and s14 are homotopic to
s21, s23 and s24 (but we do not know which is homotopic to which). A similar
argument gives also that s31, s32 and s34 are homotopic to s41, s42 and s43.

For the part γ1 we have the following six cases:

(2.7)

s12 ∼ s21, s13 ∼ s23, s14 ∼ s24;
s12 ∼ s21, s13 ∼ s24, s14 ∼ s23;
s12 ∼ s23, s13 ∼ s21, s14 ∼ s24;
s12 ∼ s23, s13 ∼ s24, s14 ∼ s21;
s12 ∼ s24, s13 ∼ s21, s14 ∼ s23;
s12 ∼ s24, s13 ∼ s23, s14 ∼ s21.

Note also that automatically s12 ∼ s21, hence the six cases reduce to the following
four (modulo the symmetry between the indices 3 and 4):

(2.8)

s13 ∼ s23, s14 ∼ s24;
s13 ∼ s24, s14 ∼ s23;
s12 ∼ s23 ∼ s13, s14 ∼ s24;
s12 ∼ s23 ∼ s14, s13 ∼ s24.

Similarly, for the part γ2, we have the following four cases:

(2.9)

s31 ∼ s41, s32 ∼ s42;
s31 ∼ s42, s32 ∼ s41;
s34 ∼ s41 ∼ s31, s32 ∼ s42;
s34 ∼ s41 ∼ s32, s31 ∼ s42.
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Combining (2.8) and (2.9), we have the eight cases

(2.10)

s13 ∼ s23 ∼ s42 ∼ s14;
s13 ∼ s23 ∼ s42 ∼ s14 ∼ s43;
s13 ∼ s24, s14 ∼ s23;
s34 ∼ s41 ∼ s32, s13 ∼ s24;
s13 ∼ s23 ∼ s42 ∼ s14 ∼ s12;
s13 ∼ s24, s12 ∼ s23 ∼ s14;
s12 ∼ s13 ∼ s23 ∼ s42 ∼ s14 ∼ s43;
s13 ∼ s24, s12 ∼ s14 ∼ s23 ∼ s34.

In particular, at most four of the [sij ], 1 ≤ i < j ≤ 4, are different, which
contradicts our hypothesis that at least five of the {[sij ], 1 ≤ i < j ≤ 4} are
different in H1(R4\E;Z). �

Corollary 2.2. Let E be a 2-dimensional reduced Almgren-minimal set in R4 such
that (2.2), (2.5) and (2.6) hold. Suppose also that (2.1) holds. Then E is a T-set
parallel to T .

Proof. By Lemma 2.1, E contains a point x of type other than P and Y, hence
by (2.1), the density θ(x) of E at x is larger than or equal to dT . Define θ(t) =
t−2H2(E∩B(x, t)) the density function of E at x. By Proposition 5.16 of [4], θ(t) is
nondecreasing on t. Then (2.2) and Lemma 16.43 of [4] give that limt→∞ θt = dT .
Since we already know that θ(x) = limt→0 θ(t) ≥ dT , the monotonicity of θ yields
that θ(t) = dT for all t > 0. By Theorem 6.2 of [4], the set E is a minimal cone
centered at x, with density dT . Thus, by (2.2), E is a T-set centered at x and
parallel to the set T . �

After Corollary 2.2, there remains only to discuss the case where E is topolog-
ically minimal, and no more than 4 of the [sij ] are different.

First we prove some properties of these sij .

Lemma 2.3. 1)

(2.11)
∑
j 	=i

[�sij ] = 0 for all 1 ≤ i ≤ 4.

2) For each i 
= j 
= k,

(2.12) [�sij ] 
= 0,

and

(2.13) [�sij ] 
= [�sjk].

Proof. 1) Fix 1 ≤ i ≤ 4. We write R4 = R3 × R, where T ⊂ R3.
Recall that yi, 1 ≤ i ≤ 4, are the four Y-points of T ∩∂B(0, 1); Tij is the sector

of T passing through the origin and yi, yj; xij is the middle point of the great arc
passing through yi, yj ; Pij is the plane passing containing xij and orthogonal to
Tij ; and sij = ∂Bij , where Bij = B(xij , 1/10) ∩ Pij .
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Figure 11.

Denote by Yi the cone over Zi := ∪j 	=iŷixij , where ŷixij denotes the great arc
connecting yi and xij (see Figure 11 of Y1 ⊂ R3 below), and by CT the convex
hull of Yi. Set C = CT × R. Since C is a cone, C\T is also a cone. Note that
Zi ⊂ S3∩C is a sphericalY-set of dimension 1. We want to show that

∑
j 	=i[�sij ] = 0

in H1(C\T,Z).
Note that �sij is homotopic in C\T to its radial projection �s′ij on S3 (the ori-

entation of �s′ij is induced by �sij on the sphere S3). In fact, denoting by πS the

radial projection of R4\{0} to S3, for each x ∈ sij , the segment [x, πS(x)] belongs
to a radial half-line that does not meet any other radial half-lines. In particular,
since x ∈ R4\T , where T is a union of radial half-lines, [x, πX(x)] ∩ T = ∅. Hence
if we set ft(x) = (1 − t)x + tπS(x), 0 ≤ t ≤ 1, then ft is a homotopy between �sij
and �s ′

ij = πS(�sij).

Therefore on the sphere, in C ∩S3, the sij , j 
= i, are topologically three circles
that link respectively the three branches of Zi. Recall that the pair of topological
spaces (C ∩ S3, Zi) is homotopic to (R3, Y ) where Y is a 1-dimensional Y-set.
However in (R3, Y ), the union of the three oriented circles that link the three
branches of Y is the boundary of an oriented manifold with boundary contained
in R3\Y . Hence, similarly, there exists an oriented manifold with two-dimensional
boundary Σ ⊂ C∩S3\Zi such that ∂Σ = ∪j 	=i�s

′
ij (see Figure 12, where sij denotes

the oriented circle �sij , and the orientation of Σ is indicated by the exterior normal
vector �n). Therefore, after a smooth triangulation under which Γ and sij are
all smooth chains, we have ∂[Σ] = ∪j 	=i[�s

′
ij ]. Since Σ ⊂ C ∩ S3\Zi ⊂ R4\T ,∑

j 	=i[�s
′
ij ] = 0 in H1(R

4\T,Z). Then since �s ′
ij is homotopic to �sij ,

(2.14)
∑
j 	=i

[�sij ] = 0 in H1(R
4\T,Z).

Now since E is as near as we like to T , we can suppose that Σ and the ft(sij)
do not touch E. Thus we get (2.11).
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Figure 12.

2) Without loss of generality, suppose for example that i = 1, j = 2 and k = 3.
If [�s12] = [�s23], then, by (2.11),

(2.15) [�s24] = 0.

Hence we have only to prove (2.12).
Suppose for example that i = 2 and j = 4. Then (2.15) means that there exists

a smooth simplicial 2-chain Γ in R4\E such that ∂Γ = �s24. Since E is closed, there
exists a neighborhood U of Γ such that U ∩ E = ∅. In particular, s24 ⊂ U .

Set D = E ∩B(x24, 1/10). Then by the regularity of the minimal set E which
is very near T , in B(x24, 1/8), E is a piece of very flat surface that is almost a disc.
Therefore D is a surface with positive measure.

Set F = E\D, so F\B(0, 2) = E\B(0, 2). We want to show that F is a
topological competitor of E with respect to the ball B(0, 2).

Suppose that γ ⊂ R4\(B(0, 2)∪E) is an oriented circle. We have to show that
if [γ] is zero in H1(R

4\F,Z), then it is zero in H1(R4\E,Z).
Now if [γ] is zero in H1(R

4\F,Z), then there exists a smooth simplicial 2-
chain Σ ⊂ R4\F such that ∂Σ = γ. By the transversality theorem (see, for
example, Theorem 2.1 in Chapter 3 of [8]), we can require that Σ is transversal to
∂B(x24, 1/10).

If Σ∩B(x24, 1/10) = ∅, then Σ ⊂ R4\E too, and hence [γ] = 0 ∈ H1(R
4\E,Z).

If Σ ∩ B(x24, 1/10) 
= ∅, then, by the transversality of Σ and ∂B(x24, 1/10), and
by Proposition 2.36 of [12], their intersection is a closed smooth simplicial 1-chain
s ⊂ ∂B(x24, 1/10).

Now we work in B1 := B(x24, 1/10). Since D is a very flat topological disc,

(2.16) H1(B1\D) = Z,

whose generator is [�s24]. As a result, there exists n ∈ Z such that [s] = n[�s24].
Hence there exists a smooth simplicial 1-chain R ⊂ B1\D such that ∂R = s−n�s24.

Recall that Γ ⊂ R4\E is such that ∂Γ = �s24. As a result, Σ′ = Σ\B1 +nΓ+R
is a 2-chain satisfying ∂[Σ′] = [γ]. Moreover Σ′ ⊂ R4\E. Hence [γ] is also zero in
H1(R4\E,Z).
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Thus, F = E\D is a topological competitor of E.
However, D has positive measure, hence

(2.17) H2(F ) < H2(E),

which contradicts the fact that E is topologically minimal.
Thus we have proved (2.12), and hence (2.13), and so we have completed the

proof of Lemma 2.3. �

Now we return to our discussion of the case where E is very near a T-set T at
scale 1, but contains no point of type other than P and T. After a consideration
(see Section 19 of [10] for details) of the eight cases in (2.10), using Lemma 2.3,
the only possibility for [�sij ] in H1(R

4\E,Z) is:

(2.18) [�s13] = −[�s24] = α, [�s14] = −[�s23] = β, [�s34] = α− β, [�s12] = −α− β.

Thus we get the following proposition.

Proposition 2.4. Let E be a reduced topological minimal set of dimension 2 in R4,
that verifies (2.2). Let the conventions and notation be as at the beginning of this
section, and suppose also that γ1 connects a1 and a2, while γ2 connects a3 and a4.
Then if there exists r > 0 such that d0,3r(E, T ) < ε0 (where ε0 is the one defined
in the paragraph below (2.4)), but the sij do not satisfy (2.18) with respect to 1

rE,
then E is a T-set parallel to T .

2.3. An example

In this section, the notation and conventions are as in Subsection 2.2. We give an
example of a set that satisfies (2.18).

Set wij = Eij ∩ ∂B(0, 1) (see Figure 13, where wij is denoted �wij). Then the

wij are C1 curves. Denote also by �wij the oriented curve from bi to bj .
Now suppose that EY = γ1 ∪ γ2. In other words, all points in E are P points,

except for the two curves. (For the case where EY 
= γ1 ∪ γ2, we know that
EY \(γ1∪γ2) is a union of closed curves, because the only endpoints of EY ∩∂B(0, 1)
are {bi}1≤i≤4. This is thus a more complicated case.)

Lemma 2.5. γ1 ∪ γ2 ∪w12 ∪w34 is the boundary of a C1 surface S0 ⊂ E, and S0

contains only points of type P.

Proof. By the C1 regularity of minimal sets, the part of E in B(0, 1) is composed
of C1 manifolds S1, S2, . . . whose boundaries are unions of curves in the set Bd =
{wij , γ1, γ2}. Thus there exists k ∈ N such that w12 is part of the boundary of the
manifold Sk. But ∂Sk is a union of several closed curves, while w12 is not closed.
Hence there exists a curve γ ∈ Bd that touches w12 and such that γ is also part
of ∂Sk. If one of the w1i (resp. one of the w2j) is part of ∂Sk and touches w12, we
have [�s12] = [�si1] (with orientation) (resp. [�s12] = [�s2i]), which contradicts (2.13).

Hence the only possibility for γ is γ1. This means the union of w12 and γ1 is
part of the boundary of a manifold Sk, and except for w34, the boundary of Sk

contains no other wij . A similar argument gives also that the union of w34 and γ2
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Figure 13.

Figure 14.

is part of the boundary of a manifold Sl, and the boundary of Sl contains no
other wij , except perhaps for w12.

Thus, either the union of these four curves w12, w34, γ1 and γ2 is the boundary
of a surface Sk, or the union of w12 and γ1 and the union of w34 and γ2 are the
boundaries of two surfaces Sk and Sl. In any case, the union of the four curves is
the boundary of a C1 surface S0 ⊂ E, which is not necessarily connected. �

By Lemma 2.5, if we excise the surface S0 from E, then E\S is composed of a
union of C1 surfaces, whose boundaries are unions of curves belonging to Bd′ =
{w13, w14, w23, w24, γ1, γ2}. By the same argument above, there are two surfaces S1

and S2, with ∂S1 = w13∪γ2∪w24∪γ1, and the other one ∂S2 = w23∪γ2∪w14∪γ1.
Moreover S1 ∪S2 is also a connected topological manifold, for which we can define
a local orientation, even near ∂S1 and ∂S2.

Thus topologically the boundaries of the two surfaces S1 and S2 are like the
boundaries of two squares, one with the four vertices b1, b3, b4 and b2 (we write
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them in the order of adjacency), the other with four vertices b1, b4, b3 and b2.

Moreover, we have to glue the two
−−→
b1b2 in S1 and S2 together, and the same for−−→

b3b4. Note that these two gluings have different directions (see Figure 14).

Notice also that after the gluing, S1 ∪ S2 cannot be orientable.

Remark 2.6. Since S1 ∪ S2 is not orientable, [�s13], [�s14], [�s24] and [�s23] are all of
order 2 in H1(R

4\E,Z).

In fact for a connected surface S, the non-orientability means that for each point
x ∈ S we can find a path γ : [0, 1] → S such that γ(0) = γ(1) = x, and if we denote
by n(t) = x(t)∧y(t) ∈ ∧2Nγ(t)S a continuous unit normal 2-vector field on γ, where
x(t), y(t) ∈ Nγ(t)S are unit normal vector fields, and n, x and y are continuous
with respect to t, then n(0) = −n(1). Note that n(t) can also represent the oriented
plane in R4. Define, for each r > 0, sr(t) : T = R/Z → Pt = P (x(t) ∧ y(t)) and
θ �→ r[cos(2πθ)x(t) + sin(2πθ)y(t)]. Then the images of sr(0) and sr(1) are the
same circle, but with opposite orientations: sr(0)(t) = sr(1)(−t).

Let Qt = γ(t) + P (t). Fix r > 0 sufficiently small, such that for each t ∈ [0, 1],
B(γ(t), r) ∩Qt ∩ S = {γ(t)}.

Define G : T × [0, 1] → R4 by G(θ, t) = sr(t)(θ) + γ(t). This is a continuous
map, with G(T × {0}) = sr(0) and G(T × {1}) = sr(1) = −sr(0). As a result, the
oriented circle sr(0) is homotopic to −sr(0), and is hence of order 2.

Now for each s ∈ {[�s13], [�s14], [�s24], [�s23]}, we can first find a circle s′ homotopic
to s, such that there exists x and γ as before, and that there exists R > 0 such
that sR(0) = s′. We can find r > 0 as above. Then sr(0) is homotopic to s′, and
hence s. Therefore [s] = [sr(0)] is of order 2.

We will construct a set E ⊂ R4, with all the above properties. That is,
in B(0, 1), the set E is the union of S0 and S1 ∪ S2 as above, S1 ∪ S2 is a non-
orientable topological manifold, and S0 has two connected components, that meet
S1 ∪S2 at γ1 and γ2 respectively. Outside the ball B(0, 1), E is a C1 version of T ,
and it looks like T at infinity. Moreover, H1(R

4\E) and the [�sij ] satisfy (2.18).

Take two copies of squares (see Figure 14), one with vertices (written in the
clockwise order) b1, b3, b4 and b2, the other with vertices b1, b4, b3 and b2. We

glue the two sides
−−→
b3b4 in S1 and S2 together, and we do the same for

−−→
b1b2. Thus

we get a Möbius band in R3 (see Figure 15).

Next, take a very big regular tetrahedron centered at the origin (with vertices yi,
1 ≤ i ≤ 4) which contains the Möbius band constructed before. For each i, take a
smooth curve Li issuing from bi and going to infinity, such that Li tends to [0, yi)
(see Figure 15).

Then take, for each 1 ≤ i 
= j ≤ 4, a C1 surface Eij , homeomorphic to R2,
whose boundary is Li ∪ Lj ∪ [bibj]. Note that all Eij go to infinity, hence in R3,
E23 and E14, or E13 and E24 must meet each other. We work in R4 to avoid this.

Thus we get a set that looks like a T at infinity, and we cannot give any simple
reason why a set with such a topology cannot be topologically minimal.
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Figure 15.
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Ph.D. Thesis, Université de Paris-Sud 11, Orsay, 2010.

[11] Liang, X.: Almgren-minimality of unions of two almost orthogonal planes in R4.
Proc. Lond. Math. Soc. (3) 106 (2013), no. 5, 1005–1059.

[12] Liang, X.: Topological minimal sets and existence results. Calc. Var. Partial Dif-
ferential Equations 47 (2013), no. 3-4, 523–546.



236 X. Liang

[13] Liang, X.: Almgren and topological minimality for the set Y × Y . To appear in
J. Funct. Anal.

[14] Liang, X.: Regularity for minimal sets near a union of two planes. To appear in
Ann. Inst. Fourier (Grenoble).

[15] Morgan, F.: Harnack type mass bounds and bernstein theorems for area-mini-
mizing flat chains modulo ν. Comm. Partial Differential Equations 11 (1986), no. 12,
1257–1283.

[16] Morgan, F.: Size-minimizing rectifiable currents. Invent. Math. 96 (1989), no. 2,
333–348.

[17] Morgan, F: Geometric measure theory. A beginner’s guide. Second edition. Aca-
demic Press, San Diego, CA, 1995.

[18] Rolfsen, D.: Knots and links. Mathematics Lecture Series 7, Publish or Perish,
Berkeley, CA, 1976.

[19] Taylor, J.: The structure of singularities in soap-bubble-like and soap-film-like
minimal surfaces. Ann. of Math. (2) 103 (1976), no. 3, 489–539.

Received April 30, 2012.

Xiangyu Liang: Mathematics Institute, University of Warwick, Coventry, CV4 7AL,
United Kingdom.

E-mail: xiangyuliang@gmail.com

This work was partially supported by grants from the Région Ile-de-France.

mailto:xiangyuliang@gmail.com

	Introduction
	Existence of a point of type T for a 2-dimensional Al-minimal set in R3
	Introduction
	A topological criterion for potential counterexamples
	A set that admits two knotted Y-curves
	Another related problem

	Existence of a point of type T for a 2-dimensional topological minimal set in R4
	Introduction
	A topological criterion for potential counterexamples
	An example


