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Finite C∞-actions are described

by a single vector field

Francisco Javier Turiel and Antonio Viruel

Abstract. In this work it is shown that given a connected C∞-manifold M
of dimension ≥ 2 and a finite subgroup G ⊂ Diff(M), there exists a com-
plete vector field X on M such that its automorphism group equals G×R,
where the factor R comes from the flow of X.

1. Introduction

This work fits within the framework of the so called inverse Galois problem: work-
ing in a category C and given a group G, decide whether or not there exists an
object X in C such that AutC(X) ∼= G.

This metaproblem has been addressed by researchers in a wide range of situ-
ations from algebra [2] and combinatorics [4], to topology [3]. In the setting of
differential geometry, Kojima shows that any finite group occurs as π0(Diff(M))
for some closed 3-manifoldM (see Corollary on page 297 of [8]), and more recently
Belolipetsky and Lubotzky [1] have proved that for everym ≥ 2, every finite group
is realized as the full isometry group of some compact hyperbolic m-manifold, so
extending previous results of Kojima [8] and Greenberg [5].

Here we consider automorphisms of vector fields. Although it is obvious that
the automorphism group of a vector field is never finite, we show that every finite
group of diffeomorphisms can be determined by a vector field. More precisely:

Theorem. Consider a connected C∞ manifold M of dimension m ≥ 2 and a finite
subgroup G of diffeomorphisms of M . Then there exists a complete G-invariant
vector field X on M such that the map

G× R −→ Aut(X)
(g, t) �−→ g ◦ Φt

is a group isomorphism, where Φ and Aut(X) denote the flow and the group of
automorphisms of X, respectively.
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The vector field X above is not unique, even from the geometrical point of
view (see Remark 3.8). The study of the set X(M,G) of vector fields satisfying the
hypothesis of the theorem seems quite interesting. Of course, X(M,G) is a subset
of the Lie subalgebra of G-invariant vector fields on M , but we do not know if all
its elements can be constructed by our method. Therefore, a first step in the study
of X(M,G) would be to construct its elements in a way different from ours.

Recall that, for anym ≥ 2, every finite groupG is a quotient of the fundamental
group of some compact, connected C∞-manifold M ′ of dimension m. Therefore G
can be regarded as the group of desk transformations of a connected covering
π : M → M ′ and G ≤ Diff(M). Consequently the result above solves the inverse
Galois problem for vector fields. Thus:

Corollary 1.1. Let G be a finite group and m ≥ 2. Then there exist a con-
nected C∞-manifold M of dimension m and a vector field X on M such that
π0(Aut(X)) ∼= G.

Our results fit into the C∞ setting, but it seems interesting to study the
same problem for other kind of manifolds, in particular for topological manifolds.
Namely, given a finite group G̃ of homeomorphisms of a connected topological man-
ifold M̃ prove, or disprove, the existence of a continuous action Φ̃ : R × M̃ → M̃
such that:

(1) Φ̃t ◦ g = g ◦ Φ̃t for any g ∈ G̃ and t ∈ R;

(2) if f is a homeomorphism of M̃ and Φ̃s ◦ f = f ◦ Φ̃s for every s ∈ R, then
f = g ◦ Φ̃t for some g ∈ G̃ and t ∈ R that are unique.

This paper, reasonably self-contained, is organized as follows. In Section 2 some
general definitions and classical results are given. Section 3 is devoted to the main
result of this work (Theorem 3.1) and its proof. The extension of Theorem 3.1
to manifolds with nonempty boundary is addressed in Section 4. In Section 5 we
illustrate Theorem 3.1 with examples. The manuscript ends with an Appendix
where a technical result needed in Section 4 is proved.

For general questions on differential geometry the reader is referred to [7], and
for those on differential topology to [6].

2. Preliminary notions

Henceforth all structures and objects considered are real C∞ and manifolds without
boundary, unless otherwise stated. Given a vector field Z on an m-manifold M ,
the group Aut(Z) of automorphisms of Z is the subgroup of diffeomorphisms ofM
that preserve Z, that is

Aut(Z) = {f ∈ Diff(M) : f∗(Z(p)) = Z(f(p)) for all p ∈M}.
On the other hand, recall that a regular trajectory is the trace of a nonconstant

maximal integral curve. Thus any regular trajectory is oriented by time in the
obvious way and, if it is not periodic, its points are completely ordered. As usual,
a singular trajectory is a singular point of Z.



Finite C∞
-actions are described by a single vector field 319

If Z(p) = 0 and Z ′ is another vector field defined near p then [Z ′, Z](p) only
depends on Z ′(p); thus the formula Z ′(p) → [Z ′, Z](p) defines an endomorphism
of TpM called the linear part of Z at p. For the purpose of this paper, we will say
that p ∈ M is a source (respectively a sink) of Z if Z(p) = 0 and its linear part
at p is the product of a positive (negative) real number by the identity on TpM .

A point q ∈M is called a rivet if

(a) q is an isolated singularity of Z,

(b) around q one has Z = ψZ̃, where ψ is a function and Z̃ a vector field with
Z̃(q) 	= 0.

Note that by (b), a rivet is the ω-limit of exactly one regular trajectory,
the α-limit of another one and an isolated singularity of index zero.

Consider a singularity p of Z; let λ1, . . . , λm be the eigenvalues of the linear
part of Z at p and let μ1, . . . , μk be the same eigenvalues but taking each of them
into account only once regardless of its multiplicity. Assume that μ1, . . . , μk are
rationally independent; then λj −

∑m
�=1 i�λ� 	= 0 for any j = 1, . . . ,m and for any

nonnegative integers i1, . . . , im such that
∑m

�=1 i� ≥ 2; and a linearization theorem
by Sternberg (see [10] and [9]) shows the existence of coordinates (x1, . . . , xm) such
that p ≡ 0 and Z =

∑m
j=1 λjxj∂/∂xj . This is the case for sources (λ1 = · · · =

λm > 0) and sinks (λ1 = · · · = λm < 0).
By definition, the outset (or unstable manifold ) Rp of a source p will be the

set of all points q ∈M such that the α-limit of its Z-trajectory equals p. One has:

Proposition 2.1. Let p be a source of a complete vector field Z. Then Rp is
open and there exists a diffeomorphism from Rp to Rm that maps p to the origin
and Z to a

∑m
j=1 xj∂/∂xj for some a ∈ R+. In other words, there exist coordinates

(x1, . . . , xm), whose domain Rp is identified with Rm, such that p ≡ 0 and Z =
a
∑m

j=1 xj∂/∂xj, a ∈ R+.

Indeed, let Φt be the flow of Z. Consider coordinates (y1, . . . , ym) such that
p ≡ 0 and Z = a

∑m
j=1 yj∂/∂yj. Up to dilation and with the obvious identifications,

one may suppose that Sm−1 is included in the domain of these coordinates. Then
Rp = {Φt(y) | t ∈ R, y ∈ Sm−1} ∪ {0} and it suffices to send the origin to the
origin and each Φt(y) to e

aty to construct the required diffeomorphism.

Remark 2.2. Observe that Rp ∩Rq = ∅ when p and q are different sources of Z.

Given a regular trajectory τ of Z with α-limit a source p, by the linear α-limit
of τ one means the (open and starting at the origin) half-line in the vector space
TpM that is the limit, when q ∈ τ tends to p, of the half-line in TqM spanned
by Z(q). From the local model around p, the existence of this limit follows. More-
over, if Z is multiplied by a positive function the linear α-limit does not change.

By definition, a chain of Z is a finite and ordered sequence of two or more
different regular trajectories, each of them called a link, such that:

(a) the α-limit of the first link is a source;

(b) the ω-limit of the last link is not a rivet;
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(c) between two consecutive links the ω-limit of the first equals the α-limit of
the second. Moreover, this set consists in a rivet.

The order of a chain is the number of its links and its α-limit and linear α-limit
those of its first link.

For the sake of simplicity, here countable includes the finite case as well. One
says that a subset Q ofM does not exceed dimension 	, or it can be enclosed in di-
mension 	, if there exists a countable collection {Nλ}λ∈L of submanifolds ofM , all
of them of dimension ≤ 	, such that Q ⊂

⋃
λ∈LNλ. Note that the countable union

of sets whose dimensions do not exceed dimension 	 does not exceed dimension 	
too. On the other hand, if 	 < m then Q has measure zero so empty interior.

Given anm-dimensional real vector space V , a family L = {L1, . . . , Ls}, s ≥ m,
of half-lines of V is said to be in general position if any subfamily of L with m
elements spans V .

Now consider a finite group H ⊂ GL(V ) of order k. A family L of half-lines
of V is called a control family with respect to H if:

(a) h(L) ∈ L for any h ∈ H and L ∈ L.
(b) There exists a family L′ of L with km + 1 elements, which is in general

position, such that H · L′ = {h(L) | h ∈ H,L ∈ L′} equals L.

Lemma 2.3. Let L be a control family with respect to H and let ϕ be an element
of GL(V ). If ϕ sends each orbit of the action of H on L into itself, then ϕ = ah
for some a ∈ R+ and h ∈ H.

Indeed, as for every L ∈ L′ there is h′ ∈ H such that ϕ(L) = h′(L), there exist
a subfamily L′′ = {L1, . . . , Lm+1} of L′ and an h ∈ H such that ϕ(Lj) = h(Lj),
j = 1, . . . ,m + 1. Therefore h−1 ◦ ϕ sends Lj into Lj , j = 1, . . . ,m + 1, and
because L′′ is in general position h−1 ◦ϕ has to be a multiple of the identity. Since
every Lj is a half-line, this multiple is positive.

3. The main result

This section is devoted to prove the following result on finite groups of diffeomor-
phisms of a connected manifold.

Theorem 3.1. Consider a connected manifold M of dimension m ≥ 2 and a finite
group G ⊂ Diff(M). Then there exists a complete vector field X on M , which is
G-invariant, such that the map

(g, t) ∈ G× R → g ◦ Φt ∈ Aut(X)

is a group isomorphism, where Φ denotes the flow of X.

Consider a Morse function μ : M → R that is G-invariant, proper and non-
negative, whose existence is assured by a result of Wasserman (see the remark of
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page 150 and the proof of Corollary 4.10 in [11]). Denote by C the set of its crit-
ical points, which is closed, discrete (that is without accumulation points in M),
so countable. As M is paracompact, there exists a locally finite family {Ap}p∈C

of disjoint open set such that p ∈ Ap for every p ∈ C.

Lemma 3.2. There exists a G-invariant Riemannian metric g̃ on M such that
if J(p) : TpM → TpM , p ∈ C, is defined by H(μ)(p)(v, w) = g̃(p)(J(p)v, w), where
H(μ)(p) is the Hessian of μ at p, then:

(1) if p is a maximum or a minimum then J(p) is a multiple of the identity;

(2) if p is a saddle, that is H(μ)(p) is not definite, then the eigenvalues of J(p),
omitting repetitions due to multiplicity, are rationally independent.

Proof. We start by constructing a ‘good’ scalar product on each TpM , p ∈ C. If p
is a minimum [respectively maximum] one takes H(μ)(p) (respectively −H(μ)(p)).
When p is a saddle consider a scalar product 〈 , 〉 on TpM invariant under the
linear action of the isotropy group Gp of G at p. In this case as J(p) is Gp-
invariant (of course here J(p) is defined with respect to 〈 , 〉), TpM = ⊕k

j=1Ej and
J(p)|Ej

= ajId|Ej
where each Ej is Gp-invariant, aj 	= 0, 〈Ej , E�〉 = 0 and aj 	= a�

if j 	= 	.
Moreover, one may suppose that a1, . . . , ak are rationally independent by tak-

ing, if necessary, a new scalar product 〈 , 〉′ such that 〈Ej , E�〉′ = 0 when j 	= 	 and
〈 , 〉′|Ej

= bj〈 , 〉|Ej
for suitable scalars b1, . . . , bk.

In turn, this family of scalar products on {TpM}p∈C can be made G-invariant.
Indeed, this is obvious for maxima and minima since μ is G-invariant. On the other
hand, if C′ ⊂ C is a G-orbit consisting of saddles, take a point p in C′, endow
TpM with a ‘good’ scalar product, and extend to C′ by means of the action of G.

It is easily seen, through the family {Ap}p∈C , that all these scalar products on
{TpM}p∈C extend to a Riemannian metric g̃ on M . Finally, if g̃ is not G-invariant
consider

∑
g∈G g

∗(g̃). �

Let Y be the gradient vector field of μ with respect to some Riemannian metric g̃
as in Lemma 3.2. We will assume that Y is complete by multiplying g̃, if necessary,
by a suitable G-invariant positive function (more exactly by exp((Y · ρ)2) where ρ
is a G-invariant proper function). Since μ is nonnegative and proper, the α-limit
of any regular trajectory of Y is a local minimum or a saddle of μ, whereas its
ω-limit is empty, a local maximum or a saddle of μ.

Now Y −1(0) = C and, by the Sternberg’s theorem, around each p ∈ C (note
that the linear part of Y at p equals J(p) : TpM → TpM defined in Lemma 3.2),
there exist a natural 1 ≤ k ≤ m − 1 and coordinates (x1, . . . , xm) such that
p ≡ 0 and Y =

∑m
j=1 λjxj∂/∂xj where λ1, . . . , λk > 0 and λk+1, . . . , λm < 0,

or Y = a
∑m

j=1 xj∂/∂xj where a > 0 if p is a source (that is a minimum of μ) and
a < 0 if p is a sink (a maximum of μ.)

Let I be the set of local minima of μ, that is the set of sources of Y , and let Si,
i ∈ I, be the outset of i relative to Y . Obviously G acts on the set I.

Lemma 3.3. In M , the family {Si}i∈I is locally finite and the set
⋃

i∈I Si dense.
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Proof. First notice that μ(Si) is bounded from below by μ(i). However, I is a
discrete set and μ a nonnegative proper Morse function, so in every compact
set μ−1((−∞, a]) there are only a finite number of elements of I. Therefore
μ−1((−∞, a]) and of course μ−1(−∞, a) only intersect a finite number of Si. Fi-
nally, observe that M =

⋃
a∈R

μ−1(−∞, a).

If the α-limit of the Y -trajectory of q is a saddle s, with the local model given
above, there exists t ∈ Q such that Φt(q) is close to s and xk+1(Φt(q)) = · · · =
xm(Φt(q)) = 0. Since the submanifold given by the equations xk+1 = · · · = xm = 0
has dimension ≤ m− 1 and Q and the set of saddles are countable, it follows that
the set of points coming from a saddle may be enclosed in dimension m − 1 and
its complement, that is

⋃
i∈I Si, must be dense. �

The vector field Y has no rivets since all its singularities are isolated with
indices ±1. Therefore it has no chain; moreover, the regular trajectories are not
periodic.

For each i ∈ I, let Li be a control family on TiM with respect to the action
of the isotropy group Gi of G at i, such that if g(i) = i′ then g maps Li to Li′ .
These families can be constructed as follows: for every orbit of the action of G on I
choose a point i and kim+1 different half-lines in general position, where ki is the
order of Gi. Now Gi-saturate this first family to obtain Li. For other points i

′ in
the same orbit, choose g ∈ G such that g(i) = i′ and move Li to i

′ by means of g.
Let L be the set of all elements of Li, i ∈ I. By Proposition 2.1 each element

of L is the linear α-limit of just one trajectory of Y . Let T be the set of such
trajectories. Clearly G acts on T , since Y and L are G-invariant, and the set
of orbits of this action is countable. Therefore this last one can be regarded as
a family {Pn}n∈N′ where N′ ⊂ N − {0, 1}, each Pn is a G-orbit and Pn 	= Pn′

if n 	= n′.
In each T ∈ Pn one may choose n − 1 different points in such a way that if

T ′ = g(T ) then g sends the points considered in T to those of T ′. Denote by Wn

the set of all the points chosen in the trajectories of Pn.
Since {Si}i∈I is locally finite (Lemma 3.3), the set W =

⋃
n∈N′ Wn is discrete,

countable, closed and G-invariant. Therefore there exists a G-invariant function
ψ : M −→ R, which is non negative and bounded, such that ψ−1(0) = W .
Set X = ψY . One has:

(a) G is a subgroup of Aut(X).

(b) X−1(0) = Y −1(0) ∪W , the rivets of X are just the points of W and X has
no periodic regular trajectories.

(c) X and Y have the same sources, sinks and saddles. Moreover if Ri , i ∈ I,
is the X-outset of i , then Ri ⊂ Si and

⋃
i∈I(Si − Ri) ⊂

⋃
T∈Pn,n∈N′ T ,

so {Ri}i∈I is locally finite and
⋃

i∈I Ri is dense.

(d) Let CT , T ∈ Pn, n ∈ N′, be the family of X-trajectories of T −W endowed
with the order induced by that of T as Y -trajectory. Then CT is a chain
of X of order n whose rivets are the points of T ∩W and whose α-limit and
linear α-limit are those of T . Besides CT , T ∈ Pn, are the only chains of X
having order n.
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As each Pn is a G-orbit in T , the group G acts on the set of chains of X and
every {CT | T ∈ Pn} is an orbit. Thus G acts transitively on the set of α-limit
and on that of linear α-limits of the chains CT , T ∈ Pn. Recall that:

Lemma 3.4. Any map ϕ : Rk → Rs such that ϕ(ay) = aϕ(y), for all (a, y) ∈
R+ × Rk, is linear.

Remark 3.5. As is well known, the foregoing lemma does not hold for continuous
maps (in this paper maps are C∞ unless otherwise stated).

Proposition 3.6. Given f ∈ Aut(X) and i ∈ I, there exists (g, t) ∈ G × R such
that f = g ◦ Φt on Ri.

Proof. Consider n ∈ N′ such that i is the α-limit of some chain of order n.
Then f(i) is the α-limit of some chain of order n and there exists g ∈ G such
that g(i) = f(i). Therefore (g−1 ◦ f)(i) = i, which reduces the problem, up to
change of notation, to consideration of the case where f(i) = i.

Note that every L ∈ Li is the linear α-limit of some T ∈ T , so the linear α-limit
of CT . Moreover, Li is the family of linear α-limit of all chains starting at i. As f
sends chains starting at i into chains starting at i because f is an automorphism
of X , it follows that f∗(i) sends Li into itself.

On the other hand, since for any T ∈ Pn one has f(CT ) = CT ′ where T ′ belongs
to Pn as well, there must exist h ∈ G that sends the linear α-limit of CT to the
linear α-limit of CT ′ . However, both chains start at i, so h ∈ Gi, which implies
that f∗(i) preserves each orbit of the action of Gi on Li. From Lemma 2.3 it follows
that f∗(i) = ch∗(i) with c > 0 and h ∈ Gi. Therefore considering h−1 ◦ f we may
suppose, up to a further change of notation, that f∗(i) = c Id, c > 0.

Now Proposition 2.1 allows us to regard f on Ri as a map ϕ : Rm → Rm that
preserves the vector field X = a

∑m
j=1 xj∂/∂xj , a ∈ R+. But this last property

implies that ϕ(bx) = bϕ(x) for any b ∈ R+ and x ∈ Rm; therefore ϕ is linear
(Lemma 3.4). Since f∗(i) = c Id one has ϕ = c Id, c > 0; that is to say ϕ and f|Ri

equal Φt for some t ∈ R. �

Given f ∈ Aut(X), consider a family {(gi, ti)}i∈ of elements of G×R such that
f = gi ◦ Φti on each Ri. We will show that f = g ◦ Φt for some g ∈ G and t ∈ R.

Lemma 3.7. If all gi are equal, then all ti are equal too.

Proof. The proof reduces to the case where all gi = eG (the identity of G) by
composing f on the left with a suitable element of G. Obviously f = Φti on Ri.

Assume that the set of these ti has more than one element. Fix one of them,
say t, let D1 be the union of all Ri such that ti = t, and let D2 be the union of
all Ri such that ti 	= t. Since {Ri}i∈I is locally finite and

⋃
i∈I Ri is dense, the

family {Ri}i∈I is locally finite too and
⋃

i∈I Ri =M . Thus D1 and D2 are closed
and M = D1∪D2. On the other hand if p ∈ D1∩D2 then Φt(p) = Φti(p) for some
t 	= ti, so Φt−ti(p) = p and X(p) = 0 since X has no periodic regular trajectories,
which implies that D1∩D2 is countable. Consequently M −D1∩D2 is connected.
But M − D1 ∩ D2 = (D1 − D1 ∩ D2) ∪ (D2 −D1 ∩ D2) where the terms of this
union are nonempty, disjoint and closed in M −D1 ∩D2, contradiction. �
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Choose a i0 ∈ I. Composing f on the left with a suitable element of G we
may assume gi0 = eG. On the other hand, f sends each orbit of the action of G
on I into itself because the points of every orbit are just the starting points of the
chains of order n for some n ∈ N′. Thus f equals a permutation on each orbit of G
in I and there exists 	 > 0 such that f � is the identity on these orbits; for instance
	 = r! where r is the order of G.

Now suppose that f � = hi ◦ Φsi on Ri, i ∈ I. Then hi ∈ Gi. Since the order
of Gi divides that of G, one has f r� = Φrsi on Ri. In short, there exists a natural
number k > 0 such that fk = Φui on Ri, and by Lemma 3.7 one has fk = Φu on
every Ri for some u ∈ R.

In turn, composing f with Φ−u/k we may assume, without lost of generality,

that fk = Id on M .
On Ri0 one has fk = Φkti0

, so ti0 = 0 and f = Id. But f spans a finite
group of diffeomorphisms of M , which ensures us that f is an isometry of some
Riemannian metric ĝ on M . Recall that an isometry on connected manifolds is
determined by its 1-jet at any point. Therefore from f = Id on Ri0 there follows
f = Id on M .

In other words the map (g, t) ∈ G× R → g ◦ Φt ∈ Aut(X) is an epimorphism.
Now the proof of Theorem 3.1 will be finished once it is shown that it is an injection.

Assume that g ◦ Φt = Id on M . From gr = eG there follows Φrt = Id, whence
t = 0 because X has no periodic regular trajectories. Thus g = eG.

Remark 3.8. From the proof of Theorem 3.1 above, it is clear that the vector
field X above is not unique. It follows that the theorem holds for X ′ = ρX where
ρ : M → R is anyG-invariant positive bounded function (use (ρψ)Y instead of ψY ).
Although X and X ′ may not be not equivalent by a G-invariant diffeomorphism,
they are equivalent from the geometric viewpoint, that is the structure of their
trajectories is the same.

Nevertheless there exist infinitely many vector fields as in Theorem 3.1 which
are not geometrically equivalent. Indeed, in our construction of the vector field X
from the gradient vector field Y we make use of a set N′ ⊂ N − {0, 1}. Note
that N′ is the set of the orders of the chains of X . Therefore, different sets N′

(the only essential property of N′ is its cardinality) give rise to different families
of geometrically inequivalent vector fields, since they have different chains. When
the set of sources of Y is finite the foregoing family is countable; otherwise it has
the cardinality of R.

Another way for constructing geometrically inequivalent vector fields is to con-
sider Morse functions with different numbers of minima.

4. Actions on manifolds with boundary

Let P be an m-manifold with nonempty boundary ∂P . Set M = P − ∂P .
First recall that there always exist a manifold P̃ without boundary and a func-
tion ϕ̃ : P̃ −→ R such that zero is a regular value of ϕ̃ and P is diffeomorphic
to ϕ̃−1((−∞, 0]). We identify P and ϕ̃−1((−∞, 0]).
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Now assume that G is a finite subgroup of Diff(P ), P is connected and m ≥ 2.
Then G sends ∂P to ∂P and M to M ; thus by restriction G becomes a finite
subgroup of Diff(M).

Let X ′ be a vector field as in the proof of Theorem 3.1 with respect to M
and let G ⊂ Diff(M). By Proposition 5.5 in the Appendix applied to M and X ′,
there exists a bounded function ϕ : P̃ → R, which is positive on M and vanishes
elsewhere, such that the vector field ϕX ′ onM prolongs by zero to a (differentiable)
vector field on P̃ .

Lemma 4.1. For every g ∈ G the vector field Xg equal to (ϕ ◦ g)X ′ on M and
vanishing elsewhere is differentiable.

Proof. ObviouslyXg is smooth on P̃−∂P . Now consider any p ∈ ∂P . As g : P → P

is a diffeomorphism, there exist an open neighborhood A of p on P̃ and a map
ĝ : A → P̃ such that ĝ = g in A ∩ P . Shrinking A, it can be assumed that
B = ĝ(A) is open, ĝ : A→ B is a diffeomorphism, and A− ∂P has two connected
components A1 and A2 with A1 ⊂ M and A2 ⊂ P̃ − P ; note that ĝ(A1) ⊂ M ,
ĝ(A2) ⊂ P̃ − P and ĝ(A ∩ ∂P ) ⊂ ∂P .

Thus (Xg)|A = ĝ−1∗ (Xϕ)|B since X ′ is G-invariant. �

On P , set X =
∑

g∈GXg. Then X|∂P = 0 and X|M = ρX ′, where ρ =∑
g∈G(ϕ|M ) ◦ g. Clearly ρ : M → R is positive, bounded, and G-invariant; so, by

Remark 3.8, Theorem 3.1 also holds for X|M . Moreover X is complete on P .
If f : P → P belongs to Aut(X) then f|M belongs to Aut(X|M ) and f = g ◦Φt

on M and by continuity on P . In other words, Theorem 3.1 also holds for any
connected manifold P , of dimension ≥ 2, with nonempty boundary.

5. Examples

In this section we illustrate Theorem 3.1 with two examples. The first example is
worked out for the symmetric group, but the reader can easily modify the argu-
ments so they apply to any permutation group.

Example 5.1. On Rm, m ≥ 2, consider the vector field Y =
∑m

j=1 xj∂/∂xj and
the function

h(x) =
( m∑

j=1

(xj − 1)2
)( m∑

j=1

(xj − 2)2
) m∏

j=1

(
(xj − 1)2 +

m∑
k=1,k �=j

x2k

)
.

Denote by ej the point of Rm all of whose coordinates are 0 except for the jth
coordinate, that equals 1. As the function ψ = h(h+ 1)−1 is bounded, the vector
field X = ψY is complete.

Let G be the symmetric group of {1, . . . ,m} regarded as the subgroup of the
linear group of Rm consisting of automorphisms L such that, for some permuta-
tion σ, L(x) = (xσ(1), . . . , xσ(m)). Clearly each element of G is an automorphism
of X . Moreover Aut(X) equals G× R where the factor R comes from the flow Φt

of X .
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Indeed, X−1(0) = {0} ∪ h−1(0) where the origin is a source and the elements
of h−1(0) rivets. Let f be an automorphism of X ; then f(0) = 0 and f(h−1(0)) =
h−1(0). Observe that X only has a chain of order three, whose rivets are (1, . . . , 1)
and (2, . . . , 2). So f(1, . . . , 1) = (1, . . . , 1) and f(2, . . . , 2) = (2, . . . , 2). Thus
f(ej) = eσ(j), j = 1, . . . ,m, for some permutation of {1, . . . ,m}. Now composing
on the left with a suitable element ofG allows us to assume f(ej) = ej, j = 1, . . . ,m

This implies that each regular trajectory linking the origin to e1, . . . , em, and
(1, . . . , 1) respectively is sent into itself. So e1, . . . , em, and (1, . . . , 1) regarded as
vectors are eigenvectors of the differential f∗(0), with positive eigenvalues since X
orients any regular trajectory. As e1, . . . , em, and (1, . . . , 1) are in general position,
it follows that f∗(0) = c Id, with c > 0.

Now following the lines of the last paragraph of the proof of Proposition 3.6,
there holds that f = Φt, for some t ∈ R, on the outset R0 of the origin. How-
ever, R0 = Rm.

This kind of vector fields can be extended to the projective space RPm, regarded
as Rm plus the hyperplane at infinity, as follows. First consider a function ϕ : R →
R such that ϕ◦h ≥ 0, ϕ◦h = 1 on Rm−Br(0) for r big enough and (ϕ◦h)−1(0) =
h−1(0). Set X1 = (ϕ ◦ h)Y . Reasoning as above shows that Aut(X1) is G× R.

Since X1 =
∑m

j=1 xj∂/∂xj outside Br(0), this vector field can be extended to
a vector field XP on RPm (any linear vector field on Rm extends to RPm). Note
that XP vanishes on RPm − Rm.

On the other hand G may be seen as a subgroup of the group of projective
transformations. Since the points of RPm−Rm are non-isolated singularities, any
automorphism of XP has to transform RPm −Rm in RPm−Rm and Rm in itself.
Thus Aut(XP ) equals G× R.

Set Sm = {y ∈ Rm+1 | ‖ y ‖= 1}. The vector field X1 gives rise to a vector
field on Sm as well. Indeed, identify Sm − {(0, . . . , 0, 1)} to Rm by means of the
stereographic projection and pullX1 back. Since the map F : Rm−{0} → Rm−{0}
defined by F (x) =‖ x ‖−2 x transforms X1 outside Br(0) in −

∑m
j=1 xj∂/∂xj on

B1/r(0)− {0}, our vector field prolongs to a vector field XS on Sm.
Moreover, in an obvious way, G becomes a group of diffeomorphisms of Sm

(if g ∈ G is associated to the permutation σ, consider the diffeomorphism of Sm

given by y → (yσ(1), . . . , yσ(m), ym+1)). Note that (0, . . . , 0, 1) is the only sink of
XS , so it is a fixed point of any automorphism of XS . Thus Aut(XS) equals G×R.

Example 5.2. On S2 ⊂ R3 consider the function h(x) = x1x2x3. Let X be the
gradient vector field of h with respect to the canonical Riemannian metric on the
sphere S2, that is, the metric induced by the scalar product of R3. Then

X = (1− 3x21)x2x3
∂

∂x1
+ (1− 3x22)x1x3

∂

∂x2
+ (1− 3x23)x1x2

∂

∂x3

(recall that X is the orthogonal projection on S2 of the gradient of h on R3.)
Let G be the order 24 subgroup of O(3) consisting of isometries L(x) =

(a1xσ(1), a2xσ(2), a3xσ(3)), where σ is a permutation of {1, 2, 3}, |a1| = |a2| =
|a3| = 1 and a1a2a3 = 1. Obviously G acts on S2 and preserves h so X too. We
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will show that Aut(X) equals the product G× R, where the factor R comes from
the flow Φt of X .

First note that the zeros of X , that is the singularities of h : S2 → R, are the
points:

(a) (±1/
√
3,±1/

√
3,±1/

√
3),

(b) (±1, 0, 0), (0,±1, 0) and (0, 0,±1).

The points of (b) are just an orbit of the action of G, and those of (a) constitute
two orbits depending on the sign of the product of their coordinates.

Considering (x1, x2) as coordinates on S
2 near (0, 0, 1) shows that this point is a

saddle of h; the same happens with any point of type (b). Thus topologically each
singularity of X of type (b) is equivalent to y1∂/∂y1− y2∂/∂y2 at the origin of R2.
Therefore, there are two regular trajectories of X with ω-limit this singularity.

The Hessian of h : S2 → R at (−1/
√
3,−1/

√
3,−1/

√
3) equals 2/

√
3 times the

canonical metric of S2 at this point. Indeed, it suffices to compute this Hessian by
means of vector fields −x2∂/∂x1 + x1∂/∂x2 and −x3∂/∂x1 + x1∂/∂x3. The same
happens at every point of type (a) whose product of coordinates is negative. Anal-
ogously, for remaining points of (a), the factor is −2/

√
3.

In short h : S2 → R is a Morse function with four minima, four maxima and six
saddles. Moreover at each minimum of this function the linear part of X equals
(2/

√
3)Id, therefore this point is a source with our definition while every maximum

is a sink.
Let I be the set of minima of h : S2 → R. Since I consists of four elements

and is an orbit of the action of G, the isotropy group Gi of G at i, i ∈ I, has
six elements and acts on TiS

2 as a group of isometries. It is easily checked that
every Gi is isomorphic to the group of permutations of three elements (for instance
consider the point (−1/

√
3,−1/

√
3,−1/

√
3)), which implies that Gi, as isometries

of TiS
2, equals the group of motions of an equilateral triangle.

Since X is the gradient of the Morse function h, which vanishes at each saddle,
every regular trajectory with ω-limit a saddle has a source as α-limit. On the
other hand I is an orbit of G and there are 2× 6 = 12 regular trajectories with ω-
limit a saddle; therefore each i ∈ I is the α-limit of three such trajectories. Hence
the linear α-limits of these trajectories constitute a set Li of three open half-lines
in TiS

2 starting at the origin, which is a geometric invariant of X . Thus the set Li

is invariant under the action of Gi.
On the other hand, when Gi is regarded as the motion group of an equilateral

triangle, necessarily Li becomes the set of half-bisectors (from the center) of this
triangle and Gi acting on Li its permutation group.

Consider f ∈ Aut(X) and i ∈ I. Then there exists (g, t) ∈ G × R such that
f = g ◦ Φt on the outset Ri of i (that is, the analogue of Proposition 3.6 holds).
Indeed, f(i) has to be a source as well and by composing on the left with a suitable
element ofG we may suppose f(i) = i. In this case, f∗(i) : TiS2 → TiS

2 gives rise to
a permutation of Li and composing on the left with a suitable element of Gi allows
us to assume that this permutation is the identity. But the elements of Li are in
general position so f∗(i) = c Id with c > 0. Now reasoning as in the last paragraph
of the proof of Proposition 3.6, it follows that f = Φt on Ri for some t ∈ R.
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Henceforth it suffices to copy the remainder of the proof of Theorem 3.1, from
Lemma 3.7 up to Remark 3.8, to conclude that Aut(X) = G× R.

To finish this section, notice that in the general case (any finite group and
any action) rivets and chains are needed for controlling the differential of an auto-
morphism at a source. However in some particular cases, for instance the second
example, this differential may be controlled by other means.

Appendix

In this appendix we prove Proposition 5.5, which was needed in Section 4. First
consider a family of compact sets {Kr}r∈N in an open set A ⊂ Rn, such that

Kr ⊂
◦
Kr+1, r ∈ N, and

⋃
r∈N

Kr = A.

Lemma 5.3. Given a family of positive continuous functions {fr : A → R}r∈N

there exists a function f : A→ R vanishing on Rn−A and positive on A such that,
whenever r ∈ N, one has f ≤ fj, 0 ≤ j ≤ r, on A−Kr.

Proof. One may assume f0 ≥ f1 ≥ · · · ≥ fr ≥ · · · by taking min{f0, . . . , fr}
instead of fr if necessary. Consider functions ϕr : Rn → [0, 1] ⊂ R, r ∈ N, such
that each

ϕ−1
r (0) = Kr−1 ∪ (Rn −

◦
Kr+1)

(as usual, Kj = ∅ if j ≤ −1).
Let D be a partial derivative operator. Multiplying each fr by some small

enough εr > 0 allows to suppose, without loss of generality, that ϕr ≤ fr/2 on A
and | Dϕr |≤ 2−r on Rn for any D of order ≤ r.

Set
f =

∑
r∈N

ϕr.

By the second condition on functions ϕr, whenever D̃ is a partial derivative op-
erator the series

∑
r∈N

D̃ϕr converges uniformly on Rn, which implies that f is
differentiable. On the other hand it is easily checked that f(Rn − A) = 0, f > 0
on A and f ≤ fr ≤ · · · ≤ f0 on A−Kr. �

One says that a function defined around a point p of a manifold is flat at p
if its ∞-jet at this point vanishes. Note that given a function ψ on a manifold
and a function τ : R → [0, 1] ⊂ R flat at the origin and positive on R − {0}
(for instance τ(t) = e−1/t2 if t 	= 0 and τ(0) = 0), then τ ◦ ψ is flat at every point
of (τ ◦ ψ)−1(0) = ψ−1(0) and Im(τ ◦ ψ) ⊂ [0, 1].

Lemma 5.4. Consider an open set A of a manifold M and a function f : A→ R.
Then there exists a function ϕ : M → R vanishing on M − A and positive on A,
such that the function f̂ : M → R given by f̂ = ϕf on A and f̂ = 0 on M − A is
differentiable.
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Proof. The manifoldM can be seen as a closed imbedded submanifold of some Rn.
Let π : E → M be a tubular neighborhood of M . If the result is true for π−1(A)
and f ◦ π : π−1(A) → R, by restriction it is true for A and f . In other words, it
suffices to consider the case of an open set A of Rn.

We will say that a function ψ : A→ R is neatly bounded if, for each point p of
the topological boundary of A and any partial derivative operator D, there exists
an open neighborhood B of p such that | Dψ | is bounded on A∩B. First assume
that f is neatly bounded. Let ϕ : Rn → R be a function that is positive on A and
flat at every point of Rn −A; then ϕ satisfies Lemma 5.4.

Indeed, only the points p ∈ (Ā− A) need to be examined. Consider a natural
number 1 ≤ j ≤ n; since j∞p ϕ = 0 near p one has ϕ(x) =

∑n
i=1(xi − pi)ϕ̃i(x),

and from the definition of partial derivative follows that (∂f̂/∂xj)(p) = 0. Thus

∂f̂/∂xj = (∂ϕ/∂xj)f + ϕ∂f/∂xj on A and ∂f̂/∂xj = 0 on Rn − A, which shows
that f is C1.

Since obviously the function ∂f/∂xj is neatly bounded and ∂ϕ/∂xj is flat on
Rn − A, the same argument as before applied to (∂ϕ/∂xj)f and ϕ∂f/∂xj shows
that f is C2 and, by induction, shows the differentiability of f .

Let us consider the general case. On A the continuous functions |Df | + 1,
where D is any partial derivative operator, give rise to a countable family of con-
tinuous positive functions g0, . . . , gr, . . . Let {Kr}r∈N be a collection of compact

sets such that Kr ⊂
◦
Kr+1, r ∈ N, and

⋃
r∈N

Kr = A. By Lemma 5.3 there exists

a function ρ : Rn → R vanishing on Rn − A and positive on A such that ρ ≤ g−1
j ,

0 ≤ j ≤ r, on A−Kr, r ∈ N.

For every k ∈ N let λk : R → R be the function defined by λk(t) = t−ke−1/t

if t > 0 and λk(t) = 0 elsewhere. Then the function f̃ = λ0(ρ/2)f is neatly bounded
on A. Indeed, consider any p ∈ (Ā − A) and any partial derivative operator D.
Then Df̃ equals a linear combination, with constant coefficients, of products of
some partial derivatives of ρ, a function ρ−ke−2/ρ = λk(ρ)e

−1/ρ and some partial
derivative D′f . On the other hand, there always exists a natural 	 such that
g� =| D′f | +1. Near p one has e−1/ρ|D′f | ≤ ρ | D′f |≤ ρg� ≤ 1; therefore Df̃ is
bounded close to p.

Finally, take a function ϕ̃ : Rn → R positive on A and flat at every point of
Rn −A and set ϕ = ϕ̃λ0(ρ/2). �

Proposition 5.5. Consider a vector field X on an open set A of a manifold M .
Then there exists a bounded function ϕ : M → R, which is positive on A and
vanishes on M − A, such that the vector field X̂ on M defined by X̂ = ϕX on A
and X̂ = 0 on M −A is differentiable.

Proof. Regard M as a closed imbedded submanifold of some Rn. Let π : E → M
be a tubular neighborhood of M . Then there exists a vector field X ′ on π−1(A)
such that X ′ = X on A and, by restriction of the function, it suffices to show
our result for X ′ and π−1(A). That is to say, we may suppose, without loss of
generality, that A is an open set of Rn.



330 F. J. Turiel and A. Viruel

In this case, on A one has X =
∑n

j=1 fj∂/∂xj. Applying Lemma 5.4 to ev-
ery function fj yields a family of functions ϕ1, . . . , ϕn. Now it suffices to set
ϕ = ϕ1 · · · ϕn.

Finally, if ϕ is not bounded take ϕ/(ϕ+ 1) instead of ϕ. �
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