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The Riesz transform for homogeneous
Schrodinger operators on metric cones

Andrew Hassell and Peijie Lin

Abstract. We consider Schrédinger operators on a metric cone whose
cross section is a closed Riemannian manifold (Y, h) of dimension d—1 > 2.
Thus the metric on the cone M = (0,00), x Y is dr? + r>h. Let A be
the Friedrichs Laplacian on M and let Vj be a smooth function on Y such
that Ay + Vo + (d — 2)?/4 is a strictly positive operator on L?*(Y) with
lowest eigenvalue pg and second lowest eigenvalue ui, with po,u1 > 0.
The operator we consider is H = A + Vy/r?, a Schrédinger operator with
inverse square potential on M; notice that H is homogeneous of degree —2.

We study the Riesz transform T'= VH ~1/2 and determine the precise
range of p for which 7" is bounded on LP(M). This is achieved by making
a precise analysis of the operator (H +1)"* and determining the complete
asymptotics of its integral kernel. We prove that if V' is not identically
zero, then the range of p for LP boundedness is

d d
(min(l +d/2+ po,d) ’ max(d/2 — Mo,o))7

while if V' is identically zero, then the range is

(1. m)

The result in the case of an identically zero V' was first obtained in a paper
by H.-Q. Li [33].

1. Introduction

The Riesz transform T on the Euclidean space R? is defined by

T=vVAL,

where Apa is the (positive) Laplacian operator. In this paper we study the Riesz
transform T in the more general setting of metric cones.
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A metric cone M is of the form M =Y x (0,00), where (Y, h) is a compact
Riemannian manifold with dimension d—1. The cone M is equipped with the conic
metric g = dr? 4+ r?h. The Euclidean space R¢ provides the simplest example of
a metric cone, with cross section ¥ = S%1 with its standard metric. General
metric cones enjoy a dilation symmetry analogous to that of Euclidean space, but
no other symmetries in general.

The Laplacian on the cone expressed in polar coordinates is

(1.1) A= -1y 1Ay,
T T

where Ay is the Laplacian on the compact Riemannian manifold Y. This operator
is positive and symmetric on the domain CS°(Y x (0,00)), that is on smooth
functions supported away from the cone tip. The operator A is defined to be the
Friedrichs extension of this symmetric operator. The Riesz transform 7" on the
cone M is then defined by

T =VA~'/2

Here V is shorthand for (9,,7~!Vy), or, in other words, we measure the gradient
on the cone using the metric g. The question of the boundedness of the Riesz
transform on cones, i.e., for what p the operator T is bounded on LP(M), was
answered by H.-Q. Li in [33]. The characterisation of the boundedness, stated in
Theorem 1.1, is in terms of the second smallest eigenvalue of an operator involv-
ing Ay. We provide a different proof to this result in Section 5 of this paper.

Theorem 1.1. Let d > 3 and let M be a metric cone with dimension d and cross
section Y. The Riesz transform T = VA~Y2 is bounded on LP(M) if and only
if p is in the interval

d
(1.2) (1’ max(d/2 — /«Ll,o)),

where p1 > 0 is the square root of the second smallest eigenvalue of the opera-
tor Ay + ((d —2)/2)%.

More significantly, the methods used in this paper to prove Theorem 1.1 can be
applied to study the boundedness properties of a more general class of operators,
obtained by adding an inverse square potential to the Laplacian. Let V5 : Y — C
be a smooth function on Y satisfying the condition

(13) Ay + o) + (L52) > 0

in the strict sense that the bottom of the spectrum of the operator in (1.3) is
strictly positive, and define

Vo

(1.4) H=A+ .
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Notice that H is homogeneous of degree —2, like the Laplacian. Condition (1.3)
ensures that H is a positive operator (see Proposition 4.1), so H~'/? is well defined.
We can then define the Riesz transform 7' = Ty, of the Schrodinger operator H by

Vo)1

r2

(1.5) T=VH 2= V(A +

Notice that (1.3) allows our potential V' = V;/r? to be “a bit negative”; in partic-
ular, it allows Vj to be any constant greater than —(d — 2)%/4.

The goal of this article is to find the exact interval for p on which the Riesz
transform 7' with an inverse square potential V = V/r? is bounded on LP(M),
where M is a metric cone with dimension d > 3.

A necessary condition, stated in Theorem 1.2, for the boundedness was found
in [27] by C. Guillarmou and the first author, in the slightly different setting of
asymptotically conic manifolds. These are complete Riemannian manifolds (M°, g)
such that M?® is the interior of a compact manifold M with boundary, and ¢ has
a prescribed singularity at the boundary of M. Precisely, there exists a boundary
defining function x for M, and a family of metrics h(x) on M, such that the
metric g has the form

dz®  h(x)
2

at x
in a collar neighbourhood of M. Here r = 1/z behaves like the radial coordinate
on the cone over OM; the metric in terms of 7 reads g = dr? + r2h(1/r), so is
asymptotic to the conic metric dr? + r?h(0) as r — oo. In [27], potentials of
the form V € 22C°° (M) were considered; that is, the potentials decay as r~2 at
infinity, and the limiting ‘potential at infinity’ V was defined by Vp := 27 2V/| T

Theorem 1.2 (Theorem 1.5 in [27]). Let d > 3 and let (M°,g) be an asymptot-
ically conic manifold with dimension d. Consider the operator P = Ay + V' with
V € 22C>(M) satisfying

d—2\2 ) 174
(1'6) Aoy + Vo + <—> >0 onlL (Y), where Vy = — .
2 2 lom

Let po > 0 be the square root of the lowest eigenvalue of the operator (1.6). Suppose
that P has neither zero modes nor zero resonances' and that Vo # 0. Then VP~1/2
is unbounded on LP(M) if p is outside the interval

(1.7)

d d
(min(d/2 + 1+ po,d)’ max(d/2 — uO,O))
The counterexample used in [27] to show the unboundedness of the Riesz trans-

form can be easily adapted to the context of metric cones, so a similar result also
holds for metric cones. Therefore the task now is to find a sufficient condition

LA zero mode, resp. zero resonance, for P is a solution u to the equation Pu = 0 such that
uw € L2(M°), resp. u = O(r~(@=2) as r — oo, but u ¢ L?*(M®). Zero resonances only occur
for d < 4.
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for boundedness. We will see that the sufficient condition involves the same inter-
val (1.7) as in Theorem 1.2, so this interval gives us a complete characterisation of
the boundedness of T" when V' # 0. Our main result is as follows.

Theorem 1.3. Let d > 3 and let M be a metric cone with dimension d and
cross section Y. Let Vi be a smooth function on'Y that satisfies (1.3). The Riesz
transform T with the inverse square potential V. = Vo /r? is bounded on LP(M)
for p in the interval

d d
(1.8) (min(1+d/2+,u0,d)’ max(d/Qf/uLo,O))’

where pg > 0 is the square root of the smallest eigenvalue of the operator Ay +
Vo(y) + ((d - 2)/2)%.

Moreover, for any V £ 0, the interval (1.8) characterises the boundedness of T,
i.e., T is bounded on LP(M) if and only if p is in the interval (1.8).

Remark 1.4. If we specialize to positive potentials, i.e., V' > 0 and V # 0, then
to > (d — 2)/2, and we see that the lower threshold for L” boundedness is 1, and
the upper threshold is always greater than d. On the other hand, for negative
potentials V', i.e., V< 0 and V # 0, the lower threshold for LP boundedness is
always greater than 1 and strictly less than 2, while the upper threshold is strictly
less than d but strictly larger than 2.

Remark 1.5. Some of these results are implied by recent papers of Assaad [4] and
Assaad-Ouhabaz [5] dealing with more general classes of potentials on R? or on
complete Riemannian manifolds; see the end of Section 1.2 for further discussion.

An immediate application of Theorem 1.3 is to show that the converse of the
second part of Theorem 1.5 in [27], i.e., Theorem 1.2, is also true. As noted in
Remark 1.7 of [27], Theorem 1.3 is exactly the missing ingredient. Therefore we
have the following result.

Theorem 1.6. Let (M°,g), P, and po be as in Theorem 1.2. Then the Riesz
transform VP~1/2 is bounded on LP(M) if and only if p is in the interval (1.7).

A special case of Theorem 1.3 is the following result on the Riesz transforms
with constant non-zero V{, in which the boundedness interval is written in terms
of the constant.

Corollary 1.7. Let M be a metric cone with dimension d > 3 and cross section 'Y .
The Riesz transform T = V(A +¢/r?)~Y2, where ¢ > —((d — 2)/2)? and ¢ # 0, is
bounded on LP(M) if and only if p is in the interval

(1.9) ( 2d 2d )
' min(d + 2+ \/(d — 2)2 + 4¢,2d)” max(d — /(d — 2)2 + 4¢,0)/
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1.1. Strategy of the proof

Using functional calculus, we get the expression
2 [oe]

(1.10) T = —/ V(H +X*)"taA,
T Jo

We then exploit the homogeneity (of degree —2) of H under dilation of the cone.
Thanks to this homogeneity, we obtain the resolvent kernel for (H + A\?)~! from
(H+1)~! by scaling the variables; see (5.2). So it suffices to analyze P := (H+1)~1.
We do this on a compactified and blown-up space, which is designed so that the
asymptotics of its kernel in different regimes can be understood. We use y as a local
coordinate on the cross section Y. We particularly want to distinguish the diagonal
behaviour of the kernel P~1(r,y,’,y’), from the behaviour as 7 or r’ tends to zero
or infinity. If we consider the kernel as living on (Y x [0, 00])?, as in Figure 1, then
this has the defect that the diagonal meets the boundary hypersurfaces {r = 0},
{r' = 0}, {r = oo}, and {1 = oo}, making the different asymptotic behaviours
difficult to distinguish. To remedy this we perform blowups, as in [27]. As noted in
that paper, the operator rPr is elliptic as a b-differential operator near r = 0, that
is, an elliptic combination of the ‘b-vector fields’ 70, and 9,,. On the other hand, as
r — 00, P is an elliptic scattering differential operator, which is to say that it has an
expression that looks like the Euclidean Laplacian in polar coordinates as r — oo,
being an elliptic combination of 9, and r~'d,,. Correspondingly we perform the
b-blowup (used to define the b-calculus; see Section 2.1) for small r, that is, we
blow up the corner » = ' = 0. On the other hand, for large r we perform two
blowups (used to define the scattering calculus; see Section 2.2), namely we first
blow up the corner r = ' = oo, followed by the boundary of the lifted diagonal
at 7 = oo, obtaining the space sz,sc illustrated in Figure 1. Now the diagonal
is separated from the boundary hypersurfaces in Figure 1 and on this blown-up
space, we can more easily construct the kernel of P~! and describe the different
types of asymptotics.

r

r=r'=w

r=r'=0

FIGURE 1. The space (Y x [0,00])?, left, and the blown-up double space M . after three
blowups, right.
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Because the kernel behaves differently in different parts of the blown-up space,
and especially because we use different calculi near the two hypersurfaces zf and
sf, we break the blown-up space into different regions, and construct the resolvent
kernel in each region separately using different tools and techniques. In the end
we patch together the constructions in these different regions to obtain the overall
resolvent kernel. This construction of the resolvent kernel of H, i.e., the kernel
of P71, is made in Section 4.

In Section 5, equipped with the knowledge of the behaviours of the kernel
of P~1 at different parts of the blown-up space, we determine the boundedness
properties of the Riesz transform 7. Using a smooth partition of unity on the
blown-up space, we calculate the integral (1.10) and then break the kernel of T'
up into a near-diagonal part and an off-diagonal part. The near-diagonal part is
a Calderén—Zygmund kernel and is bounded on L? for all p € (1,00), while the
off-diagonal part is bounded on a typically smaller range of p determined by the
leading asymptotic behaviours at the boundary hypersurfaces marked ‘bz’ or ‘rbz’
in Figure 1.

1.2. Relation to previous work

Cones have been studied since the 19th century. In particular, the problem of
wave diffraction from a cone point, which is important in applied mathematics, was
studied by A. Sommerfeld in the 1890s [45]. Other notable early papers include [23]
and [24] by F.G. Friedlander and [9] by A. Blank and J.B. Keller. Functional
calculus for Laplacians defined on cones was studied by J. Cheeger and M. Taylor
in [15] and [16]. Many papers have been written about spaces with cone-like
singularities. For example, the Laplacian and heat kernel on compact Riemannian
manifolds with cone-like singularities were studied in [17] by J. Cheeger and in [35]
by E. Mooers. In [11], J. Briining and R. Seeley studied the Laplacian on manifolds
with an asymptotically conic singularity, and in [36] R. B. Melrose and J. Wunsch
studied the wave equation and diffraction on spaces with asymptotically conic
singularities.

The classical case of the Riesz transform on the Euclidean space R? goes back
to the 1920s, and the case of one dimension (the Hilbert transform) was studied by
M. Riesz in [40]. The paper [44] by R.S. Strichartz is the first paper that studies
the Riesz transform on a complete Riemannian manifold. In [18], T. Coulhon and
X.T. Duong proved that the Riesz transform on a complete Riemannian manifold,
satisfying the doubling condition and the diagonal bound on the heat kernel, is
of weak type (1, 1), and hence is bounded on L? for 1 < p < 2. Since then there
have been many studies of the Riesz transform. For example, the Riesz transform
on complete Riemannian manifolds has been studied in [19], [7], [8], and [20].
Riesz transforms on Lie groups are analyzed in [2], [3], [21], and [41], and Riesz
transforms on second order elliptic operators are considered in [10] and [22].

Many papers have been written on Schrédinger operators with an inverse
square potential. We only mention a few of the most relevant ones here. In [46],
X. P. Wang studied the perturbations of such operators. In [13], G. Carron studied
Schrédinger operators with potentials that are homogeneous of degree —2 near
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infinity. In [12], N. Burq, F. Planchon, J. G. Stalker, and A.S. Tahvildar-Zadeh
generalise the standard Strichartz estimates for the Schrodinger equation and the
wave equation to the case in which an additional inverse square potential is present.
In [30] the first author and A. Sikora investigated one-dimensional Riesz trans-
forms, including with inverse square potentials, with respect to measures of the
form r?~'dr, thus mimicking the measure on a d-dimensional cone.

Now we turn to past results on the boundedness of the Riesz transform T" with a
potential V' on metric cones. We have already mentioned the result (Theorem 1.1)
of H.-Q. Li for V' = 0, and the work [27] of C. Guillarmou and the first author
on asymptotically conic manifolds. The method from [27] was based in part on
the paper [14]. In [28] the two authors performed a similar analysis but allowed
certain zero modes and zero resonances. In [6], P. Auscher and B. Ben Ali obtained
a result on R, stated in Theorem 1.8, which involves the reverse Holder condition.
It is an improvement of the earlier results by Z. W. Shen in [42].

Theorem 1.8 (Theorem 1.1 in [6]). Let 1 < ¢ < oo. IfV is in the reverse
Holder class By, then for some € > 0 depending only on V' the Riesz transform
with potential V is bounded on LP(R?) for 1 < p < q+e.

The reverse Holder condition V' € B, implies that V' > 0 almost everywhere
and V € L{ (R?). A positive inverse square potential is in B, if and only if
g < d/2. So this theorem gives boundedness for 1 < p < d/2, which is smaller
than the range obtained in Theorem 1.3 for positive inverse square potentials (of
course this is a very small subclass of Bg-potentials).

Very recently, Assaad and Assaad—Ouhabaz have proved results for Riesz trans-
forms of Schrodinger operators which include some of our results. The following

result is from [4].

Theorem 1.9. Let M be a complete noncompact Riemannian manifold with di-
mension d > 3. Suppose that the function V' < 0 satisfies A + (1 + )V > 0, the
Sobolev inequality

(111) 1111, 2 0y S 19 2000,

holds for all [ € C§°(M), and that M is of homogeneous type, i.e., for all x € M
and r >0,

M(B(.Z‘, QT)) S /,L(B(.Z‘,?“)),

where p is the measure on M. Then the Riesz transform T = V(A + V)~ s
bounded on LP(M) for all p in the interval

( 2d 2}.
d+2+(d—2)e/(e+1)

(1.12)

Except for the fact that they are not necessarily smooth manifolds in a neigh-
bourhood of the cone tip at » = 0, metric cones satisfy the conditions of Theo-
rem 1.9. So this result can be directly compared with ours in the case of Schrodinger
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operators of the form (A+-c/r?), where the constant c satisfies —((d—2)/2)? <c< 0.
In that case the lower threshold in (1.9) given by Corollary 1.7 is the same as the
lower threshold in (1.12) given by J. Assaad’s result. Also in [4] it is shown that
the Riesz transform for Schrodinger operators with a signed potential in L%/2, or a
nonnegative potential in L%2°° on a d-dimensional Riemannian manifold obeying
the Sobolev inequality (1.11) are bounded on (1, d) provided that this is true for
the Riesz transform with zero potential. Note that this case just fails to cover
negative inverse square potentials on cones, which are in L%2°°. Further results
on signed potentials are proved by J. Assaad and E. Ouhabaz in [5].

2. Review of the b-calculus and the scattering calculus

In this section we briefly recall the key elements of the b-calculus and the scattering
calculus that we require in Section 4. For more details, see [37] or [26] for the b-
calculus, and [38], [39] for the scattering calculus.

2.1. b-calculus

Let X be a manifold with boundary with boundary defining function x (that is,
0X = {x = 0} and dx # 0 on 0X). A differential operator on X is called a
b-differential operator if it is generated over C*°(X) by vector fields tangent to
the boundary of X. Near 0X such vector fields are linear combinations of vector
fields 20, and 9,, in terms of a local coordinate system (x,y1,...,y4—1) with
(y1,...,yd—1) restricting to a local coordinate system on 0X.

The b-calculus is a “microlocalization” of the set of b-differential operators. To
define the b-calculus, we first blow up? X2 along (0X)? to obtain the blown-up
manifold X? = [X?; (0X)?], called the b-double space. This produces a manifold
with corners which has three boundary hypersurfaces: one defined by z/z’ = 0
(here and below we use the convention that unprimed variables on the double
space are coordinates on the left copy, and primed variables are coordinates on the
right copy), one defined by a’//x = 0, and one defined by = + 2’ = 0. These are
usually denoted b, rb, and ff, respectively, but, in accordance with our notational
conventions for the space in Figure 1, here we will call them 1bz, rbz and zf (here
the ‘z” stands for ‘zero’ and refers to the fact that the b-blowup takes place at
r=r"=0).

It is convenient to regard elements of the b-calculus as acting on b-half densities.
We define a smooth b-half-density on X to be a smooth half-density in the interior
of X taking the form f|dz/xdy; ...dys_1|'/? near the boundary, with f € C*(X).
We say that such a b-half-density is nonvanishing if it is nonvanishing as a half-
density in the interior of X, and if f > 0. Let sk be a fixed smooth nonvanishing
b-half-density on X and let x ® k denote the tensor product of x in each of the left
and right factors of X, lifted to X7.

2Here and below we use ‘blow up’ to mean real blow up; as a set, the manifold [X; S] obtained
by blowing up X at the submanifold S is obtained by removing S and replacing it with its inward
pointing spherical normal bundle. It is endowed with a differentiable structure that makes polar
coordinates around S smooth functions on the blown up space.
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Definition 2.1 (Melrose [37]). An element of the small b-calculus ¥}*(X), m € R,
is a distribution v on X bQ multiplied by k ® k, where u satisfies

(i) wis conormal of order m, in the sense of Definition 18.2.6 and Theorem 18.2.8
of [32], with respect to diagy, smoothly up to the hypersurface zf;

(ii) w vanishes to infinite order at 1bz and rbz.
Using the Schwartz kernel theorem, we interpret these as operators on (smooth)

b-half-densities on X; elements of the space \I/g(X ) extend to bounded operators
on L? half-densities. We also define

Uy (X) = () 45 (X);

such operators are smooth b-half-densities on X bQ that vanish to infinite order at
Ibz and rbz.

The b-calculus is closed under composition; see Proposition 5.20 in [37] for the
proof of the following proposition.

Proposition 2.2. If X is a compact manifold with boundary then
WX 0 W (X) € (X)),
where m, m’ € R.

Since our purpose is to invert elliptic b-differential operators, it is important to
know about parametrix constructions under the small b-calculus. Such parametrix
constructions are analogous to the standard elliptic parametrix construction in
Theorem 18.1.24 of [32].

Proposition 2.3. If P is an elliptic partial b-differential operator of order k, then
there exists an operator G € W, *(X) such that

Id—PG € U;¥(X), Id—GP € ¥;=(X).
Moreover, if G' € ‘I/;k(X) also has this property then G — G’ € ¥, (X).

For the proof, see Section 4.13 of [37]. This inversion property is not good
enough for Fredholm theory, as the error terms Id — PG and Id —GP may not be
compact. To investigate when an element in the small b-calculus is compact, we
introduce the indicial operator.

Definition 2.4. Let A € ¥}*(X) be a b-pseudodifferential operator. The indicial
operator [(A) is defined to be the restriction of the Schwartz kernel of A to zf.

The indicial operator I,(A) can be interpreted as a translation-invariant oper-
ator on the cylinder X x R. As such [}, is an algebra homomorphism:

Iy(PA) = Iy(P)1,(A).
The compactness of an operator is linked to its indicial operator.

Proposition 2.5. Suppose that X is a manifold with corners, and A € ¥"(X)
with m < 0. Then A is compact on L*(X) if and only if I,(A) = 0.
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When inverting an elliptic partial differential operator in the small b-calculus,
the error term will usually have a nonzero indicial operator, and therefore will not
be compact. In order to obtain an error term whose indicial operator vanishes,
we have to expand the small b-calculus to a bigger calculus, called the full b-
calculus, in which the Schwartz kernels are permitted to have polyhomogeneous
conormal expansions, i.e., expansions in powers and logarithms, at the boundary
hypersurfaces lbz, zf, and rbz.

To define polyhomogeneous cornormal functions, we need the notion of an
index set. This is a discrete subset F' C C x Ny such that every ‘left segment’
Fn{(z,p): Rez < N}, N € R is a finite set. Also, it is assumed that (z,p) € F
implies that (z + 1,p) € F and (z,q) € F for ¢ € No,q < p.

Given a boundary hypersurface and an index set, we can define polyhomoge-
neous conormal functions with respect to it. These are functions behaving like sums
of products z*(log )P of powers and logarithms in one (and hence any) boundary
defining function . These definitions follow Sections 5.10 and 5.22 of [37]. We
start by defining L>°-based conormal spaces of functions.

Definition 2.6. Let X be a manifold with boundary, with boundary defining
function z, and let a be a real number. The conormal space A%(X) consists of
those functions u smooth on the interior of X such that, for any finite set V;,...,V]
of vector fields on X tangent to the boundary 0.X, we have

x=V1 ... Viu € L=(X).

Similarly, if X is a manifold with corners, with boundary hypersurfaces Hy, ..., Hy
and boundary defining functions x1,...,xx, let a = (ay,...,axr) denote a multi-
weight for X, that is, a real number a; assigned to each H;. The conormal space
A%(X) consists of those functions u smooth on the interior of X such that, for any
finite set Vi,...,V; of vector fields on X tangent to each boundary hypersurface Hj,
we have
x M, VL Viw e LO(X).

We refer to a derivation by a vector field tangent to the boundary of X as a
b-derivative.

Definition 2.7. Let X be a manifold with boundary and let H be its boundary.
Given an index set F', a smooth function u defined on the interior X° of X is called
polyhomogeneous conormal as it approaches the boundary H with respect to F if|
on a collar neighborhood [0,1), x H of H, one has

(2.1) u(z,y) ~ Z azp(y)x®(logz)? asx — 0,
(z,p)eF
with a, , smooth on H. Here, ~ means that for any N € N, the tail of the series,
(2.2) w =u— Z azp(y) 2*(log x)?
(z,p)€F,Re z<N

is in AY(X). In particular it means that (2.2) is o(z"). We write AF(X) for the
space of functions on X that are polyhomogeneous conormal with index set F'.
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We also need to define polyhomogeneous conormal functions on a manifold
with corners of codimension 2. Since the definition is local, it suffices to consider
a manifold with corners with two boundary hypersurfaces.

Definition 2.8. Let X be a manifold with corners with boundary hypersurfaces
H, and Hs (which may intersect). Given an index family (Fy, F3) for X, a smooth
function u defined on the interior X° of X is called polyhomogeneous conormal
(with respect to Fy and Fy) as it approaches the boundary of X if for (i, j) equal
to (1,2) or (2, 1) it has an expansion at H; polyhomogeneous with respect to F; with

coefficients in A’ (H;) in the following sense: there exists a collar neighbourhood

phg
[0,1), x H; of H; and functions a,, € Afﬂg(Hi), (z,p) € F;, polyhomogeneous
conormal with respect to F; at 0H; = H; N H; such that for all N € N,

(2.3) u— Y a.,(y)at(logz)’ € AN (X).
(z,p)€F;,Re 2<N

Here b; is a fixed real number chosen smaller than inf{z | 3 (z,p) € F;} and (N, b;)
is the multiweight that assigns N to H; and b; to H;. We write A":F2(X) for the
space of functions just defined.

It turns out that, if we know a priori that u is conormal on a manifold with
boundary X, then it is relatively straightforward to check whether it is polyho-
mogeneous conormal with a given index set F. This is the content of the next
proposition.

Proposition 2.9. Let X be a manifold with boundary and a be a real number.
Suppose that u is conormal on X with weight a. Let F' be an index set. Then
u € AF(X) if and only if there exists an expansion as in (2.1) for u near OX such
that, for all N € R, the tail (2.2) is o(z™). (That is, it is only necessary to check
the size of the tail itself, not all of its b-derivatives.)

Proof. The “only if” part of the proposition is trivial. To prove the “if” part,
let v € A*(X), choose N € R, and let uy be the polyhomogeneous expansion
of u involving terms (z,p) with Rez < N, as in (2.2). We need to show that the
tail (2.2) is in AN (X). This is trivial for N < a, so assume N > a. Consider
estimating a b-derivative, say x0,(u — uy), of the tail. For any M > N, this can
be written

20, (u —upg) — 20z (upr — UN).

The second term has the required estimate since it is a finite polyhomogeneous
expansion corresponding to (z,p) € F with Rez > N. As for the first term, we
write using Taylor’s formula, for some € € [0, €] (here we are mimicking the proof
of Theorem 18.1.4 in [32]),

(u—un) (@ + €x,y) — (u— un)(z,y)
€2z’
= ex0y; (u — upr)(z,y) + T@i(u —un)(z + €z, y)

= |ex0y(u— unr)(z,y) — (v — un)(z + ex,y) — (u — uM)(m,y))‘ < 2z,
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using the conormality of u of weight a to bound second order b-derivatives of u.
Hence we get a bound for any € and M:

|x8x(u — uM)(J:,y)| < e ! |(u —up)(z+ex,y) — (u— uM)(m,y)’ + ex®.

We obtain the required estimate by choosing € = V17 and then M = 2N +2—a,
as u—uyr = o(x™) by hypothesis. Higher derivatives can be treated iteratively. O

A similar result holds for manifolds with corners.

Proposition 2.10. With notation as in Definition 2.8, let a = (a1, a2) be a mul-
tiweight for X. Suppose that uw € A*(X) is conormal on X with multiweight a.
Then u € AFVF2(X) if and only if for (i,7) equal to (1,2) or (2,1), there exists a
collar neighbourhood (0,1),, x H; of H; and functions a, , € AL (H;), (z,p) € Fi,

phg
polyhomogeneous conormal with respect to F; at OH; = H; N H;, such that for

all N € N,

(2.4) u— Y an )i (logz)? = o(xMal).
(z,p)€F; , Re z<N

Proof. Apply the argument in the proof of Proposition 2.9 to the expansion at Hy
and at Hs. O

Definition 2.11 (Full b-calculus). The full b-calculus ¥} on X, where m is a
real number and € = (El,,, Ew,) is an index family for X2, is defined as follows. A
half-density distribution u(k®k) on X2 is in \IIZ“g (X)if and only if u = w3 +ua+us,
where

(i) wi(k ® k) is in the small calculus ¥}*;
(ii) wso is polyhomogeneous conormal with respect to the index family (Ejp,,
C®, Eyby,), where C* := {(n,0) : n € Np} is the C* index set, and the index

sets Eu,, C°°, and E,,, are assigned to the three boundary hypersurfaces
Ibz, zf, and rbz respectively;

(iii) us = B*v, where 8 : X? — X? is the blow-down map and v is polyhomoge-
neous conormal with respect to the index family €.

Proposition 2.12 (Proposition 5.46 in [37]). The full b-calculus on X is a two-
sided module over the small b-calculus, i.e.,

UE(X) 0 WP (X) € U (X)),

and ) )
‘IIZYL (X) ° \I/ZL’E(X) c \I/l:n—i-m ’E(X),

where m,m’ € R, and & is an index family.

The reason to introduce the full b-calculus is that, within it, we can construct
parametrices of elliptic b-differential operators with compact error term. For the
proof of the following proposition, see Proposition 5.59 in [37].
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Proposition 2.13. Let P be an elliptic b-differential operator of order k whose
indicial operator I,(P) is invertible on L?(0X x R). Then there exists G in the
full b-calculus of order —k such that the Schwartz kernels of the error terms E =
Id—PG and E' = 1d —GP are smooth across the diagonal, vanish at zf, and
are polyhomogeneous conormal at 1bz and rbz with positive orders of vanishing
there. This implies that E and E' are compact on L*(X). Necessarily (in view of
Proposition 2.5), we have

(2.5) Iy(G) = I(P)~".

2.2. Scattering calculus

Let X be a manifold with boundary 0X and with local coordinates x,y1, ..., yq—1
near X, where x is a boundary defining function for 9.X. A smooth vector field V'
on X is a scattering vector field if it is x multiplied by a b-vector field on X, i.e.,
it has the form

V:a0x28x+a1x5‘yl +~~~+ad,1x8yd_1,

where the coefficients ag,...,aq4—1 are smooth functions of = and y. Written in
terms of r = 2~ !, these take the form

ad—1
ayd—l'

a
V:—a08T+716y1+--~+

A scattering differential operator is one that is generated over C*° (X)) by scat-
tering vector fields. A key example is when X is the radial compactification of RY;
then any constant coefficient vector field on R? is a scattering vector field viewed
on X, and therefore any constant coefficient differential operator on R? is a scat-
tering differential operator on X. The idea of the scattering calculus is to ‘microlo-
calize’ this set of differential operators.

To define it we first need to blow up the product X? to produce the scattering
double space. This is done in two stages. The first is to create the b-double
space X7 = [X?;(0X)? as in the previous subsection. After this blowup, the
diagonal lifts to be a product-type submanifold in X bz, i.e., can be expressed as the
vanishing of d coordinates in a coordinate system. The second step is to blow up the
boundary of the lifted diagonal. The new boundary hypersurfaces so created are
denoted bf and sf, respectively. Notice that in X7, the lifted diagonal is naturally
diffeomorphic to X, hence its boundary is naturally diffeomorphic to 0X. So sf is
a bundle over X, with n-dimensional fibres. In fact, more is true.

Proposition 2.14. The interior of each fibre of the scattering face st in the scatter-
ing double space XSQC has a natural vector space structure. Moreover, any scattering
vector field lifts from either the left or the right factor to be tangent to sf, and to
be a constant coefficient vector field on each fibre.

For the proof, see [34]. It is convenient to regard elements of the scattering
calculus (defined in the next paragraph) as acting on scattering half-densities. We
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define a smooth scattering half-density on X to be a smooth half-density in the
interior of X taking the form f|r¢='drdy|'/?, f € C*(X) at the boundary. We
say that a smooth scattering half-density is nonvanishing if it is nonvanishing in
the interior of X and if f > 0 everywhere. Let 4 be a fixed nonvanishing smooth
scattering half-density, and let vy ® vse be the tensor product of vg. in each of the
left and right factors of X, lifted to X2..

Definition 2.15 (Melrose, [38]). An element A of the scattering calculus WI!'(X)
of order (m,1) is a distribution v on X2, times vy, ® vy, satisfying
(i) z=' is conormal of order m, in the sense of Definition 18.2.6 and Theo-
rem 18.2.8 in [32], with respect to the diagonal (more precisely the diagonal
lifted to X2) uniformly up to sf, where x is a boundary defining function
for sf;

(ii) v vanishes to infinite order at the other boundary hypersurfaces.
The order m is called the differential order of v, and [ the boundary order.

Remark 2.16. Using the Schwartz kernel theorem, elements of U!(X) may be
interpreted as operators on half-densities on X. A scattering differential operator
of order m acting on half-densities is in ¥9(X).

The scattering calculus is closed under composition.

Proposition 2.17 (Eqn. 6.12 in [39]). Let X be a manifold with boundary, and
m,l,m'l' € R. Then

W (X) 0 W (X) € W (X).
Moreover, elements of W%:9(X) act as bounded operators on L? half-densities.

Like Proposition 2.3 on the parametrix constructions under the small b-calculus,
under the scattering calculus we also have a result analogous to Theorem 18.1.24
in [32].

Proposition 2.18. Suppose that P € VEO(X) is elliptic. Then there exists G €
U_k0(X) such that
PG —1d, GP —1d € U >'(X).

Similarly to the case of the indicial operators in Section 2.1, the normal op-
erator of A € W™0(X), denoted Ng.(A), is defined to be the restriction of the
Schwartz kernel of A to the scattering face sf. This restriction can be interpreted
(in a canonical way) as a smooth function on sf valued in densities on each fibre.
These densities can be interpreted as convolution operators on functions (or half-
densities) on each fibre (recall that, according to Proposition 2.14, each fibre is a
vector space, so convolution is well defined). Under this interpretation, normal op-
erators can be composed, and the action of taking normal operators is an algebra
homomorphism:

Proposition 2.19 (Eqn. 5.14 in [38]). Let A and B be elements of V*°(X). Then
Ny(AB) = Ny (A)Nge(B).
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As with the indicial operator, vanishing of the normal operator is related to
compactness:

Proposition 2.20. Let A € ¥™0(X) with m < 0. Then A is compact if and only
if Nsc(A) vanishes identically.

Remark 2.21. Alternatively, we may describe the boundary behaviour in the
scattering calculus by taking the fibrewise Fourier transform of each convolution
operator, obtaining a family of multipliers; this is known as the normal or boundary
symbol. Composition in terms of the boundary symbol is given simply by the
pointwise product.

Proposition 2.22. If A € ¥™O(X) is elliptic with invertible normal operator,
then there exists B € W~™0(X) such that E = AB —1d is in ¥~°%>°(X), i.e., its
Schwartz kernel is smooth across the diagonal and rapidly vanishing at the boundary
of X2.. In particular, E is compact and hence A is Fredholm, with parametriz B.

Necessarily, we have
NyB = (N A)™L.

Proof. See Section 6 of [38]. O

3. The blown-up double space Mlisc
As discussed in the introduction, we will construct the resolvent kernel P~1 =
(H 4+ 1)~! on a compactified and blown-up version of its natural domain M?,
using both b-blowups and scattering blowups. We start by compactifying M? in
each factor separately, i.e., we pass to the compact space [0, 00], X Y x [0, 00],» X Y,
where [0, 0o] indicates the compactification of [0,00) by a point at infinity, such
that 1/r is a boundary defining function at r = co. As noted in the introduction,
rPr is an elliptic b-differential operator near r = 0, while P itself is an elliptic
scattering differential operator as r — oo. Therefore we perform the b-blowup at
r =1’ = 0 and the scattering blowup at » = r’ = co. This means that we blow
up the corner r = r’ = 0, the corner r = ' = oo, and finally the boundary of the
lifted diagonal {r =",y =9’} at r =1’ = .

We label the boundary hypersurfaces of [0, 00, x Y X [0, 00],» X Y by lbz, 1bi,
rbz, and rbi according to whether they arise from {r = 0}, {r = oo}, {r' = 0},
or {r’ = oo}, respectively. The new boundary hypersurfaces created by blowup
are labelled zf, bf, and sf, according to whether they arise from the blowup of
r=1"=0,r =1 = oo, or the boundary of the lifted diagonal at r = ' = oo,
respectively. The resulting space after the blowups at r =+ =0, and r =1’ =
is denoted by Misc. See Figure 1.

We next discuss local coordinates near the various blown-up faces. Near zf,
local coordinates are (r/r',r",y,y’) when r/r’" < C (that is, away from rbz) and
(ryr’ /r,y,y") when 7' /r < C (that is, away from 1bz). Near bf and away from sf the
situation is similar; coordinates are (1 /r, L y,y') for v’ /r <C and (r/r,r=Ly,y)
for r/r" < C. Near the interior of sf, coordinates are (r — ', 7(y — 3/),y, 7).
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In the case that M is Euclidean space R?, with Euclidean coordinate z, then
z — 2’ is a linear coordinate on each fibre of sf (recall by Proposition 2.14, the
fibres of sf have a linear structure). In particular, the diagonal is defined by
r/r" =1,y =y for small r (that is, away from sf ) and r—7' =0, r(y —y') =0 or
r—r' =0,r"(y—y') =0 for large r (that is, away from zf). The following result
about the diagonal will be useful later.

Proposition 3.1. Let ¢ : [0,00) — [0,1] be an increasing smooth function such
that p(x) = x for x € [0,1/2] and p(x) =1 for x € [1,00). Then the function

d(z,2")?

P2 ()

where z = (r,y) and z' = (v',y'), is a quadratic defining function for the diagonal
m sz,sc; that is, adgiag > 0, the diagonal lifted to the blown up space is given by
{adiag = 0}, and the Hessian of aqiag in directions normal to the lifted diagonal is
positive definite.

adiag (Z, Z/) =

Proof. The formula for the distance on a metric cone is given by

r2 + 12 = 2rr' cos (dy (y,9)), dy (y,y')

(3.1) d(z,2")" = {(7"+T’)2, dy (y,y)

<m,

> .

(The second line is because when dy (y,y’) > 7 the fastest way to get from (r,y)
to (r',y’) is to go straight to the cone point and back out again.) So near the
diagonal we have

d(z,2")? = (r =) +2r' (1 = cos (dy (v, 7))
= (r—r")?+rr'(dy (y,9)? + O(dv (y,¥)"))-
Near the sf-face, we have
ading (2, 2") = d(z,2')? = (r = ') + v/ (dy (y,9")* + O(dy (y,¥')*)),

which is a quadratic defining function for the diagonal. To see that we recall
from the discussion before this proposition that near sf the diagonal is defined by
r—r=20,and r(y —y') = 0 or '(y —y') = 0, and we also recall the standard
fact that dy (y,y’)? is a quadratic defining function for the diagonal of Y2 for any
closed Riemannian manifold Y.

Near the zf-face, we have

(3.2)

, d(z,2")? r 2 7 , ,
adiag(2,2") = % = (; - 1) + F(dy(y,y )? 4+ O(dy (y,9)*)),

which is again a quadratic defining function for the diagonal, as near zf the diagonal
is defined by r/r' =1 and y = ¢/'. O

Proposition 1 from Section 4, Chapter VI of [43] immediately implies the fol-
lowing.
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Lemma 3.2. Let K(z,2') be a Schwartz kernel on Mb2,sc’ conormal (in the sense of
Definitions 2.1 and 2.15) of order m at the lifted diagonal, with m > —d. Then K
satisfies

(3.3) |K(2,2")| < Ca;igl;m)/z, 242

for some constant C.
3.1. Densities on M?

b,sc

By a smooth b-half-density on M, b% <« We mean a half-density of the form
d 2
’LL(T', Tlvy,yl) __dydy/ )
ror

where u is smooth. (This is perhaps misleading since it is only a b-half density in
the usual sense away from sf. However, we shall only use this when either r or r’
is small, in which case it certainly is a b-half density.) Let « = 1/r and o’ = 1/r'.
Then by a smooth scattering half-density we mean a density of the form,

dz dx’ dy dy’
A1 prd+1

1/2

)

U(x7 x/? y7 y/)

where v is smooth. In terms of r and " it becomes,

1/2

1, 1 1z
r () d(S)dydy'| = o(r g,y )| e drdr dydy’ |

,U(/r’ Tl) y’ y/)

The scattering half-density |r¢='r'¢=1dr dr’ dydy'|*/? is a bounded nonzero
multiple of the Riemannian half-density. We will usually consider the resolvent P~*
as acting on Riemannian half-densities, in which case the kernel of P~! itself is a
Riemannian (distributional) half-density on sz,sc' However, when we study the
properties of a kernel near the zf-face, we write it as a b-half-density; this is more
natural in view of the fact that we use the b-calculus near zf.

4. Resolvent construction

Let Y, M,A,Vo,H = Hy,, and T" = Ty, be as in the introduction. We assume
throughout that Vj satisfies condition (1.3). In this section we construct the inverse
of the operator H + 1 and investigate properties of its Schwartz kernel.

4.1. Positivity of H

Proposition 4.1. Suppose that Vi satisfies (1.3). Then the operator H is also
positive.

Proof. We work in polar coordinates. Consider the isometry U mapping from
L?(M;ri=Ydrdy) to L*(M;r~'drdy) defined by

(4.1) Uf=ri?y.
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Now for f € L?(M;r~tdrdy), we compute

d—1 1 %
UHU™'f =72 (=92~ =0+ Ay + M) pmd/2f

(d(d —4) "

1 1 1
¥ Vo(y)) I+ =0,f —02f + Ay .

4
A short computation shows that
1 9 d—2\2 f
(0o +ay+ () + Vo(y)> .

=i trof -2+ o+ ((G52) + W) o f

d(d—4 1 1 1
= (% + Vo(y)) —Sf+=0f—0}f+5Ayf = UHU'f.
r r r
We have thus established
d—2 1

(4.2) UHU = %(_ (r0,)* + Ay + Voly) + (7)2) -

Make the substitution s = In7. Then the space L*(M;r~'drdy) becomes L*(M;
dsdy), and we have

UHU™! = e*S( — 02+ Ay + Voly) + (%)2)678.

From here we can clearly see that the operator H is positive if Ay + Vy(y) +
((d —2)/2)? > 0. This completes the proof. O

4.2. The Riesz transform T

Our aim is to find the precise range of p for which the Riesz transform T =
VH~1/2is bounded on LP(M). Following [14] and [27], we do this using a ‘resolvent
approach’ as opposed to the more common ‘heat kernel approach’. Using functional
calculus, we have the following expression,

2 (o]
T = —/ V(H + X*)"td.
™ Jo

We see from this equation that in order to understand 7', we need to know the
properties of (H + A\?)~L. Because H is homogeneous of degree —2, we only need
to compute (H + 1)1, then use scaling. Let P = H + 1; we proceed to study P~!.

4.3. A formula for the resolvent

We now proceed to find an explicit formula for P~!. However as we will discuss
later, the formula has good convergence properties in only certain regions of Misc.
From equation (4.2) we have

—9\2
P=H 1= (= (0, + Ay +Volw) + 12+ (L52) ) ro/2,
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Let P’ denote the differential operator consisting of the terms in the middle.
That is,

_9\2
(4.3) P = —(rd.)* + Ay + Voly) + 7% + (%) .

We take P’ to act on half-densities, using the flat connection that annihilates
the Riemannian half-density |r¢='drdh|'/? on M. Now let P be the differential
operator given by the same expression (4.3), but endowed with the flat connection
on half-densities annihilating the b-half density |dr/rdh|'/?. Since U maps this
b-half density to the Riemannian half-density, these two differential operators are
related by

(4.4) P=U"'PU.
Therefore,
(4.5) P=r1pr L,

Since P is self-adjoint, equation (4.5) shows that P is also self-adjoint. (Note that
for operators on half-densities there is an invariant notion of self-adjointness, since
the inner product on half-densities is invariantly defined.) Write G = P~! and
G = P!, the Schwartz kernels of G and G are related by

(4.6) G =r'G.

Again, we emphasize that this is an identity involving half-densities; if we write the
half-densities G and G as K|(rr’)d71drdr'dhdh”1/2 and f(’(rr')*ldrdr'dhdh'r/z
then we have

(4.7) K = (r)'72K.

So we just need to determine G, then equation (4.6) gives us G.

We now proceed to work out an expression for G. Let (,u?, u;) be the eigenvalues
and corresponding L2-normalized eigenfunctions of the positive operator Ay +
Vo(y) + ((d — 2)/2)%. We also let IT; denote the projection onto the u;-eigenspace.
Then we have

(4.8) P=> 1,1y
j
and

Id = Za(% - 1) 11,
J

(4.9) Ty = —(ro)? +r* + u? = —120? —r0, + u?.
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As in [27], the kernel of the inverse of T} is written in terms of modified Bessel
functions 1, (r) and K, (r) (see Section 9.6 of [1]) in the form

dr dr' |1/2
- L, (r) Ky, (') —T—C , r<r
(4.10) T ') = rr
J | drdr' 172 ,
K/J/](T)I/J/](T) 77 , r>r.
We know that
~ 51
G=> 11"
J
Hence, in terms of the kernels, we have
dr dr’ 1/2
Zuj(y)uj(y’)fm (r) Ky, (r") —T—thdh' , <,
411) GO yy) =4
( ) G(r,r' y,y) / L dr dr’ J1/2 ,
Zuj(y)uj(y VK, (1)1, (r")| ——-dhdh , >
J

where dh denotes the Riemannian density with respect to the metric on Y. While
this is an exact expression for G, it is not a very useful expression near the diagonal,
as it has poor convergence properties. Therefore we shall glue it together with a
pseudodifferential-type parametrix in order to determine its properties close to the
diagonal. However, sufficiently far from the diagonal, the series has very good
convergence. We proceed to show this.

Remark 4.2. We could consider self-adjoint extensions other than the Friedrichs
extension for the Laplacian acting on C2° (Y x (0, 00)). If we do, then the form of the
inverse in (4.10) changes; in particular, the Bessel function I,,;, would be replaced
by a certain linear combination of I,,, and K, in formula (4.10), depending on
the extension. (Indeed, the Friedrichs extension is the only one for which the
domain of the extension is contained in the form domain, requiring the derivatives
of Tj_l(r, ') to be in L?(dr/r) as r — 0 for fixed r’ and vice versa.) This would
have the effect of changing the order of vanishing of the Riesz transform at the
Ibz and rbz boundary hypersurfaces, and thus the range of p for which one has
boundedness on L? (see the proofs of Propositions 5.10 and 5.12). Thus our results
only hold for the Friedrichs extension.

4.4. Convergence of the formula

By the symmetry of (4.11), it suffices to consider the region {r < r’}; here we work
with the sum

(4.12) Zuj(y) i (') L, () K, ().

In the appendix we prove the following estimates on the functions I, and K.
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Proposition 4.3. 1) The functions I, and K, satisfy the following estimates.
First, the derivatives of order 1, 0 <1 < u, satisfy
[ 27H ri—ler

L(p+1/2)

() k()] < Ot 220y ==t 2

l
(4.13) ’(%) fu(r)\ <Cp

for some constant C; depending only on .
2) The functions I, and K, have expansions at r =0 of the form

rit 270 = 27 O 2N
4.14 / = a <
( 1 ) H(T) ( 1/2) ( ng . nul™ + (7’ ))7 r <1,

where the ap,;, are uniformly bounded in both n and p. Similarly, for N < u the
function K, has an expansion

2

—1
(4.15) K,L(r):r*wi‘#r(u)( bn$#r2j+0(r2N)>, r<,
0

n

where the by, ,, are uniformly bounded in both n and p for n < p—1. Moreover, the
implied constants C ,, in the error terms O(r*N) in expansions (4.14) and (4.15)
can be taken to be independent of u, provided N < p.

We will also use the following lemma proved in the appendix:

Lemma 4.4. Suppose that p3 are the eigenvalues of Ay + Vo(y) + ((d —2)/2)?,
with p; > 0. Then for any 0 < 8 <1, and any M, N > 0, the sum

N _ui—M
E pyoar

wj =M
converges for all 0 < a < B, and it is bounded uniformly in «.
Using these results we show:

Proposition 4.5. For r’ > 4r orr > 41’ the series (4.12) converges, and the sum
1s polyhomogeneous conormal on Mb%sc with index sets at zf, 1bz, and rbz given by

F= N()X{O} U {(Z,O) z = 2uj+k,k€N0}U{(2uj+k, 1)2 k GNo,ﬂjGNo}

(4.16)
Ry, = Fip, = {(270) Z = Wy + k. k€ No},

and all other index sets empty (meaning that the series vanishes rapidly together
with all derivatives at the other boundary hypersurfaces of Misc),
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Proof. We consider only the case ' > 4r; the other follows by symmetry.
It is well known that the functions I, and K, are polyhomogeneous conormal,
with I, having index set {(u + k,0): k € No} and K, having index set

{(—p+k,0):keNo}U{(u+Fk,0):keNg}
if p is not an integer, or
{(—p+k0):keNo}U{(u+k1): keNg}

if 41 is an integer (see Equations 9.6.10, 9.6.2, and 9.6.11 in [1]). Moreover, K, (r) is
exponentially decreasing as r — oo. This implies that I,,(r) K, (r’) is, for 4r <1/,
polyhomogeneous on sz,sc with index set {(u + k,0) | k € Ny} at lbz, the empty
set (corresponding to rapid decrease) at rbi, and index set

{(k,0): ke No} U{(2u+k,0): k € No}
if p is not an integer, or
{(k,0): ke No} U{(2u+Fk,1): k € No}

if 1 is an integer, at zf. This implies that the jth term in (4.12) is polyhomogeneous
conormal with respect to the given index family (4.16); the issue is to show the
same property for the sum of the series.

Applying (4.13) for [ = 0, we see that when " > 4r, I,,(r)K,(r") is bounded

above by

c( 4r )#64, /4

r ’

where C' is independent of p. By Hoérmander’s L>°-estimate, see [31], we know
that ||u;|le < Cpl™V/2,
by Cu?_l(Qr/r’)/‘i e"'/4. Lemma 4.4, with o = 7/7/, then shows that the series
converges pointwise, and uniformly for 4r/r" < § < 1. More generally, applying
b-derivatives (see Definition 2.6) to the series (4.12) and using the Hérmander
estimate ||[V*u;|lo < C'k/édil)/zﬂC for derivatives of uy, we see that the Ith b-
derivatives of the terms of the series (4.12) satisfy the same estimate except for
an additional factor of x!, which is harmless as Lemma 4.4 applies with arbitrary
powers of . Thus the series is (for 4r < r’) conormal with weight 0 at zf, weight po
at Ibz, and vanishes rapidly at all other boundary hypersurfaces.

To prove polyhomogeneous conormality at bz we use Proposition 2.10 showing
that we only need to show that there is an expansion at 1bz together with estimates
on the remainder (with no need for derivative estimates). Observe that a boundary
defining function pip, for lbz is comparable to r/r’ for r <1 and to r for r > 1.
Given N we separate the series (4.12) into the terms with p; < N and the remain-
der. The first part is manifestly polyhomogeneous at lbz. On the other hand, we
can pull out a factor of (r/r')N and apply Lemma 4.4 with a = r/r’ and M = N,
showing that the sum of the remainder is O((r/r')Ne=""/*) which is O(p},). This
proves polyhomogeneous conormality at 1bz, uniformly to the corner with zf.

Therefore each term in the series is bounded above
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To prove polyhomogeneous conormality at zf is a bit more delicate as each
term in (4.12) contributes to the leading term (and other terms) of the expansion
of (4.12) at zf. We can take 1’ to be a boundary defining function for zf in the
region 4r < r’. Due to Proposition 2.10, it suffices to show that for each N € R,
there is an expansion at zf as in (2.4) (taking H; = zf, x; = v/, «; = r/1’, and
aj = o) together with an O((r")™ (r/r’)#0) estimate on the remainder.

Since we have already observed that each individual term in the sum (4.12)
is polyhomogeneous with the required index family, given N € R, it suffices to
consider the sum (4.12) for p; > N. Using (4.14) and (4.15), the jth term in this
sum can be expanded as

(417) iy )“J(y)(if) ug+1/2 (szlau b2 I)zm”Q"LH"JrO(T’QN))-
m=0n=0

We are interested in summing this expression over all y; > N in the region r/r’" <
1/4, " < 1. Proposition 4.3 tells us that a, , and b, , are uniform for n < N.
Using Lemma 4.4 we see that the sum over p1; > N over the sum over m and
n in (4.17) gives an expansion at zf involving even powers of 7/, up to 2N, with
coefficients that are bounded at 1bz. Next, we check that each fixed coefficient of
this expansion at zf is polyhomogeneous conormal at 1bz, using exactly the same
argument as used above to show polyhomogeneous conormality globally at lbz.
Finally, using Lemma 4.4 once more, and the last statement in Proposition 4.3,
we check that the sum in p; > N over the error terms O("*N) in (4.17) is a
term bounded by Cyr’ 2N(r/ r')N. This completes the proof of polyhomogeneous
conormality at zf. m

r
rbi

FIGURE 2. Support of G’f.

Proposition 4.5 implies, in particular, that G decays exponentially, with all
its derivatives, as r’ — oo, i.e., when approaching the boundary rbi. Similarly
in the region r/r" > 4, as r — o0, i.e., when approaching lbi, the kernel is also
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exponentially decreasing. Therefore we cut off G to restrict it away from the r = 1’
to obtain a well defined operator Gy with the kernel

- - 4 4’
(4.18) Gylrr',y,y) = G, T’,yvy’)(x(r—g + x(%))
Here y is a smooth cutoff function x : [0, 00) — [0, 1] such that x([0,1/2]) = 1 and
x([1,00)) = 0. Thus the support of Gy is contained in {r/r" < 1/4} U {r/r’ > 4},
as illustrated in Figure 2. (The subscript ‘f” stands for ‘far from the diagonal’.)
At last, similar to (4.6), we define

(4.19) Gy =rr'Gy.

4.5. Near diagonal

The formula obtained in the previous section does not have good convergence
properties near the diagonal, so in this section we construct an operator G, 4 which
is a parametrix for P near the diagonal. The subscript nd means “near diagonal”.
Near the zf-face we consider the b-elliptic operator P. In order to keep it away
from the sf-face, we multiply it with a cutoff function, so we consider Px(r), where
x: [0,00) = [0, 1] is a smooth cutoff function as above. By the ellipticity of P near
the zf-face, and by Proposition 2.13, there is é;’; in the full b-calculus such that

(4.20) PGHx(r) = x(r) + B,

where E, ¢ is smooth across the diagonal and vanishes to first order at zf (as a
b-half density). Let

(4.21) G =GP

Then we have
PGhx(r) = X(r) + E.y,

where F,; = (r'/r)E.; is smooth across the diagonal and vanishes to first order
at zf as a b-half density.

Near the sf-face the operator P is elliptic in the scattering calculus. We multiply
it with 1 — x(r) to keep it away from the zf-face, i.e., we consider the operator
P(l — X(r)). Since P(l — X(T)) is elliptic near the sf-face, and its normal operator

Agn + 1 is invertible, by Proposition 2.22, there is GfLJ; in the scattering calculus
such that
PG (1= x(1) =1=x(r) + By,
where the error term FEyy is smooth across the diagonal and vanishes to infinite
order at bf and sf.
Now we define G4 by

G = (G3hx() + G350~ x00) (1= x(5) ~x(2))-
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Then we have
(4.22) PGnd =1Id +Enda

where the error term FE, 4 is smooth across the diagonal, and vanishes to first order

at zf (as a b-half density) and to infinite order at all other boundary hypersurfaces.

We may assume that G,,4 is supported close to the union of the diagonal, zf, and sf.
We now define our global parametrix to be

(4.23) Go=Gf+Gpg.

4.6. The indicial operator at zf

In this subsection we show that the leading behaviour of G, at zf agrees with
that of fo;. To do this, it suffices to show that the indicial operator of G agrees
(at least for r/r’ < 1/4 and r/r’ > 4, where we have shown convergence of the
series)~with that of éfufi By Proposition 2.13, the indicial operator of éfufi is equal
to I(P)~!. Let us now determine this indicial operator.

The indicial operator of P is

B(Px(r) = ~(0.) + By + o) + (452)

Let 43, uj, and II; be defined as in Section 4.3. Here, instead of (4.8) and (4.9)
we have B
Ib(PX(T)) = ZHJ Sj,
J

where
Sj = —(rd,)* + 3.

As in Section 4.3, the kernel S;l is

1 /v \Hi|drdr|1/2 ,
) m(;) EI
_ "o
Sj (T,T)* 1 (’I“/)/LJ dr dr' |1/2 - ,
205 \ 7 ror » T2t
Hence
1 1 S d 1/2
3 —uj(y)u;(y)stH & dhdn’ , s>1,
— Hj S
S\ -1
4.24 I, (P " =
( ) ( b( )) (S,Q,y) l iu( )u( /)S—Hj ﬁdhdh/ 1/2 s<1
2 : /ij J y ] y s Y ]

with s = r/r’. The convergence of this sum can be analyzed using Lemma 4.4; the
sum converges smoothly for s < 1 and for s > 1.
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Now we determine the leading behaviour of G at zf. We only consider the
case r/r’ < 1/4, as the case r/r’ > 4 is completely parallel. Recall from expres-
sion (4.11) that for r/r’ < 1/4 we have

G(r, 'y, y) ZuJ L, (r) K, (r") .

We use the limiting forms for small arguments from Section 9.6 of [1]: when
r,r’ =0,

(4.25) I,;(r) = ﬁm (1 + 0(7"2))>
and
(4.26) K, () = w (1+00)),

where we can take € to be min(2,2u) if o # 1, or any number less than 2 if
1o = 1 (since then there is a log term 7/logr’ in the expansion of Ki(r’)). By
Proposition 4.3 the error terms are uniform in f;, so we can sum over j to obtain

/2
% I nan'|" + o).

(4.27) Go(r,r',y.y') = %Z M—lj i (y) s (y") (F)M

Since dr/rdr’ /" = ds/sdr’/r', the expression (4.27) shows that the restriction of
G(r,7",y,y') to zf is identical to the restriction Ib(éfj;) of éi]; to zf. Since the
cutoff function used to define Gy is x(4r/r") + x(4r'/r), and that used to define
Ghna is 1— x(4r/r' ) x(4r'/r), we see that G, has the same leading asymptotic at
of as G2 = v/ G2 namely 1/ I,(P)~".

nd’

4.7. Construction of P~1

We have constructed an approximate inverse G, = Gy + Gpgq; let E be the corre-
sponding error term:
PG, =1d+E.

We next try to solve away F to obtain our final G = P~!. We begin by summarising
the properties of G, and F.

Proposition 4.6. As a multiple of the Riemannian half-density |r?=r'¢=Ydrdr' dh
dh'|1/2 on M?_, the kernel G, is the sum of two terms. One is Gynq, supported

b,sc?
where 1/8 < r/r" < 8, and is such that pgf_QGnd is conormal of order —2 with
respect to the diagonal uniformly up to both zf and sf, where p, is any boundary
defining function for zf, and is rapidly decreasing at bf. The other term Gy =
Go — Gng satisfies:

(i) it is smooth at the diagonal, and polyhomogeneous conormal at all boundary
hypersurfaces;
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(i) 4t vanishes to infinite order at 1bi, rbi, and bf;
(iil) it vanishes to order 1 —d/2 + po at bz and rbz;

(iv) it vanishes to order 2 — d at zf.

Proof. The properties of G4 follow from properties of the full b-calculus and of
the scattering calculus recalled in Section 2.

The diagonal part of property (i) of Gy is clear; in fact, it is supported away
from the diagonal. Polyhomogeneity of Gy at 1bz and rbz follows from Proposi-
tion 4.5 and the symmetry of Gy, while polyhomogeneity (in a trivial sense, with
an empty index set) at 1bi, rbi, and bf follows from the exponential decrease of G¢
as r or 1’ tends to infinity, as shown by Lemma 4.4.

We obtain the vanishing order at 1bz from equations (4.11), (4.18), and (4.19).
Since r is the boundary defining function for bz, we need to compute its power.
Clearly one power of r comes from (4.19), while I, (r) in (4.11) gives us the
power r#0. Then the difference between the b-half density and the Riemannian
half-density gives us a power of r~%?2 (as in (4.7)). Combining these we conclude
that the vanishing order at 1bz is 1 —d/2+ po. The vanishing order at rbz is similar.

Last, we show (iv). Since both r and 7/ vanish at zf, to obtain the vanishing
order of G, at zf, as a scattering-half-density, we combine the powers of r and r’
in (4.21) and (4.19) with the factor (rr')~%/? involved in the change from a b-half
density to the Riemannian half-density. So the order of vanishing is 1 —d/2+ 1 —
d/2=2-—d. O

Proposition 4.7. The error term E has the following properties on sz,sc :
(i) it is smooth in the interior;

(ii) 4t vanishes to first order (as a b-half-density, or to order 1 —d as a Rieman-
nian half-density) at the z f-face;

(iil) it vanishes to infinite order at 1bz, rbz, 1bi, rbi, sf, and bf;
(iv) it is compact on L*(M); in fact its Schwartz kernel is Hilbert-Schmidt.

Moreover, the k-fold composition E* satisfies similar conditions, with (ii) strength-
ened to vanishing to order k at zf as a b-half-density.

Proof. Property (i) follows from the choice of Gy,4. Property (ii) follows from the
fact that the indicial operator of (r7)~1G, is equal to I,(P)~', as shown in the
previous subsection. To show property (iii), consider the Gy term. Since G is
equal to the exact inverse of P outside the region {1/8 < r/r’ < 8}, PGy is
supported in this region, hence vanishes in a neighbourhood of lbz, rbz, Ibi, and
rbi (see Figure 2). On the other hand, by Proposition 4.5, G has empty index set
at bf and sf, so PG vanishes to all orders there. On the other hand, by (4.22),
Gnq contributes an error term E, 4 that is smooth across the diagonal and vanishes
to infinite order at all boundary hypersurfaces other than zf. This establishes (iii).
Properties (i), (ii), and (iii) show that E has an L? kernel, proving property (iv).

To show the last remark, we use a smooth cutoff function to divide F into two
parts, E = Ey+ Fg., where Ej is an order —oo operator in the b-calculus, vanishing
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to first order at zf, and Es. is an order (—oo, 00) operator in the scattering calculus.
Then E¥ = (Ey, + Ei)*. Any mixed terms will vanish to infinite order at each
boundary hypersurface. Of the remaining terms, using the composition properties
of the b-calculus and scattering calculus recalled in Section 2, EF is order —oco in
the b-calculus and vanishes to order k at zf, while EE is order (—o0,00) in the
scattering calculus. Moreover, E¥ is supported where {8=% < r/7/ < 8%}, hence
vanishes in a neighbourhood of 1bz, rbz, 1bi, and rbi. O

We proceed to solve away E. To do so, we would like to invert Id +F. However,
it might not be invertible; if not, we perturb G, so that Id +F becomes invertible.

To do this, we first observe that since E is compact on L?(M), according to
Proposition 4.7, Id+F is Fredholm of index 0, and its null space and cokernel
both have the same finite dimension, say N. Removing the null space gives us
an invertible operator, and to achieve that we add a rank N operator to G,. To
construct the rank N operator we need the following lemma.

Lemma 4.8. Let § C L?(M) be the set of functions

§={geC®M): VH g =00*) asr — 0 and
O(r=>) as r — oo, for all k € No}.

There exist smooth functions ¥1,..., %N, ¢1,...,0N € 8 such that
(i) ¥1,...,¥N span the null space of Id+E, and

(ii) P¢,..., PN span a space complementary to the range of Id+E.

Proof. We choose the 1; to be any basis of the null space of Id+FE. To show
¥; € 8, we note that 1; = —E(1;), hence iterating, we have ¢; = E*N; for each
N > 1. Now we consider mapping properties of the operator EV. First, writing
E = Ey + E as in the proof of Proposition 4.7, it is easy to see that FEg. and
VE.. map L*(M) to (r)~FL?(M) for arbitrary L. (Here V is shorthand for the
vector of derivatives (0,,r719,,).) As for Ej, since it has negative order in the b-
calculus and vanishes to first order at zf, we see that E, maps L?(M) to rL?(M).
Since the kernel (r/r")*E has the same properties as E listed in Proposition 4.7, it
follows that Ej, maps r*L?(M) to r*1L?(M) for any a. Also, applying a derivative
V.= (0p,r10y,) or V. = (5;/,7*’7101/;) to Ey, it is still of negative order in the
b-calculus, though no longer vanishing at zf, so we see that both V,Ep, and V. E
map r*L%(M) to r®L?(M) for any a. Summarizing, we have

E acts as a bounded map r*L?(M) — r*1(r)~"EF L2 (M),

(4'28) ar?2 a/\N—L712
V.E and V. E act as bounded maps r*L*(M) — r®(r) =~ L*(M).

Applying these properties of E iteratively, we see that
(4.29) V() (r_N<7“>2NV(N_N1)E2N) acts as a bounded map L*(M) to L*(M)

for any N and 0 < N; < N.



RIESZ TRANSFORM ON METRIC CONES 505

In (4.29) the derivatives may be either in the left variable z or the right vari-
able z’. Hence, considering left derivatives, taking N1 > d/2 and using the Sobolev
embedding HN'(M) — L>(M) shows that v; is in vV (r)2NCN=M(M). Let-
ting N — oo, we see that v; is smooth and its derivatives have rapid decay both
as r — 0 and r — oo, hence ; € 8.

As for the ¢;, to show that we can choose functions ¢1, ..., ¢x as above, let J
be the closed subspace of L?(M) given by the closure of the range of P restricted
to the subspace 8. It suffices to show that J contains a subspace complementary
to the range of Id+F, as if that is true, then we can choose a basis for such a
subspace, approximate each with points of the form P¢;, ¢; € 8, and then the span
of the P¢; will also be a complementary subspace, provided the approximations
are sufficiently good.

We claim that the orthocomplement of J is a finite dimensional subspace
given by

K={feL*M): (A+Vy/r*+1)f(r,y) =0 for r > 0}.

Notice that then f cannot be in the domain of P (unless f = 0), since H is a
nonnegative operator, so P = H + 1 has trivial null space. Nevertheless it is
possible that K is nontrivial; to give an example, if M = R? and Vi = 0 then K
would be one-dimensional, spanned by the function e="/r. In general, K is spanned
by functions of the form r~(@=2/2K, (r)u;(y) with p; < 1; it is straightforward
to check that these are O(r~%/2+1=#i) as r — 0, and exponentially decreasing as
r — 00, hence in L2(M).
To show that K is indeed the orthocomplement of J, let f € J*. Then

(Pu, f) =0, forallues.

In particular, this is true for u € 8§ supported away from r = 0. This implies that
Pf = 0 distributionally away from r = 0. By elliptic regularity this means that f
is smooth for r # 0. Then we can integrate by parts and deduce

(u, (A +Vo/r?> +1)f) =0, for all u € 8 supported away from r = 0.

By density of this space of functions u, we see that (A +Vy/r? +1)f(r,y) = 0 a.e.
Since f is smooth for > 0 this means that (A + Vo /r? + 1) f(r,y) = 0 for r > 0,
i.e, f € K. Conversely, if f € K then f is orthogonal to J, since integration by
parts is justified for u € 8.

To complete the proof it remains to show that J contains a subspace comple-
mentary to the range of Id +F. This is equivalent to the condition that

J +ran(Id +E) = L*(M).
In turn, this is equivalent to

JE N (ran(Id +E)) " = {0}.
Using J+ = K, this is equivalent to
(4.30) K Nnuull(Id+E*) = {0}.
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The last condition is straightforward to verify. In fact, £* also satisfies properties
(i)—(iv) of Proposition 4.7, so just as above we see that null(Id +E*) is contained
in 8. Certainly 8 is contained in dom P. However, there are no nontrivial solu-
tions to Pf = 0 for f € dom P, since P = H + 1 and H is a positive operator.
Hence (4.30) is satisfied, which completes the proof. O

Let @ be the rank N operator
N
Q=Y i(thi,"),
i=1

where (¢;, ) means the inner product with ¢;. The functions ¢1,...,¥nN, ¢1,...dN
are chosen as in Lemma 4.8. Then we have

P(G,+ Q) =1d+E + PQ,
which is invertible. From this we obtain
Pl = (G, +Q)Id+FE + PQ)~".

Using property (ii) of Lemma 4.8, we see that G, + @Q has the ‘same’ properties
as G, i.e., it has those properties listed in Proposition 4.6, and E’ := E + PQ has
properties (i)—(iv) listed in Proposition 4.7. Define an operator S by

S=Id+E)" —1d.

Then we can write

P! = (G + Q)(Id+5).
We need to know the properties of S.

Lemma 4.9. The operator S has properties (1)—(iv) listed in Proposition 4.7.
Remark 4.10. A similar analysis was made in Section 5.4 of [29].

Proof. Using the identities (Id 4+5)(Id +£’) = (Id +E’)(Id +5) = Id, we obtain
(4.31) S=-F+E?*+ESFE.

For any positive integer N, we substitute the expression (4.31) into itself 2N — 1
times, and we get

AN
(4.32) S=> (-1)E" + E*NSE"™N.

j=1

Using the last part of Proposition 4.7, we see that the term Z?fl(fl)jE’j has all

the properties listed in the Lemma, so we focus on the term Sy := E?NSE?N.
Using (4.29), we see that

ViNl) (T7N<T>2NVEN7N1)E/2N) and V(Nl) (TI*N<TI>2NVSV—N1)E/2N)

P
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are bounded operators on L2. Since S is Hilbert-Schmidt, it follows that

v’(le)vgf/Vl) ((TT/)7N<T>2N <T/>2NV2N7N1)VSV—N1)SN)
— ) (T7N<T>2NV(N7N1)E/2N) oS o V(J/Vl) (T17N<T/>2NV(J/V—N1)E/2N)

is also Hilbert-Schmidt, i.e., has an L? kernel. Using Sobolev embeddings as in
the argument below (4.29), this gives regularity and vanishing (at the boundary
of M7,.) of Sy of some finite order N — O(1), and hence the same finite order
regularity and vanishing of S. Since this argument can be made for any N, this

proves that S has the properties (i)—(iv) listed in Proposition 4.7. O

To summarise, we have
G=P*'=(G,+Q)1d+9),

where G, + @ has those properties listed in Proposition 4.6, Id +S' is a compact
operator, and S has those properties listed in Lemma 4.9. Our final step is to an-
alyze the composition (G, + Q)(Id +5) and show that G itself satisfies all the con-
ditions listed in Proposition 4.6. We summarise key information about G' = P~}
obtained through our construction in the following theorem. To state it, define
w=1—x(4r/r")— x(4r"/r) where x is as in (4.18); thus, w is a smooth function
on the blown-up space supported away from lbz, 1bi, rbz, and rbi, and equal to 1
on a neighbourhood of the diagonal. Also let p,s be a boundary defining function
for zf.

Theorem 4.11. Let G. = wG and G5 = (1 — w)G. Then, as a multiple of the
Riemannian half-density, i.e., the scattering-half-density |r¢= 4= drdr' dhdh'|!/?,
on Misc, pgf_zGC is conormal of order —2 with respect to the diagonal uniformly
up to both zf and st, while G satisfies properties (1)—(iv) listed in Proposition 4.6.

Remark 4.12. The subscripts ¢ and s are chosen to indicate that G. is the part
of G which is conormal at the diagonal, while G is the part of G which is smooth
at the diagonal.

Proof. We have already proved these properties for GG,, in Proposition 4.6, so we
need to check them for the terms Q + QS + G,S = G — G,. Since Q and QS both
are smooth and vanish to infinite order at the boundaries, these terms trivially
satisfy all the conditions. So it remains to check that G5 has the same properties
as G.

We write G, S as a sum of two parts. Let n : [0,00) — [0, 1] be a smooth cutoft
function such that 7([0,1]) = 0 and n([2,00)) = 1. The first part n(r)G,n(r’) is in
the scattering calculus. Note that n(2r/)S is also in the scattering calculus, and
that

(n(r)Gan(r')) (n(2r')S) = (n(r)Gan(r'))S.
Therefore by Proposition 2.17, this term is in the scattering calculus. The second
part G, — n(r)Gen(r’') is in the full b-calculus. (Although the support of this
term meets the boundary hypersurfaces Ibi and rbi, its Schwartz kernel is rapidly
vanishing there, enabling us to regard it as living in the b-calculus.) In a similar
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sense, S is in the small b-calculus (it vanishes rapidly at every boundary hypersur-
face except zf). Therefore by Proposition 2.12, (G, — n(r)Gan(r')) S is in the full
b-calculus, with the same index sets at Ibz and rbz as G,. Therefore the required
properties for G. and property (i) for G, follow. Also, since S vanishes to first
order at zf, the same is true for the composition (G —n(r)Gan(r'))S. So G,S has
the same vanishing orders (or better) at the boundary hypersurfaces as G,,. O

Remark 4.13. In the case of the potential V' = 0, we have pp = d/2 — 1. So the
vanishing order in item (iii) of Theorem 4.11 becomes 0. This is consistent with
the case when the cone is R? and the potential V = 0, when the cone tip can be
chosen arbitrarily, and G is smooth everywhere.

The vanishing orders of G = P~! at various boundaries of Misc are shown in
Figure 3.

rbi

(o]

l(Z-d)/2+po
rbz

FIGURE 3. The vanishing properties at various boundaries

Remark 4.14. The construction of G = P~! in this section is sketched in p. 885{F
of [27] by C. Guillarmou and the first author, but details are lacking. It is not
fully justified in [27] that the kernel is in the scattering calculus near sf, and in the
b-calculus near zf. For this reason we have given complete details in this section.

5. The boundedness of the Riesz transform

5.1. Estimate on the kernel

Recall that the Riesz transform T with the inverse square potential V = V;/r?,
defined in Section 4, can be expressed as

2 o 2\ —1

T==[ V(H+N) dx

T Jo
where H is given by (1.4), and recall that H is homogenous of degree —2. Our
analysis of the Riesz transform will be based on the following estimate on the
kernel T'(z, 2').
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Proposition 5.1. We have the following estimate on the kernel of T':
[ee]
(5.1) IT(2,7)| < / M2V (G(Az, A7) | dA,
0

where G = P~1 = (H + 1)~Y, with the properties listed in Theorem 4.11.

Proof. This comes from the relationship between (H + \?)~! and G = (H +1)71,
which is

(5.2) (H+ M)z, 2) = M72(H +1)7 1z, \).

The power —2 of A\ appears because H is homogenous of degree —2. Remember
these kernels are Riemannian half-densities, and this accounts for the power d of A:

1/2

1/2. O

|(A) T ) d(Ar) d(N') dhedb! | = XY e dre dr dhdh |

5.2. Boundedness on L?(M)

Proposition 5.2. The Riesz transform T with the inverse square potential V =
Vo/r? is bounded on L?(M).

Proof. Our assumption (1.3) implies that for some small positive e,

3

Ay +Voly) + (g)z > Vo(y)-

2

Hence Ay + Vo(y)/(1 —€) + ((d — 2)/2)? > 0. Tt follows from Proposition 4.1 that
A+ m‘fo(y) > 0, or equivalently A + T%Vo(y) > eA. From this,

1—¢

.7 = (AA+ 5%m) 2 (A + Vo) )

(7 (A + V) (A+ 5V(w) 1 (A + Vo) )
= (A + %) (A Vo) A r) =),

Therefore T is bounded on L?(M). O

IN

5.3. The diagonal region

To understand the Riesz transform on LP, we decompose G as in Theorem 4.11.
Here we will write Gy for G. = wG (recall w =1 — x(4r/r") — x(4r' /7)), and we
further decompose G5 = G3 + G5, where Go = Gx(4r/r') and Gs = Gx (47" /r).
Thus G = Gy + G2 + G3. Notice that Go and G3 are supported away from
the diagonal, in particular where the infinite series (4.11) has good convergence
properties as shown in Proposition 4.5. We correspondingly decompose the Riesz
transform into three pieces. See Figure 4. Thus we have

(53) T(e,2) =2 [ N2 VL(GiA )
™ Jo
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F1GURE 4. The operators GG; and T; are supported in region R;, i = 1,2, 3.

We now show that Ty is of weak type (1,1). For that we first need to estimate
the derivatives of G1.

Lemma 5.3. Let d(z,2') denote the distance between z and z' on M. On the
support of w, we have pre < d(z,2')71, where put is a boundary defining function
for bf.

Proof. Let z = (r,y) and 2’ = (r',y’). Observe from (3.1) that d(z, z") is bounded
above by r + 1’. Therefore in the region {1/8 < r/r’ < 8} we have
d(z,2) P> (r+r) =91 (1 + £>_1 > 17"'*1
’ - r -9
As 771 is a boundary defining function for bf on the support of w, the result
follows. =

Lemma 5.4. The kernel G satisfies the estimate that for any integer j > 0, we

have )
d(z’zl)27d7]7 d(z7 )

Z/
d(z,2")~ N, d(z,2")

IN

) 1
V2 .Gi(z,2)] S { 1’

Y

for any N > 0.

Proof. Note that Gy is supported in the region Ry = {1/8 < r/r’ < 8}. Since
pgf 2@, is conormal of order —2 with respect to the diagonal, by Proposition 3.1
and Lemma 3.2, near the diagonal we have

d— 2-d)/2
| Pt 2G1 (Z’ Z/)| 5 agiiag )/ .
Near zf, aqiag is comparable to d(z,2')?/p%, so it follows that near zf, we have
| Gi(z, z’)| <d(z,2)*

Away from zf, agiag is comparable to d(z,2’)?, therefore

| Gi(z, z')| < aga_gd)m =d(z,2)* %
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Now let us consider the behaviour of G; near bf. By Theorem 4.11, we know
that G vanishes to infinite order at bf, while by Lemma 5.3, we know that pps <
d(z,2')~1. Therefore near the bf-face we know that

\ Gy (Z,Z/)| f, d(Z, Zl)iN,

for any N > 0. As for the rest of Ry, after we take away the neighbourhoods near
zf, bf, and the diagonal, we are left with a compact set, on which both G; and
d(z,2')~1 are continuous with d(z, z/)~! being nonzero. Therefore we can conclude
that

d(z,2')*7 d(z,2)

Z/
d(zvz/)_N, d(zvz/)

IN

L
L

v

G1(z,2)] S {

for any N > 0.

Estimates on the derivatives of G follow in a similar way, using the conormality
of G. Notice that a derivative V., is of the form r—! times a smooth b-derivative
for small r, and is a smooth scattering vector field for r large. So for r small, for
each derivative we lose a factor of r (due to conormality at the boundary) times a

factor of atlﬁ/azg (due to conormality at the diagonal) —that is, an overall factor of

d(z,2"). Similarly, for r large, for each derivative we lose a factor of a(lii/jg due to
conormality at the diagonal, which is comparable to d(z, z’) for r large. O

Proposition 5.5. The operator Ty maps L*(M) into LYWk (M).

Proof. We apply Calderén-Zygmund theory; see Section 8.1.1 of [25]. It is suffi-
cient to verify the conditions

(i) Ty is bounded on L?(M);
C

(d(z.2)"
C C
(il) |V.Ti(z,2")| < ————— and |V, Ti(z,7)| < —————,
z (d(zvz,))d+1 z (d(z,zl))d+1
for some constant C' > 0.

We already know from Proposition 5.2 that T is bounded on L?(M). So to
verify condition (i), we just need to show 7' — Ty is bounded on L?(M), which is
covered by Proposition 5.13 in Section 5.4.

Now we show conditions (ii) and (iii). By Lemma 5.4 we know the kernel Gy
satisfies, with any A > 0,

(i) [T1(z,2)] <

V. (G1(Az, A2)) | < A[(V2G1)(Az,A2)| S

~

Nz, ) Nd(2,2) <
ANz, )N Nd(z,2) > 1,

and

N (2, )7, \d(z,2') <1,
1

[V2(G1(22, A1) | < X2|(VEG1) (e, 42| { NN Ade )
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for any N > 0. We use this in (5.1) to estimate T} (z, 2’):

Ty (2, )| 5/0 2|V, (G (A2, AZ)) | dA

1/d(z,2") o
5/ d(z,z’)“ddwr/ NN (2, 2N ax
0 1/d(z,z")

= 2d(z, 7)™ (Choose N =d +1.)

Now estimate the derivative with respect to z. The 2’ case is similar.

VL) = 2] [ AL G0 0) )
0

1/d(z,2") o
g/ d(z,z’)’dd)\Jr/ NNz, 2N da
0 1/d(z,z")

=2d(z,2")7 %L, (Choose N =d + 2.)
This completes the proof. O
By interpolation, we obtain the following proposition.
Proposition 5.6. The operator Ty is bounded on LP(M) for any p > 1.

Proof. By the Marcinkiewicz interpolation theorem, we know that 77 is bounded
on LP(M) for all 1 < p < 2. Next, because Lemma 5.4 applies to derivatives of Gy
in both the left and right variables, Proposition 5.5 holds also for the adjoint of 77,
hence the adjoint is also bounded on LP(M) for all 1 < p < 2. Using duality, we
get boundedness of 71 on LP(M) for 2 < p < occ. O

5.4. Off-diagonal region

To study the boundedness of the two off-diagonal operators Ty and T3, the following
lemmas will be useful. They are similar to Lemma 5.4 in [30], but not covered by it.

Lemma 5.7. Consider the kernel K (r,r") defined by
—a -3 < 5!
K(T,T/)—{r " ’ T_T/’
0, r>r.

If a4+ p =d, B>0, and p satisfies
d

5.4 S
(54) p< max(c,0)’
then K is bounded as an operator on LP(R,;r?=1dr).

Proof. The proof is essentially taken from [30]. To find out for what p the oper-
ator with kernel K (r,7') is bounded on LP(R,r%"1dr), we consider the isometry
M: LP(Ry,r?tdr) — LP(Ry,r~1dr) defined by

(Mf)(r) =7 f(r).
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Then the kernel of the operator K = MKM~': LP(R,,r~'dr) — LP(Ry,r~tdr) is

- —a+d/p
K(r,r") = r&/Ppd=d/P K (r p') = (L)

7./

X{r<r'}-
Make the substitution s = Inr and ' = In7/. Then K(s,s') is an operator on
LP(R,ds), and

}?(37 3/) = e(*a+d/p)(5*5/) X{s—s’ﬁO}'

This is a convolution operator, so it is bounded provided the kernel is an L'-
function with variable s — s’. Since s — s’ <0, we want —a+ d/p > 0. That is,

- d
max(a,0)
Since we want p > 1, we require a < d, i.e., 8 > 0. O

Lemma 5.8. Consider the kernel K(r,r") defined by

K 0, r<r,
ror') =
rT e >
Ifv+0=d, v>0, and p satisfies
d
5.5 S
) Tew)

then K is bounded as an operator on LP(R,;r¢=1dr).
Proof. By duality and Lemma 5.7. |

Corollary 5.9. Let K(r,r',y,y’) be a kernel on the cone M satisfying

S
K(r,,y,y)| < T
! ( yy)!_{o) r>r.
If a+p=d, B>0, and p satisfies
5.6 < —,
(56) P max(a, 0)

then K is bounded as an operator on LP(M;ri=tdrdh). Similarly, if K(r,r',y,y')
satisfies
, , 0, r<r,
Ky 9] < {r” >
with v+ § = d, v > 0, then if p satisfies
d
min(y, d)

K is bounded as an operator on LP(M;r?='drdh).

(5.7) <p,

Proof. This follows from Lemmas 5.7 and 5.8 and the fact that the cross section Y’
has finite volume. O
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Proposition 5.10. The operator Ty is bounded on LP(M) for

d
max(d/2 — po,0)’

(5.8) p <
where g > 0 is the square root of the smallest eigenvalue of the operator Ay +
Vo(y) + ((d —2)/2)%.

Proof. By Theorem 4.11, we have

(5.9)  |Galrry )| S pi o, gl = B 1A (o)

where pg > 0 is as above. On the support of Ty and for 7’ < 1 we can use boundary
defining functions

r
!
Pat =T Ploz = 5, Prbi = 1,
while for ¥/ > 1 we can use

/—1
Pzf = 1a Plbz =T, Prbi =T .

Therefore, (5.9) implies that

)\Q—d Tl—d/2+u0 Tll—d/Q—HO’ A < 1/7“/,

/ / <
’ GQ(AT, AT Y, Y )| ~ { Alfd/2+,u,07N Tlfd/2+,u,0 TlfN, A Z 1/?,,/,

for any N > 0. Then, using the conormality of G at the boundary, we have

)\Q—d T—d/2+u0 ,r/l—d/2—u0’ A < 1/7"/,

/! / <
(510) | Vz (GZ()\T) )\T. Y, Y ))! ~ { Al_d/2+H0—N T—d/2+HO T/_N, )\ 2 1/7'/,

for all N > 0, since V, is equal to 1/r times a tangential derivative for small r.
Using (5.3) and the fact that Gg is supported where r </, we estimate

ITo(r, "y, )| < /0 =2V, (Ga (O, X 1, 3/)) | dA

1/r’
< / / )\d*Q ()\27(1 T,fd/2+,u,0 T/l*d/Q*,u,o) d\
0

1
+/ /r /\d—2 (Al—d/2+HO—N r—d/2+u0 7“/ _N)d)\
1

/7!

1/r 1/r
— p—d/24p0 1 1=d/2—po / A\ + p—/2+p0 1 =N / A4/ 2 mo—N=1 gy

0 1/r!

1

_—d/24po 0 —d/2—po N—d /—N _  —d/24po 0 —d/2—po
=r r + r r r r

d/2+ po — N< )

< pmd/2Hmo pl=d/2=00 for N > o + g
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By Corollary 5.9, we conclude that T% is bounded on LP(M) provided that

d

< . O
max(d/2 — po,0)

Remark 5.11. When V = 0, then py = d/2 — 1, and its first eigenfunction ug
is a constant function. In Section 5.5 we will improve estimate (5.10) to obtain a
bigger range for p for this special case.

Proposition 5.12. The operator T is bounded on LP(M) for

d
” min(1 +d/2 + po,d)’

where o > 0 is the square root of the smallest eigenvalue of the operator Ay +

Vo(y) + ((d - 2)/2).

Proof. This proof is very similar to that of Proposition 5.10. By Theorem 4.11,
we have

(5.11) | Ga(rr,y, )| S 5 ol pi =t mmo 1= d 2o gy oo,

On the support of T5 and for r < 1 we can use boundary defining functions

/
r
Pzt =Ty Prbz = 77 Prbi = 17

while for » > 1 we can use

pat =1, poa="1", pi=r"".
It follows that, as in the proof of Proposition 5.10, by the conormality of G5 at
the boundary, that for all N > 0,

A2—d r—d/Q—p,() T,/l—d/Q—‘ru()) )\ S 1/7",

/ ! <
’ V. (Gg(/\r, AT Y,y ))| ~ { A~/ ZHo =N+ =N =1 1=d/2 0 )\ > 1/r,

Then using (5.3) and the fact that G5 is supported where ' < r, we have

o0
IT(r,r, 9,4 < / N2 | (GO M) A
0

~

1/r
< / / )\d72 ()\27d de/27u0 7 lfd/2+;to) d\
0

+ /1/7. )\d72 ()\*d/2+,u,07N+1 T7N71 T/lfd/2+p‘o) d\
1/r
1/r 1/r
_ T*d/pr.o r 17d/2+,u,0/ d\ +7,,7N71 r 17d/2+,u,0/ )\d/2+,u,07N71 d\
0 1/r

< pml=d/2—po (11-d/24p0 o N> Lo + é
~Y 2
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Applying Corollary 5.9, we conclude that T5 is bounded on LP(M) provided that
d
> — .
min(1+ d/2 + ug,d)
Proposition 5.13. The operator T; is bounded on L*(M).

|

Proof. Since 2 satisfies the boundedness criteria in both Proposition 5.10 and
Proposition 5.12, the operator Tp + T3 = T — T} is bounded on L?*(M). The
operator T is bounded on L?(M) by Proposition 5.2, and from this the bounded-
ness of 71 on L?(M) follows. O

Remark 5.14. Proposition 5.13 completes the missing part in the proof of Propo-
sition 5.5.

5.5. Proofs of main results

Proof of Theorem 1.3. Since T = T} + T5 + T3, we just combine Proposition 5.6,
Proposition 5.10, and Proposition 5.12 to prove the first part of this theorem.
For the second part, with V' # 0, for p outside the interval (1.8), the coun-
terexamples from Section 5.2 of [27] serve to show the lack of boundedness of T'
on LP(M). (For purposes of comparison, note that the variables « and 2’ in [27]
correspond to 1/r and 1/r" in this paper.) O

Proof of Theorem 1.1. Suppose that the potential V' is identically zero; we proceed
to show that the upper threshold for L? boundedness is p = d(d/2 — u1)~!. Notice
that 77 and T3 are automatically bounded on this extra range, so we only have to
consider T, which has an expression of the form

(5.12) Ty(z,2') = 2 x(4r/r") /OO MN72VL(G(A2, AY)) dA
T 0

We recall that G' = /G and substitute the infinite series (4.11) for G here, and
consider the first term in this sum separately from the rest.
Since po = d/2 — 1 when Vp = 0, the first term here is

(') =2 g (y) uo(y') Tajo—1 (1) Kaja—r (')

times the Riemannian half-density. (Recall this gives us an extra factor of (rr’)=4/2
compared to writing it as a b-half-density, as in (4.6) versus (4.7).) When Vj =0,
the eigenfunction ug(y) is constant. Also, Iy/o_1(r) = er®/?=1 + O(r#/2+1) and is
conormal at r = 0, implying that V,.(r'=%/21,,,_;(r)) = O(r). Hence

V. (r 2 ug(y) Lyje—1(r)) = O(r);

that is, in this special case, applying the derivative V., makes the kernel vanish
to an additional order, instead of one order less as is usually the case. Therefore,
after taking the gradient in the left variables, this term is bounded by

Cri'®™ forr' <1, andby Cro' Y, fors’ > 1,
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for any integer N. Now we substitute this in (5.12) and find that the contribution
to Ty of the pp-term is bounded by

1/r’ 00
/ A2—d ()\dr r’zfd) d\ +/ A2 ()\Q*N rr! 7N) d\ < Crr’ —ied
0 1/r’

Remembering that this term is supported in {r < 7'}, we see from Corollary 5.9
that this term is bounded on L? for all p € (1, 00).

Consider the remainder of the series. The argument in the previous subsection
applies, except that the series now begins with the pu; term rather than the g
term, so we have boundedness in the range (5.8) with p; replacing g, completing
the proof. O

A. Estimates on modified Bessel functions

Proof of Proposition 4.3. From Section 9.6 of [1], we have representations

9t pht L
Al I - - 1 — 212 o=t gt
(A1) L) = e [ e
and >
g2 9=mpn oo
K,(r)= ——— (2 — )2 gy
0= i f, T

By introducing a new integration variable r/t2 — 1 we can convert this to

7.‘_1/2 Q=K p—H 00 e—\/r2+t2
(A.2) K,(r) = 2 dt.
Clp+1/2) Jo  Vr2 442
We now estimate each of these integrals in a way that is uniform as y — oco. It
is straightforward to estimate /,:

Q= H pht 1
eI (r) = eavey / (e gy

/2T (pu+1/2

_ 1 _
o / ) gy < 2027
m 2T (u+1/2) J m /2T (e +1/2)

We next estimate K,. We use

N e—T/2 o—t/2

‘\/r2+t2‘

to get

12 €724 T (2p)
I'(p+1/2)

(A.3) | Kur)] <=
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We also want estimates for the derivatives of I, and K. For the derivatives
of I, derivatives in r hit either the 7 factor outside the integral in (A.2) or the
e~ "t factor inside the integral. Suppose that j derivatives hit the »=# factor and
the remainder act inside the integral. The former gives a factor (—p)(—p — 1)

-+ (=p— 7+ 1)r~7 | while the latter give a factor (—t)'~7 which is bounded by 1
in magnitude. Thus we get an estimate

d

(A4) (4) | < Cum

P 27H rh—ler
<l<u,
dr

I'(p+1/2)° t=ls

with Cj depending on [ but not g or r. (The reason for the restriction | < p is
because we gain a factor (u — 1 + 1)(u — 1 + 2)--- pr~! from differentiating r* [
times, and this would be much bigger in magnitude than u!r=! for [ >> pu.)

For the derivatives of K, derivatives in r hit either the r=# factor outside

the integral in (A.2) or the e~ V™ *+* /\/r2 1 #2 factor inside the integral. Suppose
that j derivatives hit the »—* factor and the remainder act inside the integral. The
former gives a factor (—u)(—p—1) -+ (—p— j+1)r~7 while the latter gives terms
of the form (powers of r) times e~ V"*T* times a sum of powers of (r? + ¢2)~1/2,
where the powers range from [ — j + 1 to 2(I — j) + 1. Due to the factor t**, we
can differentiate inside the integral up to p times, and estimating e~ V" (12 +
t2)7F/2 < e=t/2e="/2t=* we end up showing

d\! 20T (2pu) r—Ht e~ /2
A5 ’ — ) K ‘ <Oyt . 1<Il<p.
(A.5) (dr) w(r)] < Cup T(u+1/2) =t=H
Then, using the identity
22#71

(A.6) I(2p) =

T'(p)T 1/2
Tr () T +1/2)
in (A.3) and (A.5) we obtain (4.13) in Proposition 4.3.

To prove the properties of a,, , and b, , in (4.14) and (4.15), we observe that
such expansions are well known properties of modified Bessel functions; see 9.6.10
and 9.6.11 in [1]. The leading coefficients are given by

_ DP(p+1/2)

agu = ——r"tt by, =271
0,1 F(/~L+1) 0,1

and they satisfy a recurrence relation

An—1,p bn—l,u

T = S0 .\ b" = S9N\ 1 < < )
tnp 4(n? + pn) P 4(n? — pn) = A

which follows from substituting these expansions into the Bessel ODE. The bounds
claimed in Proposition 4.3 follow directly.

To prove the bound on the error term for I, we write the function e~ as its
Taylor polynomial of degree 2(N — 1) centred at rt = 0 and use the Lagrange form

T
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of the remainder:

+ (—rt)?N ¢ r<r

= ! eN)y "

Substituting this into (A.1), we see that the Taylor polynomial yields the expansion
to order r#+2N=2 while we estimate the remainder as above, showing that the
O(r*™) term in (4.14) is uniform in p. A similar argument shows the O(r*") term
in (4.15) is uniform in . This completes the proof of Proposition 4.3. O

Proof of Lemma 4.4. Note that for any p; > 2M, we have

_9M ,
Mj_M:M'i‘(Mj_QM)ZM-l-(L):MJ

2 27
Therefore,

P D D D DI A

HjZ2M ujZQM HjZQI\/I

There is an integer N1(3, N) > 2M such that for all j > N,(8, N), jN < pg=7/4,
It follows that

Z u;_\/ﬁujﬂ < Z Mj—v 5uj/2 + Z 5—uj/4 5%/2

pj=2M 2M <pj<N1(B,N) ni=Ni(B,N)

<|{m <M@EN}NMENY+ S g
i =N1(B,N)

(A7)

Using Weyl’s law for the eigenvalue counting function for Ay, we see that

(A.8) Gy <p}| < Op'

Letting p = Ni(B8,N), we see that the first term in the last line of (A.7) is
bounded by C'N; (B, N)d+N-1,
Consider the second term. An implication of (A.8) is that we have

G\ 1/(d=1)
Hi 2 (5)

)

for any j € N. Therefore,
S Y BRI LS g/

pj>N1(B,N) pj=>N1(B,N) j20
There is N2(8,C) € N such that for all j > Ny(8,C), we have %(j/C)l/(dfl) >
log,, j, where v = $~1/2 > 1. Then

SOV o S RGOV ST glog, g
j=1 0<j<N2(B,C) J=N2(8,0)

(A.9) 2
SNB.C)+ Y i NaBC) +
J=N2(B,C)
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The remaining part of the summation is from M to 2M,

S ot M (G gy < 2M Y| 2M)N < C2M)* T (2M)N= C(2M)TN
M<p;<2M

Bringing all the parts together, we have

2
(A10) D alam M < CEMYTN L CN(B, NN Ny (5,C)+ T < .
=M

Note the finite constant depends on M, N, C, and 3, but not «, therefore we have
uniform boundedness in a. O
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