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Depth of cohomology support loci for
quasi-projective varieties via orbifold pencils

Enrique Artal Bartolo, José I. Cogolludo-Agust́ın
and Anatoly Libgober

Abstract.We describe several relations between a homological invariant of
characters of fundamental groups of projective manifolds called depth and
maps onto orbicurves. This extends previously studied relations between
families of local systems and holomorphic maps onto hyperbolic curves.
First, we derive the existence of characters whose depth is bounded below
by the number of independent orbifold pencils. Conversely, for some class
of characters, we deduce the existence of as many independent pencils
as the depth of the character. Second, we show a new relation between
depth of characters of the fundamental group and solutions of a certain
Diophantine equation (related to the Pell equation) over the field of ra-
tional functions. Finally we give a Hodge theoretical characterization of
essential coordinate characters of the fundamental groups of the comple-
ments to plane curves, i.e., characters whose existence cannot be detected
by considering the homology of branched abelian covers.

Introduction

Understanding the fundamental groups of the complements to plane algebraic
curves is an old problem. Though a procedure for their calculation, due to Za-
riski [38] and van Kampen [23], is well known and has been implemented in many
examples, it sheds little light on the possible structure, properties, or geometric
significance of the fundamental groups.

Already Zariski [37] discovered that the noncommutativity of the fundamental
group of the complement of a curve with nodes and cusps is related to the position
of the cusps. Since then a precise relation has been found between the fundamen-
tal group and the dimensions of linear systems of plane curves associated with
arbitrary singularities (see [24]). This provided a geometric viewpoint on funda-
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mental groups though further development has been hindered by the difficulty of
the problems about the positions of the singularities of curves.

A new approach emerged more recently albeit in the case of reducible curves
(see [3], [26]). The noncommutativity of π1(P

2 \ C) arose as a consequence of
the existence of holomorphic maps of P2 \ C onto hyperbolic curves (see [3]).
Such maps correspond to pencils of curves in P2 such that C contains a union
of a finite number of its members. The existence of such pencils is related to
the invariants of the quotient of the fundamental group of P2 \ C by its second
commutator (see [26]). These invariants are subvarieties of the torus of characters
of the fundamental group called the characteristic varieties (see Section 2.1) that
extend the classical notion of Alexander polynomial (whose roots are also elements
of the torus C∗).

In this approach the components of characteristic varieties having dimension
greater than one correspond to holomorphic maps from P2 \ C onto hyperbolic
curves. One-dimensional components were shown to be related to maps onto C∗

(see [16], [7]). Further work showed that one-dimensional components (and some
zero-dimensional components as well) can be detected by showing the existence of
maps of the complements P2 \C onto hyperbolic or elliptic orbifolds (see [7]). Such
maps correspond to orbifold pencils related to C, i.e., to a curve in P2 such that a
finite number of its members are unions of irreducible components of C and extra
components with multiplicity.

The present paper provides new conditions for the existence of orbifold pencils
and new relations between pencils and fundamental groups providing methods to
detect their noncommutativity (in fact to obtain much more precise information).

One of the main results of the paper, Theorem 1.3, gives a lower bound for the
dimension of the twisted cohomology in degree one of the local system associated
with the character of a quasi-projective group in terms of the number of indepen-
dent orbifold pencils. As a partial converse, in the case of 2-torsion characters,
positive depth implies the existence of orbifold pencils with base C2,2. This extends
previous results by the second and third authors (see [11]).

The other two main results are in the context of plane curve complements.
Theorem 1.4 characterizes an interesting class of characters (called essential coor-
dinate characters) in terms of the Hodge structure of the complement. Theorem 1.5
states that the set of orbifold pencils mentioned above admits a group structure.
In fact it resembles that of the solutions to the Pell equation u2 − f(x)v2 = 1 over
the function field C(x) (see Section 5.2). Hence the existence of orbifold pencils
with nontrivial orbifold structure is equivalent to the existence of solutions for
Diophantine equations of the form f(x, y)u2−g(x, y)v2 = h(x, y) over the function
field C(x, y), providing new connections between such equations and fundamen-
tal groups.

These main results have been used in [5] to give a detailed description of some
of the most archetypical examples of plane curves whose fundamental group of
the complement admits essential coordinate characters of order 2. Quasitoric re-
lations, Pell equations, orbifold pencils, and their independence are dealt with in
more detail.
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To illustrate this arithmetic relation consider the type B3 reflection arrange-
ment, which can be given as the union of the following nine lines in P2:

(CEVA)

�1 := x, �2 := y, �3 := z,

�4 := (y − z), �5 := (x− z), �6 := (x− y),

�7 := (x − y − z), �8 := (y − z − x), �9 := (z − x− y).

Note that these lines satisfy the equations

(P1) �2�5 − �3�6 = �1�4,

(P2) �2�6 − �3�5 = �4�7,

and

(P3) �2�5�
2
8 − �3�6�

2
9 = �1�4�

2
7,

(relation (P3) was noted in [29] and later, independently, in [17]). Let D stand for
the so-called Ceva-type arrangement, i.e., the union of the seven lines {�1, . . . , �7}.
One can rephrase relation (P1) geometrically as the existence of a holomorphic
map from the complement of the set of solutions to �2�5 = �3�6 = �1�4 = 0
onto P1 for which {�2�5 = 0}, {�3�6 = 0}, and {�1�4 = 0} are the preimages of
three different points of P1 (and similarly for relation (P2)). On the other hand,
relation (P3) shows the existence of a holomorphic dominant map P2 \D → C2,2

for which {�8 = 0}, and {�9 = 0} have multiplicity 2 and are the preimages of the
two orbifold points. Later we will refer to such a map as an orbifold pencil (see
Section 4.2 for detailed definitions). This easily shows the existence of different
surjections of π1(P

2 \D) onto free groups of rank 2 (for (P1) and (P2)) and the
metacyclic group Z2 ∗ Z2 (for (P3)). Other interesting insights into the Ceva-
type arrangement and the deleted B3-arrangement {�1, . . . , �8} can be found in
the conceptual sequel of this paper by the same authors devoted to expanding this
and other examples (see [5]).

The paper’s structure is outlined now. The first part of Section 1 is devoted to
describing background material on the relation between fundamental groups and
ordinary pencils as well as previous results on the relation between the Alexander
polynomials of plane curves with nodes and cusps and orbifold pencils. These
results are essential for the second part of this section, where the main results of
the paper are stated and briefly discussed. In Sections 2 and 3 we give an account of
recent developments about the variety of characters of quasiprojective fundamental
groups and its connection with Alexander polynomials and Albanese varieties of
cyclic covers. Section 4.1 introduces the main properties of orbifold pencils and
contains a proof of Theorem 1.3. Section 5 focuses on the case of hypersurface
complements in Pn, or equivalently curve complements in P2. In the first part
a proof of Theorem 1.4, that is, a Hodge-theoretical characterization of essential
coordinate characters, is given, and in the second part the arithmetical connection
between such characters and the equations of the curve are described. Finally
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we devote Section 6 to briefly analyzing two typical examples of plane curves for
which the fundamental groups admit order-2 characters. The first serves to stress
that the Hodge-theoretical condition on the weight of the character is essential
for the existence of orbifold pencil maps. The second example, also introduced
above, shows how the existence of essential coordinate characters of order 2 is
associated with the group structure of the quasitoric relations of their equations,
also described as solutions to a Pell equation. This last section is revisited in the
sequel to this paper in [5].

1. Background and statements of results

Let X be a smooth quasi-projective variety and let χ∈Hom(π1(X ),C∗) be a charac-
ter of its fundamental group. Viewing χ as a rank one local system, one associates
to it the twisted cohomology groups. The purpose of this note is to extend known
relations between holomorphic maps of X onto curves, i.e., holomorphic pencils,
and dimensions of the twisted cohomology H1(X , χ).

The problem of the existence of holomorphic pencils can be traced back almost
one hundred years and in its projective version (where local systems are replaced
by holomorphic bundles) goes back to Castelnuovo, deFranchis, Catanese, Green–
Lazarsfeld, and Simpson (see [27] for an extense list of references). The quasi-
projective case was considered in [3], where the structure of the jumping subsets
of the character variety

(1.1) V̊k(X ) :=
{
χ ∈ Hom(π1(X ),C∗) | dimH1(X , χ) = k

}
was studied together with its relation to pencils. In this context, if χ ∈ V̊k(X ) we
say χ has depth k. The characteristic varieties Vk(X ) are defined analogously to
V̊k(X ), but replacing = by ≥ in (1.1). This term was introduced in [26] for com-
plements to plane curves and explicitly related to the structure of the fundamental
group in [21], [26]. To be more precise, the characteristic varieties referred to above
can be described as the zero sets of the Fitting ideals of the abelianization π′

1/π
′′
1

of the commutator of π1, which coincide with the jumping loci (1.1) outside of
the trivial character (see Theorem 2.3). In particular, the characteristic varieties
(unlike the jumping sets for the higher cohomology spaces) depend only on the
fundamental group. Fox calculus provides an effective method for calculating the
characteristic varieties in the cases when a presentation of the fundamental group
by generators and relators is known.

The results of [3] are as follows. Each Vk(X ) ⊂ Hom(π1(X ),C∗) is a finite
union of translated subgroups (i.e., cosets) of Hom(π1(X ),C∗). Moreover, for
each component of positive dimension there exists a curve C with negative Euler
characteristic such that this component has the form ρ · f∗ Hom(π1(C),C

∗) for
some holomorphic map f : X → C. This was supplemented in [27] by showing
that the zero-dimensional components have finite order.

A more precise version of this result can be found in [7] in terms of orbifolds.
It includes some missing points regarding resonance conditions and extends the
result from V1(X ) to all characteristic varieties Vk(X ), k ≥ 1.
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If X is a complement to a plane projective curve, the target C of a holomorphic
pencil mentioned above must be necessarily C = P1 \ {points} and thus f extends
to a rational pencil on P2. In this case, positive-dimensional translated components
ρ · f∗ Hom(π1(C),C

∗) of V1(C) have been shown (see Dimca [16]) to be related to
the multiple fibers of such a pencil; see also [7].

For a generic nonisolated character χ ∈ Vk(C) in a component of Vk(C) of
dimension greater than one, the depth is given by the formula

(1.2) dimH1(C, χ) =

{
dimVk(C) − 2 = −e(C) if C is compact,

dimVk(C) − 1 = −e(C) otherwise,

where e(C) is the (topological) Euler characteristic of C. For example, if C =
P1 \ {n points}, then dimH1(C,C∗) = n− 1 and dimH1(C, χ) = −e(C) = n− 2,
if χ is nontrivial.

This provides a simple way to determine or at least to estimate the depth of
characters on components having positive dimension.

Isolated points in components Vk(X ) are a common occurrence and below we
describe the geometric significance of the depth of zero-dimensional irreducible
components of Vk(X ). We do so using orbifold pencils associated with such char-
acters (as was mentioned, such characters must have finite order).

It is worth mentioning that the nature of the cohomology of the local systems is
essentially different depending on whether H1(X̄ ,C) is trivial or not. In the latter
case, due to the surjection π1(X ) → π1(X̄ ) → 1, some of the characters of π1(X )
are the characters of the projective fundamental group (see [35] for a discussion
on the difference between the projective and the quasi-projective case). In this
paper (as in [3]) we focus on the case when H1(X̄ ,C) = 0. This includes the case
of the complements to plane curves which provides many concrete and interesting
examples.

For the basics on the theory of orbifolds we refer to [2] or, since we shall consider
mainly orbifold curves, to [32] or [18]. An orbifold pencil is a (birational) dominant
map X → C, where C is the orbicurve such that the preimage of each point in C
with stabilizer of order m is a multiple fiber of order a multiple of m. A proof of
Lemma 1.1 can be found in [7].

Lemma 1.1. An orbifold pencil f : X → C defines a morphism of orbifold funda-
mental groups f∗ : π1(X ) → πorb

1 (C).

We call (see Definition 4.8) the map given in Lemma 1.1 a marked orbifold
pencil f : X → C. The markings are given by the pairs (X , χ), χ ∈ Vk(X ), and
(C, ρ), ρ ∈ V orb

k (C), such that f∗(ρ) = χ, where f∗ is the map of groups of charac-
ters corresponding to f∗. Note that V orb

k (C) is the orbifold characteristic variety
of C defined as Vk in (1.1) for πorb

1 (C), which only depends on the group, as men-
tioned above.

A pair (X , χ) can be marked by several orbifold pencils and we show that
the number of such markings is related in an appropriate sense to the depth (see
Theorem 1.2 below and Section 4.3).
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The relation between orbifold pencils and local systems with nonvanishing co-
homology was studied in [11]. In that paper, the problem of finding a bound
on the degree of the Alexander polynomial Δ(t) is discussed for plane curves
with cusps and nodes as the only singularities (or curves with singularities in
a more general class of δ-essential singularities). The connection with the coho-
mology of local systems comes from the following: for an irreducible curve D in P2

one has H1(P
2 \D,Z) = Z/degDZ, i.e., Hom(π1(X ),C∗) = μdegD (the group of

degD-roots of unity in C∗). If χξ corresponds to ξ ∈ μdegD then

(1.3) Δ(ξ) = 0 =⇒ dimH1(P2 \D,χξ) �= 0.

The key step in [11] for obtaining the bound on the degree of the Alexander poly-
nomial (or equivalently the multiplicity of the root exp(2πi/6)) was to show the
following theorem.

Theorem 1.2. The degree of the Alexander polynomial of a curve D having cusps
and nodes as its only singularities coincides with the number of independent orbifold
pencils P2 → P1

2,3,6 such that D is the preimage of the orbifold point having the
cyclic group of order six as its stabilizer. This number of independent pencils equals
the rank of the group of quasitoric relations

(1.4) u2 + v3 = w6F,

where F = 0 is a defining equation for D.

Theorem 1.2 can also be extended to general Alexander polynomials and nonre-
duced curves.

One of the main results of this paper is the following theorem (proved in Sec-
tion 4.3) providing the relations between orbifold pencils and depth. It shows that
the number of independent pencils (with a given target) provides a lower bound
for the depth of a character. Moreover, for an interesting class of characters this
bound is exact.

Theorem 1.3. Let X be a quasi-projective manifold together with a character χ.

(1) Assume that there are n strongly independent marked orbifold pencils on
(X , χ) with a fixed target (C, ρ) and let d(ρ) denote the depth of the character
ρ of πorb

1 (C). Then d(χ) ≥ nd(ρ).

(2) If, in addition, χ is a 2-torsion character and 2 is its only weight (see 2.9 for
a definition of weights of a character), then there are exactly d(χ) strongly
independent orbifold pencils on X whose target is the global Z2-orbifold C =
C2,2. These pencils are marked with the nontrivial character ρ of πorb

1 (C2,2)
characterized by the condition that it extends to P1

2,2.

Moreover, if χ is a d-torsion character, then (1) implies that φd(t)
nd(ρ)|ΔX,χ(t)

and (2) implies that d(χ) is the multiplicity of φ2(t) = (t+1) as a factor of ΔX,χ(t),
where φk(t) denotes the cyclotomic polynomial of order k.
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See Sections 4.1, 4.2, and 5.1 for the required definitions. The Hodge theoretical
condition that 2 be the only weight of χ can be characterized as the requirement
of the equality of the first Betti numbers of both the double cover of X defined
by χ and its smooth compactification; see Theorem 1.4 for another characteriza-
tion. In Section 5 we specialize these results to the case of complements of plane
curves. The group π1(P

2 \D) is closely related to its central extension π1(C
2 \D)

where C2 is obtained from P2 by deleting a generic line at infinity. In this case the
group of characters is isomorphic to (C∗)r, where r is the number of irreducible
components of D. Moreover, each coordinate codimension-one subtorus can be
viewed as the group of characters on π1(P

2 \ Di), where Di := ∪j �=iDj ; such
characters are called coordinate characters. Note that there is a natural inclusion
V1(P

2 \Di) ⊂ V1(P
2 \D) of the coordinate subtori. A character in V1(P

2 \D) is
called essential if it is not in any V1(P

2 \Di).
Noncoordinate essential characters are well understood. An algorithm is pro-

vided in [26] by the third author to recover such characters as well as their depth
from dimensions of linear systems associated with the singularities of D. However,
much less is known about essential coordinate characters. In Section 5.1 we give
the following Hodge theoretical characterization of them.

Theorem 1.4. Let X = C2\D be the complement of a plane curve D. A character
in the characteristic variety of π1(X) is essential and coordinate if and only if it
has weight 2.

In the case of plane curves the orbifold pencils correspond to solutions of cer-
tain equations over the function field C(x, y). For example, as mentioned in Theo-
rem 1.2, the depths of characters of order 6 are related to the number of indepen-
dent polynomial solutions in u, v, w of the quasitoric equation u2 + v3 = w6F of
type (2, 3, 6). This also can be used to relate the cohomology of the Milnor fiber
of arrangements of lines with triple points and solutions to the Catalan equation
(see [28]).

A similar result for characters of order 2 is shown in Section 5.2. Let D ⊂ P2

be a projective plane curve, XD := P2 \ D its complement, and χ a 2-torsion
character on π1(XD). Denote by Q(D,χ) the set of (2, 2, 0)-quasitoric relations
associated with χ, that is,

(1.5) Q(D,χ) :=
{
(f, g, h, U, V ) ∈C[x, y, z]5

∣∣ fU2−gV 2 = h, f ·g = F, hred|H
}/∼,

where D := {FH = 0}, χ is ramified exactly along F = 0 (see Definition 5.7)
and ∼ is the appropriate equivalence relation. Then

Theorem 1.5. The set of (2, 2, 0)-quasitoric relations Q(D,χ) has a structure of a
finitely generated abelian group and

rankQ(D,χ) ≤ d(χ).

Moreover, if XD and χ satisfy the conditions of Theorem 1.3 (2), then

rankQ(D,χ) = d(χ).
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We refer to Section 5.2 for the exact definition of Q(D,χ) and the equivalence ∼
between quasitoric relations. This result is illustrated both in Section 6 of this
paper and in [5] with several nontrivial examples aiming to describe a method for
calculating the group structure of Q(D,χ).

Finally, we note that there is a surprising connection between the polynomial
equations considered in (1.5) and the Pell equations over the field of rational func-
tions C(x, y). Investigations of the Pell equations

(1.6) u2 − f(x)v2 = 1

over the function field C(x) apparently go back to Abel [1] (see [34]). More recently,
the equation (1.6) over k[x] was considered by F. Hazama in [19], [20], where a
group structure closely resembling the one described in Theorem 1.5 also appeared.
A more detailed study of this connection is out of the scope of this note, but will
appear elsewhere.

2. Characters of fundamental groups

2.1. Characteristic varieties

We recall the basic definitions and results related to characteristic varieties and
homology of covering spaces. We will follow the original exposition given in [26],
but rephrase it in a more general setting.

Throughout this section X will be a topological space of finite type (that is, X
has the homotopy type of a finite CW -complex) and π′

1(X) ⊂ π1(X) will be the
commutator of its fundamental group. We shall assume that π1(X)/π′

1(X) =
H1(X,Z) is a free abelian group of rank r. Basic examples are complements of
plane algebraic curves in C2 with r components and links in a 3-sphere with r
components.

Consider the torus of characters of π1(X), i.e.,

(2.1) Char(X) := Hom(π1(X),C∗).

Alternatively, since Char(X) depends only on π1(X) we refer to it as Char(π1(X)).
Analogously, we define Char(G) for a group G. The torus Char(X) is canonically
isomorphic to the spectrum SpecC[H1(X,Z)] = (C∗)r of the group ring of the
abelianization of π1(X). Let Xab → X be the universal abelian cover, i.e., the
covering with the group H1(X,Z). The group H1(X,Z) acts on Xab as a group of
automorphisms and this provides H∗(Xab,C) with a structure of a C[H1(X,Z)]-
module. Recall that with each R-module M over a commutative ring R one asso-
ciates the support which is the subvariety of SpecR consisting of the prime ideals p
such that the localization Mp does not vanish.

Definition 2.1. The characteristic variety Vk(X) is the subvariety of the torus

Char(X) = SpecC[H1(X,Z)] given as the support of the module
∧k

(H1(Xab,C))
(the exterior power of the homology module). Alternatively, Vk(X) can be given
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as the zero set of the k-th Fitting ideal of H1(Xab,C), that is, the ideal generated
by the (n − k) × (n − k) minors of the matrix of the map Φ with coefficients in
C[π1(X)/π′

1(X)]

(2.2) C[π1(X)/π′
1(X)]m C[π1(X)/π′

1(X)]n H1(Xab,C) 0.
Φ

We denote by V̊k(X) the set of the characters in Vk(X) which do not belong to
Vj(X) for j > k. If a character χ belongs to V̊k(X), then k is called the depth of χ
and is denoted by d(χ).

Theorem 2.3 provides a geometric comparison of this definition and comments
after (1.1). The following expresses the homology of finite abelian covers in terms
of the depths of characters of π1. The argument follows closely the one given in [25]
and [26], but we will present some details here since the statement of Theorem 2.2
is in a more general context than in the references above. See also [6], [21], [31].

Theorem 2.2. Let X be a finite CW -complex, let H be a subgroup of π1(X) of
finite index containing the commutator π′

1(X), and let K := π1(X)/H.
Let iH : Char(K) → Char(X) be the embedding of character varieties induced

by the surjection π1(X) → K. Let XH be the covering of X corresponding to the
subgroup H.

Then

(2.3) b1(XH) = b1(X) +
∑

ξ∈Char(K)\{1}
d(iH(ξ)).

Proof. Consider the five term exact sequence corresponding to the spectral se-
quence

(2.4) Ep,q
2 = Hp(L,Hq(Xab,C)) =⇒ Hp+q(XH ,C),

which is the spectral sequence for the free action of the group L := H/π′
1(X) on

the universal abelian cover Xab. It yields

(2.5) H2(L,C) H1(Xab)L H1(XH) H1(L,C) 0

(the subscript in second left term denotes covariants). Next, after taking the tensor
product of the sequence (2.2) with the group ring C[H/π′

1(X)] = C[L], using for
a C[L]-module M the identification of the covariants ML with M ⊗C[L] C applied
to the second term in 2.5, and finally using the isomorphism

(2.6)
(
C[π1(X)/π′

1(X)]
)s ⊗C[L] C=

(
C[π1(X)/π′

1(X)]
/
IC[L]

)s
=(C[K])s

(here IC[L] is the augmentation ideal) one obtains

(2.7) C[K]m C[K]n H1(Xab,C)L 0.
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Since SpecC[K] is canonically identified with Char(K) and the dimension of the
cokernel of the left homomorphism in (2.7) is the sum of the dimensions of the cok-
ernels of localizations of (2.7) at the maximal ideal of ξ ∈ Char(K) ⊂ Char(X),
the dimension of the cokernel in (2.7) is equal to

∑
ξ∈Char(K) d(iH(ξ)). To conclude

the proof we will show that contribution of the character ξ = 1 in the last sum is
equal to the dimension of the image of the left homomorphism in (2.5) and that
the right term in (2.5) is equal to b1(X). Indeed, since b1(X) = rankπ1(X)/π′

1(X),
dimH1(L,C) = rankL, and the group K is finite, the second claim follows. The
first claim follows from consideration of the commutative square obtained by tak-
ing the morphism of the sequence (2.5) into the similar five term sequence replac-
ing H by π1(X):

(2.8)

H2(L,C) H1(Xab)L

H2(π1(X)/π′
1(X),C) H1(Xab)π1(X)/π′

1(X).

The left vertical arrow is an isomorphism (again since K is finite) and the right
vertical arrow is a surjection which is the isomorphism over the contribution of the
trivial character in H2(L,C). Hence the identity (2.3) has been verified. �

Definition 2.1 allows algorithmic calculation of characteristic varieties (using
Fox calculus) provided a presentation of the fundamental group is known. See for
example [5] or [36] for explicit examples of such calculations.

On the other hand one has the following interpretation using local systems
([21], [26]). Recall that a (rank n) local system is a (n-dimensional) linear rep-
resentation of the fundamental group π1(X). For treatment of local systems and
their cohomology we refer to [13].

A topological definition of the cohomology of rank one local systems can be
given as follows. If X is a finite CW -complex, χ is a character of π1(X), and Xab

is the universal abelian cover, then one can define the twisted cohomologyHk(X,χ)
as the cohomology of the complex

(2.9) · · · −→ Ck(Xab)⊗C[H1(X,Z)] Cχ
∂k⊗1−→ · · ·

where Ck(Xab) is the C-vector space of i-cochains of Xab considered as a module
over the group ring of H1(X,Z) and the Cχ is the one dimensional C-vector space
with the C[H1(X,Z)]-module structure given by the character χ. If X is a smooth
manifold, H∗(X,χ) has a de Rham description (see [13]). The homology of a local
system can be described using the dual chain complex. We have the following.

Theorem 2.3. If χ �= 1, then

(2.10) d(χ) = dimH1(X,χ).
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The connection with the cohomology of local systems allows one to apply gen-
eral techniques for cohomology with twisted coefficients, which yield the following
results on the structure of characteristic varieties.

Theorem 2.4 ([3]). Each Vk(X) is a finite union of cosets of subgroups of the torus
Char(X). Moreover, for each component V of Vk(X) having positive dimension,
there is a map f : X → C, where C is a quasi-projective curve such that V is a
coset of the subgroup f∗H1(C,C∗) ⊂ Char(X).

Theorem 2.5 ([7]). Let V be an irreducible component of Vk(X). Then one of
the two following statements holds:

(1) There exists an orbicurve C, a surjective orbifold pencil f : X → C, and an
irreducible component W of V orb

k (C) such that V = f∗(W ).

(2) V is an isolated torsion point not of type (1).

Recall the definition of V orb
k after Lemma 1.1 and see Section 4.1 for more

details on V orb
k (C) for orbicurves.

2.2. Alexander polynomial associated with a character

A specialization of the characteristic variety of a topological space X of finite type
to a special character of its fundamental group G := π1(X) can be defined and
it is a natural generalization of the Alexander polynomial to this context. For
the sake of simplicity, as at the beginning of Section 2.1, we shall assume that an
identification G/G′ ∼= Zr has been made.

Let X be a finite CW -complex and let χ ∈ Char(G) = (C∗)r be a torsion
character, where the identification depends on the choice of generators ofH1(X,Z).
That is χ := (ξε1d , . . . , ξ

εr
d ), where ξd is a primitive d-th root of unity, 0 ≤ εi < d,

and d is the order of χ. Note that χ determines naturally an epimorphism ε :
G/G′ = Zr → Z defined by ε(ei) := εi. Let Kε = ker ε and let K ′

ε = [Kε,Kε] be
the commutator of Kε. By the Hurewicz theorem, Mχ := Kε/K

′
ε can be identified

with the homology of the infinite cyclic cover of X corresponding to ε and hence it
can be viewed as a module over the group ring Λ := Q[t±1], where t is a generator
of the Galois group of covering transformations.

Definition 2.6. Let X and χ be as above, then the Alexander polynomial of X
associated with χ is a generator of the order of the moduleMχ and will be denoted
by ΔX,χ(t).

The following is a direct consequence of the definition and Theorem 2.3.

Proposition 2.7. Under the above conditions, if χ �= 1, then d(χ) is the multi-
plicity of the factor φd(t) in ΔX,χ(t), where φd(t) is the cyclotomic polynomial of
order d.
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Proof. Using the same arguments as in Theorem 2.26 of [9], the polynomial ΔX,χ

is the order of the torsion of

(G′/G′′ ⊗Q)⊗Λr Λ,

where

Λr := Q[t±1
1 , . . . , t±1

r ]

and the Λr-module structure of Λ comes from the identifications ti ≡ tε(γi), i =
1, . . . , r. Therefore d(χ) is the multiplicity of ξd as a root of ΔX,χ. Since ΔX,χ ∈
Q[t], the result follows. �

2.3. Weight of a character

Now let us assume thatX is a smooth quasi-projective variety and let χ ∈ Char(X)
be a character of finite order. Let Xχ be the covering space corresponding to
kerχ ⊂ π1(X). Then H1(Xχ) supports a mixed Hodge structure with weights 1, 2
(see [14], [15]). The cyclic group Im(χ) acts (freely) on Xχ preserving both the
Hodge and weight filtrations.

Definition 2.8. Let G be a group acting linearly on a complex vector space V
and let χ ∈ Char(G). The χ-eigenspace of this action is defined as

Vχ :=
{
v ∈ V

∣∣ g · v = χ(g)v ∀g ∈ G
}
.

Definition 2.9. An integer w is called a weight of a character χ if the χ-eigenspace
of π1(X) acting on GrWw H1(Xχ) has positive dimension. Similarly, p is called a
Hodge filtration of χ if the χ-eigenspace of π1(X) acting on GrpF H

1(Xχ) has a
positive dimension.

The following gives an expression for the weight of a character in terms of finite
coverings with arbitrary Galois groups.

Proposition 2.10. Let XG → X be an abelian cover of X with a finite covering
group G. Let χ ∈ Char(G). Then

(2.11) dim(WwH
1(XG))χ = dimWwH

1(Xχ).

In particular G has a nonzero χ-eigenspace on WwH
1(XG) if and only if χ has

weight w.

Proof. The argument is similar to the one in the proof of Theorem 2.2. �

Remark 2.11. Note that characters might have either no weights or more than
one weight. In this paper we will be most interested in characters with only one
weight, namely weight 2.
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2.4. Essential, nonessential, and essential-coordinate components

The constructions described in the previous section can be applied to the case when
X = P2 \⋃r

i=0Di, where the Di are irreducible curves. In this case H1(X,Z) =
Zr+1/(d0, . . . , dr), where di = degDi. Suppose the degree of one of its components,
say D0, is equal to one, i.e., we have the complement to a plane curve in C2. Then
H1(X,Z) is a free abelian group of rank r. Let D =

⋃
Di denote the (reducible)

curve in C2 formed by irreducible components Di. One has a preferred surjection
π1(C

2 \D) → Zr given by the linking numbers of a loop representing the element
of π1 with the component Di:

γ �→ (. . . , lk(γ,Di), . . .).

This also yields the identification Char(C2 \D) = (C∗)r.
Let D′ be a reducible subcurve of D in C2, that is D′ ⊂ D. Then (see [26])

one has a surjection π1(C
2 \D) → π1(C

2 \D′) → 1 and hence an embedding

(2.12) iD′ : Char(C2 \D′) → Char(C2 \D).

The image of iD′ is formed by the factors of (C∗)r corresponding to the components
of D′. Moreover it was shown in [26] that if χ ∈ Vk(C

2 \ D′) then iD′(χ) ∈ Vj
with j ≥ k.

Definition 2.12 ([26]). The components of the characteristic variety Vk(D) ob-
tained as the image of a component of Vk(D

′) are called nonessential. A component
of Vk is called coordinate if it belongs to iD′(Char(C2 \D′)) for some D′ � D.

Recall that a meridian of a component Di ⊂ D is the class of the positively
oriented boundary γi ∈ π1(C

2\D) of a small disk transversal to Di up to conjugacy
(this terminology is also applied to its homology class).

Definition 2.13. A character χ ∈ Char(C2 \D) is unramified along a component
Di ⊂ D if for a meridian γi ∈ H1(C

2 \D) of Di one has χ(γi) = 1.

This terminology is consistent with the notion of ramification of a character on
a prime ideal over the ring of integers of a number field.

Remark 2.14. If G is a quotient of π1(C
2 \D) then Char(G) is naturally a subset

of Char(C2 \D) and this definition also applies. Note also that the characters of
π1(C

2 \D) unramified along Di can be identified with the characters of π1(C
2 \Di)

where Di is the union of all irreducible components of D other than Di.

Given a surjection π1(C
2 \ ⋃

Ck) → G := Za1 ⊕ · · · ⊕ Zam (for m ≤ r), one
can construct the unbranched covering space Xa1,...,am corresponding to the kernel
of the above surjection of the fundamental group. Moreover, there is a compact-
ification of this unbranched cover and its morphism to P2 extending the covering
map. Though this compactification (branched cover) is nonunique, its birational
class is well defined. In particular the first Betti number of this branched cover
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is well defined. A compactification X̄a1,...,am can be selected so that it supports a
G-action extending the action of G on Xa1,...,am . A calculation of H1(X̄a1,...,am ,C)
as a G-module is given by the following.

Theorem 2.15 ([31]). For each character χ of G = Za1 ⊕ · · · ⊕ Zam , let Vχ be
the χ-eigenspace of the G-action on H1(X̄a1,...,am ,C). Let Dχ be the union of the
components of D over which the character χ ramifies. Then dimVχ is equal to the
depth of χ considered as the character of π1(C

2 \Dχ).

This theorem was used in [26] to describe essential components of Vk(D) in
terms of combinatorics of singularities of D and the superabundances of the linear
systems of curves given by the local type of singularities, their position on P2 and
the degree of D.

3. Albanese varieties of smooth quasi-projective varieties.

Recall (see [33]) that given a projective variety X there is a canonically associated
abelian variety Alb(X) and the map X → Alb(X) (unique up to a choice of the
image of point in X) is universal with respect to maps into abelian varieties, i.e.,
given an abelian variety A and a morphism X → A there is a unique (up to
ambiguity, as above) factorization X → Alb(X) → A.

This construction can be extended to the quasi-projective case so that the
Albanese variety is a semiabelian variety which is universal with respect to mor-
phisms into algebraic groups. For example one can use Deligne’s construction of
the 1-motif associated with the mixed Hodge structure on cohomology H1(X) of
a smooth quasi-projective variety (see [13]). More precisely one has the following.

Theorem 3.1. Let X be a quasi-projective variety which is a complement to a
divisor with normal crossings in a smooth projective variety X̄.

(1) Then one has an exact sequence

(3.1) 0 → A → Alb(X) → Alb(X̄) → 0

where A is an affine abelian algebraic group isomorphic to a product of copies
of the multiplicative group Gm

∼= C∗. The semiabelian variety Alb(X) de-
pends on X functorially, i.e., a morphism X1 → X2 induces a homomor-
phism Alb(X1) → Alb(X2).

(2) If Γ is a finite group of biholomorphic automorphisms of X then the se-
quence (3.1) is compatible with the action of Γ.

An explicit construction can be given as follows (see also [22]). Let X̄, as above,
be a smooth compactification of X such that X̄ \ X = D =

⋃
Di is a union of

smooth divisors having normal crossings. Then

(3.2) Alb(X) = H0(X̄,Ω1
X̄(logD))∗/H1(X,Z),
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where the embedding of H1(X,Z) as a lattice is given by γ(ω) :=
∫
γ(ω). The

Albanese map is given by

(3.3) P �→
∫ P

P0

ω

(here P0 is a fixed point on X). The integral (3.3) depends (modulo periods of ω)
only on the end points of the path since a holomorphic logarithmic form is closed
(see [13]). One has the commutative diagram

(3.4)

0 ker
(⊕

iH
0(ODi) → H1(Ω1

X̄
)
)∗

H0(Ω1
X̄
(logD))∗ H0(Ω1

X̄
)∗ 0

0 coker
(
H2(X̄,Z) →

⊕
iH0(Di,Z)

)
H1(X,Z) H1(X̄,Z) 0

j0 j1 j2

In this diagram the upper row is dual to the exact cohomology sequence correspond-
ing to the sequence of sheaves given by the residue map (see (3.1.5.2) in [13]),

(3.5) 0 Ω1
X̄

Ω1
X̄
(logD)

⊕
i

j∗ODi 0,

⊕
i ResDi

where j : Di → X̄. The lower row is the exact sequence of the pair (X̄,X) in which
we use the identification

(3.6) H2(X̄,X,Z) = H2 dimD(D,Z) =
⊕
i

H2 dimD(Di,Z) =
⊕
i

H0(Di,Z).

One can check that all vertical arrows are injective and the image of each provides
the lattice in the corresponding complex vector space in the upper row. The rank
of the lattice which is the image of j2 (resp. j0) is equal to the real (resp. complex)
dimension of the target. Note that the fact that one uses the real dimension of
H0(Ω1

X̄
) is that rankH1(X,Z) = dimCH

1(OX̄)+dimH0(Ω1
X̄
(logD)) which follows

from the degeneration of the Hodge-de Rham spectral sequence in the E1-term.

In the case of j0, one uses that the map dual to H2(X̄,C) → ⊕
iH0(Di,C)

factors as ⊕
i

H0(Di,C) → H1,1(X̄) → H2(X̄,C).

Hence the quotient of the right (resp. left) injection is a complex torus (resp. affine
algebraic group isomorphic to a product of several copies of C∗). This complex
torus is isomorphic to the Albanese variety of X̄ by the classical construction.
The remaining assertions of the Theorem 3.1 follow from the description of the
Albanese map given by (3.3).

Finally note that Theorem 3.1 implies the following.
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Corollary 3.2. Let φ be an involution of X and let φ∗ be the corresponding
automorphism of Alb(X). Let Alb(X)− = {v ∈ Alb(X) | iφ∗(v) = −v} and
Alb(X)+ = {v ∈ Alb(X) | iφ∗(v) = v}. Then one has an isogeny

(3.7) Alb(X) = Alb(X)− ⊕Alb(X)+.

4. Orbifold pencils and characters of fundamental groups of
quasi-projective manifolds

4.1. Orbicurves

Definitions 4.1.

1. An orbicurve C is a complex one-dimensional orbifold, i.e., a smooth complex
curve with a finite collection R of points (called the orbifold points) with a
multiplicity assigned to each point in R. The complement to R is called the
regular part of the orbifold and is denoted by Creg.

2. An orbicurve C is called a global quotient if there exist a finite group G and
a manifold C with a G-action such that C is the quotient of C by G with
the standard orbifold structure. The group G will be called the covering
group of the global quotient. If R is the preimage of R via the covering, then
C \ R → C \ R is an unramified Galois covering whose deck transformation
group is also G.

3. (See [2]) The orbifold fundamental group πorb
1 (C) of an orbifold C is defined

as the quotient π1(C \R) by the normal closure of the elements γ
m(pi)
pi where

m(pi) is the multiplicity of an orbifold point pi and γi is a meridian of pi.

4. A marking of an orbicurve C (resp. a quasi-projective variety X ) is a charac-
ter of its orbifold fundamental group (resp. its fundamental group), that is,
an element of Charorb(C) := Hom(πorb

1 (C),C∗) (resp. Char(X)). Note that
this terminology is different from that used in [2].

5. A marked orbicurve is a pair (C, ρ), where C is an orbicurve and ρ is a
marking of C. Similarly, one defines a marked quasi-projective manifold as
a pair (X,χ) consisting of a quasi-projective manifold X and a character
of its fundamental group; note that for a marked orbicurve (C, ρ) the pair
(Creg, ρreg) is a marked quasi-projective manifold where ρreg is the character
induced by ρ via Creg ↪→ C. Henceforth, all characters used as markings will
be assumed to have finite order.

6. A marked global quotient is a marked orbicurve (C, ρ) such that if C \ R →
C \ R is the unbranched cover corresponding to the global quotient C → C,
with R being the set of fixed points of nonidentity elements of the cov-
ering group G, and R being its image (or equivalently the set of orbifold
points), then one has

(4.1) π1(C \R) = ker
(
π1(C \ R) → πorb

1 (C) ρ→ C∗).
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In other words, the cover C \R→ C \R is the cover of minimal degree over
which ρ becomes trivial.

Remark 4.2. The above existence condition for a marking of a global quotient
implies that the quotient map over the regular part of the orbifold is a cyclic cover.
More precisely, the covering group G can be identified with Im(ρ) ⊂ C∗, i.e., ρ can
be viewed as a character of the covering group G. If d is the order of this covering
group then the number of possible markings is equal to the value of the Euler
function φ(d).

Definition 4.3. Let C be a global orbifold quotient and let ρ be a marking. Let R
be the set of orbifold points and let C \R → C \ R be the quotient map with the
covering group G. The integer

(4.2) d(ρ) = dim
{
v ∈ H1(C \R,C) ∣∣ g · v = ρ(g)v, g ∈ G

}
is called the depth of the character ρ of the orbicurve C.

Remark 4.4. In the previous definition, note that the points in R have nontrivial
isotropy and thus it is not difficult to check that

(4.3) d(ρ) = dim
{
v ∈ H1(C,C)

∣∣ g · v = ρ(g)v, g ∈ G
}
.

This definition of the depth of a character for orbicurves will be used in the proof
of Theorem 1.3 (see Section 4.3). Moreover, an alternative definition of the depth
of ρ is that it be the depth of the character of the finitely presented group πorb

1 (C).
Using the same ideas as in Theorem 2.15, it is easily seen that, for nontrivial
characters, these two definitions coincide.

Example 4.5. Let Cn,n be the orbifold supported on C with two orbifold points
of multiplicity n. We shall identify C with P1 \ {[1 : 1]} so that the orbifold
points correspond to [0 : 1] and [1 : 0]. This orbifold is the global quotient
of a smooth curve C by the cyclic group Z/n where C is the complement in
P1 of the set S := {[ξin : 1] | i = 0, 1, . . . , n − 1} of n points (here ξn is a
primitive root of unity of degree n) and the global quotient map is the restric-
tion to the complement of S of the map P1 → P1 given by z �→ zn. We have
πorb
1 (Cn,n) = Z/n ∗ Z/n, and hence the group of characters Char(πorb

1 (Cn,n))
is isomorphic to μn × μn, where μn is the group of n-th roots of unity. Con-
sider the character ρ ∈ Char(πorb

1 (Cn,n)) taking the values ζ and ζ−1 on gener-
ators of the direct sum, where ζ is a primitive root of unity. It follows that if
π1(P

1 \ {[1 : 0], [1 : 1], [0 : 1]}) → πorb
1 (Cn,n) is the canonical surjection (using the

above identification of C and P1 so that the point at infinity corresponds to [1 : 1]),
then the pullback of ρ takes the values ζ, 1, and ζ−1 on generators corresponding
to [1 : 0], [1 : 1], and [0 : 1]. The action on the set S of the covering group Im(ρ) of
the cover P1 \ {[1 : 0], [0 : 1]} → P1 \ {[1 : 0], [0 : 1]} given by z → zn is just cyclic
permutation of points of S. Since H1(P

1\{[1 : 0], S, [0 : 1]},Z) generated by merid-
ians around each of the deleted points with sum of meridians equal to zero being
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the single relation is follows that H1(P
1 \ {[1 : 0], [1 : 1], [0 : 1]},Z) = Z⊕ Zn (with

each component of the second summand being the meridian about a point of S).
The action of μn = Im(ρ) is a cyclic permutation. Hence d(ρ) = 1. Moreover, the
branched covering space of C corresponding to such a ρ is P1 \S and the dimension
of the ρ-eigenspace in H1 of the branched cover is one as well (this is a special case
of [31]). For an alternative way to obtain this result see Proposition 2.7 in [7].

4.2. Orbifold pencils

Definition 4.6. Let X be a quasi-projective manifold and C be an orbicurve. A
dominant holomorphic map φ between X and the underlying complex curve C is
called an orbifold pencil if the index of each orbifold point p divides the multiplicity
of each connected component of the fiber φ∗(p) over p.

Remark 4.7. Note that this definition implies that if Γi is a meridian of an
irreducible component of φ−1(pi) then φ(Γi) belongs to the subgroup of π1(C \ pi)
normally generated by γ

m(pi)
i . In particular an orbifold pencil induces a map

φ∗ : π1(X ) → πorb
1 (C) and the following definition makes sense.

Definition 4.8. Let (X , χ) be a marked quasi-projective manifold and let (C, ρ)
be a marked orbicurve. A marked orbifold pencil is an orbifold pencil φ : X → C
such that χ = ρ ◦ φ∗.

Definition 4.9. Let X be a quasi-projective variety, let C be a quasi-projective
curve, and let C be an orbicurve which is a global quotient of C. A global quotient
orbifold pencil is an orbifold pencil φ : X → C such that there exists a morphism
Φ : XG → C, where XG is a quasi-projective manifold endowed with an action of
the group G which makes the diagram

(4.4)

XG C

X C

Φ

φ

commutative, in which the vertical arrows are the quotients by the action of G.
If, in addition, (X , χ) and (C, ρ) are marked, then the global quotient orbifold

pencil φ : X → C is marked if χ = φ∗(ρ) where φ∗ : Charorb(C) → Char(X ) is the
homomorphism dual to the surjection φ∗ : π1(X ) → πorb

1 (C) corresponding to the
orbifold pencil φ. We will refer to the map of pairs φ : (X , χ) → (C, ρ) as a marked
global quotient orbifold pencil in (X , χ) with target (C, ρ).

Remark 4.10. Consider the collection R of nonmanifold points in C and F the
collection φ−1(R) of multiple fibers corresponding to φ. The orbifold relation
χ = φ∗(ρ) holds if and only if there holds

(4.5) χ̂ = i∗(χ), χ̂ = φ̂∗(ρ̂), ρ̂ = p∗(ρ),
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for the map φ̂ : X \F → C\R of open manifolds induced by φ, where i : X \F → X
is the embedding and p : π1(C \ R) → πorb

1 (C) is the canonical projection.

Lemma 4.11. Let φ be a marked orbifold pencil of (X , χ) with target (C, ρ). If C
is a global quotient of a curve C then φ is a marked global quotient orbifold pencil,
i.e., φ can be extended to a commutative diagram (4.4).

Proof. As usual, denote by R ⊂ C the set of nonmanifold points of C and by F
its preimage under the morphism φ. Following the notation from Remark 4.10,
and the hypothesis that φ be a marked orbifold pencil, one has χ̂ = φ̂∗(ρ̂); the
existence of a covering πG : XG → X associated with the (finite index) kernel of
the homomorphism π1(X \ F ) → π1(X ) → μn, where the right homomorphism is
the character χ; and finally the commutative diagram

(4.6)

XG XG \ π−1
G (F ) C \R C

X X \ F C \ R C

Φ̂

πG i∗(πG)
φ̂

where i∗(πG) is the restriction of πG to XG \ π−1
G (F ).

Since the covering is finite, it is classical that XG can be chosen to be quasi-
projective and it is only necessary to construct the extension up to an algebraic sub-
variety of codimension 2. We have to verify that Φ̂ extends to a map Φ: XG → C.
For any P ∈ Reg(π−1

G (F )), smooth point of π−1
G (F ), the definition of Φ(P ) can

be given as follows. Assume DP is a small disc centered at P and transversal to
π−1
G (F ). Its (positively oriented) boundary γP defines a meridian of XG \ π−1

G (F ).

By construction, i∗(πG)(γP ) is a meridian in πG(P ) and φ̂(i
∗(πG)(γP )) is a merid-

ian in φ(πG(P )), and thus its preimage by the global quotient map of C is a meridian
around a point of Q ∈ R. We define Φ(P ) = Q. This map is easily checked to be
well defined by the finiteness of G and Lemma 1.1. �

Definition 4.12. Global quotient orbifold pencils φi : (X , χ) → (C, ρ), i = 1, . . . , n
are called independent if the induced maps Φi : XG → C constructed in Lemma 4.11
define Z[G]-independent morphisms of modules

(4.7) Φi∗ : H1(XG,Z) → H1(C,Z).

If, in addition,
⊕

i Φi∗ : H1(XG,Z) → H1(C,Z)
n is surjective, we say that the

pencils φi are strongly independent.

Remark 4.13. Note that if either n = 1 or H1(C,Z) = Z[G], then independence
is equivalent to the surjectivity of

⊕
i Φi∗ ⊗Q. For example, in the latter case,

n⊕
i=1

Φi∗ ⊗Q ∈ HomQ[G]

(
H1(XG,Q),Q[G]n

)
can be described by a matrix whose columns are the vectors corresponding to Φi∗,
i = 1, . . . , n.
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This definition is motivated by the following.

Proposition 4.14. Let C be an orbicurve which is a global G-quotient of the alge-
braic group A = C∗. The global quotient orbifold pencils φi : X → C, i = 1, . . . , r,
on a global quotient orbifold X = XG/G such that the first Betti number of a
smooth compactification of XG is zero, are independent in the sense of Defini-
tion 4.12 if and only if they define Z-independent elements of the abelian group
MorG(XG,A) of equivariant morphisms.

Proof. Note that MorG(XG,C
∗) = HomG(Alb(XG),C

∗) by the universal property
of maps from the Albanese variety into an algebraic group. The assumption on
the first Betti number of compactification of XG yields that Alb(XG) is a torus
of dimension b1(XG). Also HomG(Alb(XG),C

∗) = Hom
(
H1(XG;Z), H1(C

∗;Z)
)

holds equivariantly and the claim follows. �

Remark 4.15. In [11] it was shown that Proposition 4.14 is also true for special X
in cases when A is a certain elliptic curve (depending on the Alexander polynomial
of X ). This is so if X is the complement of a cuspidal curve C in P2. In this case
MorG(XG,A) can be identified with the Mordell-Weil group of K-points of the
elliptic curve over C admitting an automorphism of order 6 where K is the field
of rational functions on the 6-fold cover of P2 ramified along the curve, i.e., the
degree six extension of C(x, y). This is also the case for the δ-curves discussed
in [11].

On the other hand, in the case of orbifolds with trivial orbifold structure there
are very few marked orbifold pencils.

Proposition 4.16. Let φi : (X , χ) → (C, ρ), i = 1, . . . , n, be a collection of
strongly independent marked pencils. Assume that C has a trivial orbifold struc-
ture. Then ρ = 1 and hence χ = 1.

Proof. Consider the map (φ1, . . . , φn) : X → Cn. Independence implies that the
induced map H1(X ) → H1(C

n) is surjective and hence the dual map on coho-
mology is injective. If pi : Cn → C is the projection on the i-th factor, then
p∗i (ρ) = (1, . . . , 1, ρ, 1, . . . , 1) (the nonidentity component is on the i-th coordinate).
The compatibility condition together with the injectivity of H1(C,C∗) → H1(X )
implies that p∗i (ρ) = p∗j (ρ) and hence ρ = 1. �

4.3. Orbifold pencils, depth, and roots of Alexander polynomials

In this section we prove Theorem 1.3.

Proof of Theorem 1.3. In order to prove part (1), we consider n strongly indepen-
dent orbifold pencils φ1,∗, . . . , φn,∗. Since

H1(XG;Z)
⊕

i Φi,∗−→ H1(C;Z)
n
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is an equivariant epimorphism, the dual morphism H1(C;Z)nρ → H1(XG;Z)χ is
injective and hence rankH1(C;Z)nρ = nd(ρ) ≤ rankH1(XG;Z)χ = d(χ) (see The-
orem 2.15 and Remark 4.4).

As for part (2), let χ be a 2-torsion character. We apply the formula for the
first Betti number in Theorem 2.2 to the degree 2 covering

Xχ → X
corresponding to the subgroup kerχ of π1(X ); note that G := π1(X )/ kerχ is the
group of two elements and Xξ has also been denoted by XG.

The sum in (2.3) contains only one term and yields, together with Theorem 2.15,
that d(χ) is the dimension of the χ-eigenspace of H1(Xχ,C):

(4.8) d(χ) =
{
v ∈ H1(Xχ,C)

∣∣ g · v = χ(g)v
}
.

Moreover, the action of g ∈ G, g �= 1, is multiplication by −1. The action
of g on Alb(Xχ) induces the isogeny Alb(Xχ) = Alb(X) ⊕ Alb(Xχ)

− where
the second summand is the subvariety of Alb(Xχ) comprising points on which
the covering group acts as multiplication by −1 (see Corollary 3.2; note that
Alb(Xχ)

+ = Alb(X)). Since we assume that χ has only weight 2, Alb(Xχ)
− has

no compact part. In particular, by Theorem 3.1,

(4.9) Alb(Xχ)
− = ker

(
Alb(Xχ) → Alb(X)

)
= (C∗)d(χ),

and the order 2 action is given by πρ : z �→ z−1. Therefore the projections give d(χ)
independent equivariant (due to Albanese functoriality) maps Xχ → C∗. Since

MorZ2(Xχ,C
∗) = HomZ2(Alb(Xχ),C

∗) and HomZ2((C
∗)d(χ),C∗) = Hom(Zd(χ),Z),

then rankZ MorZ2(Xχ,C
∗) = d(χ). Hence each map descends to an orbifold pencil

X → C2,2. Then one has the commutative diagram

(4.10)

Xχ \ π−1
χ (F ) C∗ \ {±1}

X \ F C2,2 \ πρ(±1)

Φ

i∗(πG) πρ

φ

where πχ (resp. πρ) is the projection Xχ → X (resp. C∗ → C2,2 as above). This
diagram induces the isomorphism

(4.11) π1
(X \ F )/π1(Xχ \ π−1

χ (F )
)
= π1

(
C2,2 \ πρ(±1)

)/
π1

(
C∗ \ {±1}),

of order 2 quotients, which shows that the pencils X → C2,2 preserve markings.
Finally, we will check that any such pencil Φ : Xχ → C∗ can be assumed to have

connected fibers and hence the induced morphism Φ∗ on cohomology is surjective,
which implies that the n pencils can be found to be strongly independent. Consider
the induced orbifold pencil φ : X̄ → P1

2,2 and its Stein factorization X̄ φ̃→ S
σ̃→ P1

2,2.

Since X̄ is a rational surface, one has S = P1 with an orbifold structure containing
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at least two orbifold points each locally a quotient by an order 2 automorphism.
The double cover of S ramified along these two orbifold points after removing
the preimage of the point at infinity by σ̃ induces maps Xχ

Φ′→ C∗ σ→ C∗ where
Φ = σ ◦ Φ′ and Φ′ has connected fibers.

The moreover part is a direct consequence of Proposition 2.7. �

5. Pencils on the complements of plane curves and zero-
dimensional components of characteristic varieties

5.1. Essential coordinate components and weight

Essential coordinate components were defined and studied in [4]; the first appeared
in [12]. The dimension of the essential coordinate component is zero since the pencil
f : C2 \ D → C, corresponding to a positive-dimensional coordinate component
of Vi, can be extended to a map f̄ : C2 \D′ → C with D′ � C (see [26]). It follows
from [27] that essential coordinate characters have finite order. Now we can give
the Hodge-theoretical characterization of such characters in terms of weights (see
Definition 2.9) stated in Theorem 1.4.

Proof of Theorem 1.4. Let χ be an essential coordinate character and let n be its
order. Denote by Xn the covering space of the complement to the curve corre-
sponding to the surjection π1(X) → H1(X,Z/nZ). Let X̄n be a smooth model
of the compactification of Xn. Then W1H

1(Xn,C) = ImH1(X̄n,C) (see [13]). If
v ∈ W1H

1(Xn,C) is a χ-eigenvector of H1(X,Z/n) then χ is the eigencharacter
of the action on the cohomology of the branched cover. Since χ is a coordinate
character, it follows from Sakuma’s formula (see Theorem 2.15) that χ belongs
to the characteristic variety of the curve D′ with components corresponding to
the nontrivial coordinates of χ. Using Proposition 2.10, we obtain that essential
coordinate characters have weight 2.

Conversely, if a character has weight 2, then it must be coordinate since by The-
orem 2.15 noncoordinate characters belong to the image ofH1(X̄n,C)→ H1(Xn,C)
and hence have weight one. This is essential since otherwise Theorem 2.15 would
imply that it appears as the eigencharacter of a weight one subspace. �

5.2. 2-torsion characters and quasitoric relations

As a consequence of Theorem 1.3.(2) one has the following interpretation of depth
for coordinate 2-torsion characters in terms of quasitoric relations of type (2, 2, 0)
(see [11] for a detailed treatment of quasitoric relations of elliptic type).

Let D ⊂ P2 be a plane curve and let χ be a 2-torsion character of π1(P
2 −D)

having 2 as the only weight (i.e., as in Theorem 1.4). Let S be the collection of
the irreducible divisors of D and let G(S) be the subgroup of the group of divisors
of P2 generated by S.

We fix a generic line at infinity and identify the coordinate ring of the affine
plane with C[x, y]. An element in C(x, y) is an S-unit (see [30]) if it is the quotient
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of two polynomials such that the irreducible components of their zero locus belong
to S. This is a multiplicative group denoted by E(S). Note that one has the
identification E(S)/C∗ ∼= G(S).

An S-unit is called primitive if it is a square-free polynomial. The set S splits
into two subsets S = S0 ∪ S1 depending on whether or not χ ramifies along each
divisor, namely, χ(γ0) = 1 (resp. χ(γ1) = −1) for a meridian γ0 (resp. γ1) of
a component of S0 (resp. S1). Let D1 = ΣD1,i∈S1D1,i and D0 = ΣD0,i∈S0D0,i.
Note that D1 necessarily has even degree. In other words, D admits an equation
FH = 0, where (F ) = D1 is a polynomial of even degree and (H) = D0.

We shall use the following notations:

• E(S)+ = E(S) ∩ C[x, y], i.e., E(S)+ is the multiplicative monoid generated
by C∗ and the polynomials in E(S).

• C[x, y]E(S) is the localization of C[x, y] at E(S)+, the group of polynomial
S-units. Hence E(S)+ is the group of units of C[x, y]E(S).

• KF := C(x, y)[
√
F ] is the quadratic extension of C(x, y).

• KS := C(x, y)[
√
S], the abelian extension of C(x, y) generated by

√
S, i.e.,

the set of multivalued functions whose square has an associated divisor which
is in G(S).

• E(
√
S) is the multiplicative group generated by C∗ and

√
S and E(

√
S)+ is

its associated monoid.

• EP (
√
S)+ is the set of primitive elements of E(

√
S), that is, EP (

√
S)+ :=

{α ∈ E(
√
S) | α2 ∈ E(S)+ is square-free}.

We have the following inclusions:

C[x, y] ⊂ C[x, y]E(S) ⊂ C(x, y) ⊂ KF ⊂ KS

∪ ∪ ∪
E(S)+ ⊂ E(S) E(

√
S) ⊃ E(

√
S)+ ⊃ EP (

√
S)+.

We consider the set

GS :=
{
(ū, v̄) ∈ (KS)

2
∣∣ ū2 − v̄2 = 1

}
,

with the group structure given by

(5.1) (ū1, v̄1) · (ū2, v̄2) := (ū1ū2 + v̄1v̄2, ū1v̄2 + v̄1ū2).

Note that GS is isomorphic to K∗
S via the map

(5.2)
π : K∗

S → GS

t �→
(

t+t−1

2 , t−t−1

2

)
.

Also, the map π is equivariant with respect to the automorphisms t �→ t−1 of K∗
S

and (u, v) �→ (u,−v) of GS .
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Definition 5.1. Let (ū, v̄) ∈ GS . We say that (ū, v̄) is an F -pair if

(1) ū, v̄ ∈ E(
√
S) · C[x, y]E(S) and

(2) there exists a decomposition ū = α · u, v̄ = β · v, for some α, β ∈ E(
√
S) and

u, v ∈ C[x, y]E(S), such that α · β ∈ √
F · E(S).

A decomposition satisfying (2) is called an F -decomposition of the F -pair.

Remark 5.2. Note that any decomposition ū = α · u, v̄ = β · v, for some α, β ∈
E(

√
S) and u, v ∈ C[x, y]E(S) of an F -pair is an F -decomposition.

Lemma 5.3. The set G of F -pairs is a subgroup of GS.

Proof. Since (ū, v̄)−1 = (ū,−v̄) it is enough to prove that the condition of being
an F -pair is preserved by the product. Consider (ū1, v̄1), (ū2, v̄2) ∈ G and let
ūi = αi · ui, v̄i = βi · vi, i = 1, 2, be F -decompositions of these pairs. Then

(5.3) (ū1, v̄1) · (ū2, v̄2) =
(
α1α2u1u2 + β1β2v1v2, α1β2u1v2 + β1α2v1u2

)
.

For the first coordinate we have

α1α2u1u2 + β1β2v1v2 = α1α2

(
u1u2 + (α1β1)(α2β2)

v1v2
α2
1 α

2
2

)
.

Note that α2
i , αi · βi ∈ E(S), i = 1, 2, and hence we have a decomposition of

this first coordinate. In a similar way we obtain a decomposition of the second
coordinate where the first factor is α1β2. Since

(α1α2)(α1β2) = α2
1(α2β2) ∈

√
F ·E(S)

the result follows. �

Definition 5.4. Let (ū, v̄) ∈ G be an F -pair and let ū = α · u, v̄ = β · v, be an
F -decomposition of (ū, v̄). This decomposition is said to be normal if

(1) α = α̃/γ, β = β̃/γ, where α̃, β̃, γ ∈ EP (
√
S)+, gcd(α̃, β̃, γ) = 1;

(2) u = ũ/w, v = ṽ/w; ũ, ṽ ∈ C[x, y], w ∈ E(S)+, gcd(ũ, ṽ, w) = 1;

(3) (α̃β̃)2 = F ;

(4) γ2 is a divisor of H .

Remark 5.5. The group C∗ acts on the set of F -normal decompositions by

λ · (α · u, β · v) ((λα) · (λ−1u
)
, (λ−1β) · (λv))

This action of C∗ will be referred to as proportionality.

The following result shows that a normal F -decomposition of an F -pair is
almost determined by the pair.

Proposition 5.6. Any F -pair admits a normal F -decomposition. Moreover, such
an F -decomposition is unique (up to proportionality).
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Proof. The uniqueness part is straightforward. We start with an arbitrary F -
decomposition ū = α · u, v̄ = β · v. We can for instance write α = α̃/γ, where
α̃, γ ∈ E(

√
S)+ have no common factors. Note that an element in E(

√
S)+ is not

primitive if an only if it contains a factor in E(S)+. If α̃ is not primitive, then
α̃ = α̃1u1, where u1 ∈ E(S)+. In this case, one can rewrite ū = (α̃1/γ̃)(u1u).
One can assume that both decompositions ū = α · u and v̄ = β · v are such that α
and β have primitive numerators and denominators. Then, after taking a common
denominator for α and β (resp. for u and v), we can assume that the decomposition

(5.4)

ū = α · u =
( α̃
γ

)
·
( ũ
w

)
,

v̄ = β · v =
( β̃
γ

)
·
( ũ
w

)
satisfies 5.4 (1) and 5.4 (2).

By Remark 5.2, the decomposition (α · u, β · v) is an F -decomposition and
hence αβ = α̃β̃/γ2 ∈ √

F · E(S). Let σ ∈ EP (
√
S) denote an irreducible el-

ement. We denote by m(σ, α) the multiplicity of σ in the decomposition of α
into irreducible factors. Since α̃, β̃, γ ∈ EP (

√
S)+ one concludes that m(σ, •) ∈

{0, 1} for • = α̃, β̃, γ. Moreover, by condition (2) in Definition 5.1, if σ2|F , then
m(σ, α̃) +m(σ, β̃)− 2m(σ, γ) is odd and hence so is m(σ, α̃) +m(σ, β̃).

The previous two conditions imply that

• m(σ, α̃) +m(σ, β̃)− 2m(σ, γ) = 1,

• m(σ, γ) = 0, and thus

• m(σ, α̃) +m(σ, β̃) = 1.

Hence the second property implies condition (4).
Similarly, if σ2|H , then condition (2) in Definition 5.1, implies that m(σ, α̃) +

m(σ, β̃) − 2m(σ, γ) is even and hence so is m(σ, α̃) +m(σ, β̃). As above, this and
the fact that m(σ, •) ∈ {0, 1} for • = α̃, β̃, γ imply that

• m(σ, α̃) = m(σ, β̃) = 0 and m(σ, γ) ∈ {0, 1}, or
• m(σ, α̃) = m(σ, β̃) = 1 and m(σ, γ) = 0.

In order to show condition (3) it is enough to prove that the last case can be
avoided. In order to do so we rewrite ū and v̄ as

(5.5)

ū =
( α̃/σ
σγ

)
·
(σ2ũ

w

)
= α1 · u1,

v̄ =
( β̃/σ
σγ

)
·
(σ2ṽ

w

)
= β1 · v1,

where α1 := α̃1/γ1, β1 := β̃1/γ1, α̃1 := α̃/σ, β̃1 := β̃/σ, γ1 := (σγ), u1 := ũ1/w,
v1 := ṽ1/w, ũ1 := σ2ũ, and ṽ1 := σ2ṽ. Therefore, the second case can be avoided.
After a finite number of steps one can assume that ū = α1 · u1, v̄ = β1 · v1 satisfies

1. m(σ, α̃1) +m(σ, β̃1) = 1 for all σ such that σ2|F ,
2. m(σ, α̃1) = m(σ, β̃1) = 0 and m(σ, γ1) ∈ {0, 1}, for all σ such that σ2|H .
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Hence it satisfies (3). Finally, based on the construction, it is easy to check
that this new decomposition also satisfies (1), (2), and (4), that is,

1. α̃1, β̃1 ∈ EP (
√
S)+, gcd(α̃1, β̃1, γ1) = 1,

2. ũ1, ṽ1 ∈ C[x, y], w ∈ E(S)+, gcd(ũ1, ṽ1, w) = 1, and

4. γ21 is a divisor of H . �

Consider a quintuple (f, g, h, U, V ) of polynomials in C[x, y] satisfying the func-
tional equation

(5.6) fU2 − gV 2 = h,

where f · g = F , hred (a generator of the radical of (h)) divides H and F , and H
are defined as at the beginning of this section. Note that (C∗)2 acts on the set of
such quintuples as follows: given λ, μ ∈ C∗, then

(f̃ , g̃, h̃, Ũ , Ṽ ) =
(
(λ2f), (λ−2g), (μ2h), (μλ−1U), (μλV )

)
.

As in the case of F -pairs we will refer to such an action as proportionality.

Definition 5.7. A (2, 2, 0)-quasitoric relation associated with the character χ is a
proportionality class (in the above sense) of quintuples (f, g, h, U, V ) of polynomials
in C[x, y] satisfying the functional equation fU2 − gV 2 = h, where f · g = F , hred
divides H and F and H are defined as at the beginning of this section.

Remark 5.8. As mentioned before Definition 5.1, the set of (2, 2, 0)-quasitoric
relations has a natural order two action defined by (f, g, h, U, V ) �→ (f, g, h, U,−V ).
Note that (f, g, h,−U, V ) is proportional to (f, g, h, U,−V ) and (f, g, h,−U,−V )
is proportional to (f, g, h, U, V ).

Our purpose now is to establish an isomorphism between (2, 2, 0)-quasitoric
relations and normal F -decompositions. Recall the group G of F -pairs from
Lemma 5.3. Denote by Q(D,χ) the set of (2, 2, 0)-quasitoric relations of D as-
sociated with the character χ, that is,
(5.7)
Q(D,χ) :=

{
(f, g, h, U, V ) ∈ C[x, y]5

∣∣ fU2 − gV 2 = h, f · g = F, and hred|H
}/ ∼ .

Proposition 5.9. The set of (2, 2, 0)-quasitoric relations Q(D,χ) has a group struc-
ture isomorphic to the group G of F -pairs, where the isomorphism is equivariant
with respect to the order 2 actions on both groups.

Proof. Let (ū, v̄) be an F -pair. We are going to associate with (ū, v̄) a (2, 2, 0)-
quasitoric relation QT (ū, v̄). To this end, consider a normal F -decomposition,
u = α U

W , v = β V
W , where α := α̃/γ and β := β̃/γ. Let f := α̃2, g := β̃2, h0 := γ2.

From ū2 − v̄2 = 1, we deduce

fU2 − gV 2 = h0W
2.
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It is enough to show that Wred divides H . We already know that it divides FH ,
hence it is enough to show that no irreducible component of F divides W . Other-
wise it must divide either f or g, say f for simplicity, and then it divides V (and
not g). Therefore its multiplicity is odd in fU2 and even in gV 2 as well as in
h0W

2, which is a contradiction. If h := h0W
2, then QT (ū, v̄) := (f, g, h, U, V ) is a

(2, 2, 0)-quasitoric relation of χ.

Notice that up to proportionality, one has u = (λα)λ
−1μU
μW and v = (λ−1β)λμVμW ,

where λα := λα̃/γ and λ−1β := λ−1β̃/γ. Define f̃ :=
(
λ2f

)
, g̃ :=

(
λ−2g

)
,

W̃ :=
(
μ2W 2

)
, Ũ :=

(
μλ−1U

)
, and Ṽ := (μλV ). From ū2 − v̄2 = 1, we deduce

f̃ Ũ2 − g̃Ṽ 2 = h0W̃
2,

and hence (f̃ , g̃, h0W̃
2, Ũ , Ṽ ) ∼ (f, g, h, U, V ).

Conversely, fix a (2, 2, 0)-quasitoric relation QT = (f, g, h, U, V ). Let α̃ :=
√
f

and β̃ :=
√
g and write h := h0W

2 where h0 is square-free. Let γ :=
√
h0. Then

( α̃
γ

U

W
,
β̃

γ

V

W

)
is the normal F -decomposition of the F -pair (u, v) such that QT (u, v) = QT .

Finally, note that if (ū, v̄) is the normal F -decomposition associated with the
(2, 2, 0)-quasitoric relation (f, g, h, U, V ) as at the beginning of this proof, then
(ū,−v̄) will be associated with (f, g, h, U,−V ), and hence the result follows. �

Consider the double cover X2 of X = C2 \ D associated with the order 2
character χ.

Proposition 5.10. The group Q(D,χ) is isomorphic to MorZ2(X2,C
∗).

Proof. We will give a constructive proof of this result. Suppose one has a quasitoric
relation (f, g, h, U, V ) ∈ Q(D,χ). There is a rational map C2 → P1 defined by

(x, y) �→ [fU2 : gV 2] such that fU2 − gV 2 = h. This map, restricted to X̃ =
{fgh = 0} defines an orbifold pencil X̃ → C2,2 = P1

(2,[0:1]),(2,[1:0])\{[1 : 1]}. Finally,
since {fg = 0} = {F = 0} and {h = 0} ⊂ {H = 0} by definition, one can
restrict this to a well-defined orbifold pencil (X,χ) → (C2,2, ρ), which induces an
equivariant morphism in MorZ2(X2,C

∗).
Conversely, any equivariant morphism in MorZ2(X2,C

∗) induces a morphism
of marked orbifolds on the quotient (X,χ) → (C2,2, ρ). Extending this to P2 one
obtains a rational morphism

P2 ��� C2,2 = P1
(2,[0:1]),(2,[1:0]) \ {[1 : 1]},

which on a generic affine chart can be defined by (x, y) �→ [fU2 : gV 2], where
{fg = 0} corresponds to the ramified part of D and fU2 − gV 2 = h with {h̃ =
0} ⊂ {H = 0} corresponds to the unramified part of D. This quasitoric relation
defines an element of Q(D,χ) and the order 2 action corresponds with the covering
transformations.
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Finally, we check that this bijection is in fact a homomorphism. Note that an
element p := (f, g, h, U, V ) ∈ Q(D,χ) produces the commutative diagram

(5.8)

[x : y : z : w] [αu : βv]

X2 P1 \ {[1 : 1], [1 : −1]}

X P1
(2,[1:0]),(2,[0:1]) \ {[1 : 1]}

[x : y : z] [fU2 : gV 2],

Ψp

ψp

where X2 is contained in {[x : y : z : w] ∈ P3 | w2 = fg = F} and (αu, βv) is
the normal F -decomposition associated with p according to Proposition 5.9. For
convenience, we change the coordinates of P1 so that [1 : 1] �→ [1 : 0] and [1 : −1] �→
[0 : 1]. In this case, P1 \{[1 : 1], [1 : −1]} becomes C∗ = P1 \{[1 : 0], [0 : 1]} and the
new equation of Ψp : X2 → C∗ becomes Ψp(x, y, z, w) = (αu + βv)2. Moreover,
diagram (5.8) becomes

(5.9)

[x : y : z : w] (αu + βv)2

X2 C∗

X C(2,
√−1),(2,−√−1)

[x : y : z] 2αβuv,

Ψp

ψp

h

where the map h is the double cover t �→ −(t− t−1)/2 ramified at t = ±√−1 with
values ∓√−1 and where (αu + βv)−1 = (αu− βv).

Suppose given two quasitoric relations pi := (fi, gi, hi, Ui, Vi) ∈ Q(D,χ), i = 1, 2,
where f1g1 = f2g2 = F and hi|H . Consider (ūi, v̄i) = (αiui, βivi), i = 1, 2, the nor-
mal F -decompositions associated with pi according to Proposition 5.9. From (5.1)
one can see that

Ψp1p2 =
(
ū1ū2 + v̄1v̄2 + ū1v̄2 + ū2v̄1

)2
= (ū1 + v̄1)

2(ū2 + v̄2)
2 = Ψp1Ψp2 . �

As a consequence, under the conditions of Theorem 1.3 one obtains Theo-
rem 1.5.

Proof of Theorem 1.5. The result follows from Proposition 5.10 and the fact that

MorZ2(X2,C
∗) = HomZ2(Alb(X2)

−,C∗) = MorZ2((C
∗)d,C∗) = Hom(Zd,Z) = Zd,

see (4.9), where d ≤ d(χ) and equality always holds when the character has only
weight 2. �
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6. Examples

We refer to [5] for explicit examples of characters of depth greater than one and
corresponding orbifold pencils in the case of complements of reducible plane curves.

In this section we present two examples illustrating interesting phenomena
about 2-torsion characters that have come up during the preparation of this paper
and that might be of interest to the reader.

6.1. Orbifold pencils of type (2, 2, 2, 2)

Note that Theorem 1.3 (2) refers only to weight 2 characters of order 2. Characters
of order 2 and weight 1 might be associated with elliptic orbifold pencils of type
(2, 2, 2, 2) as the following example seems to suggest.

Consider the Hesse arrangement H of the twelve lines {�1, . . . , �12} joining the
inflection points of a smooth plane cubic. It is easy to check that the system
of cubics sharing the nine inflection points is a pencil with exactly four singular
fibers. Each one of these fibers is a completely reducible curve given by three lines
in general position. The four cubics Ck := {�3k+1�3k+2�3k+3 = 0}, k = 0, 1, 2, 3,
belong to a pencil and their union gives the Hesse arrangement. After blowing up
the base points of this pencil one obtains an elliptic fibration over P1 where Pk ∈ P1

is the image of the special fiber Ck, k = 0, 1, 2, 3. If one further blows up one of
the three double points in each special fiber, one obtains a rational surface P̃2,
four exceptional vertical divisors E0, E1, E2, E3 (not sections), and twelve strict
transforms �̃i, i = 1, . . . , 12. The surface X := P̃2 \ ∪12

i=1�̃i together with the
elliptic fibration induces a well-defined orbifold pencil onto P1

(2,P0),(2,P1),(2,P2),(2,P3)

since the preimage of Pk in X is given by 2Ek (in divisor notation).

6.2. Ceva arrangements

Note that the polynomials f and g in the group of quasitoric relations (5.7) must
satisfy fg = F but such a partition of F might be different for different qua-
sitoric relations as the following example shows. Consider the set of lines given
in (CEVA). The curve D :=

{∏7
i=1 �i = 0

}
is a realization of the special Ceva

arrangement CEVA(2, 1) (see Section 2.3.J, p. 81 in [10]) otherwise known as the
non-Fano plane. In [5], a computation of the 2-torsion characters of D is presented
via orbifold pencils. In particular, considerG := π1(P

2\D) (whose abelianization is
(Zγ1 ⊕ · · · ⊕ Zγ7)/(γ1 + · · ·+ γ7)). A character ofG can be represented by a septu-
ple of complex numbers whose product is 1, the i-th coordinate representing the im-
age of any meridian γi around �i. Hence, the element χ = (1,−1,−1, 1,−1,−1, 1)
represents a character of G. In fact, it is well known that its depth is 2. Note
that F = �2�3�5�6 whereas H = �1�4�7 according to the notation introduced in
Section 5.2. Note that

(6.1)
�2�5 − �3�6 = �1�4,

�2�6 − �3�5 = �4�7
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are quasitoric relations of type (2, 2, 0) corresponding to the quintuples q1 :=
(�2�5, �3�6, �1�4, 1, 1) and q2 := (�2�6, �3�5, �4�7, 1, 1) respectively. It is not hard to
show that q1 and q2 are strongly independent and generate Q(D,χ). Note that q1
and q2 in fact determine two maps P2 \ C → C \ {0, 1} and thus two surjections
from G onto π1(C \ {0, 1}) = Z ∗ Z.

Finally, note that

�2�5�
2
8 − �3�6�

2
9 = �1�4�

2
7,

where �8 := (y − z − x) and �9 := (z − x − y) is another quasitoric decompo-
sition corresponding to q3 = (�2�5, �3�6, �1�4�

2
7, �8, �9) ∈ Q(D,χ). Following the

formula (5.3) which describes explicitly the group structure in Q(D,χ) one can
easily check that q3 = −q1 + 2q2. Also note that q3 determines an orbifold pen-
cil P2 \ C → C2,2 and thus a surjection from G onto the infinite dihedral group
πorb
1 (C2,2) = Z/2 ∗ Z/2 (also see [8]) which is a metacyclic group.
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