Rev. Mat. Iberoam. **30** (2014), no. 2, 419–429 doi 10.4171/RMI/787

The structure of Sobolev extension operators

Charles Fefferman, Arie Israel and Garving K. Luli

Abstract. Let $L^{m,p}(\mathbb{R}^n)$ denote the Sobolev space of functions whose m-th derivatives lie in $L^p(\mathbb{R}^n)$, and assume that p > n. For $E \subseteq \mathbb{R}^n$, denote by $L^{m,p}(E)$ the space of restrictions to E of functions $F \in L^{m,p}(\mathbb{R}^n)$. It is known that there exist bounded linear maps $T: L^{m,p}(E) \to L^{m,p}(\mathbb{R}^n)$ such that Tf = f on E for any $f \in L^{m,p}(E)$. We show that T cannot have a simple form called "bounded depth".

1. Introduction

Let X denote any of the following standard function spaces on \mathbb{R}^n :

• $\mathbb{X} = C^m(\mathbb{R}^n)$, the space of real-valued $F \in C^m_{\text{loc}}(\mathbb{R}^n)$ for which the norm

$$||F||_{C^m(\mathbb{R}^n)} := \sup_{x \in \mathbb{R}^n} \max_{|\alpha| \le m} |\partial^{\alpha} F(x)|$$
 is finite;

• $\mathbb{X} = C^{m,s}(\mathbb{R}^n)$, the space of all functions $F \in C^m(\mathbb{R}^n)$ for which the norm

$$\|F\|_{C^{m,s}(\mathbb{R}^n)} := \|F\|_{C^m(\mathbb{R}^n)} + \sup_{\substack{x,y \in \mathbb{R}^n \\ x \neq y}} \max_{|\alpha|=m} \frac{|\partial^{\alpha} F(x) - \partial^{\alpha} F(y)|}{|x-y|^s}$$

is finite (here 0 < s < 1);

• $\mathbb{X} = L^{m,p}(\mathbb{R}^n)$, the homogeneous Sobolev space of all real-valued functions F for which the seminorm

$$||F||_{L^{m,p}(\mathbb{R}^n)} := ||\nabla^m F||_{L^p(\mathbb{R}^n)} \text{ is finite.}$$

(Here, we take p > n, so that $\mathbb{X} \subseteq C^{m-1,1-n/p}_{\text{loc}}(\mathbb{R}^n)$, by the Sobolev theorem.) For $E \subseteq \mathbb{R}^n$, we set $\mathbb{X}(E) := \{F|_E : F \in \mathbb{X}\}$, equipped with the seminorm

$$||f||_{\mathbb{X}(E)} := \inf \{ ||F||_{\mathbb{X}} : F \in \mathbb{X}, F = f \text{ on } E \}.$$

Mathematics Subject Classification (2010): Primary 41A05; Secondary 46E35.

Keywords: Whitney extension problem, linear operators, Sobolev spaces.

Let $A \ge 1$ be a real number. An *extension operator* for $\mathbb{X}(E)$ with norm A is a linear map $T : \mathbb{X}(E) \to \mathbb{X}$ such that for all $f \in \mathbb{X}(E)$ we have

$$Tf = f$$
 on E

and

$$||Tf||_{\mathbb{X}} \le A \, ||f||_{\mathbb{X}(E)}.$$

For $\mathbb{X} = C^m(\mathbb{R}^n)$ or $C^{m,s}(\mathbb{R}^n)$ and $E \subseteq \mathbb{R}^n$ arbitrary, there exists an extension operator whose norm depends only on m and n. Similarly, for $\mathbb{X} = L^{m,p}(\mathbb{R}^n)$ and Earbitrary, there exists an extension operator whose norm depends only on m, nand p. See [1], [2], and [4].

We want to know whether such extension operators can be taken to have a simple form when E is finite. Recall that any linear map $T : \mathbb{X}(E) \to \mathbb{X}$ $(E \subseteq \mathbb{R}^n$ finite) has the form

$$Tf(x) = \sum_{y \in E} \lambda(x, y) f(y) \quad (\text{all } x \in \mathbb{R}^n),$$

with coefficients $\lambda(x, y)$ independent of f. Let D be a positive integer. We say that T has depth D if, for each fixed x, at most D of the coefficients $\lambda(x, y)$ are nonzero.

Let $\mathbb{X} = C^m(\mathbb{R}^n)$ or $C^{m,s}(\mathbb{R}^n)$, and let $E \subseteq \mathbb{R}^n$ be finite. Then there exists an extension operator for $\mathbb{X}(E)$, whose norm and depth depend only on m and n. See [1] and [3].

Thus, it is natural to ask the following:

Let $\mathbb{X} = L^{m,p}(\mathbb{R}^n)$, and let $E \subseteq \mathbb{R}^n$ be finite. Does there exist an extension operator for $\mathbb{X}(E)$, whose norm and depth depend only on m, n and p?

Unfortunately, the answer is NO. In this paper, we establish the following result.

Theorem 1. Let p > 2, $A \ge 1$ and $D \ge 1$ be given. Then there exists a finite set $E \subseteq \mathbb{R}^2$ such that $L^{2,p}(E)$ has no extension operator of norm A and depth D.

More precisely, for $N \ge 2$, let

(1.1)
$$E_N := \left\{ (2^{-k}, (2^{-k})^{2-2/p}) : k = 2, \dots, N \right\} \cup \left\{ (0, 0) \right\} \subseteq \mathbb{R}^2.$$

Theorem 2. Let p > 2, $A \ge 1$, $D \ge 1$, and let $0 < \epsilon < 3/p$. If $L^{2,p}(E_N)$ has an extension operator with norm A and depth D, then

 $A \cdot D^{5/p} > c(\epsilon,p) \cdot N^{\epsilon}, \quad \text{where } c(\epsilon,p) \text{ depends only on } \epsilon \text{ and } p.$

Theorem 2 will be proven in the next section. Theorem 1 follows at once from Theorem 2.

We mention a few related results in the literature. For $\mathbb{X} = C^{m,s}(\mathbb{R}^n)$, Luli [6] constructed extension operators of bounded depth without the assumption that E is finite. The analogous result for $\mathbb{X} = C^m(\mathbb{R}^n)$ is false; however, there exist extension operators of "bounded breadth". (See [3].) For $\mathbb{X} = L^{m,p}(\mathbb{R}^n)$ and E finite, an extension operator may be taken to have "assisted bounded depth"; see [4].

Acknowledgements. This work was developed during a workshop hosted by the American Institute of Mathematics (AIM). We would like to thank the NSF, ONR, AIM, and the workshop organizers for their generosity.

2. Proof of Theorem 2

Fix p > 2 and $0 < \epsilon < 1/(3p)$, and let $\alpha := 1 - 2/p$. Unless stated otherwise, C, c, etc. denote constants depending only on p, which may change value from one occurrence to the next.

For any C^1 function $F : \mathbb{R}^2 \to \mathbb{R}$ and $y \in \mathbb{R}^2$, let $J_y F$ denote the first order Taylor polynomial of F at y:

$$(J_y F)(x) = F(y) + \nabla F(y) \cdot (x - y).$$

We require p > 2 so that the Sobolev theorem holds. In particular, after modification on some measure zero subset, each $F \in L^{2,p}(\mathbb{R}^2)$ belongs to $C^{1,\alpha}_{\text{loc}}(\mathbb{R}^2)$ and satisfies the inequalities:

(2.1)
$$|\nabla F(x) - \nabla F(y)| \le C ||F||_{L^{2,p}(\mathbb{R}^2)} |x - y|^{\alpha} |F(x) - J_y F(x)| \le C ||F||_{L^{2,p}(\mathbb{R}^2)} |x - y|^{1+\alpha}$$
 (all $x, y \in \mathbb{R}^2$)

We extend the $L^{2,p}$ norm to \mathbb{R}^2 -valued functions by setting

 $\|\Psi\|_{L^{2,p}(\mathbb{R}^2)} := \|\Psi_1\|_{L^{2,p}(\mathbb{R}^2)} + \|\Psi_2\|_{L^{2,p}(\mathbb{R}^2)}, \quad \text{where } \Psi = (\Psi_1, \Psi_2) \text{ in coordinates}.$

We define the curve $\gamma := \{(s, s^{1+\alpha}) : s \in [0, 1]\} \subseteq \mathbb{R}^2$. Let $N \ge 2$. We write E for the subset E_N defined in the introduction:

(2.2)
$$E := \left\{ (2^{-k}, (2^{-k})^{1+\alpha}) : k = 2, \dots, N \right\} \cup \left\{ (0, 0) \right\} \subseteq \gamma.$$

In proving Theorem 2, it suffices to assume that N is sufficiently large. More precisely, we henceforth assume that

(2.3) $N \ge Z$, where $Z \ge 1$ is some large constant that depends only on p and ϵ .

We determine Z through Lemma 1 below.

Lemma 1. There exists $Z \ge 1$ depending only on p and ϵ , such that the following holds. Assume (2.3). Then for any $G \in L^{2,p}(\mathbb{R}^2)$ with

 $G = 0 \text{ on } E \text{ and } ||G||_{L^{2,p}(\mathbb{R}^2)} \leq 1,$

we have $|\nabla G(0)| \leq N^{-\epsilon}$.

Lemma 2. For any integer $D \ge 1$ and subset $S \subseteq \gamma$ with $\#S \le D$, there exists $H \in L^{2,p}(\mathbb{R}^2)$ that satisfies

(2.4)
$$H = 0 \text{ on } S, \quad |\nabla H(0)| \ge 1, \quad and \quad ||H||_{L^{2,p}(\mathbb{R}^2)} \le C_2 D^{5/p},$$

where $C_2 = C_2(p)$ depends only on p.

We now prove Theorem 2, presuming the validity of Lemmas 1 and 2. These lemmas are proven later in the section.

In proving Theorem 2, it suffices to assume that (2.3) holds with Z determined by Lemma 1.

Let $A \ge 1$, $D \ge 1$, and let $T : L^{2,p}(E) \to L^{2,p}(\mathbb{R}^2)$ be an extension operator with norm A and depth D. In other terms, for any $f : E \to \mathbb{R}$,

$$(2.5) Tf = f \text{ on } E,$$

(2.6)
$$||Tf||_{L^{2,p}(\mathbb{R}^2)} \le A||f||_{L^{2,p}(E)}$$
, and

(2.7)
$$Tf(x) = \sum_{y \in E} \lambda(x, y) f(y) \text{ for all } x \in \mathbb{R}^2,$$

where the coefficients $\lambda(x, y)$ satisfy

(2.8)
$$\#\{y \in E : \lambda(x,y) \neq 0\} \le D \quad \text{for all } x \in \mathbb{R}^2.$$

Note that $\lambda(x, y) = (T\delta_y)(x)$, where $\delta_y : E \to \mathbb{R}$ equals 1 at y, and equals 0 on $E \setminus \{y\}$. Thus, $\lambda(\cdot, y) \in L^{2,p}(\mathbb{R}^2)$ for each fixed $y \in E$. It follows from the Sobolev theorem that the function $x \mapsto \lambda(x, y)$ belongs to $C^1(\mathbb{R}^2)$ for each fixed $y \in E$.

Let

(2.9)
$$S := \{ y \in E : \nabla_x \lambda(0, y) \neq 0 \}.$$

We claim that $\#S \leq D$. Indeed, suppose for the sake of contradiction that there exist distinct $y_1, \ldots, y_{D+1} \in E$ such that $\nabla_x \lambda(0, y_k) \neq 0$ for each $k = 1, \ldots D + 1$. Then, by the implicit function theorem, there exists $x \in \mathbb{R}^2$ such that $\lambda(x, y_k) \neq 0$ for each $k = 1, \ldots D + 1$. This contradicts (2.8), hence proving $\#S \leq D$.

Note that $S \subseteq \gamma$ (see (2.2), (2.9)). By Lemma 2 there exists $H \in L^{2,p}(\mathbb{R}^2)$ with

(2.10)
$$H = 0 \text{ on } S, \quad |\nabla H(0)| \ge 1, \text{ and } \|H\|_{L^{2,p}(\mathbb{R}^2)} \le C_2 D^{5/p}$$

Define $F = T(H|_E)$. From (2.7),

$$\nabla F(0) = \sum_{y \in E} \nabla_x \lambda(0, y) H(y),$$

For $y \in S$ the summand vanishes because H = 0 on S, while for $y \in E \setminus S$ the summand vanishes by definition of S (see (2.9)). Therefore, $\nabla F(0) = 0$. Finally, (2.5) implies that F = H on E, while (2.6) and (2.10) imply that

$$||F||_{L^{2,p}(\mathbb{R}^2)} \le A ||H|_E||_{L^{2,p}(E)} \le A ||H||_{L^{2,p}(\mathbb{R}^2)} \le C_2 A D^{5/p}.$$

We define $F_0 := F - H$. From (2.10) and the above properties of F,

$$F_0 = 0 \text{ on } E, \quad |\nabla F_0(0)| = |\nabla H(0)| \ge 1, \text{ and } \|F_0\|_{L^{2,p}(\mathbb{R}^2)} \le (C_2 + 1) A D^{5/p}.$$

Taking $G = F_0 \cdot \left[(C_2 + 1) A D^{5/p} \right]^{-1}$ in Lemma 1, we obtain

$$N^{-\epsilon} \ge |\nabla G(0)| \ge \left[(C_2 + 1) A D^{5/p} \right]^{-1}$$

This completes the proof of Theorem 2. In the following subsections we prove Lemmas 1 and 2.

2.1. Besov spaces

The Besov seminorm of a differentiable function $\varphi : \mathbb{R} \to \mathbb{R}$ is

$$\|\varphi\|_{\dot{B}_p(\mathbb{R})} := \Big(\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|\varphi'(s) - \varphi'(t)|^p}{|s - t|^p} \, ds \, dt \Big)^{1/p}.$$

The Besov space $\dot{B}_p(\mathbb{R})$ consists of functions with finite Besov seminorm.

The Besov and Sobolev spaces are related through the following trace/extension theorem (see [7], [8]).

Theorem 3. Let \mathcal{R} denote the restriction operator $\mathcal{R}(F) = F|_{\mathbb{R} \times \{0\}}$, defined for continuous functions $F : \mathbb{R}^2 \to \mathbb{R}$.

- The restriction operator $\mathcal{R}: L^{2,p}(\mathbb{R}^2) \to \dot{B}_p(\mathbb{R})$ is bounded. In other terms, $\|\mathcal{R}(G)\|_{\dot{B}_p(\mathbb{R})} \leq C_{\mathrm{SB}} \|G\|_{L^{2,p}(\mathbb{R}^2)}$ for every $G \in L^{2,p}(\mathbb{R}^2)$.
- There exists a bounded extension operator $\mathcal{E} \colon \dot{B}_p(\mathbb{R}) \to L^{2,p}(\mathbb{R}^2)$. In other terms, $\mathcal{E}(g)|_{\mathbb{R}\times\{0\}} = g$ and $\|\mathcal{E}(g)\|_{L^{2,p}(\mathbb{R}^2)} \leq C_{\mathrm{SB}} \|g\|_{\dot{B}_n(\mathbb{R})}$ for any $g \in \dot{B}_p(\mathbb{R})$.

Given $\overline{E} = \{s_1, \ldots, s_K\} \subseteq \mathbb{R}$ and $\phi : \overline{E} \to \mathbb{R}$, where $s_1 < \cdots < s_K$, we denote the Besov trace seminorm of ϕ by

$$\|\phi\|_{\dot{B}_p(\overline{E})} := \inf\{\|\varphi\|_{\dot{B}_p(\mathbb{R})} : \varphi \in \dot{B}_p(\mathbb{R}), \ \varphi = \phi \text{ on } \overline{E}\}.$$

Let $s_0 := -\infty$ and $s_{K+1} := +\infty$. Define

(2.11)
$$A_{kl} := \int_{s_{k-1}}^{s_k} \int_{s_l}^{s_{l+1}} \frac{1}{|s-t|^p} \, ds \, dt \quad (\text{all } 1 \le k < l \le K).$$

For $1 \leq k \leq K$, let $n(k) \in \{1, \ldots, K\}$ be such that $s_{n(k)} \in \overline{E}$ is a nearest neighbor of s_k , and let

$$m_k := \frac{\phi(s_k) - \phi(s_{n(k)})}{s_k - s_{n(k)}}$$

For $1 \leq k \leq K - 1$, let $\Delta_k := |s_k - s_{k+1}|$, and let

$$M_k := \frac{|m_k - m_{k+1}|}{\Delta_k} + \frac{|\phi(s_k) + m_k \cdot (s_{k+1} - s_k) - \phi(s_{k+1})|}{\Delta_k^2}.$$

The following expression for the Besov trace seminorm can be found in [5] (see Claims 1 and 3 in the proof of Proposition 3.2):

$$(2.12) c \cdot \|\phi\|_{\dot{B}_{p}(\overline{E})}^{p} \leq \sum_{k=1}^{K-1} M_{k}^{p} \Delta_{k}^{2} + \sum_{k=1}^{K-1} \sum_{l=k+1}^{K} |m_{k} - m_{l}|^{p} A_{kl} \leq C \cdot \|\phi\|_{\dot{B}_{p}(\overline{E})}^{p}.$$

2.2. Proof of Lemma 1

Recall that $0 < \epsilon < 1/(3p)$. Let $Z \ge 1$ be a parameter, determined before the end of the proof. We assume that (2.3) holds, that is, $N \ge Z$. In this subsection, constants written C, c, etc., may depend on p and ϵ , but are independent of other parameters.

For the sake of contradiction, suppose that $G \in L^{2,p}(\mathbb{R}^2)$ satisfies

(2.13)
$$G = 0 \text{ on } E = \left\{ (2^{-k}, (2^{-k})^{1+\alpha}) : k = 2, \dots, N \right\} \cup \left\{ (0, 0) \right\}, \\ \|G\|_{L^{2,p}(\mathbb{R}^2)} \le 1 \text{ and } |\nabla G(0)| \ge N^{-\epsilon}.$$

Furthermore, by renormalizing G we may assume

(2.14)
$$N^{-\epsilon} \le |\nabla G(0)| \le 1.$$

Let $\delta := N^{-1/\alpha}$, and let $\theta \in C_0^{\infty}(\mathbb{R}^2)$ satisfy

(2.15)
(a)
$$\supp(\theta) \subseteq B(0, \delta)$$
, (b) $\theta = 1$ on $B(0, \delta/2)$, and
(c) $|\partial^{\beta}\theta| \leq C\delta^{-|\beta|}$, whenever $|\beta| \leq 2$.

Define $H = \theta G + (1 - \theta)J_0G$. First we use the Leibniz rule, (2.15.c) and the fact that H is affine on $\mathbb{R}^2 \setminus B(0, \delta)$ (this follows from (2.15.a)), and then we use the Sobolev theorem (see (2.1)) and $\|G\|_{L^{2,p}(\mathbb{R}^2)} \leq 1$, obtaining that

(2.16)
$$\|H\|_{L^{2,p}(\mathbb{R}^2)} \leq C \cdot \left(\|G\|_{L^{2,p}(\mathbb{R}^2)} + \delta^{-1} \|\nabla G - \nabla J_0 G\|_{L^p(B(0,\delta))} + \delta^{-2} \|G - J_0 G\|_{L^p(B(0,\delta))} \right) \leq C'.$$

From (2.15.b) and G = 0 on E,

$$(2.17) H = 0 ext{ on } E \cap B(0, \delta/2)$$

Note that $\nabla H(0) = \nabla G(0)$, thanks to (2.15.b). Thus, for each $y \in B(0, \delta)$, applying the Sobolev theorem and (2.16) we obtain

$$(2.18) |\nabla H(y) - \nabla G(0)| = |\nabla H(y) - \nabla H(0)| \le C' ||H||_{L^{2,p}(\mathbb{R}^2)} |y|^{\alpha} \le C'' \delta^{\alpha} = C'' N^{-1}.$$

Note that (2.18) also holds for $y \in \mathbb{R}^2$, since H is affine on $\mathbb{R}^2 \setminus B(0, \delta)$. Since N is sufficiently large (see (2.3)) and $\epsilon < 1$, it follows from (2.14) and (2.18) that

(2.19)
$$c N^{-\epsilon} \le |\nabla H(y)| \le C \text{ for all } y \in \mathbb{R}^2.$$

Note that $H(y_0) = H(y_1) = 0$, where $y_0 := (0,0)$ and $y_1 := (2^{-N}, 2^{-N(1+\alpha)})$, for N sufficiently large. This follows from (2.17), since $y_1 \in B(0, N^{-1/\alpha}/2)$ when N is sufficiently large. Thus, for $v := (y_0 - y_1)/|y_0 - y_1|$, the mean value theorem implies that $v \cdot \nabla H(x^*) = 0$ for some $x^* \in B(0, \delta)$ on the line segment joining y_0 and y_1 . By the Sobolev theorem and (2.16) it follows that

$$|v \cdot \nabla H| \le C \,\delta^{\alpha} = C N^{-1}$$
 on $B(0, \delta)$.

424

Hence, $|\partial_1 H| \leq C' N^{-1}$ on $B(0, \delta)$, thanks to the upper bound from (2.19) and the fact $|v - (1, 0)| \leq C 2^{-N\alpha}$. Since H is affine on $\mathbb{R}^2 \setminus B(0, \delta)$, we conclude that

(2.20)
$$|\partial_1 H(y)| \le C' N^{-1} \quad \text{for all } y \in \mathbb{R}^2.$$

Thus, for N sufficiently large, the lower bound in (2.19) and $\epsilon < 1$ imply that

(2.21)
$$|\partial_2 H(y)| \ge c' N^{-\epsilon}$$
 for all $y \in \mathbb{R}^2$.

We define $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ by $\Phi(s,t) = (s, H(s,t))$. The diffeomorphism Φ maps onto \mathbb{R}^2 because $|\partial_2 H|$ is bounded away from zero (see (2.21)). By (2.19)–(2.21), $\nabla \Phi(x)$ takes the form

(2.22)
$$\nabla \Phi(x) = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix}$$
, where $|a| \le C N^{-1}$ and $c N^{-\epsilon} \le |b| \le C$.

Thus, $\nabla \Phi(x)$ is invertible for each $x \in \mathbb{R}^2$ and

(2.23)
$$\left[\nabla\Phi(x)\right]^{-1} = \begin{pmatrix} 1 & 0\\ \overline{a} & \overline{b} \end{pmatrix}$$
, where $|\overline{a}| \le \overline{C} N^{\epsilon-1}$ and $|\overline{b}| \le \overline{C} N^{\epsilon}$

We now define $\Psi = \Phi^{-1}$, and write $\Phi = (\Phi_1, \Phi_2)$ and $\Psi = (\Psi_1, \Psi_2)$ in coordinates. Differentiating twice the identity $\Psi \circ \Phi = \text{Id}$ shows that

$$\nabla \Phi(x) \cdot \nabla^2 \Psi_j(\Phi(x)) \cdot \nabla \Phi(x) = -\sum_{l=1}^2 \nabla^2 \Phi_l(x) \cdot \partial_l \Psi_j(\Phi(x)) \quad (\text{all } x \in \mathbb{R}^2, \ j \in \{1, 2\}).$$

Now, perform the following operations on the above equation: multiply through twice by $[\nabla \Phi(x)]^{-1}$ (on the left and right), use the identity $\nabla \Psi(\Phi(x)) = [\nabla \Phi(x)]^{-1}$, substitute $x = \Phi^{-1}(y)$ on both sides, take p^{th} powers, sum over $j \in \{1, 2\}$, integrate over $y \in \mathbb{R}^2$, and perform the change of variable $y = \Phi(x)$ on the right-hand side. Thus, we obtain

(2.24)
$$\|\Psi\|_{L^{2,p}(\mathbb{R}^2)}^p \le C \|\Phi\|_{L^{2,p}(\mathbb{R}^2)}^p \|\det(\nabla\Phi)\|_{L^{\infty}} \|(\nabla\Phi)^{-1}\|_{L^{\infty}}^{3p}.$$

Next, insert into (2.24) the bounds $\|\det(\nabla\Phi)\|_{L^{\infty}} \leq C$, $\|(\nabla\Phi)^{-1}\|_{L^{\infty}} \leq CN^{\epsilon}$ and $\|\Phi\|_{L^{2,p}(\mathbb{R}^2)} = \|H\|_{L^{2,p}(\mathbb{R}^2)} \leq C'$ obtained from (2.22), (2.23) and (2.16). Thus,

(2.25)
$$\|\Psi\|_{L^{2,p}(\mathbb{R}^2)} \le CN^{3\epsilon}$$

Define $\varphi = \Psi_2|_{\mathbb{R} \times \{0\}}$. By (2.25) and Theorem 3,

(2.26)
$$\|\varphi\|_{\dot{B}_{n}(\mathbb{R})} \leq C_{\rm SB} \|\Psi_{2}\|_{L^{2,p}(\mathbb{R}^{2})} \leq C' N^{3\epsilon}.$$

It follows from (2.17) and the definition $\Phi(s,t) = (s, H(s,t))$ that

$$\Phi(E \cap B(0, \delta/2)) \subseteq \mathbb{R} \times \{0\}.$$

In coordinates, $\Psi = \Phi^{-1}$ takes the form $\Psi(u, v) = (u, \Psi_2(u, v))$. Applying Ψ to the previous set containment and using the definition of φ , we obtain

(2.27)
$$E \cap B(0, \delta/2) \subseteq \left\{ (u, \varphi(u)) : u \in \mathbb{R} \right\}$$

For some integer $K \geq 0$, we write

$$E \cap B(0, \delta/2) = \{(0, 0), (2^{-N}, 2^{-N(1+\alpha)}), \dots, (2^{K-N}, 2^{(K-N)(1+\alpha)})\}.$$

Thus, $2^{K-N} \ge c\delta$ for some c > 0. Since $\delta = N^{-1/\alpha}$, we obtain

$$(2.28) K \ge N - C \log(N).$$

Let $s_k := 2^{k-N}$ for k = 1, ..., K, and let $\overline{E} := \{s_1, ..., s_K\}$. Define $\phi : \overline{E} \to \mathbb{R}$ by $\phi(2^{k-N}) = (2^{k-N})^{1+\alpha}$ for k = 1, ..., K.

Next, we apply (2.12) for the \overline{E} and ϕ chosen above. The quantity A_{kl} defined in (2.11) satisfies, for all $1 \leq k < l \leq K$,

(2.29)
$$A_{kl} \ge \int_{2^{k-1-N}}^{2^{k-N}} \int_{2^{l-N}}^{2^{l+1-N}} \frac{1}{|s-t|^p} \, ds \, dt \ge c \cdot 2^{-(l-N)p} \, 2^{k-N} \, 2^{l-N}$$

Thanks to (2.27), the function φ equals ϕ on \overline{E} . Thus, from (2.12) and (2.29),

$$\|\varphi\|_{\dot{B}_{p}(\mathbb{R})}^{p} \geq \|\phi\|_{\dot{B}_{p}(\overline{E})}^{p} \geq c \sum_{k=2}^{K-1} \sum_{l=k+1}^{K} |m_{k} - m_{l}|^{p} \cdot 2^{-(l-N)p} 2^{k-N} 2^{l-N},$$

where

$$m_i := \frac{\left(2^{i-N}\right)^{1+\alpha} - \left(2^{i-1-N}\right)^{1+\alpha}}{2^{i-N} - 2^{i-1-N}} = (2-2^{-\alpha}) \cdot 2^{(i-N)\alpha}.$$

Note that $|m_k - m_l| \ge c \cdot 2^{(l-N)\alpha}$ for $2 \le k < l \le K$. Inserting this inequality in the above equation, and using $\alpha p = p - 2$, we obtain

$$\|\varphi\|_{\dot{B}_{p}(\mathbb{R})}^{p} \geq c' \sum_{k=2}^{K-1} \sum_{l=k+1}^{K} 2^{(l-N)(p-2)} 2^{-(l-N)p} 2^{k-N} 2^{l-N} \geq c'' \sum_{k=2}^{K-1} 1 = c'' \cdot (K-2).$$

Finally, from (2.26) and (2.28), we obtain

$$c''N - C''\log(N) \le (C')^p N^{3\epsilon p}.$$

Since $\epsilon < 1/(3p)$, the above inequality gives a contradiction when N is sufficiently large. Thus, (2.13) cannot hold, completing the proof by contradiction. We now take $Z = Z(\epsilon, p)$ sufficiently large, so that the previous arguments hold for $N \ge Z$. This completes the proof of Lemma 1.

2.3. Proof of Lemma 2

Let $S \subseteq \gamma$ with $\#S \leq D$ be given. For ease of notation, we may assume that #S = D. We must construct an $H \in L^{2,p}(\mathbb{R}^2)$ that satisfies (2.4). To start, write

$$S = \{(s_1, s_1^{1+\alpha}), \dots, (s_D, s_D^{1+\alpha})\} \text{ with } 0 \le s_1 < s_2 < \dots < s_D \le 1.$$

Let $\overline{S} := \{s_1, \ldots, s_D\}$, and define $\phi : \overline{S} \to \mathbb{R}$ by $\phi(s_k) = (s_k)^{1+\alpha}$ for $k = 1, \ldots, D$. Next, we apply (2.12) to this subset \overline{S} and function ϕ .

We first obtain an estimate on the A_{kl} defined in (2.11):

(2.30)
$$A_{kl} \leq \int_{-\infty}^{s_k} \int_{s_l}^{\infty} \frac{1}{|s-t|^p} \, ds \, dt \leq C \cdot |s_k - s_l|^{2-p} \quad (\text{all } 1 \leq k < l \leq D).$$

Let $s_{n(k)} \in \overline{S}$ be a nearest neighbor to s_k , for each $1 \leq k \leq D$, and let

$$m_k := \frac{(s_k)^{1+\alpha} - (s_{n(k)})^{1+\alpha}}{s_k - s_{n(k)}}$$

From (2.12), (2.30) and $\alpha p = p - 2$, there exists $\varphi : \mathbb{R} \to \mathbb{R}$ such that

 $(2.31) \qquad S \subseteq \ \left\{ (s,\varphi(s)) : s \in \mathbb{R} \right\}, \ \text{and}$

$$(2.32) \|\varphi\|_{\dot{B}_{p}(\mathbb{R})}^{p} \leq C \sum_{k=1}^{D-1} \frac{|(s_{k})^{1+\alpha} + m_{k} \cdot (s_{k+1} - s_{k}) - (s_{k+1})^{1+\alpha}|^{p}}{|s_{k+1} - s_{k}|^{(1+\alpha)p}} + C \sum_{k=1}^{D-1} \sum_{l=k+1}^{D} \frac{|m_{k} - m_{l}|^{p}}{|s_{k} - s_{l}|^{\alpha p}}$$

By the mean value theorem, each m_k takes the form $(1+\alpha)t_k^{\alpha}$ for some t_k between s_k and $s_{n(k)}$. Thus, $|m_k - m_l| \leq C |t_k - t_l|^{\alpha} \leq C \, 3^{\alpha} |s_k - s_l|^{\alpha}$ for $k \neq l$. (Here, we use the inequalities $|t_k - s_k| \leq |s_k - s_{n(k)}| \leq |s_k - s_l|$ and $|t_l - s_l| \leq |s_l - s_{n(l)}| \leq |s_k - s_l|$.) Similarly, $|m_k - (1+\alpha)s_k^{\alpha}| \leq C |s_{k+1} - s_k|^{\alpha}$, hence Taylor's theorem provides uniform control on each term from the first sum in (2.32). Therefore,

(2.33)
$$\|\varphi\|_{\dot{B}_p(\mathbb{R})}^p \le CD^2.$$

Applying the extension operator \mathcal{E} from Theorem 3, the function $F = \mathcal{E}(\varphi)$ satisfies $F|_{\mathbb{R}\times\{0\}} = \varphi$ and $||F||_{L^{2,p}(\mathbb{R}^2)} \leq C_{SB} ||\varphi||_{\dot{B}_p(\mathbb{R})}$. Thus, from (2.31),

$$(2.34) S \subseteq \{(s, F(s, 0)) : s \in \mathbb{R}\},\$$

while from (2.33) we obtain

(2.35)
$$||F||_{L^{2,p}(\mathbb{R}^2)} \le C' D^{2/p}.$$

We may assume that $\#S \geq 2$, for otherwise Lemma 2 is trivial. Note that $S \subseteq [0,1]^2$ lies on a Lipschitz graph. Thus, by (2.34), there exists $s^* \in [0,1]$ such that $|\partial_1 F(s^*,0)| \leq C$. By (2.35) and the Sobolev theorem, $|\partial_1 F(0)| \leq C' D^{2/p}$.

Let

$$M := \max\{ \|F\|_{L^{2,p}(\mathbb{R}^2)}, \ |\partial_1 F(0)|, \ 1 \}.$$

Without loss of generality, by adding to F some multiple of the coordinate function $(s,t) \mapsto t$, we may assume that $\partial_2 F(0) = RM$, where $R \ge 1$ shall be determined later. This does not affect statements from the previous two paragraphs. To summarize:

(2.36)
$$|\partial_1 F(0)| \le M, \ \partial_2 F(0) = RM, \text{ and}$$

(2.37)
$$||F||_{L^{2,p}(\mathbb{R}^2)} \le M$$
, where $1 \le M \le C' D^{2/p}$

Pick $\widehat{\theta} \in C_0^\infty(\mathbb{R}^2)$ that satisfies

(2.38) (a)
$$\operatorname{supp}(\widehat{\theta}) \subseteq [-1, 2]^2$$
, (b) $\widehat{\theta} = 1$ on $[-1/2, 3/2]^2$, and
(c) $|\partial^\beta \widehat{\theta}| \le C$, whenever $|\beta| \le 2$.

Define $\widehat{F} := \theta F + (1 - \theta) J_0 F.$

Mimicking the proof of (2.16) with help from (2.37), (2.38.a), (2.38.c), we obtain

(2.39)
$$\|\widehat{F}\|_{L^{2,p}(\mathbb{R}^2)} \le CM$$

Mimicking the proof of (2.18) with help from (2.38.a), (2.38.b), (2.39), we obtain

$$|\nabla \widehat{F}(y) - \nabla F(0)| \le C'M \quad (\text{all } y \in \mathbb{R}^2)$$

Now, choose R sufficiently large, determined by p, so that the previous inequality and (2.36) imply that

(2.40)
$$|\partial_1 \widehat{F}(y)| \le CM \text{ and } \frac{RM}{2} \le |\partial_2 \widehat{F}(y)| \le 2RM \text{ (all } y \in \mathbb{R}^2).$$

Finally, (2.34),(2.38.b) and $S \subseteq [0, 1]^2$ imply that

(2.41)
$$S \subseteq \left\{ (s, \widehat{F}(s, 0)) : s \in \mathbb{R} \right\}.$$

We define $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ by $\Phi(s,t) = (s, \hat{F}(s,t))$. The diffeomorphism Φ maps onto \mathbb{R}^2 because $|\partial_2 \hat{F}|$ is bounded away from zero (see (2.40)).

We define $\Psi = \Phi^{-1}$. We write $\Phi = (\Phi_1, \Phi_2)$ and $\Psi = (\Psi_1, \Psi_2)$ in coordinates. As in (2.24), we obtain

$$\|\Psi\|_{L^{2,p}(\mathbb{R}^2)} \le C \, \|\Phi\|_{L^{2,p}(\mathbb{R}^2)} \cdot \|\det(\nabla\Phi)\|_{L^{\infty}}^{1/p} \cdot \|(\nabla\Phi)^{-1}\|_{L^{\infty}}^3.$$

It follows from (2.39) and (2.40) that

 $\|\Phi\|_{L^{2,p}(\mathbb{R}^2)} = \|\widehat{F}\|_{L^{2,p}(\mathbb{R}^2)} \le CM, \|\det(\nabla\Phi)\|_{L^{\infty}} \le 2RM \text{ and } \|(\nabla\Phi)^{-1}\|_{L^{\infty}} \le C'.$ Therefore,

(2.42)
$$\|\Psi_2\|_{L^{2,p}(\mathbb{R}^2)} \le \|\Psi\|_{L^{2,p}(\mathbb{R}^2)} \le C'' M^{1+1/p} \le C'' M^{3/2}.$$

In coordinates, $\Phi(s,t) = (s, \hat{F}(s,t))$ and $\Psi(u,v) = (u, \Psi_2(u,v))$, where $\hat{F}(u, \Psi_2(u,v)) = v$. Applying $\partial_2 = \partial/\partial v$, setting u = v = 0, and then using (2.40),

(2.43)
$$\partial_2 \Psi_2(0) = \left[\partial_2 \widehat{F}(\Psi(0))\right]^{-1} \ge CM^{-1}$$

Finally, (2.41) implies that $S \subseteq \Phi(\mathbb{R} \times \{0\})$. Thus we obtain

(2.44)
$$\Psi(S) \subseteq \mathbb{R} \times \{0\}.$$

Let $H = \Psi_2/\partial_2\Psi_2(0)$. The bound $M \leq C \cdot D^{2/p}$ and (2.42)–(2.44) imply that H satisfies the conclusion of Lemma 2. This completes the proof of Lemma 2.

References

- FEFFERMAN, C.: Extension of C^{m,ω}-smooth functions by linear operators. Rev. Mat. Iberoam. 25 (2009), no. 1, 1–48.
- [2] FEFFERMAN, C.: C^m-extension by linear operators. Ann. of Math. (2) 166 (2007), no. 3, 779–835.
- [3] FEFFERMAN, C.: The structure of linear extension operators for C^m. Rev. Mat. Iberoam. 23 (2007), no. 1, 269–280.
- [4] FEFFERMAN, C., ISRAEL, A. AND LULI, G.: Sobolev extension by linear operators. J. Amer. Math. Soc. 27 (2014), no. 1, 69–145.
- [5] ISRAEL, A.: A bounded linear extension operator for $L^{2,p}(\mathbb{R}^2)$. Ann. of Math (2) **178** (2013), no. 1, 183–230.
- [6] LULI, G.: $C^{m,\omega}$ extension by bounded-depth linear operators. Adv. Math. **224** (2010), no. 5, 1927–2021.
- [7] STEIN, E.M.: The characterization of functions arising as potentials. II. Bull. Amer. Math. Soc. 68 (1962), 577–582.
- [8] TRIEBEL, H.: Interpolation theory, function spaces, differential operators. Johann Ambrosius Barth, Heidelberg, 1995.

Received June 10, 2012.

CHARLES FEFFERMAN: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544, USA. E-mail: cf@math.princeton.edu

ARIE ISRAEL: Courant Institute, New York University, 251 Mercer Street, New York, New York 10012, USA.

E-mail: arie@cims.nyu.edu

GARVING K. LULI: Department of Mathematics, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA. E-mail: kluli@math.ucdavis.edu

The first author is supported by NSF and ONR grants DMS 09-01040 and N00014-08-1-0678. The second author is supported by NSF fellowship DMS 11-03978. The third author is supported by NSF and ONR grants DMS 09-01040 and N00014-08-1-0678.