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The structure of Sobolev extension operators

Charles Fefferman, Arie Israel and Garving K. Luli

Abstract. Let Lm,p(Rn) denote the Sobolev space of functions whose
m-th derivatives lie in Lp(Rn), and assume that p > n. For E ⊆ R

n, denote
by Lm,p(E) the space of restrictions to E of functions F ∈ Lm,p(Rn). It
is known that there exist bounded linear maps T : Lm,p(E) → Lm,p(Rn)
such that Tf = f on E for any f ∈ Lm,p(E). We show that T cannot
have a simple form called “bounded depth”.

1. Introduction

Let X denote any of the following standard function spaces on R
n:

• X = Cm(Rn), the space of real-valued F ∈ Cm
loc(R

n) for which the norm

‖F‖Cm(Rn) := sup
x∈Rn

max
|α|≤m

|∂αF (x)| is finite;

• X = Cm,s(Rn), the space of all functions F ∈ Cm(Rn) for which the norm

‖F‖Cm,s(Rn) := ‖F‖Cm(Rn) + sup
x,y∈R

n

x �=y

max
|α|=m

|∂αF (x)− ∂αF (y)|
|x− y|s

is finite (here 0 < s < 1);

• X = Lm,p(Rn), the homogeneous Sobolev space of all real-valued functions F
for which the seminorm

‖F‖Lm,p(Rn) := ‖∇mF‖Lp(Rn) is finite.

(Here, we take p > n, so that X ⊆ C
m−1,1−n/p
loc (Rn), by the Sobolev theorem.)

For E ⊆ R
n, we set X(E) := {F |E : F ∈ X}, equipped with the seminorm

‖f‖X(E) := inf
{‖F‖X : F ∈ X, F = f on E

}
.
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Let A ≥ 1 be a real number. An extension operator for X(E) with norm A is
a linear map T : X(E) → X such that for all f ∈ X(E) we have

Tf = f on E

and
‖Tf‖X ≤ A ‖f‖X(E).

For X = Cm(Rn) or Cm,s(Rn) and E ⊆ R
n arbitrary, there exists an extension

operator whose norm depends only onm and n. Similarly, for X = Lm,p(Rn) and E
arbitrary, there exists an extension operator whose norm depends only on m, n
and p. See [1], [2], and [4].

We want to know whether such extension operators can be taken to have a
simple form when E is finite. Recall that any linear map T : X(E) → X (E ⊆ R

n

finite) has the form

Tf(x) =
∑
y∈E

λ(x, y)f(y) (all x ∈ R
n),

with coefficients λ(x, y) independent of f . Let D be a positive integer. We say
that T has depth D if, for each fixed x, at most D of the coefficients λ(x, y) are
nonzero.

Let X = Cm(Rn) or Cm,s(Rn), and let E ⊆ R
n be finite. Then there exists

an extension operator for X(E), whose norm and depth depend only on m and n.
See [1] and [3].

Thus, it is natural to ask the following:
Let X = Lm,p(Rn), and let E ⊆ R

n be finite. Does there exist an extension
operator for X(E), whose norm and depth depend only on m, n and p?

Unfortunately, the answer is NO. In this paper, we establish the following result.

Theorem 1. Let p > 2, A ≥ 1 and D ≥ 1 be given. Then there exists a finite set
E ⊆ R

2 such that L2,p(E) has no extension operator of norm A and depth D.

More precisely, for N ≥ 2, let

(1.1) EN :=
{
(2−k, (2−k)2−2/p) : k = 2, . . . , N

} ∪ {
(0, 0)

} ⊆ R
2.

Theorem 2. Let p > 2, A ≥ 1, D ≥ 1, and let 0 < ε < 3/p. If L2,p(EN ) has an
extension operator with norm A and depth D, then

A ·D5/p > c(ε, p) ·N ε, where c(ε, p) depends only on ε and p.

Theorem 2 will be proven in the next section. Theorem 1 follows at once from
Theorem 2.

We mention a few related results in the literature. For X = Cm,s(Rn), Luli [6]
constructed extension operators of bounded depth without the assumption that E
is finite. The analogous result for X = Cm(Rn) is false; however, there exist exten-
sion operators of “bounded breadth”. (See [3].) For X = Lm,p(Rn) and E finite,
an extension operator may be taken to have “assisted bounded depth”; see [4].
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2. Proof of Theorem 2

Fix p > 2 and 0 < ε < 1/(3p), and let α := 1 − 2/p. Unless stated otherwise,
C, c, etc. denote constants depending only on p, which may change value from one
occurrence to the next.

For any C1 function F : R2 → R and y ∈ R
2, let JyF denote the first order

Taylor polynomial of F at y:

(JyF )(x) = F (y) +∇F (y) · (x − y).

We require p > 2 so that the Sobolev theorem holds. In particular, after
modification on some measure zero subset, each F ∈ L2,p(R2) belongs to C1,α

loc (R
2)

and satisfies the inequalities:

(2.1)
|∇F (x) −∇F (y)| ≤ C ‖F‖L2,p(R2) |x− y|α
|F (x)− JyF (x)| ≤ C ‖F‖L2,p(R2) |x− y|1+α

(all x, y ∈ R
2).

We extend the L2,p norm to R
2-valued functions by setting

‖Ψ‖L2,p(R2) := ‖Ψ1‖L2,p(R2) + ‖Ψ2‖L2,p(R2), where Ψ = (Ψ1,Ψ2) in coordinates.

We define the curve γ :=
{
(s, s1+α) : s ∈ [0, 1] } ⊆ R

2. Let N ≥ 2. We write E
for the subset EN defined in the introduction:

(2.2) E :=
{
(2−k, (2−k)1+α) : k = 2, . . . , N

} ∪ {
(0, 0)

} ⊆ γ.

In proving Theorem 2, it suffices to assume that N is sufficiently large. More
precisely, we henceforth assume that

(2.3) N ≥ Z, where Z ≥ 1 is some large constant that depends only on p and ε.

We determine Z through Lemma 1 below.

Lemma 1. There exists Z ≥ 1 depending only on p and ε, such that the following
holds. Assume (2.3). Then for any G ∈ L2,p(R2) with

G = 0 on E and ‖G‖L2,p(R2) ≤ 1,

we have |∇G(0)| ≤ N−ε.

Lemma 2. For any integer D ≥ 1 and subset S ⊆ γ with #S ≤ D, there exists
H ∈ L2,p(R2) that satisfies

(2.4) H = 0 on S, |∇H(0)| ≥ 1, and ‖H‖L2,p(R2) ≤ C2 D
5/p,

where C2 = C2(p) depends only on p.
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We now prove Theorem 2, presuming the validity of Lemmas 1 and 2. These
lemmas are proven later in the section.

In proving Theorem 2, it suffices to assume that (2.3) holds with Z determined
by Lemma 1.

Let A ≥ 1, D ≥ 1, and let T : L2,p(E) → L2,p(R2) be an extension operator
with norm A and depth D. In other terms, for any f : E → R,

Tf = f on E,(2.5)

‖Tf‖L2,p(R2) ≤ A‖f‖L2,p(E), and(2.6)

Tf(x) =
∑
y∈E

λ(x, y)f(y) for all x ∈ R
2,(2.7)

where the coefficients λ(x, y) satisfy

(2.8) #
{
y ∈ E : λ(x, y) 
= 0

} ≤ D for all x ∈ R
2.

Note that λ(x, y) = (Tδy)(x), where δy : E → R equals 1 at y, and equals 0 on
E \ {y}. Thus, λ(·, y) ∈ L2,p(R2) for each fixed y ∈ E. It follows from the Sobolev
theorem that the function x �→ λ(x, y) belongs to C1(R2) for each fixed y ∈ E.

Let

(2.9) S :=
{
y ∈ E : ∇xλ(0, y) 
= 0

}
.

We claim that #S ≤ D. Indeed, suppose for the sake of contradiction that there
exist distinct y1, . . . , yD+1 ∈ E such that ∇xλ(0, yk) 
= 0 for each k = 1, . . .D + 1.
Then, by the implicit function theorem, there exists x ∈ R

2 such that λ(x, yk) 
= 0
for each k = 1, . . . D + 1. This contradicts (2.8), hence proving #S ≤ D.

Note that S ⊆ γ (see (2.2), (2.9)). By Lemma 2 there exists H ∈ L2,p(R2) with

(2.10) H = 0 on S, |∇H(0)| ≥ 1, and ‖H‖L2,p(R2) ≤ C2 D
5/p.

Define F = T (H |E). From (2.7),

∇F (0) =
∑
y∈E

∇xλ(0, y)H(y),

For y ∈ S the summand vanishes because H = 0 on S, while for y ∈ E \ S
the summand vanishes by definition of S (see (2.9)). Therefore, ∇F (0) = 0.
Finally, (2.5) implies that F = H on E, while (2.6) and (2.10) imply that

‖F‖L2,p(R2) ≤ A ‖H |E‖L2,p(E) ≤ A ‖H‖L2,p(R2) ≤ C2 AD5/p.

We define F0 := F −H . From (2.10) and the above properties of F ,

F0 = 0 on E, |∇F0(0)| = |∇H(0)| ≥ 1, and ‖F0‖L2,p(R2) ≤ (C2 + 1)AD5/p.

Taking G = F0 ·
[
(C2 + 1)AD5/p

]−1
in Lemma 1, we obtain

N−ε ≥ |∇G(0)| ≥ [
(C2 + 1)AD5/p

]−1
.

This completes the proof of Theorem 2. In the following subsections we prove
Lemmas 1 and 2.
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2.1. Besov spaces

The Besov seminorm of a differentiable function ϕ : R → R is

‖ϕ‖Ḃp(R)
:=

( ∫
R

∫
R

|ϕ′(s)− ϕ′(t)|p
|s− t|p ds dt

)1/p

.

The Besov space Ḃp(R) consists of functions with finite Besov seminorm.

The Besov and Sobolev spaces are related through the following trace/extension
theorem (see [7], [8]).

Theorem 3. Let R denote the restriction operator R(F ) = F |R×{0}, defined for
continuous functions F : R2 → R.

• The restriction operator R : L2,p(R2) → Ḃp(R) is bounded. In other terms,
‖R(G)‖Ḃp(R)

≤ CSB ‖G‖L2,p(R2) for every G ∈ L2,p(R2).

• There exists a bounded extension operator E : Ḃp(R) → L2,p(R2). In other

terms, E(g)|R×{0} = g and ‖E(g)‖L2,p(R2) ≤ CSB ‖g‖Ḃp(R)
for any g ∈ Ḃp(R).

Given E = {s1, . . . , sK} ⊆ R and φ : E → R, where s1 < · · · < sK , we denote
the Besov trace seminorm of φ by

‖φ‖Ḃp(E) := inf
{‖ϕ‖Ḃp(R)

: ϕ ∈ Ḃp(R), ϕ = φ on E
}
.

Let s0 := −∞ and sK+1 := +∞. Define

(2.11) Akl :=

∫ sk

sk−1

∫ sl+1

sl

1

|s− t|p ds dt (all 1 ≤ k < l ≤ K).

For 1 ≤ k ≤ K, let n(k) ∈ {1, . . . ,K} be such that sn(k) ∈ E is a nearest neighbor
of sk, and let

mk :=
φ(sk)− φ(sn(k))

sk − sn(k)
.

For 1 ≤ k ≤ K − 1, let Δk := |sk − sk+1|, and let

Mk :=
|mk −mk+1|

Δk
+

|φ(sk) +mk · (sk+1 − sk)− φ(sk+1)|
Δ2

k

.

The following expression for the Besov trace seminorm can be found in [5] (see
Claims 1 and 3 in the proof of Proposition 3.2):

(2.12) c · ‖φ‖p
Ḃp(E)

≤
K−1∑
k=1

Mp
kΔ

2
k +

K−1∑
k=1

K∑
l=k+1

|mk −ml|pAkl ≤ C · ‖φ‖p
Ḃp(E)

.
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2.2. Proof of Lemma 1

Recall that 0 < ε < 1/(3p). Let Z ≥ 1 be a parameter, determined before the
end of the proof. We assume that (2.3) holds, that is, N ≥ Z. In this subsection,
constants written C, c, etc., may depend on p and ε, but are independent of other
parameters.

For the sake of contradiction, suppose that G ∈ L2,p(R2) satisfies

(2.13)
G = 0 on E =

{
(2−k, (2−k)1+α) : k = 2, . . . , N

} ∪ {
(0, 0)

}
,

‖G‖L2,p(R2) ≤ 1 and |∇G(0)| ≥ N−ε.

Furthermore, by renormalizing G we may assume

(2.14) N−ε ≤ |∇G(0)| ≤ 1.

Let δ := N−1/α, and let θ ∈ C∞
0 (R2) satisfy

(2.15)
(a) supp(θ) ⊆ B(0, δ), (b) θ = 1 on B(0, δ/2), and

(c) |∂βθ| ≤ Cδ−|β|, whenever |β| ≤ 2.

Define H = θG + (1 − θ)J0G. First we use the Leibniz rule, (2.15.c) and the fact
that H is affine on R

2 \ B(0, δ) (this follows from (2.15.a)), and then we use the
Sobolev theorem (see (2.1)) and ‖G‖L2,p(R2) ≤ 1, obtaining that

‖H‖L2,p(R2) ≤ C ·
(
‖G‖L2,p(R2) + δ−1‖∇G−∇J0G‖Lp(B(0,δ))(2.16)

+ δ−2‖G− J0G‖Lp(B(0,δ))

)
≤ C′.

From (2.15.b) and G = 0 on E,

(2.17) H = 0 on E ∩B(0, δ/2).

Note that ∇H(0) = ∇G(0), thanks to (2.15.b). Thus, for each y ∈ B(0, δ),
applying the Sobolev theorem and (2.16) we obtain

(2.18) |∇H(y)−∇G(0)|= |∇H(y)−∇H(0)|≤C′‖H‖L2,p(R2)|y|α≤C′′δα=C′′N−1.

Note that (2.18) also holds for y ∈ R
2, since H is affine on R

2 \ B(0, δ). Since N
is sufficiently large (see (2.3)) and ε < 1, it follows from (2.14) and (2.18) that

(2.19) cN−ε ≤ |∇H(y)| ≤ C for all y ∈ R
2.

Note that H(y0) = H(y1) = 0, where y0 := (0, 0) and y1 := (2−N , 2−N(1+α)),
for N sufficiently large. This follows from (2.17), since y1 ∈ B(0, N−1/α/2) whenN
is sufficiently large. Thus, for v := (y0 − y1)/|y0 − y1|, the mean value theorem
implies that v · ∇H(x∗) = 0 for some x∗ ∈ B(0, δ) on the line segment joining y0
and y1. By the Sobolev theorem and (2.16) it follows that

|v · ∇H | ≤ C δα = CN−1 on B(0, δ).
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Hence, |∂1H | ≤ C′N−1 on B(0, δ), thanks to the upper bound from (2.19) and the
fact |v − (1, 0)| ≤ C 2−Nα. Since H is affine on R

2 \B(0, δ), we conclude that

(2.20) |∂1H(y)| ≤ C′N−1 for all y ∈ R
2.

Thus, for N sufficiently large, the lower bound in (2.19) and ε < 1 imply that

(2.21) |∂2H(y)| ≥ c′N−ε for all y ∈ R
2.

We define Φ : R2 → R
2 by Φ(s, t) = (s,H(s, t)). The diffeomorphism Φ maps

onto R
2 because |∂2H | is bounded away from zero (see (2.21)). By (2.19)–(2.21),

∇Φ(x) takes the form

(2.22) ∇Φ(x) =
( 1 0

a b

)
, where |a| ≤ C N−1 and cN−ε ≤ |b| ≤ C.

Thus, ∇Φ(x) is invertible for each x ∈ R
2 and

(2.23)
[∇Φ(x)

]−1
=

( 1 0

a b

)
, where |a| ≤ C N ε−1 and |b| ≤ C N ε.

We now define Ψ = Φ−1, and write Φ = (Φ1,Φ2) and Ψ = (Ψ1,Ψ2) in coordi-
nates. Differentiating twice the identity Ψ ◦ Φ = Id shows that

∇Φ(x)·∇2Ψj(Φ(x))·∇Φ(x) = −
2∑

l=1

∇2Φl(x)·∂lΨj(Φ(x)) (all x ∈ R
2, j ∈ {1, 2}).

Now, perform the following operations on the above equation: multiply through
twice by [∇Φ(x)]−1 (on the left and right), use the identity∇Ψ(Φ(x)) = [∇Φ(x)]−1,
substitute x = Φ−1(y) on both sides, take pth powers, sum over j ∈ {1, 2}, integrate
over y ∈ R

2, and perform the change of variable y = Φ(x) on the right-hand side.
Thus, we obtain

(2.24) ‖Ψ‖pL2,p(R2) ≤ C ‖Φ‖pL2,p(R2) ‖ det(∇Φ)‖L∞ ‖(∇Φ)−1‖3pL∞ .

Next, insert into (2.24) the bounds ‖ det(∇Φ)‖L∞ ≤ C, ‖(∇Φ)−1‖L∞ ≤ CN ε

and ‖Φ‖L2,p(R2) = ‖H‖L2,p(R2) ≤ C′ obtained from (2.22), (2.23) and (2.16). Thus,

(2.25) ‖Ψ‖L2,p(R2) ≤ CN3ε.

Define ϕ = Ψ2|R×{0}. By (2.25) and Theorem 3,

(2.26) ‖ϕ‖Ḃp(R)
≤ CSB ‖Ψ2‖L2,p(R2) ≤ C′N3ε.

It follows from (2.17) and the definition Φ(s, t) = (s,H(s, t)) that

Φ(E ∩B(0, δ/2)) ⊆ R× {0}.
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In coordinates, Ψ = Φ−1 takes the form Ψ(u, v) = (u,Ψ2(u, v)). Applying Ψ to
the previous set containment and using the definition of ϕ, we obtain

(2.27) E ∩B(0, δ/2) ⊆ {
(u, ϕ(u)) : u ∈ R

}
.

For some integer K ≥ 0, we write

E ∩B(0, δ/2) =
{
(0, 0), (2−N , 2−N(1+α)), . . . , (2K−N , 2(K−N)(1+α))

}
.

Thus, 2K−N ≥ cδ for some c > 0. Since δ = N−1/α, we obtain

(2.28) K ≥ N − C log(N).

Let sk := 2k−N for k = 1, . . . ,K, and let E := {s1, . . . , sK}. Define φ : E → R

by φ(2k−N ) = (2k−N )1+α for k = 1, . . . ,K.

Next, we apply (2.12) for the E and φ chosen above. The quantity Akl defined
in (2.11) satisfies, for all 1 ≤ k < l ≤ K,

(2.29) Akl ≥
∫ 2k−N

2k−1−N

∫ 2l+1−N

2l−N

1

|s− t|p ds dt ≥ c · 2−(l−N)p 2k−N 2l−N .

Thanks to (2.27), the function ϕ equals φ on E. Thus, from (2.12) and (2.29),

‖ϕ‖p
Ḃp(R)

≥ ‖φ‖p
Ḃp(E)

≥ c
K−1∑
k=2

K∑
l=k+1

|mk −ml|p · 2−(l−N)p 2k−N 2l−N ,

where

mi :=

(
2i−N

)1+α − (
2i−1−N

)1+α

2i−N − 2i−1−N
= (2− 2−α) · 2(i−N)α.

Note that |mk −ml| ≥ c · 2(l−N)α for 2 ≤ k < l ≤ K. Inserting this inequality in
the above equation, and using αp = p− 2, we obtain

‖ϕ‖p
Ḃp(R)

≥ c′
K−1∑
k=2

K∑
l=k+1

2(l−N)(p−2)2−(l−N)p 2k−N 2l−N ≥ c′′
K−1∑
k=2

1 = c′′ · (K − 2).

Finally, from (2.26) and (2.28), we obtain

c′′N − C′′ log(N) ≤ (C′)pN3εp.

Since ε < 1/(3p), the above inequality gives a contradiction when N is sufficiently
large. Thus, (2.13) cannot hold, completing the proof by contradiction. We now
take Z = Z(ε, p) sufficiently large, so that the previous arguments hold for N ≥ Z.
This completes the proof of Lemma 1. �
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2.3. Proof of Lemma 2

Let S ⊆ γ with #S ≤ D be given. For ease of notation, we may assume that
#S = D. We must construct an H ∈ L2,p(R2) that satisfies (2.4). To start, write

S =
{
(s1, s

1+α
1 ), . . . , (sD, s1+α

D )
}

with 0 ≤ s1 < s2 < · · · < sD ≤ 1.

Let S := {s1, . . . , sD}, and define φ : S → R by φ(sk) = (sk)
1+α for k = 1, . . . , D.

Next, we apply (2.12) to this subset S and function φ.
We first obtain an estimate on the Akl defined in (2.11):

(2.30) Akl ≤
∫ sk

−∞

∫ ∞

sl

1

|s− t|p ds dt ≤ C · |sk − sl|2−p (all 1 ≤ k < l ≤ D).

Let sn(k) ∈ S be a nearest neighbor to sk, for each 1 ≤ k ≤ D, and let

mk :=
(sk)

1+α − (sn(k))
1+α

sk − sn(k)
.

From (2.12), (2.30) and αp = p− 2, there exists ϕ : R → R such that

S ⊆ {
(s, ϕ(s)) : s ∈ R

}
, and(2.31)

‖ϕ‖p
Ḃp(R)

≤ C

D−1∑
k=1

|(sk)1+α +mk · (sk+1 − sk)− (sk+1)
1+α|p

|sk+1 − sk|(1+α)p
(2.32)

+ C

D−1∑
k=1

D∑
l=k+1

|mk −ml|p
|sk − sl|αp .

By the mean value theorem, each mk takes the form (1+α)tαk for some tk between
sk and sn(k). Thus, |mk−ml| ≤ C|tk−tl|α ≤ C 3α|sk−sl|α for k 
= l. (Here, we use
the inequalities |tk−sk| ≤ |sk−sn(k)| ≤ |sk−sl| and |tl−sl| ≤ |sl−sn(l)| ≤ |sk−sl|.)
Similarly, |mk−(1+α)sαk | ≤ C|sk+1−sk|α, hence Taylor’s theorem provides uniform
control on each term from the first sum in (2.32). Therefore,

(2.33) ‖ϕ‖p
Ḃp(R)

≤ CD2.

Applying the extension operator E from Theorem 3, the function F = E(ϕ)
satisfies F |R×{0} = ϕ and ‖F‖L2,p(R2) ≤ CSB ‖ϕ‖Ḃp(R)

. Thus, from (2.31),

(2.34) S ⊆ {
(s, F (s, 0)) : s ∈ R

}
,

while from (2.33) we obtain

(2.35) ‖F‖L2,p(R2) ≤ C′D2/p.

We may assume that #S ≥ 2, for otherwise Lemma 2 is trivial. Note that
S ⊆ [0, 1]2 lies on a Lipschitz graph. Thus, by (2.34), there exists s∗ ∈ [0, 1] such
that |∂1F (s∗, 0)| ≤ C. By (2.35) and the Sobolev theorem, |∂1F (0)| ≤ C′D2/p.
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Let
M := max

{‖F‖L2,p(R2), |∂1F (0)|, 1}.
Without loss of generality, by adding to F some multiple of the coordinate function
(s, t) �→ t, we may assume that ∂2F (0) = RM , where R ≥ 1 shall be determined
later. This does not affect statements from the previous two paragraphs. To
summarize:

|∂1F (0)| ≤ M, ∂2F (0) = RM, and(2.36)

‖F‖L2,p(R2) ≤ M, where 1 ≤ M ≤ C′D2/p.(2.37)

Pick θ̂ ∈ C∞
0 (R2) that satisfies

(2.38)
(a) supp(θ̂) ⊆ [−1, 2]2, (b) θ̂ = 1 on [−1/2, 3/2]2, and

(c) |∂β θ̂| ≤ C, whenever |β| ≤ 2.

Define F̂ := θF + (1− θ)J0F .
Mimicking the proof of (2.16) with help from (2.37), (2.38.a), (2.38.c), we obtain

(2.39) ‖F̂‖L2,p(R2) ≤ CM.

Mimicking the proof of (2.18) with help from (2.38.a), (2.38.b), (2.39), we
obtain

|∇F̂ (y)−∇F (0)| ≤ C′M (all y ∈ R
2).

Now, choose R sufficiently large, determined by p, so that the previous inequality
and (2.36) imply that

(2.40) |∂1F̂ (y)| ≤ CM and
RM

2
≤ |∂2F̂ (y)| ≤ 2RM (all y ∈ R

2).

Finally, (2.34),(2.38.b) and S ⊆ [0, 1]2 imply that

(2.41) S ⊆ {
(s, F̂ (s, 0)) : s ∈ R

}
.

We define Φ : R2 → R
2 by Φ(s, t) = (s, F̂ (s, t)). The diffeomorphism Φ maps

onto R
2 because |∂2F̂ | is bounded away from zero (see (2.40)).

We define Ψ = Φ−1. We write Φ = (Φ1,Φ2) and Ψ = (Ψ1,Ψ2) in coordinates.
As in (2.24), we obtain

‖Ψ‖L2,p(R2) ≤ C ‖Φ‖L2,p(R2) · ‖ det(∇Φ)‖1/pL∞ · ‖(∇Φ)−1‖3L∞ .

It follows from (2.39) and (2.40) that

‖Φ‖L2,p(R2) = ‖F̂‖L2,p(R2) ≤ CM, ‖ det(∇Φ)‖L∞ ≤ 2RM and ‖(∇Φ)−1‖L∞ ≤ C′.

Therefore,

(2.42) ‖Ψ2‖L2,p(R2) ≤ ‖Ψ‖L2,p(R2) ≤ C′′M1+1/p ≤ C′′M3/2.
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In coordinates, Φ(s, t)=(s, F̂ (s, t)) and Ψ(u, v)=(u,Ψ2(u, v)), where F̂ (u,Ψ2(u, v))
= v. Applying ∂2 = ∂/∂v, setting u = v = 0, and then using (2.40),

(2.43) ∂2Ψ2(0) =
[
∂2F̂ (Ψ(0))

]−1 ≥ CM−1.

Finally, (2.41) implies that S ⊆ Φ(R× {0}). Thus we obtain

(2.44) Ψ(S) ⊆ R× {0}.
LetH = Ψ2/∂2Ψ2(0). The bound M ≤ C ·D2/p and (2.42)–(2.44) imply that H

satisfies the conclusion of Lemma 2. This completes the proof of Lemma 2. �
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