
Rev. Mat. Iberoam. 30 (2014), no. 1, 331–348
doi 10.4171/rmi/781

c© European Mathematical Society

On filling minimality of simple Finsler manifolds

Henrik Koehler

Abstract. This paper states a formula for the difference of the Holmes–
Thompson volumes of two simple Finsler manifolds of arbitrary dimension,
in terms of the difference of the boundary distances and their derivatives.
An application is a conditioned result on filling minimality.

1. Introduction

Let M be a smooth compact manifold with boundary ∂M and a reversible Finsler
metric F . Then (M,F ) is called simple, if it is convex, without conjugate points,
and any two points x, y ∈M are connected by a unique geodesic segment. Simple
manifolds are known to be contractible, and whether a manifold is simple can
be determined from the data of boundary distances (see [3]; the change from
Riemannian to Finsler metrics has no consquence).

In this article, (M,F ) shall be called minimal filling (for Finsler volume)
if volF̃ (M̃) ≥ volF (M) holds for all oriented Finsler manifolds (M̃, F̃ ) with ∂M̃ =
∂M and distF̃ (y, z) ≥ distF (y, z) for all y, z ∈ ∂M , where vol denotes the Holmes–
Thompson (symplectic) volume. The notion of filling volume was originally intro-
duced in [6] in the context of systolic and isoperimetric inequalities. It should be
mentioned that the Holmes–Thompson volume coincides with the standard volume
in the Riemannian case; hence the above notion comprises filling minimality for
Riemannian manifolds.

An open question is whether simple manifolds are minimal fillings. In contrast,
a manifold that contains regions which are not (or are too sparsely) intersected by
minimal geodesics between boundary points clearly cannot be a minimal filling.
Therefore, some restriction has to be imposed on (M,F ) to guarantee that the
data of boundary distances give sufficient information about the interior of M ;
here simplicity seems a adequate requirement.

In the Riemannian case, the question of filling minimality is often considered
together with the boundary rigidity question, which asks whether a Riemannian
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metric is determined (up to isometries) from its boundary distances. Filling min-
imality was proved for conformal metrics and for two-dimensional Riemannian
SGM-manifolds (see [4]), and for metrics close to one another in a C3,α-sense
(see [5]). In two recent articles ([1] and [2]), the problems of boundary rigidity
and filling minimality were solved for simple Riemannian metrics close to the flat
(resp., hyperbolic) metric in a C2-sense (resp., C3-sense). Also, filling minimality
was recently shown for two dimensional Finsler metrics with minimal geodesics
(see [7]). Further, a local result was obtained in [8], stating volume monotonicity
with respect to boundary distance increasing changes of the Finsler metric in a
C∞-neighbourhood for simple Finsler manifolds of any dimension.

Corollary 3.2 states that an inequality for the boundary distances of two simple
Finsler manifolds implies the same inequality between the symplectic volumes,

if the dimension is n = 2 (as already known from [7]);

or n = 3 or n = 4 and the sum of the boundary distances is again

a boundary distance function of some simple Finsler manifold;

or the boundary distance functions are C2-close to each other.

It should be noticed that the third condition differs from results like Propo-
sition 1.2 in [5] or Theorem 2 in [8] on volume monotonicity, since it pertains to
C2-small changes for the boundary distance function itself, rather than pertur-
bations of the underlying Riemann or Finsler metric. To clarify what “C2-close”
means for boundary distances, their behaviour near the diagonal is examined in
Section 4. One might ask, whether the second condition is necessary; however,
Proposition 5.1 shows, that for n = 3, the sum of boundary distance functions
need not come from a simple Finsler manifold.

The essential tool is a relationship between the canonical symplectic two-form
on the cotangent bundle and boundary distances (cf. [9]). This allows the bound-
ary integral in Santaló’s formula to be expressed in terms of the mixed second
derivative of the boundary distance function (see Proposition 2.2). Using this
identity, Proposition 3.1 expresses the difference of Finsler volumes as an integral
of the difference of boundary distances; thereby it generalizes what was known for
two-dimensional Riemannian manifolds (Theorem 1.4 of [4]).

Acknowledgements. The author is grateful to Sergei Ivanov for his comments
on a prior preprint version. He also kindly provided a proof of the C1,1-regularity
of the exponential map along the zero section in the Finsler case (Proposition 4.1).
Further, the author would like to thank Christopher Croke, Gerhard Knieper and
the referee for their helpful remarks.

2. Santaló-type integral formulas

In all that follows, only simple Finsler manifolds are considered. Since these are
always contractible, one may restrict to the model case of an n-disk.

Henceforth, let B = {x ∈ R
n : ‖x‖ < 1} denote the unit ball, let Sn−1 be

its boundary and let B̄ = B ∪ Sn−1 be its closure. Suppose B̄ is equipped with
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a reversible Finsler metric F : T B̄ → [0,∞), i.e., F is a norm on every TxB̄,
depending smoothly on x ∈ B̄, F (−v) = F (v) for all v ∈ T B̄, and the bilinear
form associated to F at w ∈ TxB̄ \ {0} via

gw(u, v) :=
d2

2ds dt

∣∣∣
s=t=0

F 2(w + su+ tv) (u, v ∈ TxB̄),

is positive definite on TxB̄. For later use, notice also that gw(w,w) = F 2(w)
and grw = gw for all r �= 0. Further, let � : B̄ × B̄ → [0,∞) denote the length
metric induced by F ; that is, �(x, y) = infc

∫
F (ċ), where c ranges over all smooth

curves connecting x with y. Throughout, (B̄, F ) is required to be a simple Finsler
manifold.

For v ∈ T B̄, let γv : [t−(v), t+(v)] → B̄ be the maximal geodesic with γ̇v(0) = v,
so γv(t±(v)) ∈ Sn−1. Thus, the geodesic flow on the unit tangent bundle SB̄ :=
{v ∈ T B̄ : F (v) = 1} is given by

Φ : {(v, t) ∈ SB̄ × R : t−(v) ≤ t ≤ t+(v)} → SB̄, (v, t) 
→ φt(v) = γ̇v(t).

Moreover, let Γ := {v ∈ SB̄ : π(v) ∈ Sn−1, t+(v) > 0} be the set of inward
pointing unit vectors over the boundary, where π : T B̄ → B̄ denotes the footpoint
projection. Since (B̄, F ) is simple, t+ : Γ → (0,∞) is smooth, and

Φ : {(v, t) : v ∈ Γ, t ∈ (0, t+(v))} → SB

is an orientation preserving diffeomorphism.
On T B̄ \ {0}, there is a natural one-form θ, called the Hilbert form:

TwT B̄ � ξ 
→ θw(ξ) = gw(w,Dπ(w)ξ)

It comes from the canonical one-form on T ∗B̄ via the Legendre transform; conse-
quently, dθ is a symplectic two-form (cf. [10], page 26), and θ ∧ (dθ)n−1 defines a
volume form on SB̄. In fact, it is related to the Liouville form λ via

λ = cn θ ∧ (dθ)n−1, where cn :=
(−1)n(n+1)/2+1

(n− 1)!
,

Hence, integration with respect to the Holmes–Thompson volume yields∫
B̄

f d vol =
cn

vol(Sn−1)

∫
SB̄

f ◦ π θ ∧ (dθ)n−1 ∀ f ∈ C(B̄).

Both dθ and λ are invariant with respect to the geodesic flow (see [10], Section 5.4).
Now, a Finsler version of Santaló’s formula reads:

Lemma 2.1. For every function f ∈ L1(SB̄, λ), there holds

∫
SB̄

fλ = cn

∫
Γ

∫ t+

0

f ◦ φt dt (dθ)n−1.



334 H. Koehler

Proof. For v ∈ SB̄ and t ∈ (t−(v), t+(v)), fix some (ξ, τ) ∈ T(v,t)(SB̄ × R). Then

there holds Φ∗λ(v,t) = cn · ((φt)∗θ + dt
) ∧ (dθ)n−1, because (φt)∗dθ = dθ and

Φ∗θ(ξ, τ) = θφt(v)(DΦ(v, t)(ξ, τ)) = θφt(v)(Dφ
t(v)ξ + τ ddtφ

t(v))

= (φt)∗θ(ξ) + τgφt(v)(φ
t(v), ddtπ ◦ φt(v)) = ((φt)∗θ + dt)(ξ, τ).

Hence, the claimed identity is obtained from the transformation formula. �

Further, set Sn−1 × Sn−1 \ diagonal =: Π for brevity. Then the map

ψ : Γ → Π, ψ(u) = (π(u), exp(t+(u)u))

is a diffeomorphism with respect to the orientation induced by ψ. This allows the
integral in Lemma 2.1 to be expressed in the following form:

Proposition 2.2. The integral of any f ∈ C(SB̄) can be computed via

∫
SB̄

f dλ = cn

∫
Π

∫ �

0

f ◦ φt ◦ ψ−1 dt (d1d2�)
n−1.

Proof. Set V = exp−1(B̄) ⊂ T B̄ and consider the map

Ψ : V → B̄ × B̄, Ψ(w) = (π(w), exp(w)),

which is related to ψ via ψ(u) = Ψ(t+(u)u), for u ∈ Γ. Since all geodesics minimize
distance, the first variation formula yields that

d1�(x, exp(w))v =
−gw(w, v)
F (w)

∀x ∈ B̄, v, w ∈ TxB̄, w ∈ V \ {0}

Therefore,

(2.1) Ψ∗(d1�)w = π∗d1�(π(w), exp(w)) =
−θw
F (w)

.

Now, given u ∈ Γ, ξ ∈ TuΓ, consider a smooth curve u : (−ε, ε) → Γ with u(0) = u,
u̇(0) = ξ and set w(s) = t+(u(s))u(s), so that ψ ◦ u = Ψ ◦ w.

From equation (2.1) and gu = gw one infers

−ψ∗(d1�)(ξ)= −Ψ∗(d1�)w(ẇ(0)) =
1

F (w)
θw(ẇ(0))

=
1

t+(u)
gw(t+(u)u,

d
ds

∣∣
0
π ◦ w(s)) = gu(u,Dπ(u)u̇(0)) = θ(ξ).

Using “d = d1 + d2”, one concludes that dθ = −dψ∗d1� = ψ∗d1d2�. Finally,
Proposition 2.2 follows from Lemma 2.1 and the transformation formula. �
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To illustrate the geometric nature of D2
1,2�, consider x, y ∈ B̄, y �= x, and let

u = exp−1
x (y)/�(x, y) be the (Finsler) unit vector at x pointing towards y and

Pu : TxB̄ → TxB̄, Puv = v − gu(u, v)u

the projection onto the gu-orthogonal complement of u. Then there holds:

Proposition 2.3. The mixed second derivative of �(x, y) satisfies

D2
1,2�(x, y)(v, w) =

−gu(Puv,D exp−1
x (y)w)

�(x, y)
∀ v ∈ TxB̄, w ∈ TyB̄.

Proof. Let c : (−ε, ε) → B̄ \ {x} a smooth curve with c(0) = y and ċ(0) = w and
set r(t) = �(x, c(t)); hence one can write c(t) = expx(r(t)u(t)) with F (u(t)) = 1
for all t. Again d1�(x, c(t))v = −gu(t)(u(t), v), from the first variation formula, so

−D2
1,2(x, y)(v, w) =

d

dt

∣∣∣
0
gu(t)(u(t), v) =

d2

2ds dt

∣∣∣
0
F (u(t) + sv)2 = gu(v, u̇(0)).

On the other hand, PuD exp−1
x (y)w = Pu

(
ṙ(0)u(0) + r(0)u̇(0)

)
= �(x, y)u̇(0),

because gu(u, u̇(0)) =
d
2dt

∣∣
0
F (u(t))2 = 0. �

Remarks. For x, y ∈ Sn−1 and w ∈ TyS
n−1, one has u(t) = ψ−1(x, c(t)), so

u̇(0) = D2ψ
−1(x, y)w and thus −D2

1,2�(x, y)(v, w) = gψ−1(x,y)(v,D2ψ
−1(x, y)w).

Further, if (ξ1, . . . , ξn−1, υ1, . . . , υn−1) are local coordinates on Π, the coordinate
expression of (d1d2�)

n−1 reads

(d1d2�)
n−1 =

( n∑
i,j=1

∂2�

∂ξi∂υj
· dξi ∧ dυj

)n−1

= det
( ∂2�

∂ξi∂υj

)
· (dξ ∧ dυ)n−1,

where dξ ∧ dυ := dξ1 ∧ dυ1 + · · · + dξn−1 ∧ dυn−1. In particular, nondegeneracy
of dθ implies that the determinant does not vanish.

3. An application to filling minimality

The Santaló-type integral formula from Proposition 2.2 can be used to obtain
an equality between volume differences and a certain integral of differences of
boundary distances. Again, set Π = Sn−1 × Sn−1 \ diagonal.

Proposition 3.1. Suppose (B̄, F ) and (B̄, F̃ ) are simple Finsler manifolds with
induced distances � and �̃, respectively. Then for the related Holmes–Thompson
volumes, there holds

volF̃ (B̄)− volF (B̄) =
cn

vol(Sn−1)

∫
Π

(�̃− �)
n−1∑
k=0

(dd2�̃)
k ∧ (dd2�)

n−1−k.
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Proof. Taking f ≡ 1 in Proposition 2.2, one obtains

volF (B̄) =
volF (SB̄)

vol(Sn−1)
=

cn
vol(Sn−1)

∫
Π

�(d1d2�)
n−1.

Subtracting this from the corresponding expression for F̃ gives

volF̃ (B̄)− volF (B̄) =
cn

vol(Sn−1)

∫
Π

�̃ (dd2�̃)
n−1 − � (dd2�)

n−1.

The integrand can be decomposed as

�̃ (dd2�̃)
n−1 − � (dd2�)

n−1 = (�̃− �) (dd2�̃)
n−1 + �

(
(dd2�̃)

n−1 − (dd2�)
n−1
)

= (�̃ − �) (dd2�̃)
n−1 + � dd2(�̃− �) ∧

( n−2∑
k=0

(dd2�̃)
k ∧ (dd2�)

n−2−k
)
.

Writing η =
∑n−2
k=0 (dd2�̃)

k ∧ (dd2�)
n−2−k for simplicity, η = 1 for n = 2, while for

n > 2, η is an exact 2(n− 2)-form of degree n− 2 in each factor of Sn−1 × Sn−1.
Also, using “d = d1 + d2” and “d2i = 0”, one obtains

�dd2(�̃− �)− (�̃− �)dd2� = �dd2�̃− �̃dd2� = d(�d2�̃+ �̃d1�)− d2� ∧ d2�̃+ d1� ∧ d1�̃.

Because d1�∧d1�̃∧η and d2�∧d2�̃∧η have degree n in the first and second variable,
respectively, they cancel. For simplicity, set

(dd2�̃)
n−1 + dd2� ∧ η =

n−1∑
k=0

(dd2�̃)
k ∧ (dd2�)

n−1−k =: η̂.

One infers from the above decomposition that

volF̃ (B̄)− volF (B̄) =
cn

vol(Sn−1)

∫
Π

(�̃ − �)η̂ + d(�d2�̃ ∧ η) + d(�̃d1� ∧ η).

Here, η̂ is integrable, because η̂ = n·∫ 1

0 (dd2((1−a)�+a�̃))n−1 da holds pointwise on

Π, and the integrability of (dd2((1−a)�+a�̃))n−1 will be satisfied1 in Corollary 4.5.
Now, let U(ε) := {(x, y) ∈ Π : �(x, y) < ε} denote a tubular ε-neighbourhood

of ∂Π = diag(Sn−1 × Sn−1). Then Stokes’ theorem implies∫
Π\U(ε)

d(�d2�̃ ∧ η) =
∫
∂U(ε)

�d2�̃ ∧ η = ε

∫
∂U(ε)

d2�̃ ∧ η = ε

∫
Π\U(ε)

dd2�̃ ∧ η.

1In fact, since two-forms can be muted without invoking sign changes, η̂ can be considered a
homogenous polynomial in dd2� and dd2 �̃ with all coefficients equal to 1. The claimed integral
representation thus follows from the binomial expansion and the fact that

n ·
(n− 1

k

) ∫ 1

0
ak(1− a)n−1−k da = 1 ∀ k ∈ {0, . . . , n− 1}.
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However, dd2�̃ ∧ η = η̂ − (dd2�)
n−1, so

lim
ε→0

∫
Π\U(ε)

dd2�̃ ∧ η =

∫
Π

η̂ −
∫
Π

(dd2�)
n−1 and lim

ε→0
ε

∫
Π\U(ε)

dd2�̃ ∧ η = 0.

Likewise with Ũ(ε) := {(x, y) ∈ Π : �̃(x, y) < ε}∫
Π\Ũ(ε)

d(�̃d1� ∧ η) = ε

∫
Π\Ũ(ε)

dd1� ∧ η = −ε
∫
Π\Ũ(ε)

dd2� ∧ η ε→0−→ 0.

Thus, the integrals of the exact forms cancel, and one obtains the claimed equality.
�

Corollary 3.2. Let (B,F ) and (B, F̃ ) be simple and such that �(y, z) ≤ �̃(y, z)
holds for all y, z ∈ Sn−1. Then volF (B̄) ≤ volF̃ (B̄) with equality implying �(y, z) =

�̃(y, z) for all y, z ∈ Sn−1, provided one of the following criteria is satisfied:

1. The dimension is n = 2; or n ≤ 4 and there is a simple Finsler metric F̄
having boundary distances �̄ = �̃+ �.

2. �̃ lies in an appropriate C2-neighbourhood of �.

Proof. Conditions 1 and 2 guarantee that η̂ is a volume form, so Proposition 3.1
implies the assertions:

For n = 2, Proposition 2.2 states that η̂ = dd2� + dd2�̃ corresponds to the
sum of volume forms on the unit inward tangent bundle over ∂B, hence is again a
volume form. Then η̂ can be decomposed as

η̂ = 1
2 (dd2�)

2 + 1
2

(
dd2(�+ �̃)

)2
+ 1

2 (dd2�̃)
2 for n = 3 and

η̂ = 2
3 (dd2�)

3 + 1
3

(
dd2(�+ �̃)

)3
+ 2

3 (dd2�̃)
3 for n = 4.

Here, the mixed term is a volume form, if �+ �̃ is simple.
For the second condition: for every ε > 0, there is a constant δ > 0 such that

|(dd2�)n−1(x, y)| ≥ δ|(dx ∧ dy)n−1| and sup ‖D2
1,2�(x, y)‖ ≤ 1

δ

for all (x, y) ∈ Π with ‖x− y‖ ≥ ε. Accordingly, the expansion

η̂ =

n−1∑
k=0

(dd2�)
n−1−k ∧ (dd2�+ dd2(�̃− �))k

=

n−1∑
i=0

n−1∑
k=i

(
k

i

)
(dd2�)

n−1−i ∧ (dd2(�̃− �))i

shows that η̂ is dominated by the term n(dd2�)
n−1 as long as ‖D2

1,2(�̃ − �)‖ is
smaller than some constant depending on δ and n. Since ε was arbitrary, this
yields a C2-neighbourhood for �; see, however, the following Remark 2. �
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Remarks. 1) The first condition could be generalized for n > 4. Namely, one
can choose ai ∈ [0, 1] and ci > 0, such that η̂ =

∑
i ci (dd2(ai� + (1 − ai)�̃))

n−1.

Then η̂ is a volume form, if (1−ai)�+ai�̃ are boundary distances of simple Finsler
metrics Fi.

2) Boundedness of ‖D2
1,2(�̃− �)‖ would require that D2

1,2�̃(x, y) and D
2
1,2�(x, y)

have the same asymptotic behaviour as y → x; so F̃ and F a priori would have to
coincide on Sn−1, as was pointed out by S. Ivanov. Namely, due to Proposition 2.3,
D2

1,2� becomes singular along the diagonal; indeed the scaling depends on the
direction. To avoid this deficiency, one can consider another criterion for positivity
of η̂ on {(x, y) ∈ Π : ‖x− y‖ < ε}, for ε small. Actually, in local coordinates (ξ, υ),

η̂ = n

∫ 1

0

(dd2((1−a)�+a�̃))n−1 da = n

∫ 1

0

det
(∂2((1 − a)�+ a�̃)

∂ξi∂υj

)
da·(dξ∧dυ)n−1.

Thus, it is sufficient to ensure that det
(
(1 − a) ∂2�

∂ξi∂υj
+ a ∂2 �̃

∂ξi∂υj

)
does not vanish

for a ∈ (0, 1). In view of the remark after Proposition 2.3, this is satisfied, pro-
vided ψ̃ lies in a suitable C1-neighbourhood of ψ and g̃ψ̃−1(x,y) is sufficiently close

to gψ−1(x,y), for (x, y) ∈ Π. In the remark after Proposition 4.4, such a condition

is stated in terms of � and �̃.

4. Analysis of D2
1,2� near the diagonal

Starting from Proposition 2.3, the objective of this section is to find two-sided
estimates for D2

1,2�(x, y) as x tends to y, in order to control the singularity of
(d1d2�)

n−1 on the diagonal.
First, since F is a Finsler metric, there is a constant C1 > 1, such that

(4.1)
1

C2
1

‖v‖2 ≤ gu(v, v) ≤ C2
1‖v‖2 ∀u, v ∈ TxB̄, u �= 0

where ‖v‖ denotes the standard Euclidean norm on R
n. Furthermore, C1 can be

chosen to be independent of x, for compactness of B̄. As a consequence, one infers
for the related distances

(4.2)
1

C1
‖x− y‖ ≤ �(x, y) ≤ C1‖x− y‖ ∀x, y ∈ B̄.

The term D exp−1
x (y) requires some scrutiny: On a Finsler manifold, the expo-

nential map at any point is known to be a local C1-diffeomorphism on a neighbour-
hood of the origin, but of class C∞ only away from zero (see [10], Theorem 11.1.1).
S. Ivanov mentioned that the regularity is in fact C1,1:

Proposition 4.1. Let (N,F ) a smooth Finsler manifold without boundary. Then
for every point p ∈ N , the differential D expp of the exponential map is Lipschitz-
continuous at 0 ∈ TpN .
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Proof (by S. Ivanov). In local coordinates on a neighbourhood of p, the Finsler
metric F can be considered a function F1(x, v) of points x ∈ R

n and vectors v ∈ R
n.

For simplicity, one can assume that x(p) = 0 and extend F1 arbitrarily to a smooth
Finsler metric on the entire R

n. Define a family Ft, t ∈ R of “blow-ups” of the
metric F1 by Ft(x, v) = F1(tx, v). This is a smooth family of metrics, so it defines
a smooth family of exponential maps Et : R

n → R
n (here Et is the exponential

map at 0 of the metric Ft). More precisely, this family is smooth on any compact
set separated away from the origin. We consider it in a neighborhood of the
unit sphere. As (Rn, F0) is a Minkowski space, E0 is the identity, so its second
derivative is zero. Since D2Et depends smoothly on t, there exists a constant
C > 0 such that, for |t| small enough, ‖D2Et(v)‖ ≤ C|t| at any point v of the unit
sphere (here ‖ · ‖ is a norm on bilinear forms). Because F1(tx, tv) = |t| · Ft(x, v),
the map x 
→ tx is a constant stretch and thus transfers geodesics in (Rn, Ft) to
geodesics in (Rn, F1). Consequently, E1(v) = tEt(v/t), so DE1(v) = DEt(v/t)
and D2E1(v) =

1
tD

2Et(v/t) for all t �= 0. Rescaling back to the original metric,
we get ‖D2E1(v)‖ ≤ C for all v on the sphere of radius t > 0. So D2E1 is bounded
near the origin, hence E1 = exp0 is of class C1,1. �

Notice that, because of the smooth dependence of the generating vector field on
the geodesic flow with respect to changes in the Finsler metric, the corresponding
maps D2Et,p : Sn−1 → (Rn ⊗ R

n)∗ vary smoothly with t and p ∈ N . Therefore,
the Lipschitz constant C can be chosen in a way that depends continuously on p.
This allows for a uniform estimate in the next lemma:

Lemma 4.2. There exists a constant C2 > 1, such that for all x �= y ∈ B̄ with
‖x− y‖ < 1/C2 and all v ∈ TxB̄, w ∈ TyB̄, there holds

∣∣�(x, y) ·D2
1,2�(x, y)(v, w) + g(Puv, w)

∣∣ ≤ C2‖x− y‖ · ‖w‖
√
gu(Puv, v).

Proof. When extending F to a neighbourhood of B̄, Proposition 4.1 guarantees
the existence of some C3 > 0, such that ‖D expx(ṽ)− 1‖ ≤ C3‖ṽ‖ for all ṽ ∈ TxB̄
with ‖ṽ‖ < 1/C3; and again C3 can be selected independently of x, since B̄ is
compact. If ‖ṽ‖ < 1/(2C3), then the inverse of D expx(ṽ) satisfies

‖D expx(ṽ)
−1 − 1‖ ≤ ‖D expx(ṽ)− 1‖

1− ‖D expx(ṽ)− 1‖ ≤ 2C3 ‖ṽ‖ ,

where the first inequality follows from

‖(A−1 − 1)w‖ ≤ ‖A− 1‖ · ‖A−1w‖ ≤ ‖A− 1‖ · (‖w‖+ ‖(A−1 − 1)w‖).
Taking ṽ = exp−1

x (y) in the above estimate, one obtains that

(4.3) ‖D exp−1
x (y)− 1‖ ≤ 2C2

1 C3 · ‖x− y‖

as long as ‖x− y‖ < 1/(2C2
1 C3), because, due to (4.1) and (4.2),

‖ exp−1
x (y)‖ ≤ C1 · F (exp−1

x (y)) = C1 · �(x, y) ≤ C2
1 ‖x− y‖.
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Now, applying the Cauchy inequality to the formula from Proposition 2.3 yields∣∣�(x, y) ·D2
1,2�(x, y)(v, w) + g(Puv, w)

∣∣ = ∣∣gu(Puv, (D exp−1
x (y)− 1)w)

∣∣
≤
√
gu((D exp−1

x (y)− 1)w, (D exp−1
x (y)− 1)w) ·

√
gu(Puv, v)

for all v ∈ TxB̄, w ∈ TyB̄. According to (4.3), the first factor satisfies√
gu((D exp−1

x (y)− 1)w, (D exp−1
x (y)− 1)w) ≤ C1

∥∥(D exp−1
x (y)− 1)w

∥∥
≤ 2C3

1 C3 ‖x− y‖ · ‖w‖
provided that ‖x− y‖ ≤ 1/(2C2

1 C3), which proves the assertion. �

Restricting to the case of x, y ∈ Sn−1, let exy ∈ TxS
n−1 denote the Euclidean

unit vector tangent to the shortest arc on Sn−1 that connects x with y. Then
TxS

n−1 allows a decomposition into R · exy and Txy := TxS
n−1 ∩ TyS

n−1, its
orthogonal complement with respect to the Euclidean scalar product 〈· , ·〉. The
following estimates for gu(Puv, w) will be needed in the sequel.

Lemma 4.3. There exists a constant C4 > C2 such that there hold

gu(Puexy, exy) ≤ C4‖x− y‖2 ≥ gu(Pueyx, eyx),

gu(Puv, v) ≥ 1

C4
‖v‖2 ∀ v ∈ Txy

whenever x, y ∈ Sn−1 satisfy 0 �= ‖x− y‖ < 1/C4.

Proof. First, when integrating (4.3) from the proof of Lemma 4.2, one obtains

‖y − x− exp−1
x (y)‖ =

∥∥∥ ∫ 1

0

(
1−D exp−1

x (ty + (1− t)x)
)
(y − x) dt

∥∥∥
≤
∫ 1

0

2C2
1 C3‖ty − tx‖ · ‖x− y‖ dt = C2

1 C3 ‖x− y‖2(4.4)

if ‖x− y‖ ≤ 1/(2C2
1 C2). On the other hand, one infers from plane geometry that∥∥∥ x− y

‖x− y‖ − eyx

∥∥∥ =
∥∥∥ y − x

‖x− y‖ − exy

∥∥∥ = 2 sin(s/4) ≤ ‖x− y‖,

where s = 2 arcsin(‖x−y‖/2) is the Euclidean length of the shortest arc between x
and y on Sn−1. One concludes from the triangle inequality that∥∥∥exp−1

x (y)

‖x− y‖ − exy

∥∥∥ ≤ (1 + C2
1 C3)‖x− y‖.

Since Pu
(
exp−1

x (y)/‖x− y‖) = 0, one can apply (4.1) and (4.4) to get

gu(Puexy, exy) = gu

(
Pu

(
exy − exp−1

x (y)

‖x− y‖
)
, Pu

(
exy − exp−1

x (y)

‖x− y‖
))

≤ C2
1

∥∥∥exp−1
x (y)

‖x− y‖ − exy

∥∥∥2 ≤ C6
1 C

2
3 ‖x− y‖2.
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Similar reasoning shows the same estimate for eyx, thereby verifying the first two
claimed inequalities.

Next, let z ∈ R
n be the unique vector such that gu(v, z) = 〈v, y − x〉 for all

v ∈ R
n. Since 〈v, y − x〉 = 0 for all v ∈ Txy, a Bessel inequality yields

1 = gu(u, u) ≥ gu(u, v)
2

gu(v, v)
+
gu(u, z)

2

gu(z, z)
⇒ gu(Puv, v) ≥ gu(v, v)

gu(u, z)
2

gu(z, z)
.

For the numerator, the Cauchy inequality and (4.4) and (4.2) show

gu(u, z) =
〈exp−1

x (y)

�(x, y)
, y − x

〉
=

‖y − x‖2 − 〈y − x− exp−1
x (y), y − x〉

�(x, y)

≥ ‖x− y‖2 − ‖x− y‖ · ‖y − x− exp−1
x (y)‖

�(x, y)

≥ ‖x− y‖2 (1− C2
1 C2 ‖x− y‖)

�(x, y)
≥ ‖x− y‖

2C1
.

Further, (4.1) implies a similar inequality for the dual metric g∗u, so gu(z, z) =
g∗u((y − x)T , (y − x)T ) ≤ C2

1‖x − y‖2 in the denominator. Collectively, these
estimates demonstrate that gu(Puv, v) ≥ 1

4C4
1
gu(v, v) ≥ 1

4C6
1
‖v‖2 for all v ∈ Txy.

At the end, C4 can be chosen to be the largest of the constants above. �

Returning to the situation of Proposition 3.1, consider another simple Finsler
metric F̃ on B̄ with corresponding distance function �̃.

Proposition 4.4. There exists a constant C > 1, such that for arbitrary a ∈ [0, 1]
and all x �= y ∈ Sn−1 with ‖x− y‖ ≤ 1/C, there holds

∣∣(d1d2((1− a)�+ a�̃
)
(x, y)

)n−1∣∣ ≤ C

‖x− y‖n−3

∣∣(dx ∧ dy)n−1
∣∣.

Proof. Given x, y ∈ Sn−1, −y �= x �= y, let e1, . . . , en−2 be a basis of Eu-
clidean unit vectors of Txy, such that (e1, . . . , en−2, exy) and (e1, . . . , en−2,−eyx)
form an oriented orthonormal basis of TxS

n−1 and TyS
n−1, respectively. Then

d1d2�(x, y)
n−1 = detA·(dx∧dy)n−1, where the coefficient matrixA ∈ R

(n−1)×(n−1)

has block structure:

A =

(
Q c
r s

)
with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qij =D2
1,2 �(x, y)(ei, ej) (i, j ≤ n− 2)

cj =D2
1,2 �(x, y)(exy, ej) (j ≤ n− 2)

ri =−D2
1,2 �(x, y)(ei, eyx) (i ≤ n− 2)

s =−D2
1,2 �(x, y)(exy, eyx).

Next, suppose that ‖x − y‖ ≤ 1/C2. Then Lemma 4.2, and inequalities (4.1)
and (4.2) imply

∣∣∣D2
1,2 �(x, y)(v, w) +

gu(Puv, w)

�(x, y)

∣∣∣ ≤ C2
1 C2 ‖v‖ · ‖w‖ ∀ v ∈ TxB̄, w ∈ TyB̄.
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Hence, the difference between the matrices −1
�(x,y)(gu(Puei, ej))i,j and Q is bounded

by C2
1 C2. According to (4.1), the matrix (gu(Puei, ej))i,j in turn is bounded from

above by C2
1 . Thus, due to (4.2),

(4.5) ‖Q‖ ≤ ‖(gu(Puei, ej))i,j‖
�(x, y)

+ C2
1 C2 ≤ C3

1

‖x− y‖ + C2
1 C2.

On the other hand, if ‖x − y‖ ≤ 1/C4, Lemma 4.3 states that gu(Puv, v) is also
bounded from below by ‖v‖2/C4 for all v ∈ Txy. Hence, if ‖x− y‖ ≤ 1

2C3
1C2C4

,

vTQv ≥ ‖v‖2
C4 �(x, y)

− C2
1 C2 ‖v‖2 ≥ ‖v‖2

C1C4‖x− y‖ − C2
1 C2 ‖v‖2

≥ ‖v‖2
2C1 C4 ‖x− y‖ ∀ v ∈ R

n−2.(4.6)

Likewise, if ‖x − y‖ ≤ 1/C2, Lemma 4.2 together with the Cauchy inequality
and (4.2) show that, for w ∈ TyS

n−1,

∣∣D2
1,2�(x, y)(exy, w)

∣∣ ≤ |gu(Puexy, w)|+ C2‖x− y‖ · ‖w‖√gu(Puexy, exy)
�(x, y)

≤ C1

√
gu(Puexy, exy)

(√gu(Puw,w)
‖x− y‖ + C2‖w‖

)
.

When w = ej and ‖x− y‖ ≤ 1/C4, one infers from Lemma 4.3 and (4.1) that

(4.7) |cj | ≤ C1

√
C4 ‖x− y‖

( C1‖ej‖
‖x− y‖ + C2

)
≤ C1

√
C4

(
C1 +

C2

C4

)
.

Thus ‖c‖ ≤ √
n− 2C1

√
C4(C1+C2/C4), and the same estimate holds for ‖r‖, too,

since � is symmetric upon switching x with y. Also, setting w = −eyx and using
Lemma 4.3 again, one obtains:

(4.8) |s| ≤ C1

√
C4 ‖x− y‖

(√C4 ‖x− y‖
‖x− y‖ + C2

)
= C1(C4 + C2

√
C4 )‖x− y‖.

After possibly taking larger constants, estimates similar to (4.5)–(4.8) hold
true for the entries of Ã corresponding to �̃, and even for the convex combination
Ā := (1− a)A+ aÃ and its submatrices Q̄, c̄, r̄ and s̄. Especially, (4.6) states the
claimed lower estimate for D2

1,2�̄(x, y) on Txy. Now(
d1d2

(
(1 − a)�+ a�̃

)
(x, y)

)n−1
= det Ā · (dx ∧ dy)n−1.

As Q̄ is invertible for ‖x− y‖ sufficiently small, det Ā can be computed via

(4.9) det Ā = det

(
Q̄ 0
0 1

)
det

(
1 Q̄−1c̄
r̄ s̄

)
= det Q̄ · (s̄− r̄ Q̄−1c̄),

e.g., by Laplace expansion along the last row.
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Furthermore, one infers from (4.5) and (4.6) that

det Q̄ ≤
( 2C3

1

‖x− y‖
)n−2

and ‖Q̄−1‖ ≤ 2C1 C4 ‖x− y‖.

Combining the above estimates, (4.9) implies for ‖x− y‖ < 1
2C3

1C2C4
:

| det Ā| ≤ | det Q̄| · (|s̄|+ ‖r̄‖ · ‖c̄‖ · ‖Q̄−1‖) ≤ C

‖x− y‖n−3

for some constant C, thereby proving the assertion. �

Remarks. 1) The estimates in the proof also yield a sufficient condition for the

nonvanishing of η̂ = n ·∫ 1

0 (dd2((1−a)�+a�̃))n−1 da. Namely, assume for ‖x−y‖ <
ε := 1/(2C3

1C2C4), that

D2
1,2(�̃− �)(x, y)(v, v) ≤ ε‖v‖2

2C1C4‖x− y‖ ∀v ∈ Txy.

Here, C1, C2 and C4 are the constants related to � as before. Then, with the above
notations, (1−a)Q+aQ̃ is non-degenerate on Txy, for all a ∈ [0, 1] and ‖x−y‖ ≤ ε.

Further, (dd2((1− a)�+ a�̃))n−1(x, y) = 0, if and only if

0 =
det Ā

det Q̄
= s+ a(s̃− s)− (r + a(r̃ − r))(Q + a(Q̃ −Q))−1(c+ a(c̃− c)).

Since (d1d2�)
n−1 is non-degenerate, 0 �= detA and thus 0 �= s− rQ−1c. Therefore,

one could deduce bounds on |s̃ − s|, ‖r̃ − r‖, and ‖c̃ − c‖, that would guarantee
det((1 − a)A+ aÃ) �= 0 for all a ∈ [0, 1] and ‖x− y‖ ≤ ε.

2) In the model case of the Euclidean metric on B̄, it follows from

D2�(x, y)(v, w) = −〈v, w〉 − 〈v, u〉 · 〈u,w〉
‖x− y‖ , u =

y − x

‖y − x‖ , exy =
y − 〈x, y〉x√
1− 〈x, y〉2

that Q = −‖x − y‖−1 · 1, r = cT = (0, . . . , 0) and s = ‖x − y‖/4. This example
might suggest, that |s−rQ−1c| ≥ ‖x−y‖/C′ should hold in general for some C′ > 1
and ‖x − y‖ < ε. However, the estimates from Lemmas 4.2 and 4.3 are too weak
to verify this conjecture, since the error term is of the same order.

The next corollary fills a gap in the proof of Proposition 3.1.

Corollary 4.5. (dd2((1 − a)�+ a�̃))n−1 is integrable on Π for all a ∈ [0, 1].

Proof. For continuity in the interior of Π, it is sufficient to verify integrabil-
ity in a neighbourhood of the diagonal. To this end, let zk = yk − xk; hence
(x1, . . . , xn, z1, . . . , zn) are new coordinates on R

n × R
n, and the diagonal is just

{(x, z) : z = 0}. Further, (dx ∧ dy)n−1 = (dx ∧ dz)n−1 plus a term that involves
(dx)n and thus vanishes after restriction to Sn−1 × Sn−1. In the new coordinates,
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Sn−1 × Sn−1 = {(x, z) : x ∈ Sn−1, z ∈ Sn−1 − x}, where Sn−1 − x is the sphere
translated by −x. One can switch from z to polar-like coordinates (r, θ1, . . . , θn−2),
with r = ‖z‖ and local angle coordinates (θ1, . . . , θn−2) on Sn−1

r ∩ (Sn−1 − x).
From the transformation formula, there is a coefficient function c = c(θ) such that
(dz)n−1 = c(θ) · rn−2dr ∧ (dθ)n−2 on Sn−1 − x. Since r = ‖x− y‖, one infers from
Proposition 4.4 that

∣∣(d1d2((1− a)�+ a�̃
)
(x, y)

)n−1∣∣ ≤ C

‖x− y‖n−3

∣∣(dx ∧ dy)n−1
∣∣

= C · r ∣∣c(θ) dr ∧ (dθ)n−2 ∧ (dx)n−1
∣∣

holds for (x, y) ∈ Π with ‖x− y‖ < 1/C. �

5. A counterexample for positivity of η̂

One can ask whether η̂ (as defined in Proposition 3.1) is always a volume form in
the given situation. Unfortunately, this is wrong.

Proposition 5.1. There are simple Riemannian metrics, such that induced dis-
tances � and �̃ satisfy �̃(y, z) ≥ �(y, z) for all y, z ∈ Sn−1, but such that η̂ is
indefinite and there is no simple Finsler metric with boundary distance �̃+ �.

Proof (by construction). Let � be the Euclidean distance on B̄ ⊂ R
3. Take

y = e3 = (0, 0, 1), z = −e3, v ∈ Ty∂B and w ∈ Tz∂B. Using v ⊥ e3 ⊥ w, one
obtains:

dd2�(y, z)(v + 0, 0 + w) =
d2

ds dt

∣∣∣∣
s=t=0

‖y + sv − z − tw‖

=
d

dt

∣∣∣∣
0

〈v, y − z − tw〉
‖y − z − tw‖ = −〈v, w〉

2
.

Further, let ϕ : B̄ → B̄ be a diffeomorphism with ϕ(y) = y and ϕ(z) = z, and
consider the metric �̃ := rϕ∗� for some constant r > 1. Since �̃ is induced by the
flat Riemannian metric r2ϕ∗〈·, ·〉, (B̄, �̃) is still simple, and for v, w ⊥ e3

dd2�̃(y, z)(v + 0, 0 + w) =
d2

ds dt

∣∣∣∣
s=t=0

r‖ϕ(y + sv)− ϕ(z − tw)‖

= r
d

dt

∣∣∣∣
0

〈Dϕ(y)v, y − ϕ(z − tw)〉
‖y − ϕ(z − tw)‖ = −r 〈Dϕ(y)v,Dϕ(z)w〉

2
.

Let A,1 ∈ R
2×2 denote the matrices of Dϕ(y)TDϕ(z) with respect to e1 and e2,

and the identity, respectively. The evaluation of η̂(y, z) on the basis of T(y,z)M �
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Ty∂B ⊕ Tz∂B given by b1 = e1 + 0, b2 = 0 + e1, b3 = e2 + 0, b4 = 0 + e2 yields

η̂(y, z)(b1, b2, b3, b4)

= 1
2

(
dd2�(y, z)

2 + dd2(� + �̃)(y, z)2 + dd2�̃(y, z)
2
)
(b1, b2, b3, b4)

= 1
2

(
det(121) + det(121+ r

2A) + det( r2A)
)

= 1
8

(
2 + r · tr(A) + 2r2 det(A)

)
.

In order to get a negative result, A should have two negative eigenvalues of
different magnitudes, so as to get a large negative trace and a comparatively small,
though positive determinant. A possible way to construct ϕ with such A is to
compose ϕ by stretching the ball near y and z with reciprocal factors and U-turn-
torsion around the e3-axis.

Therefore, consider the two parametrizations

ψ± : R2 → S2 ∩ {±x3 > 0}, ψ±(ξ) =
1√

1 + ‖ξ‖2

⎛
⎝ ξ1

ξ2
±1

⎞
⎠

of the upper and lower hemisphere. Further, set ρ(t) = exp(−s2t2/2) for s > 1
fixed and define maps φ± : R2 → R

2 via

φ±(ξ) =
(
ξ1 ∓ ρ(ξ2)ξ2/s
ξ2 ± sρ(ξ1)ξ1

)
.

Finally, set ϕ(x) := ‖x‖ · ψ−1
± ◦ φ± ◦ ψ±

(
x/‖x‖) for x3 �= 0 and ϕ(x) = x other-

wise. Notice that ϕ is differentiable along the equator, since ψ−1
± (x) = ±1

x3

(
x1

x2

)
and

exp(−s2x21,2/2x23) decays rapidly as |x3| → 0. The differential of φ± is

Dφ±(ξ) =

(
1 ∓(1− s2ξ22)ρ(ξ2)/s

±s(1− s2ξ21)ρ(ξ1) 1

)

with det(Dφ±(ξ)) = 1 + (1 − s2ξ21)ρ(ξ1)(1 − s2ξ22)ρ(ξ2). Also, as follows from
d
dt (1 − t)e−t/2 = t−3

2 e−t/2 = 0 ⇔ t = 3, the coefficients (1 − s2ξ2i )ρ(ξi) range

between −2e−3/2 and 1; so det(Dφ±(ξ)) ≥ 1 − 2e−3/2 > 1/2. Consequently φ±
are diffeomorphism, and thus ϕ is also a diffeomorphism outside the origin, where
it could be smoothed without loss of the boundary distance estimate.

Due to Dψ±(±e3) = 1, the matrix A related to the specified ϕ is

A = Dφ+(0)
TDφ−(0) =

(
1− s2 s+ 1/s

−s− 1/s 1− 1/s2

)

with trA = 2− s2 − s−2 and detA = 4. For η̂(y, z)(b1, b2, b3, b4) to be negative, it
is then necessary that

0 > 1
8

(
2 + r · tr(A) + 2r2 det(A)

)
= 1

8

(
2 + r(2 − s2 − s−2) + 8r2

)
,

whereas r must also match s to guarantee that rϕ∗� > �. This in turn will hold,
provided that r‖D(ψ± ◦ φ±)(ξ)v‖ ≥ ‖Dψ±(ξ)v‖ for all ξ, v ∈ R

2.
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Therefore, one computes

‖Dψ±(ξ)v‖2 =
∥∥∥ d
dt

∣∣∣
t=0

ψ±(ξ + tv)
∥∥∥2 =

‖v‖2
1 + ‖ξ‖2 − 〈v, ξ〉2

(1 + ‖ξ‖2)2 ,

so ‖D(ψ± ◦ φ±)(ξ)v‖2 =
‖Dφ±(ξ)v‖2
1 + ‖φ±(ξ)‖2 +

〈Dφ±(ξ)v, φ±(ξ)〉2
(1 + ‖φ±(ξ)‖2)2 .

Applying (a+ b)2 ≤ 2a2 + 2b2 and the triangle inequality gives

‖φ±(ξ)‖2 ≤
(∥∥∥( ξ1

±sξ1ρ(ξ1)
)∥∥∥+ ∥∥∥( ∓ξ2ρ(ξ2)/s

ξ2

)∥∥∥)2
≤ 2ξ21(1 + s2ρ(ξ1)

2) + 2ξ22(1 + ρ(ξ2)
2/s2)

≤ 2‖ξ‖2 + 2s2ξ21ρ(ξ1)
2 + 2s2ξ22ρ(ξ2)

2 ≤ 2‖ξ‖2 + 4

because of s2ξ2i ρ(ξi)
2 ≤ s2ξ2i

1+s2ξ2i
< 1. This yields for the quotient of the denomina-

tors the bound
1 + ‖φ±(ξ)‖2

1 + ‖ξ‖2 ≤ 5 + 2‖ξ‖2
1 + ‖ξ‖2 ≤ 5.

It remains to estimate the numerators. In the sequel, vectors are interpreted
as single-column matrices; e.g., 〈v, w〉 becomes vTw. Then for ξ ∈ R

2 fixed,

q(ξ) := sup
v∈R2∗

‖v‖2 − (1 + ‖ξ‖2)−1〈v, ξ〉
‖Dφ±(ξ)v‖2 − (1 + ‖φ±(ξ)‖2)−1〈Dφ±(ξ)v, φ±(ξ))2

= sup
v∈R2∗

vT
(
1− (1 + ‖ξ‖2)−1ξξT

)
v

vTDφ±(ξ)T
(
1− (1 + ‖φ±(ξ)‖2)−1φ±(ξ)φ±(ξ)T

)
Dφ±(ξ)v

.

Since
(
1− (1+‖w‖2)wwT )−1

= 1+wwT is positive and symmetric for all w ∈ R
3,

it has a unique positive, symmetric square root. When substituting v = Dφ±(ξ)−1 ·√
1+ φ±(ξ)φ±(ξ)Tu, one obtains

q(ξ) = sup
u∈R2∗

∥∥√1− (1 + ‖ξ‖2)−1ξξTDφ±(ξ)−1
√
1+ φ±(ξ)φ±(ξ)Tu

∥∥2
‖u‖2 .

Writing B(ξ) for the operator in the numerator, this is just the largest eigenvalue
of B(ξ)TB(ξ). It can be majorized by its trace, and using the invariance of traces
under cyclic permutation and linearity gives

q(ξ) < tr(B(ξ)TB(ξ))

= tr
(
Dφ±(ξ)−T

(
1− (1 + ‖ξ‖2)−1ξξT

)
Dφ±(ξ)−1

(
1+ φ±(ξ)φ±(ξ)T

))
= tr

(
Dφ±(ξ)−TDφ±(ξ)−1

)− (1 + ‖ξ‖2)−1tr
(
Dφ±(ξ)−T ξξTDφ±(ξ)−1

)
+ tr

(
Dφ±(ξ)−T

(
1− (1 + ‖ξ‖2)−1ξξT

)
Dφ±(ξ)−1φ±(ξ)φ±(ξ)T

)
≤ tr

(
Dφ±(ξ)−TDφ±(ξ)−1

)
+ φ±(ξ)TDφ±(ξ)−T

(
1− (1 + ‖ξ‖2)−1ξξT

)
Dφ±(ξ)−1φ±(ξ)
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Because Dφ±(ξ)−1 = det(Dφ±(ξ))−1Dφ∓(ξ), the first summand reads

tr
(
Dφ±(ξ)−TDφ±(ξ)−1

)
=

tr
(
Dφ∓(ξ)TDφ∓(ξ)

)
det(Dφ±(ξ))2

=
2 + s2(1 − s2ξ21)

2ρ(ξ1)
2 + s−2(1 − s2ξ22)

2ρ(ξ2)
2(

1 + (1− s2ξ21)ρ(ξ1)(1− s2ξ22)ρ(ξ2)
)2 < 4

(
s2 + 3),

due to −1/2 < (1− s2ξ2i ) ρ(ξi) ≤ 1, as stated before. Further, one can apply

1− (1 + ‖ξ‖2)−1ξξT =
1+ Jξ(Jξ)T

1 + ‖ξ‖2 , with J =

(
0 −1
1 0

)

to rewrite the second summand and obtain

q(ξ) < 4
(
s2 + 3 +

‖Dφ∓(ξ)φ±(ξ)‖2 + 〈Jξ,Dφ∓(ξ)φ±(ξ)〉2
(1 + ‖ξ‖2)

)
.

Now,

Dφ∓(ξ)φ±(ξ) =
(
ξ1 + ξ1(1 − s2ξ22)ρ(ξ1)ρ(ξ2)

ξ2 + ξ2(1 − s2ξ21)ρ(ξ1)ρ(ξ2)

)
+

( −sξ32ρ(ξ2)2
s3ξ31ρ(ξ1)

2

)
.

Because d
dt t

mρ(t) = (m − s2t2)tm−1ρ(t) vanishes for (t = 0 and) t2 = ms−2,

the functions ξmi ρ(ξi) have their maxima at (m/e)m/2s−m. Hence, the triangle
inequality gives

‖Dφ∓(ξ)φ±(ξ)‖ ≤ 2‖ξ‖+
( 3

2e

)3/2√
1 + s−2 < 2‖ξ‖+ 1,

and (a+ b)2 ≤ 2a2 + 2b2 implies ‖Dφ∓(ξ)φ±(ξ)‖2 ≤ 8‖ξ‖2 + 2. Also,

〈Jξ,Dφ∓(ξ)φ±(ξ)〉 = s2(ξ1ξ
3
2 − ξ31ξ2)ρ(ξ1)ρ(ξ2) + sξ42ρ(ξ2)

2 + s3ξ41ρ(ξ1)
2

≤ 2 · 33/2e−2s−2 + 22e−2(s−3 + s−1) < 3.

Assembling these estimates leads to

q(ξ) < 4
(
s2 + 3 +

8‖ξ‖2 + 2 + 32

(1 + ‖ξ‖2)
)
< 4(s2 + 14)

and shows that

‖Dψ±(ξ)v‖
‖D(ψ± ◦ φ±)(ξ)v‖ < 10

√
s2 + 4 =: r ∀ v, ξ ∈ R

2, v �= 0.

Finally, s can be chosen sufficiently large to guarantee that

0 > η̂(y, z)(b1, b2, b3, b4) =
1

8

(
2 + r(2 − s2 − s−2) + 8r2

)
.

This also proves that there must not be a simple Finsler metric with boundary

distances �+ �̃, because then η̂ = 1
2 (dd2�)

2 + 1
2

(
dd2(� + �̃)

)2
+ 1

2 (dd2�̃)
2, as a sum

of volume forms, would be positive. �
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