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The structure of Sobolev extension operators

Charles Fefferman, Arie Israel and Garving K. Luli

Abstract. Let L™P(R"™) denote the Sobolev space of functions whose
m-th derivatives lie in L? (R™), and assume that p > n. For £ C R", denote
by L™P(FE) the space of restrictions to F of functions F € L™P(R"™). It
is known that there exist bounded linear maps 7 : L"™?(FE) — L™P(R")
such that Tf = f on E for any f € L™?(E). We show that T' cannot
have a simple form called “bounded depth”.

1. Introduction

Let X denote any of the following standard function spaces on R™:

e X'=(C™(R"™), the space of real-valued F' € C[7_ (R™) for which the norm

loc

| F||cm@ny := sup max [0%F(x)| is finite;
weRn |al<m

e X =(C™3(R™), the space of all functions F € C™(R") for which the norm
0% F (x) — 0°F(y)|

F|cmsmny := ||F||cm@mn) + sup max
| (R™) | (R™) oyeR™ lal=m lz — y|®
TFy

is finite (here 0 < s < 1);

e X = L™P(R™), the homogeneous Sobolev space of all real-valued functions F’
for which the seminorm

HF| Lvn,p(Rn) = ||vaHLp(Rn) iS ﬁnite.

(Here, we take p > n, so that X C Cfgc_l’l_"/p(R”), by the Sobolev theorem.)

For E C R"™, we set X(E) := {F|g : F € X}, equipped with the seminorm
||f||X(E) = inf{||FHX :FeX, F=fon E}
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Let A > 1 be a real number. An extension operator for X(FE) with norm A is
a linear map T : X(E) — X such that for all f € X(E) we have

Tf=f onkE

and
ITfllx < Allfllxz)-

For X = C™(R"™) or C™*(R"™) and E C R™ arbitrary, there exists an extension
operator whose norm depends only on m and n. Similarly, for X = L"?(R") and E
arbitrary, there exists an extension operator whose norm depends only on m, n
and p. See [1], [2], and [4].

We want to know whether such extension operators can be taken to have a
simple form when E is finite. Recall that any linear map 7' : X(F) — X (E C R”
finite) has the form

Tf(x)=> Aa,y)f(y) (allweR"),

yeE

with coefficients \(x,y) independent of f. Let D be a positive integer. We say
that T has depth D if, for each fixed x, at most D of the coefficients A(x,y) are
nonzero.

Let X = C™(R"™) or C"™*(R"™), and let E C R™ be finite. Then there exists
an extension operator for X(FE), whose norm and depth depend only on m and n.
See [1] and [3].

Thus, it is natural to ask the following:

Let X = L™P(R"), and let E C R™ be finite. Does there exist an extension
operator for X(F), whose norm and depth depend only on m, n and p?

Unfortunately, the answer is NO. In this paper, we establish the following result.

Theorem 1. Let p > 2, A>1 and D > 1 be given. Then there exists a finite set
E C R? such that L*P(E) has no extension operator of norm A and depth D.

More precisely, for N > 2, let
(1.1) Ey = {27F 27> 2/") :k=2,...,N}u{(0,0)} CR%.

Theorem 2. Letp >2, A>1,D>1, and let 0 < e < 3/p. If L*P(Ey) has an
extension operator with norm A and depth D, then

A-DP > c(e,p)- N¢, where c(e,p) depends only on e and p.

Theorem 2 will be proven in the next section. Theorem 1 follows at once from
Theorem 2.

We mention a few related results in the literature. For X = C"*(R™), Luli [6]
constructed extension operators of bounded depth without the assumption that F
is finite. The analogous result for X = C"(R"™) is false; however, there exist exten-
sion operators of “bounded breadth”. (See [3].) For X = L™P(R") and F finite,
an extension operator may be taken to have “assisted bounded depth”; see [4].
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2. Proof of Theorem 2

Fix p > 2and 0 < € < 1/(3p), and let o := 1 — 2/p. Unless stated otherwise,
C, ¢, etc. denote constants depending only on p, which may change value from one
occurrence to the next.

For any C' function F : R* — R and y € R?, let J,F denote the first order
Taylor polynomial of F' at y:

(JyF)(z) = F(y) + VF(y) - (x — y).

We require p > 2 so that the Sobolev theorem holds. In particular, after
modification on some measure zero subset, each F € L>P(R?) belongs to C2% (R?)
and satisfies the inequalities:

IVF(z) = VF(y)| < O F[[L2p@2) [ — y|*

(2.1) -
|F(z) = JyF(2)| < C||F|[20®2) [z =yl

(all z,y € R?).

We extend the L*? norm to R2-valued functions by setting
||‘IIHL2,p(R2) = ||‘I/1HL2,p(R2) + ||‘I/2||L2,p(R2), where ¥ = (\Ifl, \112) in coordinates.

We define the curve v := {(s,s'7) : s € [0,1] } C R?. Let N > 2. We write F
for the subset En defined in the introduction:

(2.2) E={2" 2" k=2,...,N}U{(0,0)} CH.

In proving Theorem 2, it suffices to assume that N is sufficiently large. More
precisely, we henceforth assume that

(2.3) N > Z, where Z > 1is some large constant that depends only on p and e.
We determine Z through Lemma 1 below.

Lemma 1. There exists Z > 1 depending only on p and €, such that the following
holds. Assume (2.3). Then for any G € L*P(R?) with

G=0onE and |G| r2rme) <1,
we have [VG(0)] < N~€.

Lemma 2. For any integer D > 1 and subset S C v with #S < D, there exists
H € L*P(R?) that satisfies

(2.4) H=0onS, |VHO)>1, and |H|p2rge) <CsD?,

where Cy = Co(p) depends only on p.
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We now prove Theorem 2, presuming the validity of Lemmas 1 and 2. These
lemmas are proven later in the section.

In proving Theorem 2, it suffices to assume that (2.3) holds with Z determined
by Lemma 1.

Let A>1, D >1,and let T : L*>P(E) — L*>P(R?) be an extension operator
with norm A and depth D. In other terms, for any f: E — R,

(2.5) Tf=fonE,

(2.6) 1Tl 202y < Al fllL2#(E), and

(2.7) Tf(x)=> Ma,y)f(y) forallzeR?
yeE

where the coefficients A(x,y) satisfy
(2.8) #{lyeE: Az,y) #0} <D forallz € R?.

Note that A(z,y) = (T',)(x), where §, : E — R equals 1 at y, and equals 0 on
E\ {y}. Thus, \(-,y) € L?P(R?) for each fixed y € E. It follows from the Sobolev
theorem that the function x — \(z,y) belongs to C1(R?) for each fixed y € E.

Let

(2.9) S:={yeE:V,\0,y)#0}.

We claim that #S < D. Indeed, suppose for the sake of contradiction that there
exist distinct y1,...,yp+1 € E such that V,A(0,y,) # 0 for each k =1,...D + 1.
Then, by the implicit function theorem, there exists # € R? such that A(z,yx) # 0
for each k = 1,...D + 1. This contradicts (2.8), hence proving #S5 < D.

Note that S C v (see (2.2), (2.9)). By Lemma 2 there exists H € L*»?(R?) with

(2.10) H=0onS, |VH(0)|>1, and |H|p2sm < CsDP.
Define F = T(H|g). From (2.7),

VF(0) =Y V.A0,9)H(y),

yeE

For y € S the summand vanishes because H = 0 on S, while for y € E\ §
the summand vanishes by definition of S (see (2.9)). Therefore, VF(0) = 0.
Finally, (2.5) implies that F' = H on FE, while (2.6) and (2.10) imply that

1P| 22y < AllH|p]| L20(m) < Al H||L20@2) < C2 ADP.
We define Fy := F — H. From (2.10) and the above properties of F,
Fy=00nE, |VEy(0)=|VH(0)]>1, and |Fo|lp2r@me) < (Co+1)ADY?.
Taking G = Fp - [(C2 + 1) AD5/1”]_1 in Lemma 1, we obtain
N~ >|VG(0)| > [(Cy + 1) AD?] .

This completes the proof of Theorem 2. In the following subsections we prove
Lemmas 1 and 2.
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2.1. Besov spaces

The Besov seminorm of a differentiable function ¢ : R — R is

_ [¥'(s) = " (DI l/r
el s, @) = (/R/R s — 4 dsdt) .

The Besov space BP(R) consists of functions with finite Besov seminorm.

The Besov and Sobolev spaces are related through the following trace/extension
theorem (see [7], [8]).

Theorem 3. Let R denote the restriction operator R(F) = F|ryx oy, defined for
continuous functions F : R? — R.
e The restriction operator R : L*?(R?) — B,(R) is bounded. In other terms,
IR(G)l g, r) < CsB [|GllL20(r2) for every G € L?P(R?).

e There exists a bounded extension operator €: B,(R) — L*P(R?). In other
terms, 5(g)|RX{0} =g and ||E(9)|| L2r(r2) < CsB HQHBZ,(R) for any g € Bp(R).

Given £ = {s1,...,5x} CRand ¢ : E — R, where s; < --- < s, we denote
the Besov trace seminorm of ¢ by

||¢HBP(E) = inf{HW\B,,(R) TP e B;D(R)v ¢ =¢on E}

Let sg := —o0 and sk 41 := +00. Define
Si4+1 1
5 —
1

For 1 <k < K, let n(k) € {1,..., K} be such that s, € E is a nearest neighbor
of s, and let

P(sk) — ¢(5n(k)).

Sk = Sn(k)

For 1 <k <K -—1,let Ag:=|sp — sgt1/, and let

Imy — mpga| | |d(sk) + mk - (Skv1 — Sk) — P(Sk+1))|
+ ) .
A A2

Mk =

The following expression for the Besov trace seminorm can be found in [5] (see
Claims 1 and 3 in the proof of Proposition 3.2):

N

MT

K
(212)  c-[6l & Z Z [mk —mul? Ay < C-1I8]l} 5

k=1 k=1 =k
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2.2. Proof of Lemma 1

Recall that 0 < € < 1/(3p). Let Z > 1 be a parameter, determined before the
end of the proof. We assume that (2.3) holds, that is, N > Z. In this subsection,
constants written C| ¢, etc., may depend on p and €, but are independent of other
parameters.

For the sake of contradiction, suppose that G € L*P(R?) satisfies

(2.13) G=0onE={2%2 ") k=2, N}u{(0,0)},
|Gl r2r@e2y <1 and |[VG(0)| = N~
Furthermore, by renormalizing G we may assume
(2.14) N~ < |VG(0)| < 1.
Let § := N~/ and let § € C°(R?) satisfy

(2.15) (a) supp(f) € B(0,9), (b)8=1on B(0,§/2), and
- (c) 18°0] < €618 whenever |8] < 2.

Define H = 0G + (1 — 0)JyG. First we use the Leibniz rule, (2.15.c) and the fact
that H is affine on R?\ B(0,4) (this follows from (2.15.a)), and then we use the
Sobolev theorem (see (2.1)) and ||G|[2.»(r2) < 1, obtaining that

(2'16) HHHLZJ’(]I@) < C- (HG”LlP(RZ) + (5_1HVG — VJOGHLP(B(O,(?))
+07%|G - JOGHU’(B(O,&))) <.

From (2.15.b) and G =0 on E,
(2.17) H=0 on ENB0,5/2).

Note that VH(0) = VG(0), thanks to (2.15.b). Thus, for each y € B(0,4),
applying the Sobolev theorem and (2.16) we obtain

(2.18) |VH(y)-VG(0)| = |V H (y)~V H(0)| < C'||H|| p2pr2) [y|* < C"6% = C" N7,

Note that (2.18) also holds for y € R?, since H is affine on R? \ B(0,4). Since N
is sufficiently large (see (2.3)) and € < 1, it follows from (2.14) and (2.18) that

(2.19) cN~°<|VH(y)| <C forallyc R%

Note that H(yo) = H(y1) = 0, where yo := (0,0) and y; := (27N, 27N+,
for N sufficiently large. This follows from (2.17), since y; € B(0, N~'/*/2) when N
is sufficiently large. Thus, for v := (yo — y1)/|yo — y1|, the mean value theorem
implies that v - VH(2*) = 0 for some z* € B(0,d) on the line segment joining
and y;. By the Sobolev theorem and (2.16) it follows that

lv-VH| <C§*=CN™' on B(0,6).
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Hence, |01 H| < C'"N~! on B(0,d), thanks to the upper bound from (2.19) and the
fact |v — (1,0)| < C27Ne. Since H is affine on R? \ B(0,d), we conclude that

(2.20) |01H (y)| < C’N~!  for ally € R?.
Thus, for N sufficiently large, the lower bound in (2.19) and ¢ < 1 imply that
(2.21) |02 H (y)| > ¢ N~¢ for all y € R%.

We define & : R? — R? by &(s,t) = (s, H(s,t)). The diffeomorphism ® maps
onto R? because |02 H| is bounded away from zero (see (2.21)). By (2.19)—(2.21),
V() takes the form

1 0

(2.22) v«p(x):(a )

>, where |a| <CN™' and c¢N°< b <C.

Thus, V®(z) is invertible for each z € R? and

(2.23) [v«p(x)]*l:(l %) where [a] <CN“"' and [5| <C N

a
We now define ¥ = &~! and write ® = (&1, ®3) and ¥ = (¥;, ¥5) in coordi-
nates. Differentiating twice the identity ¥ o & = Id shows that

VO(2)-VU;(D(x))-VO(x) = — > V?8(2)-0,;(B(z)) (allw € R?, j € {1,2}).
=1

Now, perform the following operations on the above equation: multiply through
twice by [V®(x)]~! (on the left and right), use the identity V¥ (®(z)) = [V®(x)] !,
substitute x = ®~!(y) on both sides, take p** powers, sum over j € {1,2}, integrate
over y € R?, and perform the change of variable y = ®(z) on the right-hand side.
Thus, we obtain

(2.24) W1 2 g2y < C NI 20 g2 Nl det(VR) 2= [[(V)

Next, insert into (2.24) the bounds || det(V®)||p~ < C, [[(V®) ! p= < CN°©
and [|®[|z2.pr2) = || H || 2.0 (r2) < C' obtained from (2.22), (2.23) and (2.16). Thus,

(2.25) 0| p2.0(R2) < CNP<.
Define ¢ = Vs |ryq03. By (2.25) and Theorem 3,
(226) Il 5,y < Csp I¥allzngeey < O'N.
It follows from (2.17) and the definition ®(s,t) = (s, H(s,t)) that

o(EN B(0,5/2)) CR x {0}.
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In coordinates, ¥ = ®~! takes the form W¥(u,v) = (u, ¥o(u,v)). Applying ¥ to
the previous set containment and using the definition of ¢, we obtain

(2.27) ENB(0,0/2) C {(u,¢(u)) : u € R}.
For some integer K > 0, we write
ENB(0,6/2) = {(0,0), (27N, 27 NFe)) (2K=N o(K=N)0+e))}
Thus, 25N > ¢§ for some ¢ > 0. Since § = N~/ we obtain
(2.28) K > N —Clog(N).

Let s :=2"Nfork=1,...,K,and let E:= {sy,...,5k}. Define ¢ : E — R
by ¢(2FN) = (2F-N)+e for k=1,... K.

Next, we apply (2.12) for the E and ¢ chosen above. The quantity Az defined
in (2.11) satisfies, for all 1 <k <1< K,

2k7N 2l+17N

1
(2.29) A > / dsdt > ¢ 27 (=N gh=N gl=N
2k—1—-N Jol—N |8 - tlp

Thanks to (2.27), the function ¢ equals ¢ on E. Thus, from (2.12) and (2.29),

K-1 K
1% oy 2 101 gy > €30 S g — gyl 270N k=N gt
k=2 l=k+1

where
(21'7N)1+0‘ _ (Qiszv)lﬂ!

- — (2 _9—a).9(i—N)
mg = e T—— = (2 —279) . 20N

Note that |my —my| > c- 20=N)a for 2 < | < | < K. Inserting this inequality in
the above equation, and using ap = p — 2, we obtain

K-1 K K—1
H(pHp - > Z Z 2(l—N)(p—2)2—(l—N)p 2k—N 2l—N > ! Z 1=¢". (K _ 2)
By(R) = >
k=2 l=k+1 k=2

Finally, from (2.26) and (2.28), we obtain
d'N — C"log(N) < (C")P N3P,

Since € < 1/(3p), the above inequality gives a contradiction when N is sufficiently
large. Thus, (2.13) cannot hold, completing the proof by contradiction. We now
take Z = Z (e, p) sufficiently large, so that the previous arguments hold for N > Z.
This completes the proof of Lemma 1. O
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2.3. Proof of Lemma 2

Let S C v with #S < D be given. For ease of notation, we may assume that
#S = D. We must construct an H € L?P(R?) that satisfies (2.4). To start, write

S:{sl,sﬁ“), (sD,s};“ } with0 <s1 < sy <---<sp<1.
Let S := {s1,...,sp}, and define ¢ : S — R by ¢(s) = (s) 7 for k=1,...,D.

Next, we apply (2.12) to this subset S and function ¢.
We first obtain an estimate on the Ay defined in (2.11):

(230 Ay < / / det<C |skfsl| (a111§k<l§D)

Let sp1) € S be a nearest neighbor to sy, for each 1 < k < D, and let

(sp)tTe — (Sn(k))1+a.

Sk = Sn(k)

mg ‘=

From (2.12), (2.30) and ap = p — 2, there exists ¢ : R — R such that
(2.31)  SC {(s;0(s) : s €R}, a

Y oy - (k1 — sk) — (sp1) TP

D-1

p |(sk)
232 el e < €Y
k=1

|skr1 — sp|(1He)p
oy ek
k=1 I=k+1 Tsk = sioP”

By the mean value theorem, each my, takes the form (14 «)t¢ for some ¢ between
s and s,,(). Thus, |my—my| < Cltx—1;|* < C3%|sp—s1|* for k # I. (Here, we use
the inequalities [tx —si| < [sp—sp)| < [sx—s1 and [t;—s1| < [si—s,)] < |5k —51].)
Similarly, [my—(14+a)sy| < Clsgp4+1—sk|*, hence Taylor’s theorem provides uniform
control on each term from the first sum in (2.32). Therefore,

(2.33) < CD2.

1%, ) <

Applying the extension operator £ from Theorem 3, the function F = &(p)
satisfies Flpy (o} = ¢ and [|[F||12»r2) < CsB |9l g, (r)- Thus, from (2.31),

(2.34) S C{(s,F(s,0)) : s € R},
while from (2.33) we obtain
(2.35) | F|| g2 (rey < C'D?.

We may assume that #S > 2, for otherwise Lemma 2 is trivial. Note that
S C [0,1]? lies on a Lipschitz graph. Thus, by (2.34), there exists s* € [0,1] such
that |0, F(s*,0)| < C. By (2.35) and the Sobolev theorem, |9, F(0)| < C'D?/?,
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Let
M = max{HF||L2,p(Rz), |81F(0)|, ].}

Without loss of generality, by adding to I’ some multiple of the coordinate function
(s,t) — t, we may assume that 0, F(0) = RM, where R > 1 shall be determined
later. This does not affect statements from the previous two paragraphs. To
summarize:

(2.36) |81 F(0)] < M, 9,F(0) = RM, and
2.37 2or2) < M, where 1 < < .
F|lr2w@e) < M, wh M < C'D?»
Pick 0 € C5°(R?) that satisfies
(2.3 (a) supp(6) € [~1,2]%, (b) # =1 on[-1/2,3/2]% and
- (c) 10°6] < C, whenever || < 2.

Define F := 0F + (1 — 6).JoF.
Mimicking the proof of (2.16) with help from (2.37), (2.38.a), (2.38.c), we obtain

(2.39) ||ﬁ||L2m(R2) < CM.

Mimicking the proof of (2.18) with help from (2.38.a), (2.38.b), (2.39), we
obtain R
[VE(y) —VF(0)| < C'M (ally € R?).

Now, choose R sufficiently large, determined by p, so that the previous inequality
and (2.36) imply that

(2.40) 01 F(y)] < CM  and % <|0,F(y)| <2RM (all y € R?).

Finally, (2.34),(2.38.b) and S C [0, 1]? imply that
(2.41) S C {(s,ﬁ(s,O)) ;s €R}.

We define @ : R? — R? by &(s,t) = (s,ﬁ(s,t)). The diffeomorphism ® maps
onto R2 because |, F| is bounded away from zero (see (2.40)).

We define U = &~1. We write ® = (&1, ®3) and ¥ = (¥, ¥3) in coordinates.
As in (2.24), we obtain

10120 (g2) < C 1@ 20 (g2) - || det(VO)[ /2 - [[(VO) ™[
It follows from (2.39) and (2.40) that
D L2.p(r2) = Hﬁ”LZ,p(R?) < OM, || det(V®)||p~ < 2RM and [|(V®) !z~ < C".
Therefore,

(2.42) [Wal Lowmz) < || L2wey < C"MTHYP < 0" M3/,
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In coordinates, ®(s, t)= (s, F(s,t)) and ¥ (u, v) = (u, ¥2(u, v)), where F(u, ¥y (u,v))
= v. Applying 02 = 9/0v, setting u = v = 0, and then using (2.40),

(2.43) 92W5(0) = [0:F(W(0)] ' > M.
Finally, (2.41) implies that S C ®(R x {0}). Thus we obtain
(2.44) U(S) C R x {0}.

Let H = Wy/0,W5(0). The bound M < C-D?/? and (2.42)—(2.44) imply that H
satisfies the conclusion of Lemma 2. This completes the proof of Lemma 2. O
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