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Log-Harnack inequality

for Gruschin type semigroups

Feng-Yu Wang and Lihu Xu

Abstract. By constructing a coupling in two steps and using the Girsanov
theorem under a regular conditional probability, the log-Harnack inequa-
lity is established for a large class of Gruschin type semigroups whose
generator might be both degenerate and non-Lipschitz.

1. Introduction

In recent years, regularity estimates has been investigated for some typical subel-
liptic diffusion semigroups; see [7], [22], [24] for the study of generalized stochastic
Hamiltonian systems, and see [2], [5], [6], [8] for gradient estimates and Harnack
inequalities on Heisenberg groups. This paper aims to investigate the log-Harnack
inequality introduced in [13], [15] for Gruschin type semigroups whose generators
are degenerate and possibly singular. This inequality is a weaker version of the
dimension-free Harnack inequality introduced in [14], and has a number of ap-
plications to heat kernel estimates and transportation-cost inequalities; see, e.g.,
Section 4 in [18].

Let us start with the classical Gruschin semigroup on R2 of order l > 0, that
is generated by

L(x(1), x(2)) :=
1

2

( ∂2

∂(x(1))2
+ |x(1)|2l ∂2

∂(x(2))2

)
.

The corresponding diffusion process can be constructed by solving the SDE{
dX

(1)
t = dB

(1)
t ,

dX
(2)
t = |X(1)

t |l dB(2)
t ,

where Bt := (B
(1)
t , B

(2)
t ) is a two-dimensional Brownian motion. Clearly, the

equation is degenerate, and when l < 1 the coefficient in the second equation is
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non-Lipschitz. In the simplest case that l = 1, the generalized curvature-dimension
condition introduced in [4] holds, so that the gradient estimates and Harnack
inequalities derived in [3], [4] are valid for the associated semigroup. When l is a
natural number larger than 1, a more general version of the curvature condition
has been confirmed in [18], which also implies explicit gradient estimates for the
semigroup. Moreover, for general l ≥ 1, a Bismut type derivative formula was
derived for the semigroup in [17] by using the Malliavin calculus. However, due to
the singularity of the coefficient, the arguments used in these papers are not valid
if l ∈ (0, 1), and except for l = 1, the validity of the log-Harnack inequality for the
semigroup is not yet established. In this paper we aim to establish the log-Harnack
inequality for the Gruschin semigroup for all l > 0. However, the argument used
here does not imply the dimension-free Harnack inequality in the sense of [14] for
the Gruschin semigroup.

A key tool in the study is the method of coupling by change of measure in-
troduced in [1]. This method has been developed and applied to various finite
and infinite-dimensional models; see, e.g., [7], [9], [10], [11], [12], [16], [20], [19],
[21], [23] and references therein. In the study we have to overcome new difficulties
due to the high degeneracy (for large l) and the singularity (for small l) of the
coefficient.

We consider the following more general SDE for Xt := (X
(1)
t , X

(2)
t ) on Rm ×

Rd = Rm+d (m, d ≥ 1):

(1.1)

{
dX

(1)
t = b(1)(t,X

(1)
t ) dt+ σ(1)(t) dB

(1)
t ,

dX
(2)
t = b(2)(t,Xt) dt+ σ(2)(t,X

(1)
t ) dB

(2)
t ,

where Bt := (B
(1)
t , B

(2)
t ) is the (m + d)-dimensional Brownian motion on a com-

plete probability space (Ω,F ,P) with natural filtration {Ft}t≥0, and

b(1) : [0,∞)× Rm → Rm, b(2) : [0,∞)× Rm+d → Rd,

σ(1) : [0,∞) → Rm ⊗ Rm, σ(2) : [0,∞)× Rm → Rd ⊗ Rd

are measurable, and b(1), b(2) and σ(2) are continuous in the second variable. As-
sume:

(A.1) There exists a decreasing function λ : [0,∞) → (0,∞) such that

σ(1)(t)σ(1)(t)∗ ≥ λ2t Im×m, t ≥ 0.

(A.2) There exists an increasing function K : [0,∞) → R such that〈
b(1)(t, x(1))−b(1)(t, y(1)), x(1)−y(1)〉 ≤ Kt|x(1)−y(1)|2, t ≥ 0, x(1), y(1) ∈ Rm.

(A.3) There exist increasing functions Θ : [0,∞) → R, h : [0,∞) → [1,∞), and
ϕ· : [0,∞)2 → [0,∞) with ϕ(0) = 0 such that〈
b(2)(t, x) − b(2)(t, y), x(2) − y(2)

〉
+

1

2

∥∥σ(2)(t, x(1))− σ(2)(t, y(1))
∥∥2

HS

≤ Θt|x(2) − y(2)|2 + ϕt(|x(1) − y(1)|2)h(|x(1)| ∨ |y(1)|)
holds for all t ≥ 0 and x = (x(1), x(2)), y = (y(1), y(2)) ∈ Rm+d.
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It is well known that (A.1) implies the existence, uniqueness, and non-explosion

of strong solutions to the first equation in (1.1). Once X
(1)
t is fixed, then it follows

from (A.3) that the second equation in (1.1) admits a unique global solution. Note
that (A.3) allows σ(2)(t, ·) to be merely Hölder continuous when, e.g., ϕt(r) = rα

for some constant α ∈ (0, 1). For any x = (x(1), x(2)) ∈ Rm+d, we let Xt(x) =

(X
(1)
t (x), X

(2)
t (x)) denote the solution to (1.1) with X0 = x. Since X

(1)
t (x) does

not depend on x(2) we also write X
(1)
t (x) = X

(1)
t (x(1)). We intend to establish

Harnack type inequalities for the associated semigroup Pt:

Ptf(x) := Ef(Xt(x)), f ∈ Bb(R
m+d), t ≥ 0, x ∈ Rm+d.

We remark that (A.1) means that the first component process X
(1)
t is a non-

degenerate diffusion process on Rm, (A.2) is the usual semi-Lipschitz condition
for this process, and when e.g. b(2) is independent of x(1) and semi-Lipschitz
in x(2), (A.3) holds provided

1

2

∥∥σ(2)(t, x(1))− σ(2)(t, y(1))
∥∥2
HS

≤ ϕt

(|x(1) − y(1)|2)h(|x(1)| ∨ |y(1)|).
In particular, for the Gruschin semigroup where σ(2)(t, x(1)) = |x(1)|l, this condi-

tion holds for ϕt(r) = rl∧1 and h(r) = c ∨ r(l−1)+ for some constant c ≥ 1.
In order to control the degeneracy of σ(2)(t, ·), we need the condition

(1.2)

ψT (x
(1), y(1)) := sup

t∈[T,2T ]

Ey(1){∥∥σ(2)(t,X
(1)
t )−1

∥∥2 sup
s∈[0,T ]

h
(|X(1)

s |+ |x(1) − y(1)|)}<∞

for T > 0 and x(1), y(1) ∈ Rm, where Ey(1)

is the expectation of X
(1)
t (y(1)), ‖σ−1‖

stands for the operator norm of the inverse of a d × d-matrix σ, and when the
matrix is not invertible we take ‖σ−1‖ = ∞.

Theorem 1.1. Assume that (A.1), (A.2), (A.3), and (1.2) hold. Then for any
strictly positive function f ∈ Bb(R

m+d), x = (x(1), x(2)), y = (y(1), y(2)) ∈ Rm+d,
and T > 0,

P2T log f(y) ≤ logP2T f(x) +
KT |x(1) − y(1)|2
λ2T (1− e−2KTT )

+
Θ2T e2ΘTT ψT (x

(1), y(1))

e−2Θ2TT − e−4Θ2TT

{
|x(2) − y(2)|2 + (1 − e−2ΘTT )ϕT (|x(1) − y(1)|2)

ΘT

}
.

We return to the classical Gruschin semigroup for which m = d = 1, b(1) =
b(2) = 0, σ(1) = 1 and σ(2)(t, x(1)) = |x(1)|l. Then (A.1)–(A.3) hold for λ = 1,

K = Θ = 0, ϕ(r) = rl∧1 and h(r) = c1 ∨ r(l−1)+ for some constant c1 ≥ 1. When
l ∈ (0, 1/2), we may take h ≡ 1 so that

ψT (x
(1), y(1)) = sup

t∈[T,2T ]

∫
R

1

|z|2l√2tπ
e−|z−x(1)|2/(2t) dz ≤ c2

T l
<∞

for some constant c2 > 0.
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Therefore, according to Theorem 1.1, the log-Harnack inequality

P2T log f(y) ≤ logP2T f(x)+
|x(1) − y(1)|2

2T
+

c

T l+1

{
|x(2)−y(2)|2+2T |x(1)−y(1)|2l

}
holds. On the other hand, it is easy to see that ψT = ∞ for l ≥ 1/2. Similarly,
for the Gruschin semigroup on Rm+d, i.e., b(1) = 0, b(2) = 0, σ(1) = Im×m and
σ(2)(x(1)) = |x(1)|lId×d, ψT (x

(1), y(1)) <∞ (and hence the log-Harnack inequality
holds) if and only if l ∈ (0,m/2).

To derive the log-Harnack inequality for the Gruschin semigroup for all l > 0, we
relax the condition (1.2) by using the invertibility of the following integral matrix
QT to replace that of σ(2). To this end, we will need to assume that b(2)(t, x) is
linear in x(2); that is, b(2)(t, x) = Ax(2) + b̃(2)(t, x(1)) for some d× d-matrix A and
some b̃(2) ∈ C([0,∞)× Rm;Rd). Let

QT =

∫ 2T

T

eA(T−t) σ(2)(t,X
(1)
t )σ(2)(t,X

(1)
t )∗ eA

∗(T−t) dt, T > 0.

Theorem 1.2. Assume that (A.1), (A.2), and (A.3) hold for b(2)(t, x) = Ax(2) +
b̃(2)(t, x(1)), where A is a d × d-matrix and b̃(2) ∈ C([0,∞) × Rm;Rd). Let θT =
supt∈[0,T ] ‖e−At‖. If QT is invertible and

ΨT (x
(1), y(1)) := Ey(1)

{∥∥Q−1
T

∥∥2(∫ 2T

T

∥∥σ(2)(t,X
(1)
t )

∥∥2
dt
)

× sup
t∈[0,T ]

h
(|X(1)

t |+ |x(1) − y(1)|)} <∞,

then for any strictly positive f ∈ Bb(R
m+d),

P2T log f(y) ≤ logP2T f(x) +
KT |x(1) − y(1)|2
λ2T (1 − e−2KTT )

+
θT e2ΘTT ΨT (x

(1), y(1))

2

{
|x(2) − y(2)|2 + 1− e−2ΘTT

ΘT
ϕT (|x(1) − y(1)|2)

}
.

Because of Theorem 1.2, we can prove the log-Harnack inequality for the Grus-
chin semigroup on Rm+d for any l > 0. Of course, one may also construct more
general examples to illustrate Theorem 1.2.

Corollary 1.3 (Gruschin Semigroup). Let b(1) = 0, b(2) = 0, σ(1) = Im×m, and
σ(2)(x(1)) = |x(1)|lId×d for some constant l > 0. Then there exists a constant c > 0
such that

P2T log f(y) ≤ logP2T f(x) +
|x(1) − y(1)|2

2T

+
c
(|x(1)|2(l−1)++ |y(1)|2(l−1)++ T (l−1)+

)(|x(2) − y(2)|2+ 2T |x(1) − y(1)|2(l∧1)
)

T l+1

holds for all T > 0 and x, y ∈ Rm+d.
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In the next two sections, we prove Theorem 1.1, Theorem 1.2, and Corollary 1.3.
In the proof of Theorem 1.1, the additional drifts constructed in the coupling are
adapted so that the usual argument applies. However, in the proof of Theorem 1.2
the drift constructed for the coupling of the second component process is merely
adapted under the conditional probability given B(1). A new trick is then intro-
duced to derive the log-Harnack inequality.

2. Proof of Theorem 1.1

Let x = (x(1), x(2)), y = (y(1), y(2)), and T > 0 be fixed. The idea for establishing a
Harnack type inequality of P2T using a coupling by change of measure is as follows.
Construct two processes Xt, and Yt and a probability density function R such that
X2T = Y2T , X0 = x, Y0 = y, and

P2T f(x) = Ef(X2T ), P2T f(y) = E
{
Rf(Y2T )

}
, f ∈ Bb(R

m+d).

Then, by the Young inequality, for strictly positive f one obtains

P2T log f(y) = E
{
R log f(Y2T )

}
= E

{
R log f(X2T )

}
≤ E(R logR) + logP2T f(x).(2.1)

This implies the log-Harnack inequality provided E(R logR) <∞.
When the SDE is driven by additive noise, this idea can be easily realized by

adding a proper drift to the equation and using the Girsanov theorem. In the case
of nondegenerate multiplicative noise, the argument has been modified in [16] by
constructing a coupling with singular additional drifts. For the present model, as
the SDE is driven by multiplicative noise with a possibly degenerate and singular
coefficient, it is hard to follow the known ideas to construct a coupling in one step.
What we will do in this paper is to construct a coupling in two steps, where the
second step will be realized under the regular conditional probability given B(1):

(1) We first construct a coupling (X
(1)
t , Y

(1)
t ) by change of measure for the first

component of the process such that X
(1)
t = Y

(1)
t for t ≥ T . This part is

now standard as the first equation in (1.1) is driven by the nondegenerate

additive noise σ(1)(t) dB
(1)
t .

(2) Once X
(1)
t = Y

(1)
t holds for t ≥ T , the equations for X

(2)
t and Y

(2)
t will have

the same noise term for t ≥ T , so that we are able to construct a coupling

by change of measure for them such that X
(2)
2T = Y

(2)
2T .

2.1. Construction of the coupling

Throughout this section, we assume that (A.1)–(A.3) and condition (1.2) hold. We
first construct the Brownian motion Bt as the coordinate process on the Wiener
space (Ω,F ,P), where Ω = C([0,∞);Rm+d) = C([0,∞);Rm)×C([0,∞);Rd), F is
the Borel σ-field, and P is the Wiener measure (that is, the distribution of the
(m+ d)-dimensional Brownian motion starting at 0).



410 F.-Y. Wang and L. Xu

Let

Bt(ω) = (B
(1)
t (ω), B

(2)
t (ω)) = (ω

(1)
t , ω

(2)
t ), ω = (ω(1), ω(2)) ∈ Ω, t ≥ 0.

Then Bt is the (m+ d)-dimensional Brownian motion with respect to the natural

filtration (Ft)t≥0. Let F (1) = σ(B
(1)
t : t ≥ 0) and F (2)

t = σ(B
(2)
s : 0 ≤ s ≤ t), t ≥ 0.

It is well known that the conditional regular probability P(·|F (1)) given F (1) exists.

This structure will enable us to first construct a coupling (X
(1)
t , Y

(1)
t ) for the

first component process up to time T under the probability P, then construct a

coupling (X
(2)
t , Y

(2)
t ) for the second component process from time T under the

regular conditional probability P(·|F (1)). For any probability measure P̃ on (Ω,F),
we denote by EP̃ the expectation with respect to P̃. When P̃ = P, we simply denote
the expectation by E as usual.

Let Xt = (X
(1)
t , X

(2)
t ) solve the equation (1.1) with X0 = x = (x(1), x(2)).

Given Y0 = y = (y(1), y(2)) ∈ Rm+d, we are going to construct Y
(1)
t on Rm and

Y
(2)
t on Rd respectively, such that Y

(1)
t = X

(1)
t for t ≥ T and Y

(2)
2T = X

(2)
2T .

2.1.1. Construction of Y
(1)
t . Consider the equation

(2.2) dY
(1)
t = b(1)(t, Y

(1)
t ) dt+ σ(1)(t) dB

(1)
t − v

(1)
t dt, Y

(1)
0 = y(1),

where

v
(1)
t :=

2KT |x(1) − y(1)| e−KT t (Y
(1)
t −X

(1)
t )

(1− e−2KTT )|X(1)
t − Y

(1)
t |

1{X(1)
t �=Y

(1)
t }, t ≥ 0.

Obviously, the equation has a unique strong solution before the coupling time

τ1 := inf
{
t ≥ 0 : X

(1)
t = Y

(1)
t

}
.

Then, letting Y
(1)
t = X

(1)
t for t ≥ τ1, we see that (Y

(1)
t )t≥0 is a strong solution

to (2.2). So, we can reformulate v
(1)
t as

(2.3) v
(1)
t =

2KT |x(1) − y(1)| e−KT t (Y
(1)
t −X

(1)
t )

(1− e−2KTT )|X(1)
t − Y

(1)
t |

1[0,τ1)(t), t ≥ 0.

Proposition 2.1. For any t ≥ 0,

(2.4)
∣∣X(1)

t −Y (1)
t

∣∣ ≤ e−KT t − e−KT (2T−t)

1− e−2KTT
|x(1)−y(1)|1[0,T ](t) ≤ |x(1)−y(1)|1[0,T ](t).

Consequently, τ1 ≤ T and X
(1)
t = Y

(1)
t for t ≥ T .

Proof. By (A.2) and (2.3), we have

d
∣∣X(1)

t −Y (1)
t

∣∣ ≤(
KT |X(1)

t −Y (1)
t |− 2KT |x(1) − y(1)|e−KT t

1− e−2KTT

)
dt, t ∈ [0, τ1)∩[0, T ].
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Then

∣∣X(1)
t − Y

(1)
t

∣∣ ≤ e−KT t − e−KT (2T−t)

1− e−2KTT
|x(1) − y(1)|, t ∈ [0, τ1) ∩ [0, T ].

This implies τ1 ≤ T and also (2.4), since X
(1)
t = Y

(1)
t for t ≥ τ1. �

To formulate (2.2) as the first equation in (1.1), we let

B̃
(1)
t = B

(1)
t −

∫ t

0

ξ(1)(s) ds, ξ(1)(t) := σ(1)(t)−1v
(1)
t , t ≥ 0.

From (A.1) and (2.3) we see that ξ(1)(s) is bounded and adapted. So, by the
Girsanov theorem, B̃t is an m-dimensional Brownian motion under the probability
measure Q(1) := R1(T )P, where

R1(t) := exp
[ ∫ t

0

〈ξ(1)(s), dB(1)
s 〉 − 1

2

∫ t

0

|ξ(1)(s)|2 ds
]
, t ≥ 0

is a martingale. Obviously, (2.2) can be formulated as

(2.5) dY
(1)
t = b(1)(t, Y

(1)
t ) dt+ σ(1)(t) dB̃

(1)
t , Y

(1)
0 = y(1).

As shown in (2.1), for the log-Harnack inequality we need to estimate the entropy
of R1 := R1(T ).

Proposition 2.2. Let R1 = R1(T ). Then

(2.6) E
{
R1 logR1

} ≤ KT |x(1) − y(1)|2
λ2T (1 − e−2KTT )

.

Proof. By τ1 ≤ T , (A.1), and (2.3), we have

(2.7)

∫ T

0

|σ(1)(t)−1v
(1)
t |2 dt ≤ 2KT |x(1) − y(1)|2

λ2T (1 − e−2KTT )
.

Then, it follows from (2.2) and the definition of R1 that

E
{
R1 logR1

}
= EQ(1) logR1

=
1

2
EQ(1)

∫ T

0

|σ(1)(t)−1 v
(1)
t |2 dt ≤ KT |x(1) − y(1)|2

λ2T (1− e−2KTT )
. �

2.1.2. Construction of Y
(2)
t . Consider the equation

(2.8) dY
(2)
t = b(2)(t, Yt) dt+ σ(2)(t, Y

(1)
t ) dBt − v

(2)
t dt, Y

(2)
0 = y(2),

where

v
(2)
t :=

2Θ2T |X(2)
T − Y

(2)
T | e−Θ2T t (Y

(2)
t −X

(2)
t )

(e−2Θ2TT − e−4Θ2TT ) |X(2)
t − Y

(2)
t |

1{t≥T,X
(2)
t �=Y

(2)
t }, t ≥ 0.
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As Y
(1)
t is now fixed, it is easy to see that (2.8) has a unique solution before the

time

τ2 := inf
{
t ≥ T : X

(2)
t = Y

(2)
t

}
.

Letting Y
(2)
t = X

(2)
t for t ≥ τ2, we see that (Y

(2)
t )t≥0 solves the equation (2.8).

Thus,

(2.9) v
(2)
t =

2Θ2T |X(2)
T − Y

(2)
T | e−Θ2T t (Y

(2)
t −X

(2)
t )

(e−2Θ2TT − e−4Θ2TT ) |X(2)
t − Y

(2)
t |

1[T,τ2)(t), t ≥ 0.

Proposition 2.3. For any t ≥ T ,

(2.10)
∣∣X(2)

t − Y
(2)
t

∣∣ ≤ e−Θ2T (t−T ) − e−Θ2T (3T−t)

1− e−2Θ2TT

∣∣X(2)
T − Y

(2)
T

∣∣ 1[T,2T ](t).

Proof. Since ϕ·(0) = 0 and X
(1)
t = Y

(1)
t for t ≥ T , by (A.3), (2.9), and Itô’s

formula we obtain

d
∣∣X(2)

t − Y
(2)
t

∣∣ ≤ (
Θ2T |X(2)

t − Y
(2)
t | − 2Θ2T |X(2)

T − Y
(2)
T | e−Θ2T t

e−2Θ2T − e−4Θ2TT

)
dt

for t ∈ [T, τ2) ∩ [T, 2T ]. This implies (2.10) for t ∈ [T, τ2) ∩ [T, 2T ]. Therefore,
τ2 ≤ 2T and (2.10) holds for all t ≥ T . �

To formulate (2.8) as the second equation in (1.1), we need to make use of the
Girsanov theorem to get rid of the additional drift. To this end, let

ξ(2)(s) = σ(2)(s, Y (1)
s )−1v(2)s , s ∈ [T, 2T ],

and

R2(t) = exp
[ ∫ t

T

〈ξ(2)(s), dB(2)
s 〉 − 1

2

∫ t

T

|ξ(2)(s)|2 ds
]
, t ∈ [T, 2T ].

Since B
(2)
t is independent of F (1), the following result ensures that {R2(t)}t∈[T,2T ]

is a uniformly integrable F (2)
t -martingale under P(·|F (1)).

Proposition 2.4. Under P(·|F (1)), {R2(t)}t∈[T,2T ] is an F (2)
t -martingale, and

R2 := R2(2T ) satisfies

EP(·|F(1))

{
R2 logR2

} ≤
(∫ 2T

T

2Θ2
2T e−2Θ2T t ‖σ(2)(t, Y

(1)
t )−1‖2

(e−2Θ2TT − e−4Θ2TT )2
dt
)

×
(
e2ΘTT |x(2) − y(2)|2 + e2ΘTT − 1

ΘT
ϕT (|x(1) − y(1)|2)

)
(2.11)

× sup
t∈[0,T ]

h(|Y (1)
t |+ |x(1) − y(1)|).
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Proof. We use an approximation argument. Let ξ
(2)
n (s) = ξ(2)(s)1{|ξ(2)(s)|≤n}, and

R2,n(t) = exp
[ ∫ t

T

〈ξ(2)n (s), dB(2)
s 〉 − 1

2

∫ t

T

|ξ(2)n (s)|2 ds
]
, n ≥ 1, t ∈ [T, 2T ].

Then {R2,n(t)}t∈[T,2T ] is an F (2)
t -martingale under P(·|F (1)). So, it remains to

show that

EP(·|F(1))

{
R2,n logR2,n

}
(t) ≤

( ∫ 2T

T

2Θ2
2T e−2Θ2T t ‖σ(2)(t, Y

(1)
t )−1‖2

(e−2Θ2TT − e−4Θ2TT )2
dt
)

×
(
e2ΘTT |x(2) − y(2)|2 + e2ΘTT−1

ΘT
ϕT (|x(1)− y(1)|2)

)
(2.12)

× sup
t∈[0,T ]

h(|Y (1)
t |+ |x(1) − y(1)|)

holds for all t ∈ [T, 2T ] and n ≥ 1. Let Q2,n = R2,n(2T )P(·|F (1)). By the Girsanov
theorem, under Q2,n the process

B̃
(2)
t := B

(2)
t −

∫ T∨t

T

ξ(2)n (s) ds, t ∈ [0, 2T ],

is a d-dimensional Brownian motion. Then, by the definition of ξ
(2)
n (s) and (2.9),

we have

(2.13) EP(·|F(1))

{
R2,n logR2,n

}
(2T )= EQ2,n logR2,n(2T ) =

1

2

∫ 2T

T

EQ2,n |ξ(2)n (s)|2ds

≤
(∫ 2T

T

2Θ2
2T e−2Θ2T t ‖σ(2)(t, Y

(1)
t )−1‖2

(e−2Θ2TT − e−4Θ2TT )2
dt
)
· EP(·|F(1))

{
R2,n(2T )|X(2)

T − Y
(2)
T |2}.

Since {R2,n(t)}t∈[T,2T ] is an F (2)
t -martingale under P (·|F (1)), and R2,n(T ) = 1,

(2.14) EP(·|F(1))

{
R2,n(2T )|X(2)

T − Y
(2)
T |2} = EP(·|F(1))|X(2)

T − Y
(2)
T |2.

Finally, by (A.3), (2.4), and Itô’s formula, we obtain

d|X(2)
t − Y

(2)
t |2 ≤ 2

〈
X

(2)
t − Y

(2)
t , {σ(2)(t,X

(1)
t )− σ(2)(t, Y

(1)
t )} dB(2)

t

〉
+ 2

{
ΘT |X(2)

t − Y
(2)
t |2 + ϕT (|x(1) − y(1)|2)h(|Y (1)

t |+ |x(1) − y(1)|)}dt
for t ∈ [T, 2T ]. Since h ≥ 1, this implies

EP(·|F(1))|X(2)
T − Y

(2)
T |2 ≤ sup

t∈[0,T ]

h(|Y (1)
t |+ |x(1) − y(1)|)

×
(
e2ΘTT |x(2) − y(2)|2 + e2ΘTT − 1

ΘT
ϕT

(|x(1) − y(1)|2)).(2.15)

Combining this with (2.13) and (2.14), we prove (2.12). �
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Proof of Theorem 1.1. Let Xt = (X
(1)
t , X

(2)
t ) and Yt = (Y

(1)
t , Y

(2)
t ) be as con-

structed above. Let R = R1R2. By Propositions 2.1, 2.2, 2.3, and 2.4, we have
X2T = Y2T , EP(·|F(1))R2 = 1, and, noting that the distribution of Y (1) under R1P

coincides with that of X(1)(y(1)) under P,

E{R logR} = E

{
(R1 logR1)EP(·|F(1))R2

}
+ E

{
R1EP(·|F(1))(R2 logR2)

}

≤ KT |x(1) − y(1)|2
λ2T (1− e−2KTT )

+ Ey(1)
{(∫ 2T

T

2Θ2
2T e

−2Θ2T t‖σ(2)(t,X
(1)
t )−1‖2

(e−2Θ2TT − e−4Θ2TT )2
dt
)

×
(
e2ΘTT |x(2) − y(2)|2 + e2ΘTT − 1

ΘT
ϕT (|x(1) − y(1)|2)

)
× sup

t∈[0,T ]

h(|X(1)
t |+ |x(1) − y(1)|)

}

≤ KT |x(1) − y(1)|2
λ2T (1− e−2KTT )

+
Θ2T e2ΘTT ψT (x

(1), y(1))

e−2Θ2TT − e−4Θ2TT

×
{
|x(2) − y(2)|2 + 1− e−2ΘTT

ΘT
ϕT (|x(1) − y(1)|2)

}
.

Therefore, the desired log-Harnack inequality follows from (2.1), since under the
probability measure Q := RP

B̃t := Bt +

∫ t

0

(ξ(1)(s), ξ(2)(s)) ds, t ≥ 0,

is a Brownian motion on Rm+d, and Yt with Y0 = y solves the equation{
dY

(1)
t = b(1)(t, Y

(1)
t ) dt+ σ(1)(t) dB̃

(1)
t ,

dỸ
(2)
t = b(2)(t, Yt) dt+ σ(2)(t, Y

(1)
t ) dB̃

(2)
t ,

so that P2T f(y) = EQf(Y2T ) = E
{
Rf(Y2T )

}
= E

{
Rf(X2T )

}
. �

3. Proofs of Theorem 1.2 and Corollary 1.3

Proof of Theorem 1.2. Let Xt = (X
(1)
t , X

(2)
t ) and Y

(1)
t be constructed as in the

previous section. We now modify the construction of Y
(2)
t to take into account the

condition ΨT <∞. Let

ηt = σ(2)(t, Y
(1)
t )∗ eA

∗(T−t)Q−1
T (Y

(2)
T −X

(2)
T ) 1[T,2T ](t), t ≥ 0.

Let Y
(2)
t solve the equation

(3.1) dY
(2)
t = b(2)(t, Yt) dt+ σ(2)(t, Y

(1)
t )

{
dB

(2)
t − ηt dt

}
, Y

(2)
0 = y(2).

Since under P(·|F (1)) the processes X
(1)
t and Y

(1)
t are fixed and B

(2)
t is a d-

dimensional Brownian motion, by (A.3) this equation has a unique solution. Since
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X
(1)
t = Y

(1)
t for t ≥ T, for the present b(2) we have b(2)(t,Xt) − b(2)(t, Yt) =

A(X
(2)
t − Y

(2)
t ) for t ≥ T . So,

X
(2)
2T − Y

(2)
2T = eAT (X

(2)
T − Y

(2)
T ) +

∫ 2T

T

eA(2T−t) σ(2)(t, Y
(1)
t ) ηt dt = 0

as Y
(1)
t = X

(1)
t for t ≥ T . Therefore, X2T = Y2T . Moreover, let

R̃2 = exp
[ ∫ 2T

T

〈ηt, dB(2)
t 〉 − 1

2

∫ 2T

T

|ηt|2 dt
]
.

Following the proof of Proposition 2.4 and using (3.1), we obtain

EP(·|F(1))

{
R̃2 log R̃2

}
=

1

2

∫ 2T

T

ER̃2P(·|F(1))|ηt|2 dt

≤ θT
2

(
EP(·|F(1))‖X(2)

T − Y
(2)
T ‖2

)
‖Q−1

T ‖2
∫ 2T

T

‖σ(2)(t, Y
(1)
t )‖2 dt

≤ θT ‖Q−1
T ‖2
2

{
e2ΘTT |x(2) − y(2)|2 + e2ΘTT − 1

ΘT
ϕT (|x(1) − y(1)|2)

}

× sup
t∈[0,T ]

h(|Y (1)
t |+ |x(1) − y(1)|)

∫ 2T

T

‖σ(2)(t, Y
(1)
t )‖2 dt.

Repeating the proof of Theorem 1.1 and using this inequality instead of (2.11), we
obtain

E
{
(R1R̃2) log(R1R̃2)

} ≤ KT |x(1) − y(1)|2
λ2T (1− e−2KTT )

+
θT e2ΘTT ΨT (x

(1), y(1))

2

{
|x(2) − y(2)|2 + 1− e−2ΘTT

ΘT
ϕT (|x(1) − y(1)|2)

}
.(3.2)

Since B
(2)
t is a d-dimensional Brownian motion under P(·|F (1)), by the Girsanov

theorem, under R̃2P(·|F (1)) the process

B̃
(2)
t := B

(2)
t −

∫ t

T

ηs ds, t ∈ [T, 2T ]

is a d-dimensional Brownian motion. Noting that

Y
(2)
t = Y

(2)
T +

∫ t

T

b(2)(s, Ys) ds+

∫ t

T

σ(2)(s, Y (1)
s ) dB̃(2)

s , t ∈ [T, 2T ],

we see that the distribution of Y
(2)
2T under R̃2P(·|F (1)) coincides with that of Ỹ

(2)
2T

under P(·|F (1)), where

Ỹ
(2)
t =

{
Y

(2)
t , if t ∈ [0, T ],

Y
(2)
T +

∫ t

T
b(2)(s, Ys) ds+

∫ t

T
σ(2)(s, Y

(1)
s ) dB

(2)
s , if t ∈ [T, 2T ].
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Therefore,

EP(·|F(1))

{
R̃2 log f(Y2T )

}
= EP(·|F(1))

{
log f(Y

(1)
2T , Ỹ

(2)
2T )

}
.

Combining this with X2T = Y2T , we obtain

E
{
R1R̃2 log f(X2T )

}
= E

{
R1R̃2 log f(Y2T )

}
= E

(
R1EP(·|F(1))

{
R̃2 log f(Y2T )

})
= E

(
R1EP(·|F(1))

{
log f(Y

(1)
2T , Ỹ

(2)
2T )

})
= E

{
R1 log f(Y

(1)
2T , Ỹ

(2)
2T )

}
.(3.3)

Moreover, since

B̃
(1)
t = B

(1)
t −

∫ T∧t

0

ξ(1)(s) ds, t ∈ [0, 2T ],

again by the Girsanov theorem, under R1P the process (B̃
(1)
t , B

(2)
t )t∈[0,2T ] is a

(d+m)-dimensional Brownian motion. Noting that (Y
(1)
t , Ỹ

(2)
t ) solves the equation{

dY
(1)
t = b(1)(t, Y

(1)
t ) dt+ σ(1)(t) dB̃

(1)
t , Y

(1)
0 = y(1),

dỸ
(2)
t = b(2)(t, Y

(1)
t , Ỹ

(2)
t ) dt+ σ(2)(t, Y

(1)
t ) dB

(2)
t , Ỹ

(2)
0 = y(2),

we conclude that the distribution of (Y
(1)
2T , Ỹ

(2)
2T ) under R1P coincides with that of

X2T (y) under P. Therefore, it follows from (3.3) and the Young inequality that

P2T log f(y) = E
{
R1 log f(Y

(1)
2T , Ỹ

(2)
2T )

}
= E

{
R1R̃2 log f(X2T )

}
≤ logP2T f(x) + E{(R1R̃2) log(R1R̃2)

}
.

Combining this with (3.2) we complete the proof. �

Proof of Corollary 1.3. It is easy to see that (A.1)–(A.3) hold for λ = 1,K= Θ = 0,

ϕ(r) = rl∧1, and h(r) = c1 ∨ r2(l−1)+ for some constant c1 ≥ 1. Moreover,

QT = Id×d

∫ 2T

T

|B(1)
t + x(1)|2l dt

is invertible and

‖Q−1
T ‖2

∫ 2T

T

‖σ(2)(X
(1)
t )‖2 dt = 1∫ 2T

T
|B(1)

t + x(1)|2l dt
.

Then, using the fact that for any r ≥ 0,

E sup
t∈[0,T ]

|B(1)
t + x(1)|2r ≤ c(r)(|x(1) |2r + T r)

holds for some constant c(r) > 0, and noting that Lemma 3.1 in [18] implies

E

( ∫ 2T

T

|B(1)
t + x(1)|2l dt

)−2

= E

{
E

((∫ T

0

∣∣(B(1)
T+t −B

(1)
T ) + (B

(1)
T + x(1)

)∣∣2l dt)−2∣∣∣B(1)
T

)}
≤ C

T 2(l+1)
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for some constant C > 0, we conclude that

ΨT (x
(1), y(1)) ≤

(
E sup

t∈[0,T ]

h(|B(1)
t + x(1)|+ |x(1) − y(1)|)2

)1/2

×
(
E

( ∫ 2T

T

|B(1)
t + x(1)|2l dt

)−2)1/2

≤ c

T l+1

(|x(1)|2(l−1)+ + |y(1)|2(l−1)+ + T (l−1)+
)

holds for some constant c > 0. Therefore, the desired log-Harnack inequality follows
from Theorem 1.2. �
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