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The Riesz transform for homogeneous

Schrödinger operators on metric cones

Andrew Hassell and Peijie Lin

Abstract. We consider Schrödinger operators on a metric cone whose
cross section is a closed Riemannian manifold (Y, h) of dimension d−1 ≥ 2.
Thus the metric on the cone M = (0,∞)r × Y is dr2 + r2h. Let Δ be
the Friedrichs Laplacian on M and let V0 be a smooth function on Y such
that ΔY + V0 + (d − 2)2/4 is a strictly positive operator on L2(Y ) with
lowest eigenvalue µ2

0 and second lowest eigenvalue µ2
1, with µ0, µ1 > 0.

The operator we consider is H = Δ+ V0/r
2, a Schrödinger operator with

inverse square potential on M ; notice that H is homogeneous of degree −2.
We study the Riesz transform T = ∇H−1/2 and determine the precise

range of p for which T is bounded on Lp(M). This is achieved by making
a precise analysis of the operator (H+1)−1 and determining the complete
asymptotics of its integral kernel. We prove that if V is not identically
zero, then the range of p for Lp boundedness is

( d

min(1 + d/2 + µ0, d)
,

d

max(d/2− µ0, 0)

)
,

while if V is identically zero, then the range is
(
1 ,

d

max(d/2− µ1, 0)

)
.

The result in the case of an identically zero V was first obtained in a paper
by H.-Q. Li [33].

1. Introduction

The Riesz transform T on the Euclidean space Rd is defined by

T = ∇Δ
−1/2

Rd ,

where ΔRd is the (positive) Laplacian operator. In this paper we study the Riesz
transform T in the more general setting of metric cones.
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A metric cone M is of the form M = Y × (0,∞), where (Y, h) is a compact
Riemannian manifold with dimension d−1. The coneM is equipped with the conic
metric g = dr2 + r2h. The Euclidean space Rd provides the simplest example of
a metric cone, with cross section Y = Sd−1 with its standard metric. General
metric cones enjoy a dilation symmetry analogous to that of Euclidean space, but
no other symmetries in general.

The Laplacian on the cone expressed in polar coordinates is

(1.1) Δ = −∂2r − d− 1

r
∂r +

1

r2
ΔY ,

where ΔY is the Laplacian on the compact Riemannian manifold Y . This operator
is positive and symmetric on the domain C∞

c (Y × (0,∞)), that is on smooth
functions supported away from the cone tip. The operator Δ is defined to be the
Friedrichs extension of this symmetric operator. The Riesz transform T on the
cone M is then defined by

T = ∇Δ−1/2.

Here ∇ is shorthand for (∂r , r
−1∇Y ), or, in other words, we measure the gradient

on the cone using the metric g. The question of the boundedness of the Riesz
transform on cones, i.e., for what p the operator T is bounded on Lp(M), was
answered by H.-Q. Li in [33]. The characterisation of the boundedness, stated in
Theorem 1.1, is in terms of the second smallest eigenvalue of an operator involv-
ing ΔY . We provide a different proof to this result in Section 5 of this paper.

Theorem 1.1. Let d ≥ 3 and let M be a metric cone with dimension d and cross
section Y . The Riesz transform T = ∇Δ−1/2 is bounded on Lp(M) if and only
if p is in the interval

(1.2)
(
1,

d

max(d/2− μ1, 0)

)
,

where μ1 > 0 is the square root of the second smallest eigenvalue of the opera-
tor ΔY + ((d− 2)/2)2.

More significantly, the methods used in this paper to prove Theorem 1.1 can be
applied to study the boundedness properties of a more general class of operators,
obtained by adding an inverse square potential to the Laplacian. Let V0 : Y → C

be a smooth function on Y satisfying the condition

(1.3) ΔY + V0(y) +
(d− 2

2

)2

> 0

in the strict sense that the bottom of the spectrum of the operator in (1.3) is
strictly positive, and define

(1.4) H = Δ+
V0
r2
.
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Notice that H is homogeneous of degree −2, like the Laplacian. Condition (1.3)
ensures that H is a positive operator (see Proposition 4.1), soH−1/2 is well defined.
We can then define the Riesz transform T = TV0 of the Schrödinger operator H by

(1.5) T = ∇H−1/2 = ∇
(
Δ+

V0(y)

r2

)−1/2

.

Notice that (1.3) allows our potential V = V0/r
2 to be “a bit negative”; in partic-

ular, it allows V0 to be any constant greater than −(d− 2)2/4.
The goal of this article is to find the exact interval for p on which the Riesz

transform T with an inverse square potential V = V0/r
2 is bounded on Lp(M),

where M is a metric cone with dimension d ≥ 3.
A necessary condition, stated in Theorem 1.2, for the boundedness was found

in [27] by C. Guillarmou and the first author, in the slightly different setting of
asymptotically conic manifolds. These are complete Riemannian manifolds (M◦, g)
such that M◦ is the interior of a compact manifold M with boundary, and g has
a prescribed singularity at the boundary of M . Precisely, there exists a boundary
defining function x for M , and a family of metrics h(x) on ∂M , such that the
metric g has the form

dx2

x4
+
h(x)

x2

in a collar neighbourhood of ∂M . Here r = 1/x behaves like the radial coordinate
on the cone over ∂M ; the metric in terms of r reads g = dr2 + r2h(1/r), so is
asymptotic to the conic metric dr2 + r2h(0) as r → ∞. In [27], potentials of
the form V ∈ x2C∞(M) were considered; that is, the potentials decay as r−2 at
infinity, and the limiting ‘potential at infinity’ V0 was defined by V0 := x−2V |∂M .

Theorem 1.2 (Theorem 1.5 in [27]). Let d ≥ 3 and let (M◦, g) be an asymptot-
ically conic manifold with dimension d. Consider the operator P = Δg + V with
V ∈ x2C∞(M) satisfying

(1.6) Δ∂M + V0 +
(d− 2

2

)2

> 0 on L2(Y ), where V0 =
V

x2

∣∣∣
∂M

.

Let μ0 > 0 be the square root of the lowest eigenvalue of the operator (1.6). Suppose
that P has neither zero modes nor zero resonances1 and that V0 �≡ 0. Then ∇P−1/2

is unbounded on Lp(M) if p is outside the interval

(1.7)
( d

min(d/2 + 1 + μ0, d)
,

d

max(d/2− μ0, 0)

)
.

The counterexample used in [27] to show the unboundedness of the Riesz trans-
form can be easily adapted to the context of metric cones, so a similar result also
holds for metric cones. Therefore the task now is to find a sufficient condition

1A zero mode, resp. zero resonance, for P is a solution u to the equation Pu = 0 such that
u ∈ L2(M◦), resp. u = O(r−(d−2)), as r → ∞, but u /∈ L2(M◦). Zero resonances only occur
for d ≤ 4.
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for boundedness. We will see that the sufficient condition involves the same inter-
val (1.7) as in Theorem 1.2, so this interval gives us a complete characterisation of
the boundedness of T when V �≡ 0. Our main result is as follows.

Theorem 1.3. Let d ≥ 3 and let M be a metric cone with dimension d and
cross section Y . Let V0 be a smooth function on Y that satisfies (1.3). The Riesz
transform T with the inverse square potential V = V0/r

2 is bounded on Lp(M)
for p in the interval

(1.8)
( d

min(1 + d/2 + μ0, d)
,

d

max(d/2− μ0, 0)

)
,

where μ0 > 0 is the square root of the smallest eigenvalue of the operator ΔY +
V0(y) + ((d − 2)/2)2.

Moreover, for any V �≡ 0, the interval (1.8) characterises the boundedness of T ,
i.e., T is bounded on Lp(M) if and only if p is in the interval (1.8).

Remark 1.4. If we specialize to positive potentials, i.e., V ≥ 0 and V �≡ 0, then
μ0 > (d − 2)/2, and we see that the lower threshold for Lp boundedness is 1, and
the upper threshold is always greater than d. On the other hand, for negative
potentials V , i.e., V ≤ 0 and V �≡ 0, the lower threshold for Lp boundedness is
always greater than 1 and strictly less than 2, while the upper threshold is strictly
less than d but strictly larger than 2.

Remark 1.5. Some of these results are implied by recent papers of Assaad [4] and
Assaad–Ouhabaz [5] dealing with more general classes of potentials on Rd or on
complete Riemannian manifolds; see the end of Section 1.2 for further discussion.

An immediate application of Theorem 1.3 is to show that the converse of the
second part of Theorem 1.5 in [27], i.e., Theorem 1.2, is also true. As noted in
Remark 1.7 of [27], Theorem 1.3 is exactly the missing ingredient. Therefore we
have the following result.

Theorem 1.6. Let (M◦, g), P, and μ0 be as in Theorem 1.2. Then the Riesz
transform ∇P−1/2 is bounded on Lp(M) if and only if p is in the interval (1.7).

A special case of Theorem 1.3 is the following result on the Riesz transforms
with constant non-zero V0, in which the boundedness interval is written in terms
of the constant.

Corollary 1.7. LetM be a metric cone with dimension d ≥ 3 and cross section Y .
The Riesz transform T = ∇(Δ+ c/r2)−1/2, where c > −((d− 2)/2)2 and c �= 0, is
bounded on Lp(M) if and only if p is in the interval

(1.9)
( 2d

min(d+ 2 +
√
(d− 2)2 + 4c, 2d)

,
2d

max(d−√
(d− 2)2 + 4c, 0)

)
.
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1.1. Strategy of the proof

Using functional calculus, we get the expression

(1.10) T =
2

π

∫ ∞

0

∇(H + λ2)−1 dλ.

We then exploit the homogeneity (of degree −2) of H under dilation of the cone.
Thanks to this homogeneity, we obtain the resolvent kernel for (H + λ2)−1 from
(H+1)−1 by scaling the variables; see (5.2). So it suffices to analyze P := (H+1)−1.
We do this on a compactified and blown-up space, which is designed so that the
asymptotics of its kernel in different regimes can be understood. We use y as a local
coordinate on the cross section Y . We particularly want to distinguish the diagonal
behaviour of the kernel P−1(r, y, r′, y′), from the behaviour as r or r′ tends to zero
or infinity. If we consider the kernel as living on (Y × [0,∞])2, as in Figure 1, then
this has the defect that the diagonal meets the boundary hypersurfaces {r = 0},
{r′ = 0}, {r = ∞}, and {r′ = ∞}, making the different asymptotic behaviours
difficult to distinguish. To remedy this we perform blowups, as in [27]. As noted in
that paper, the operator rPr is elliptic as a b-differential operator near r = 0, that
is, an elliptic combination of the ‘b-vector fields’ r∂r and ∂yi . On the other hand, as
r → ∞, P is an elliptic scattering differential operator, which is to say that it has an
expression that looks like the Euclidean Laplacian in polar coordinates as r → ∞,
being an elliptic combination of ∂r and r−1∂yi . Correspondingly we perform the
b-blowup (used to define the b-calculus; see Section 2.1) for small r, that is, we
blow up the corner r = r′ = 0. On the other hand, for large r we perform two
blowups (used to define the scattering calculus; see Section 2.2), namely we first
blow up the corner r = r′ = ∞, followed by the boundary of the lifted diagonal
at r = ∞, obtaining the space M2

b,sc illustrated in Figure 1. Now the diagonal
is separated from the boundary hypersurfaces in Figure 1 and on this blown-up
space, we can more easily construct the kernel of P−1 and describe the different
types of asymptotics.

Figure 1. The space (Y × [0,∞])2, left, and the blown-up double space M2
b,sc after three

blowups, right.
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Because the kernel behaves differently in different parts of the blown-up space,
and especially because we use different calculi near the two hypersurfaces zf and
sf, we break the blown-up space into different regions, and construct the resolvent
kernel in each region separately using different tools and techniques. In the end
we patch together the constructions in these different regions to obtain the overall
resolvent kernel. This construction of the resolvent kernel of H , i.e., the kernel
of P−1, is made in Section 4.

In Section 5, equipped with the knowledge of the behaviours of the kernel
of P−1 at different parts of the blown-up space, we determine the boundedness
properties of the Riesz transform T . Using a smooth partition of unity on the
blown-up space, we calculate the integral (1.10) and then break the kernel of T
up into a near-diagonal part and an off-diagonal part. The near-diagonal part is
a Calderón–Zygmund kernel and is bounded on Lp for all p ∈ (1,∞), while the
off-diagonal part is bounded on a typically smaller range of p determined by the
leading asymptotic behaviours at the boundary hypersurfaces marked ‘lbz’ or ‘rbz’
in Figure 1.

1.2. Relation to previous work

Cones have been studied since the 19th century. In particular, the problem of
wave diffraction from a cone point, which is important in applied mathematics, was
studied by A. Sommerfeld in the 1890s [45]. Other notable early papers include [23]
and [24] by F.G. Friedlander and [9] by A. Blank and J. B. Keller. Functional
calculus for Laplacians defined on cones was studied by J. Cheeger and M. Taylor
in [15] and [16]. Many papers have been written about spaces with cone-like
singularities. For example, the Laplacian and heat kernel on compact Riemannian
manifolds with cone-like singularities were studied in [17] by J. Cheeger and in [35]
by E. Mooers. In [11], J. Brüning and R. Seeley studied the Laplacian on manifolds
with an asymptotically conic singularity, and in [36] R. B. Melrose and J. Wunsch
studied the wave equation and diffraction on spaces with asymptotically conic
singularities.

The classical case of the Riesz transform on the Euclidean space Rd goes back
to the 1920s, and the case of one dimension (the Hilbert transform) was studied by
M. Riesz in [40]. The paper [44] by R. S. Strichartz is the first paper that studies
the Riesz transform on a complete Riemannian manifold. In [18], T. Coulhon and
X.T. Duong proved that the Riesz transform on a complete Riemannian manifold,
satisfying the doubling condition and the diagonal bound on the heat kernel, is
of weak type (1, 1), and hence is bounded on Lp for 1 < p ≤ 2. Since then there
have been many studies of the Riesz transform. For example, the Riesz transform
on complete Riemannian manifolds has been studied in [19], [7], [8], and [20].
Riesz transforms on Lie groups are analyzed in [2], [3], [21], and [41], and Riesz
transforms on second order elliptic operators are considered in [10] and [22].

Many papers have been written on Schrödinger operators with an inverse
square potential. We only mention a few of the most relevant ones here. In [46],
X. P. Wang studied the perturbations of such operators. In [13], G. Carron studied
Schrödinger operators with potentials that are homogeneous of degree −2 near
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infinity. In [12], N. Burq, F. Planchon, J. G. Stalker, and A. S. Tahvildar-Zadeh
generalise the standard Strichartz estimates for the Schrödinger equation and the
wave equation to the case in which an additional inverse square potential is present.
In [30] the first author and A. Sikora investigated one-dimensional Riesz trans-
forms, including with inverse square potentials, with respect to measures of the
form rd−1dr, thus mimicking the measure on a d-dimensional cone.

Now we turn to past results on the boundedness of the Riesz transform T with a
potential V on metric cones. We have already mentioned the result (Theorem 1.1)
of H.-Q. Li for V ≡ 0, and the work [27] of C. Guillarmou and the first author
on asymptotically conic manifolds. The method from [27] was based in part on
the paper [14]. In [28] the two authors performed a similar analysis but allowed
certain zero modes and zero resonances. In [6], P. Auscher and B. Ben Ali obtained
a result on Rd, stated in Theorem 1.8, which involves the reverse Hölder condition.
It is an improvement of the earlier results by Z.W. Shen in [42].

Theorem 1.8 (Theorem 1.1 in [6]). Let 1 < q ≤ ∞. If V is in the reverse
Hölder class Bq, then for some ε > 0 depending only on V the Riesz transform
with potential V is bounded on Lp(Rd) for 1 < p < q + ε.

The reverse Hölder condition V ∈ Bq implies that V > 0 almost everywhere
and V ∈ Lq

loc(R
d). A positive inverse square potential is in Bq if and only if

q < d/2. So this theorem gives boundedness for 1 < p < d/2, which is smaller
than the range obtained in Theorem 1.3 for positive inverse square potentials (of
course this is a very small subclass of Bq-potentials).

Very recently, Assaad and Assaad–Ouhabaz have proved results for Riesz trans-
forms of Schrödinger operators which include some of our results. The following
result is from [4].

Theorem 1.9. Let M be a complete noncompact Riemannian manifold with di-
mension d ≥ 3. Suppose that the function V ≤ 0 satisfies Δ+ (1 + ε)V ≥ 0, the
Sobolev inequality

(1.11) ||f ||
L

2d
d−2 (M)

� ||∇f ||L2(M),

holds for all f ∈ C∞
0 (M), and that M is of homogeneous type, i.e., for all x ∈M

and r > 0,
μ
(
B(x, 2r)

)
� μ

(
B(x, r)

)
,

where μ is the measure on M . Then the Riesz transform T = ∇(Δ + V )−1/2 is
bounded on Lp(M) for all p in the interval

(1.12)
( 2d

d+ 2 + (d− 2)
√
ε/(ε+ 1)

, 2
]
.

Except for the fact that they are not necessarily smooth manifolds in a neigh-
bourhood of the cone tip at r = 0, metric cones satisfy the conditions of Theo-
rem 1.9. So this result can be directly compared with ours in the case of Schrödinger
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operators of the form (Δ+c/r2), where the constant c satisfies−((d−2)/2)2 <c< 0.
In that case the lower threshold in (1.9) given by Corollary 1.7 is the same as the
lower threshold in (1.12) given by J. Assaad’s result. Also in [4] it is shown that
the Riesz transform for Schrödinger operators with a signed potential in Ld/2, or a
nonnegative potential in Ld/2,∞, on a d-dimensional Riemannian manifold obeying
the Sobolev inequality (1.11) are bounded on (1, d) provided that this is true for
the Riesz transform with zero potential. Note that this case just fails to cover
negative inverse square potentials on cones, which are in Ld/2,∞. Further results
on signed potentials are proved by J. Assaad and E. Ouhabaz in [5].

2. Review of the b-calculus and the scattering calculus

In this section we briefly recall the key elements of the b-calculus and the scattering
calculus that we require in Section 4. For more details, see [37] or [26] for the b-
calculus, and [38], [39] for the scattering calculus.

2.1. b-calculus

Let X be a manifold with boundary with boundary defining function x (that is,
∂X = {x = 0} and dx �= 0 on ∂X). A differential operator on X is called a
b-differential operator if it is generated over C∞(X) by vector fields tangent to
the boundary of X . Near ∂X such vector fields are linear combinations of vector
fields x∂x and ∂yi in terms of a local coordinate system (x, y1, . . . , yd−1) with
(y1, . . . , yd−1) restricting to a local coordinate system on ∂X .

The b-calculus is a “microlocalization” of the set of b-differential operators. To
define the b-calculus, we first blow up2 X2 along (∂X)2 to obtain the blown-up
manifold X2

b = [X2; (∂X)2], called the b-double space. This produces a manifold
with corners which has three boundary hypersurfaces: one defined by x/x′ = 0
(here and below we use the convention that unprimed variables on the double
space are coordinates on the left copy, and primed variables are coordinates on the
right copy), one defined by x′/x = 0, and one defined by x + x′ = 0. These are
usually denoted lb, rb, and ff, respectively, but, in accordance with our notational
conventions for the space in Figure 1, here we will call them lbz, rbz and zf (here
the ‘z’ stands for ‘zero’ and refers to the fact that the b-blowup takes place at
r = r′ = 0).

It is convenient to regard elements of the b-calculus as acting on b-half densities.
We define a smooth b-half-density on X to be a smooth half-density in the interior
of X taking the form f |dx/xdy1 . . . dyd−1|1/2 near the boundary, with f ∈ C∞(X).
We say that such a b-half-density is nonvanishing if it is nonvanishing as a half-
density in the interior of X , and if f > 0. Let κ be a fixed smooth nonvanishing
b-half-density on X and let κ⊗κ denote the tensor product of κ in each of the left
and right factors of X , lifted to X2

b .

2Here and below we use ‘blow up’ to mean real blow up; as a set, the manifold [X;S] obtained
by blowing up X at the submanifold S is obtained by removing S and replacing it with its inward
pointing spherical normal bundle. It is endowed with a differentiable structure that makes polar
coordinates around S smooth functions on the blown up space.
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Definition 2.1 (Melrose [37]). An element of the small b-calculus Ψm
b (X), m ∈ R,

is a distribution u on X2
b multiplied by κ⊗ κ, where u satisfies

(i) u is conormal of orderm, in the sense of Definition 18.2.6 and Theorem 18.2.8
of [32], with respect to diagb, smoothly up to the hypersurface zf;

(ii) u vanishes to infinite order at lbz and rbz.

Using the Schwartz kernel theorem, we interpret these as operators on (smooth)
b-half-densities on X ; elements of the space Ψ0

b(X) extend to bounded operators
on L2 half-densities. We also define

Ψ−∞
b (X) =

⋂
m

Ψm
b (X);

such operators are smooth b-half-densities on X2
b that vanish to infinite order at

lbz and rbz.
The b-calculus is closed under composition; see Proposition 5.20 in [37] for the

proof of the following proposition.

Proposition 2.2. If X is a compact manifold with boundary then

Ψm
b (X) ◦Ψm′

b (X) ⊂ Ψm+m′
b (X),

where m,m′ ∈ R.

Since our purpose is to invert elliptic b-differential operators, it is important to
know about parametrix constructions under the small b-calculus. Such parametrix
constructions are analogous to the standard elliptic parametrix construction in
Theorem 18.1.24 of [32].

Proposition 2.3. If P is an elliptic partial b-differential operator of order k, then
there exists an operator G ∈ Ψ−k

b (X) such that

Id−PG ∈ Ψ−∞
b (X), Id−GP ∈ Ψ−∞

b (X).

Moreover, if G′ ∈ Ψ−k
b (X) also has this property then G−G′ ∈ Ψ−∞

b (X).

For the proof, see Section 4.13 of [37]. This inversion property is not good
enough for Fredholm theory, as the error terms Id−PG and Id−GP may not be
compact. To investigate when an element in the small b-calculus is compact, we
introduce the indicial operator.

Definition 2.4. Let A ∈ Ψm
b (X) be a b-pseudodifferential operator. The indicial

operator Ib(A) is defined to be the restriction of the Schwartz kernel of A to zf.

The indicial operator Ib(A) can be interpreted as a translation-invariant oper-
ator on the cylinder ∂X × R. As such Ib is an algebra homomorphism:

Ib(PA) = Ib(P )Ib(A).

The compactness of an operator is linked to its indicial operator.

Proposition 2.5. Suppose that X is a manifold with corners, and A ∈ Ψm
b (X)

with m < 0. Then A is compact on L2(X) if and only if Ib(A) = 0.
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When inverting an elliptic partial differential operator in the small b-calculus,
the error term will usually have a nonzero indicial operator, and therefore will not
be compact. In order to obtain an error term whose indicial operator vanishes,
we have to expand the small b-calculus to a bigger calculus, called the full b-
calculus, in which the Schwartz kernels are permitted to have polyhomogeneous
conormal expansions, i.e., expansions in powers and logarithms, at the boundary
hypersurfaces lbz, zf, and rbz.

To define polyhomogeneous cornormal functions, we need the notion of an
index set. This is a discrete subset F ⊂ C × N0 such that every ‘left segment’
F ∩ {(z, p) : Re z < N}, N ∈ R is a finite set. Also, it is assumed that (z, p) ∈ F
implies that (z + 1, p) ∈ F and (z, q) ∈ F for q ∈ N0, q ≤ p.

Given a boundary hypersurface and an index set, we can define polyhomoge-
neous conormal functions with respect to it. These are functions behaving like sums
of products xz(log x)p of powers and logarithms in one (and hence any) boundary
defining function x. These definitions follow Sections 5.10 and 5.22 of [37]. We
start by defining L∞-based conormal spaces of functions.

Definition 2.6. Let X be a manifold with boundary, with boundary defining
function x, and let a be a real number. The conormal space Aa(X) consists of
those functions u smooth on the interior of X such that, for any finite set V1, . . . , Vl
of vector fields on X tangent to the boundary ∂X , we have

x−aV1 . . . Vlu ∈ L∞(X).

Similarly, if X is a manifold with corners, with boundary hypersurfacesH1, . . . , Hk

and boundary defining functions x1, . . . , xk, let a = (a1, . . . , ak) denote a multi-
weight for ∂X , that is, a real number aj assigned to each Hj . The conormal space
Aa(X) consists of those functions u smooth on the interior of X such that, for any
finite set V1, . . . , Vl of vector fields onX tangent to each boundary hypersurfaceHj ,
we have

x−a1
1 . . . x−ak

k V1 . . . Vlu ∈ L∞(X).

We refer to a derivation by a vector field tangent to the boundary of X as a
b-derivative.

Definition 2.7. Let X be a manifold with boundary and let H be its boundary.
Given an index set F , a smooth function u defined on the interior X◦ of X is called
polyhomogeneous conormal as it approaches the boundary H with respect to F if,
on a collar neighborhood [0, 1)x ×H of H , one has

(2.1) u(x, y) ∼
∑

(z,p)∈F

az,p(y)x
z(log x)p as x→ 0,

with az,p smooth on H . Here, ∼ means that for any N ∈ N, the tail of the series,

(2.2) u′ = u−
∑

(z,p)∈F,Re z≤N

az,p(y)x
z(log x)p

is in AN (X). In particular it means that (2.2) is o(xN ). We write AF (X) for the
space of functions on X that are polyhomogeneous conormal with index set F .
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We also need to define polyhomogeneous conormal functions on a manifold
with corners of codimension 2. Since the definition is local, it suffices to consider
a manifold with corners with two boundary hypersurfaces.

Definition 2.8. Let X be a manifold with corners with boundary hypersurfaces
H1 and H2 (which may intersect). Given an index family (F1, F2) for X , a smooth
function u defined on the interior X◦ of X is called polyhomogeneous conormal
(with respect to F1 and F2) as it approaches the boundary of X if for (i, j) equal
to (1, 2) or (2, 1) it has an expansion atHi polyhomogeneous with respect to Fi with

coefficients in A
Fj

phg(Hi) in the following sense: there exists a collar neighbourhood

[0, 1)x × Hi of Hi and functions az,p ∈ A
Fj

phg(Hi), (z, p) ∈ Fi, polyhomogeneous
conormal with respect to Fj at ∂Hi = Hi ∩Hj such that for all N ∈ N,

(2.3) u−
∑

(z,p)∈Fi,Re z≤N

az,p(y)x
z(log x)p ∈ A(N,bj)(X).

Here bj is a fixed real number chosen smaller than inf{z | ∃ (z, p) ∈ Fj} and (N, bj)
is the multiweight that assigns N to Hi and bj to Hj . We write AF1,F2(X) for the
space of functions just defined.

It turns out that, if we know a priori that u is conormal on a manifold with
boundary X , then it is relatively straightforward to check whether it is polyho-
mogeneous conormal with a given index set F . This is the content of the next
proposition.

Proposition 2.9. Let X be a manifold with boundary and a be a real number.
Suppose that u is conormal on X with weight a. Let F be an index set. Then
u ∈ AF (X) if and only if there exists an expansion as in (2.1) for u near ∂X such
that, for all N ∈ R, the tail (2.2) is o(xN ). (That is, it is only necessary to check
the size of the tail itself, not all of its b-derivatives.)

Proof. The “only if” part of the proposition is trivial. To prove the “if” part,
let u ∈ Aa(X), choose N ∈ R, and let uN be the polyhomogeneous expansion
of u involving terms (z, p) with Re z ≤ N , as in (2.2). We need to show that the
tail (2.2) is in AN (X). This is trivial for N < a, so assume N ≥ a. Consider
estimating a b-derivative, say x∂x(u − uN), of the tail. For any M > N , this can
be written

x∂x(u − uM )− x∂x(uM − uN ).

The second term has the required estimate since it is a finite polyhomogeneous
expansion corresponding to (z, p) ∈ F with Re z > N . As for the first term, we
write using Taylor’s formula, for some ε′ ∈ [0, ε] (here we are mimicking the proof
of Theorem 18.1.4 in [32]),

(u− uM )(x + εx, y)− (u − uM )(x, y)

= εx∂x(u − uM )(x, y) +
ε2x2

2
∂2x(u− uM )(x + ε′x, y)

=⇒
∣∣∣εx∂x(u − uM )(x, y)− (

(u − uM )(x+ εx, y)− (u− uM )(x, y)
)∣∣∣ ≤ ε2xa,
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using the conormality of u of weight a to bound second order b-derivatives of u.
Hence we get a bound for any ε and M :∣∣x∂x(u − uM )(x, y)

∣∣ ≤ ε−1
∣∣(u − uM )(x+ εx, y)− (u− uM )(x, y)

∣∣+ εxa.

We obtain the required estimate by choosing ε = xN+1−a and thenM = 2N+2−a,
as u−uM = o(xM ) by hypothesis. Higher derivatives can be treated iteratively. �

A similar result holds for manifolds with corners.

Proposition 2.10. With notation as in Definition 2.8, let a = (a1, a2) be a mul-
tiweight for X. Suppose that u ∈ Aa(X) is conormal on X with multiweight a.
Then u ∈ AF1,F2(X) if and only if for (i, j) equal to (1, 2) or (2, 1), there exists a

collar neighbourhood [0, 1)xi ×Hi of Hi and functions az,p ∈ A
Fj

phg(Hi), (z, p) ∈ Fi,
polyhomogeneous conormal with respect to Fj at ∂Hi = Hi ∩ Hj, such that for
all N ∈ N,

(2.4) u−
∑

(z,p)∈Fi,Re z≤N

az,p(y)x
z
i (log xi)

p = o(xNi x
aj

j ).

Proof. Apply the argument in the proof of Proposition 2.9 to the expansion at H1

and at H2. �

Definition 2.11 (Full b-calculus). The full b-calculus Ψm,E
b on X , where m is a

real number and E = (Elbz, Erbz) is an index family for X2, is defined as follows. A

half-density distribution u(κ⊗κ) onX2
b is in Ψm,E

b (X) if and only if u = u1+u2+u3,
where

(i) u1(κ⊗ κ) is in the small calculus Ψm
b ;

(ii) u2 is polyhomogeneous conormal with respect to the index family (Elbz,
C∞, Erbz), where C

∞ := {(n, 0) : n ∈ N0} is the C∞ index set, and the index
sets Elbz, C

∞, and Erbz are assigned to the three boundary hypersurfaces
lbz, zf, and rbz respectively;

(iii) u3 = β∗v, where β : X2
b → X2 is the blow-down map and v is polyhomoge-

neous conormal with respect to the index family E.

Proposition 2.12 (Proposition 5.46 in [37]). The full b-calculus on X is a two-
sided module over the small b-calculus, i.e.,

Ψm,E
b (X) ◦Ψm′

b (X) ⊂ Ψm+m′,E
b (X),

and
Ψm′

b (X) ◦Ψm,E
b (X) ⊂ Ψm+m′,E

b (X),

where m,m′ ∈ R, and E is an index family.

The reason to introduce the full b-calculus is that, within it, we can construct
parametrices of elliptic b-differential operators with compact error term. For the
proof of the following proposition, see Proposition 5.59 in [37].
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Proposition 2.13. Let P be an elliptic b-differential operator of order k whose
indicial operator Ib(P ) is invertible on L2(∂X × R). Then there exists G in the
full b-calculus of order −k such that the Schwartz kernels of the error terms E =
Id−PG and E′ = Id−GP are smooth across the diagonal, vanish at zf, and
are polyhomogeneous conormal at lbz and rbz with positive orders of vanishing
there. This implies that E and E′ are compact on L2(X). Necessarily (in view of
Proposition 2.5), we have

(2.5) Ib(G) = Ib(P )
−1.

2.2. Scattering calculus

Let X be a manifold with boundary ∂X and with local coordinates x, y1, . . . , yd−1

near ∂X , where x is a boundary defining function for ∂X . A smooth vector field V
on X is a scattering vector field if it is x multiplied by a b-vector field on X , i.e.,
it has the form

V = a0 x
2 ∂x + a1 x∂y1 + · · ·+ ad−1 x∂yd−1

,

where the coefficients a0, . . . , ad−1 are smooth functions of x and y. Written in
terms of r = x−1, these take the form

V = −a0 ∂r + a1
r
∂y1 + · · ·+ ad−1

r
∂yd−1

.

A scattering differential operator is one that is generated over C∞(X) by scat-
tering vector fields. A key example is when X is the radial compactification of Rd;
then any constant coefficient vector field on Rd is a scattering vector field viewed
on X , and therefore any constant coefficient differential operator on Rd is a scat-
tering differential operator on X . The idea of the scattering calculus is to ‘microlo-
calize’ this set of differential operators.

To define it we first need to blow up the product X2 to produce the scattering
double space. This is done in two stages. The first is to create the b-double
space X2

b = [X2; (∂X)2] as in the previous subsection. After this blowup, the
diagonal lifts to be a product-type submanifold in X2

b , i.e., can be expressed as the
vanishing of d coordinates in a coordinate system. The second step is to blow up the
boundary of the lifted diagonal. The new boundary hypersurfaces so created are
denoted bf and sf, respectively. Notice that in X2

b , the lifted diagonal is naturally
diffeomorphic to X , hence its boundary is naturally diffeomorphic to ∂X . So sf is
a bundle over ∂X , with n-dimensional fibres. In fact, more is true.

Proposition 2.14. The interior of each fibre of the scattering face sf in the scatter-
ing double space X2

sc has a natural vector space structure. Moreover, any scattering
vector field lifts from either the left or the right factor to be tangent to sf, and to
be a constant coefficient vector field on each fibre.

For the proof, see [34]. It is convenient to regard elements of the scattering
calculus (defined in the next paragraph) as acting on scattering half-densities. We
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define a smooth scattering half-density on X to be a smooth half-density in the
interior of X taking the form f |rd−1drdy|1/2, f ∈ C∞(X) at the boundary. We
say that a smooth scattering half-density is nonvanishing if it is nonvanishing in
the interior of X and if f > 0 everywhere. Let νsc be a fixed nonvanishing smooth
scattering half-density, and let νsc ⊗ νsc be the tensor product of νsc in each of the
left and right factors of X , lifted to X2

sc.

Definition 2.15 (Melrose, [38]). An element A of the scattering calculus Ψm,l
sc (X)

of order (m, l) is a distribution v on X2
sc times νsc ⊗ νsc, satisfying

(i) x−lv is conormal of order m, in the sense of Definition 18.2.6 and Theo-
rem 18.2.8 in [32], with respect to the diagonal (more precisely the diagonal
lifted to X2

sc) uniformly up to sf, where x is a boundary defining function
for sf;

(ii) v vanishes to infinite order at the other boundary hypersurfaces.

The order m is called the differential order of v, and l the boundary order.

Remark 2.16. Using the Schwartz kernel theorem, elements of Ψm,l
sc (X) may be

interpreted as operators on half-densities on X . A scattering differential operator
of order m acting on half-densities is in Ψm,0

sc (X).

The scattering calculus is closed under composition.

Proposition 2.17 (Eqn. 6.12 in [39]). Let X be a manifold with boundary, and
m, l,m′, l′ ∈ R. Then

Ψm,l
sc (X) ◦Ψm′,l′

sc (X) ⊂ Ψm+m′,l+l′
sc (X).

Moreover, elements of Ψ0,0
sc (X) act as bounded operators on L2 half-densities.

Like Proposition 2.3 on the parametrix constructions under the small b-calculus,
under the scattering calculus we also have a result analogous to Theorem 18.1.24
in [32].

Proposition 2.18. Suppose that P ∈ Ψk,0
sc (X) is elliptic. Then there exists G ∈

Ψ−k,0
sc (X) such that

PG− Id, GP − Id ∈ Ψ−∞,0
sc (X).

Similarly to the case of the indicial operators in Section 2.1, the normal op-
erator of A ∈ Ψm,0(X), denoted Nsc(A), is defined to be the restriction of the
Schwartz kernel of A to the scattering face sf. This restriction can be interpreted
(in a canonical way) as a smooth function on sf valued in densities on each fibre.
These densities can be interpreted as convolution operators on functions (or half-
densities) on each fibre (recall that, according to Proposition 2.14, each fibre is a
vector space, so convolution is well defined). Under this interpretation, normal op-
erators can be composed, and the action of taking normal operators is an algebra
homomorphism:

Proposition 2.19 (Eqn. 5.14 in [38]). Let A and B be elements of Ψ∗,0(X). Then

Nsc(AB) = Nsc(A)Nsc(B).
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As with the indicial operator, vanishing of the normal operator is related to
compactness:

Proposition 2.20. Let A ∈ Ψm,0(X) with m < 0. Then A is compact if and only
if Nsc(A) vanishes identically.

Remark 2.21. Alternatively, we may describe the boundary behaviour in the
scattering calculus by taking the fibrewise Fourier transform of each convolution
operator, obtaining a family of multipliers; this is known as the normal or boundary
symbol. Composition in terms of the boundary symbol is given simply by the
pointwise product.

Proposition 2.22. If A ∈ Ψm,0(X) is elliptic with invertible normal operator,
then there exists B ∈ Ψ−m,0(X) such that E = AB − Id is in Ψ−∞,∞(X), i.e., its
Schwartz kernel is smooth across the diagonal and rapidly vanishing at the boundary
of X2

sc. In particular, E is compact and hence A is Fredholm, with parametrix B.
Necessarily, we have

NscB = (NscA)
−1.

Proof. See Section 6 of [38]. �

3. The blown-up double space M2
b,sc

As discussed in the introduction, we will construct the resolvent kernel P−1 =
(H + 1)−1 on a compactified and blown-up version of its natural domain M2,
using both b-blowups and scattering blowups. We start by compactifying M2 in
each factor separately, i.e., we pass to the compact space [0,∞]r×Y × [0,∞]r′ ×Y ,
where [0,∞] indicates the compactification of [0,∞) by a point at infinity, such
that 1/r is a boundary defining function at r = ∞. As noted in the introduction,
rPr is an elliptic b-differential operator near r = 0, while P itself is an elliptic
scattering differential operator as r → ∞. Therefore we perform the b-blowup at
r = r′ = 0 and the scattering blowup at r = r′ = ∞. This means that we blow
up the corner r = r′ = 0, the corner r = r′ = ∞, and finally the boundary of the
lifted diagonal {r = r′, y = y′} at r = r′ = ∞.

We label the boundary hypersurfaces of [0,∞]r × Y × [0,∞]r′ × Y by lbz, lbi,
rbz, and rbi according to whether they arise from {r = 0}, {r = ∞}, {r′ = 0},
or {r′ = ∞}, respectively. The new boundary hypersurfaces created by blowup
are labelled zf, bf, and sf, according to whether they arise from the blowup of
r = r′ = 0, r = r′ = ∞, or the boundary of the lifted diagonal at r = r′ = ∞,
respectively. The resulting space after the blowups at r = r′ = 0, and r = r′ = ∞
is denoted by M2

b,sc. See Figure 1.
We next discuss local coordinates near the various blown-up faces. Near zf,

local coordinates are (r/r′, r′, y, y′) when r/r′ ≤ C (that is, away from rbz) and
(r, r′/r, y, y′) when r′/r ≤ C (that is, away from lbz). Near bf and away from sf the

situation is similar; coordinates are (r′/r, r′−1
, y, y′) for r′/r≤C and (r/r′, r−1, y, y′)

for r/r′ ≤ C. Near the interior of sf, coordinates are (r − r′, r(y − y′), y, r−1).
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In the case that M is Euclidean space Rd, with Euclidean coordinate z, then
z − z′ is a linear coordinate on each fibre of sf (recall by Proposition 2.14, the
fibres of sf have a linear structure). In particular, the diagonal is defined by
r/r′ = 1, y = y′ for small r (that is, away from sf ) and r− r′ = 0, r(y− y′) = 0 or
r − r′ = 0, r′(y − y′) = 0 for large r (that is, away from zf). The following result
about the diagonal will be useful later.

Proposition 3.1. Let ϕ : [0,∞) → [0, 1] be an increasing smooth function such
that ϕ(x) = x for x ∈ [0, 1/2] and ϕ(x) = 1 for x ∈ [1,∞). Then the function

adiag(z, z
′) =

d(z, z′)2

ϕ2(r′)
,

where z = (r, y) and z′ = (r′, y′), is a quadratic defining function for the diagonal
in M2

b,sc; that is, adiag ≥ 0, the diagonal lifted to the blown up space is given by
{adiag = 0}, and the Hessian of adiag in directions normal to the lifted diagonal is
positive definite.

Proof. The formula for the distance on a metric cone is given by

(3.1) d(z, z′)2 =

{
r2 + r′2 − 2rr′ cos

(
dY (y, y

′)
)
, dY (y, y

′) ≤ π,

(r + r′)2, dY (y, y
′) ≥ π.

(The second line is because when dY (y, y
′) ≥ π the fastest way to get from (r, y)

to (r′, y′) is to go straight to the cone point and back out again.) So near the
diagonal we have

d(z, z′)2 = (r − r′)2 + 2rr′
(
1− cos

(
dY (y, y

′)
))

= (r − r′)2 + rr′
(
dY (y, y

′)2 +O
(
dY (y, y

′)4
))
.

(3.2)

Near the sf-face, we have

adiag(z, z
′) = d(z, z′)2 = (r − r′)2 + rr′

(
dY (y, y

′)2 +O
(
dY (y, y

′)4
))
,

which is a quadratic defining function for the diagonal. To see that we recall
from the discussion before this proposition that near sf the diagonal is defined by
r′ − r = 0, and r(y − y′) = 0 or r′(y − y′) = 0, and we also recall the standard
fact that dY (y, y

′)2 is a quadratic defining function for the diagonal of Y 2 for any
closed Riemannian manifold Y .

Near the zf-face, we have

adiag(z, z
′) =

d(z, z′)2

r′2
=

( r
r′

− 1
)2

+
r

r′
(
dY (y, y

′)2 +O
(
dY (y, y

′)4
))
,

which is again a quadratic defining function for the diagonal, as near zf the diagonal
is defined by r/r′ = 1 and y = y′. �

Proposition 1 from Section 4, Chapter VI of [43] immediately implies the fol-
lowing.
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Lemma 3.2. Let K(z, z′) be a Schwartz kernel on M2
b,sc, conormal (in the sense of

Definitions 2.1 and 2.15) of order m at the lifted diagonal, with m ≥ −d. Then K
satisfies

(3.3)
∣∣K(z, z′)

∣∣ ≤ Ca
−(d+m)/2
diag , z �= z′

for some constant C.

3.1. Densities on M2
b,sc

By a smooth b-half-density on M2
b,sc we mean a half-density of the form

u(r, r′, y, y′)
∣∣∣dr
r

dr′

r′
dy dy′

∣∣∣1/2,
where u is smooth. (This is perhaps misleading since it is only a b-half density in
the usual sense away from sf. However, we shall only use this when either r or r′

is small, in which case it certainly is a b-half density.) Let x = 1/r and x′ = 1/r′.
Then by a smooth scattering half-density we mean a density of the form,

v(x, x′, y, y′)
∣∣∣dx dx′ dy dy′
xd+1 x′d+1

∣∣∣1/2,
where v is smooth. In terms of r and r′ it becomes,

v(r, r′, y, y′)
∣∣∣ rd+1r′d+1d

(1
r

)
d
( 1
r′
)
dydy′

∣∣∣1/2= v(r, r′, y, y′)
∣∣∣ rd−1r′d−1drdr′dydy′

∣∣∣1/2.
The scattering half-density |rd−1r′d−1 dr dr′ dy dy′|1/2 is a bounded nonzero

multiple of the Riemannian half-density. We will usually consider the resolvent P−1

as acting on Riemannian half-densities, in which case the kernel of P−1 itself is a
Riemannian (distributional) half-density on M2

b,sc. However, when we study the
properties of a kernel near the zf-face, we write it as a b-half-density; this is more
natural in view of the fact that we use the b-calculus near zf.

4. Resolvent construction

Let Y,M,Δ, V0, H = HV0 , and T = TV0 be as in the introduction. We assume
throughout that V0 satisfies condition (1.3). In this section we construct the inverse
of the operator H + 1 and investigate properties of its Schwartz kernel.

4.1. Positivity of H

Proposition 4.1. Suppose that V0 satisfies (1.3). Then the operator H is also
positive.

Proof. We work in polar coordinates. Consider the isometry U mapping from
L2(M ; rd−1drdy) to L2(M ; r−1drdy) defined by

(4.1) Uf = rd/2 f.
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Now for f ∈ L2(M ; r−1drdy), we compute

UHU−1f = rd/2
(
− ∂2r − d− 1

r
∂r +

1

r2
ΔY +

V0(y)

r2

)
r−d/2 f

=
(d(d− 4)

4
+ V0(y)

) 1

r2
f +

1

r
∂rf − ∂2rf +

1

r2
ΔY f.

A short computation shows that

1

r

(
− (r∂r)

2 +ΔY +
(d− 2

2

)2

+ V0(y)

)
f

r

= − 1

r2
f +

1

r
∂rf − ∂2rf +

1

r2
ΔY f +

((d− 2

2

)2

+ V0(y)
) 1

r2
f

=
(d(d− 4)

4
+ V0(y)

) 1

r2
f +

1

r
∂rf − ∂2rf +

1

r2
ΔY f = UHU−1f.

We have thus established

(4.2) UHU−1 =
1

r

(
− (r∂r)

2 +ΔY + V0(y) +
(d− 2

2

)2)1
r
.

Make the substitution s = ln r. Then the space L2(M ; r−1drdy) becomes L2(M ;
dsdy), and we have

UHU−1 = e−s
(
− ∂2s +ΔY + V0(y) +

(d− 2

2

)2)
e−s.

From here we can clearly see that the operator H is positive if ΔY + V0(y) +
((d− 2)/2)2 > 0. This completes the proof. �

4.2. The Riesz transform T

Our aim is to find the precise range of p for which the Riesz transform T =
∇H−1/2 is bounded on Lp(M). Following [14] and [27], we do this using a ‘resolvent
approach’ as opposed to the more common ‘heat kernel approach’. Using functional
calculus, we have the following expression,

T =
2

π

∫ ∞

0

∇(H + λ2)−1dλ.

We see from this equation that in order to understand T , we need to know the
properties of (H + λ2)−1. Because H is homogeneous of degree −2, we only need
to compute (H+1)−1, then use scaling. Let P = H+1; we proceed to study P−1.

4.3. A formula for the resolvent

We now proceed to find an explicit formula for P−1. However as we will discuss
later, the formula has good convergence properties in only certain regions ofM2

b,sc.
From equation (4.2) we have

P = H + 1 = r−d/2−1
(
− (r∂r)

2 +ΔY + V0(y) + r2 +
(d− 2

2

)2)
rd/2−1.
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Let P ′ denote the differential operator consisting of the terms in the middle.
That is,

(4.3) P ′ = −(r∂r)
2 +ΔY + V0(y) + r2 +

(d− 2

2

)2

.

We take P ′ to act on half-densities, using the flat connection that annihilates
the Riemannian half-density |rd−1drdh|1/2 on M . Now let P̃ be the differential
operator given by the same expression (4.3), but endowed with the flat connection
on half-densities annihilating the b-half density |dr/rdh|1/2. Since U maps this
b-half density to the Riemannian half-density, these two differential operators are
related by

(4.4) P̃ = U−1P ′U.

Therefore,

(4.5) P = r−1P̃ r−1.

Since P is self-adjoint, equation (4.5) shows that P̃ is also self-adjoint. (Note that
for operators on half-densities there is an invariant notion of self-adjointness, since
the inner product on half-densities is invariantly defined.) Write G = P−1 and
G̃ = P̃−1; the Schwartz kernels of G and G̃ are related by

(4.6) G = rr′G̃.

Again, we emphasize that this is an identity involving half-densities; if we write the

half-densities G and G̃ as K
∣∣(rr′)d−1drdr′dhdh′

∣∣1/2 and K̃
∣∣(rr′)−1drdr′dhdh′

∣∣1/2
then we have

(4.7) K = (rr′)1−d/2K̃.

So we just need to determine G̃, then equation (4.6) gives us G.
We now proceed to work out an expression for G̃. Let (μ2

j , uj) be the eigenvalues

and corresponding L2-normalized eigenfunctions of the positive operator ΔY +
V0(y)+ ((d− 2)/2)2. We also let Πj denote the projection onto the uj-eigenspace.
Then we have

(4.8) P̃ =
∑
j

Πj T̃j,

and

Id =
∑
j

δ
( r
r′

− 1
)
Πj ,

where

(4.9) T̃j = −(r∂r)
2 + r2 + μ2

j = −r2∂2r − r∂r + μ2
j .
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As in [27], the kernel of the inverse of T̃j is written in terms of modified Bessel
functions Iμj (r) and Kμj (r) (see Section 9.6 of [1]) in the form

(4.10) T̃−1
j (r, r′) =

⎧⎪⎨
⎪⎩
Iμj (r)Kμj (r

′)
∣∣∣dr
r

dr′

r′

∣∣∣1/2, r < r′,

Kμj (r)Iμj (r
′)
∣∣∣dr
r

dr′

r′

∣∣∣1/2, r > r′.

We know that
G̃ =

∑
j

Πj T̃
−1
j .

Hence, in terms of the kernels, we have

(4.11) G̃(r, r′, y, y′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
j

uj(y)uj(y′)Iμj (r)Kμj (r
′)
∣∣∣dr
r

dr′

r′
dhdh′

∣∣∣1/2, r < r′,

∑
j

uj(y)uj(y′)Kμj (r)Iμj (r
′)
∣∣∣dr
r

dr′

r′
dhdh′

∣∣∣1/2, r > r′,

where dh denotes the Riemannian density with respect to the metric on Y . While
this is an exact expression for G̃, it is not a very useful expression near the diagonal,
as it has poor convergence properties. Therefore we shall glue it together with a
pseudodifferential-type parametrix in order to determine its properties close to the
diagonal. However, sufficiently far from the diagonal, the series has very good
convergence. We proceed to show this.

Remark 4.2. We could consider self-adjoint extensions other than the Friedrichs
extension for the Laplacian acting onC∞

c (Y ×(0,∞)). If we do, then the form of the
inverse in (4.10) changes; in particular, the Bessel function Iμj would be replaced
by a certain linear combination of Iμj and Kμj in formula (4.10), depending on
the extension. (Indeed, the Friedrichs extension is the only one for which the
domain of the extension is contained in the form domain, requiring the derivatives
of T̃−1

j (r, r′) to be in L2(dr/r) as r → 0 for fixed r′ and vice versa.) This would
have the effect of changing the order of vanishing of the Riesz transform at the
lbz and rbz boundary hypersurfaces, and thus the range of p for which one has
boundedness on Lp (see the proofs of Propositions 5.10 and 5.12). Thus our results
only hold for the Friedrichs extension.

4.4. Convergence of the formula

By the symmetry of (4.11), it suffices to consider the region {r < r′}; here we work
with the sum

(4.12)
∑
j

uj(y)uj(y′) Iμj (r)Kμj (r
′).

In the appendix we prove the following estimates on the functions Iμ and Kμ.



Riesz transform on metric cones 497

Proposition 4.3. 1) The functions Iμ and Kμ satisfy the following estimates.
First, the derivatives of order l, 0 ≤ l ≤ μ, satisfy

(4.13)

∣∣∣( d

dr

)l

Iμ(r)
∣∣∣ ≤ Cl μ

l 2
−μ rμ−l er

Γ(μ+ 1/2)
,

∣∣∣( d

dr

)l

Kμ(r)
∣∣∣ ≤ Cl μ

l 23μ Γ(μ) r−μ−l e−r/2

for some constant Cl depending only on l.

2) The functions Iμ and Kμ have expansions at r = 0 of the form

(4.14) Iμ(r) =
rμ 2−μ

Γ(μ+ 1/2)

(N−1∑
n=0

an,μr
2j +O(r2N )

)
, r ≤ 1,

where the an,μ are uniformly bounded in both n and μ. Similarly, for N < μ the
function Kμ has an expansion

(4.15) Kμ(r) = r−μ 23μ Γ(μ)
(N−1∑

n=0

bn,μ r
2j +O(r2N )

)
, r ≤ 1,

where the bn,μ are uniformly bounded in both n and μ for n < μ−1. Moreover, the
implied constants CN,μ in the error terms O(r2N ) in expansions (4.14) and (4.15)
can be taken to be independent of μ, provided N < μ.

We will also use the following lemma proved in the appendix:

Lemma 4.4. Suppose that μ2
j are the eigenvalues of ΔY + V0(y) + ((d− 2)/2)2,

with μj > 0. Then for any 0 < β < 1, and any M,N ≥ 0, the sum

∑
μj≥M

μN
j αμj−M

converges for all 0 < α ≤ β, and it is bounded uniformly in α.

Using these results we show:

Proposition 4.5. For r′ > 4r or r > 4r′ the series (4.12) converges, and the sum
is polyhomogeneous conormal on M2

b,sc with index sets at zf, lbz, and rbz given by

(4.16)
Fzf = N0×{0} ∪ {

(z, 0): z = 2μj+k, k∈N0

}∪{(2μj+k, 1): k ∈N0, μj∈N0

}
Flbz = Frbz =

{
(z, 0): z = μj + k, k ∈ N0

}
,

and all other index sets empty (meaning that the series vanishes rapidly together
with all derivatives at the other boundary hypersurfaces of M2

b,sc).
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Proof. We consider only the case r′ > 4r; the other follows by symmetry.
It is well known that the functions Iμ and Kμ are polyhomogeneous conormal,

with Iμ having index set {(μ+ k, 0): k ∈ N0} and Kμ having index set{
(−μ+ k, 0): k ∈ N0

} ∪ {
(μ+ k, 0): k ∈ N0

}
if μ is not an integer, or{

(−μ+ k, 0): k ∈ N0

} ∪ {
(μ+ k, 1): k ∈ N0

}
if μ is an integer (see Equations 9.6.10, 9.6.2, and 9.6.11 in [1]). Moreover,Kμ(r) is
exponentially decreasing as r → ∞. This implies that Iμ(r)Kμ(r

′) is, for 4r ≤ r′,
polyhomogeneous on M2

b,sc with index set {(μ + k, 0) | k ∈ N0} at lbz, the empty
set (corresponding to rapid decrease) at rbi, and index set{

(k, 0): k ∈ N0

} ∪ {
(2μ+ k, 0): k ∈ N0

}
if μ is not an integer, or{

(k, 0): k ∈ N0

} ∪ {
(2μ+ k, 1): k ∈ N0

}
if μ is an integer, at zf. This implies that the jth term in (4.12) is polyhomogeneous
conormal with respect to the given index family (4.16); the issue is to show the
same property for the sum of the series.

Applying (4.13) for l = 0, we see that when r′ ≥ 4r, Iμ(r)Kμ(r
′) is bounded

above by

C
(4r
r′
)μ

e−r′/4,

where C is independent of μ. By Hörmander’s L∞-estimate, see [31], we know

that ||uj ||∞ ≤ Cμ
(d−1)/2
j . Therefore each term in the series is bounded above

by Cμd−1
j (2r/r′)μj e−r′/4. Lemma 4.4, with α = r/r′, then shows that the series

converges pointwise, and uniformly for 4r/r′ ≤ β < 1. More generally, applying
b-derivatives (see Definition 2.6) to the series (4.12) and using the Hörmander

estimate ‖∇(k)uj‖∞ ≤ Ckμ
(d−1)/2+k
j for derivatives of uk, we see that the lth b-

derivatives of the terms of the series (4.12) satisfy the same estimate except for
an additional factor of μl, which is harmless as Lemma 4.4 applies with arbitrary
powers of μ. Thus the series is (for 4r ≤ r′) conormal with weight 0 at zf, weight μ0

at lbz, and vanishes rapidly at all other boundary hypersurfaces.
To prove polyhomogeneous conormality at lbz we use Proposition 2.10 showing

that we only need to show that there is an expansion at lbz together with estimates
on the remainder (with no need for derivative estimates). Observe that a boundary
defining function ρlbz for lbz is comparable to r/r′ for r ≤ 1 and to r for r ≥ 1.
Given N we separate the series (4.12) into the terms with μj ≤ N and the remain-
der. The first part is manifestly polyhomogeneous at lbz. On the other hand, we
can pull out a factor of (r/r′)N and apply Lemma 4.4 with α = r/r′ and M = N ,
showing that the sum of the remainder is O((r/r′)Ne−r′/4) which is O(ρNlbz). This
proves polyhomogeneous conormality at lbz, uniformly to the corner with zf.
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To prove polyhomogeneous conormality at zf is a bit more delicate as each
term in (4.12) contributes to the leading term (and other terms) of the expansion
of (4.12) at zf. We can take r′ to be a boundary defining function for zf in the
region 4r ≤ r′. Due to Proposition 2.10, it suffices to show that for each N ∈ R,
there is an expansion at zf as in (2.4) (taking Hi = zf, xi = r′, xj = r/r′, and
aj = μ0) together with an O((r′)N (r/r′)μ0) estimate on the remainder.

Since we have already observed that each individual term in the sum (4.12)
is polyhomogeneous with the required index family, given N ∈ R, it suffices to
consider the sum (4.12) for μj > N . Using (4.14) and (4.15), the jth term in this
sum can be expanded as

(4.17) uj(y)uj(y′)
(4r
r′
)μj Γ(μj)

Γ(μj+1/2)

(N−1∑
m=0

N−1∑
n=0

am,μjbn,μj

( r
r′
)2m

r′2m+2n
+O(r′2N )

)
.

We are interested in summing this expression over all μj > N in the region r/r′ ≤
1/4, r′ ≤ 1. Proposition 4.3 tells us that an,μ and bn,μ are uniform for n ≤ N .
Using Lemma 4.4 we see that the sum over μj ≥ N over the sum over m and
n in (4.17) gives an expansion at zf involving even powers of r′, up to 2N , with
coefficients that are bounded at lbz. Next, we check that each fixed coefficient of
this expansion at zf is polyhomogeneous conormal at lbz, using exactly the same
argument as used above to show polyhomogeneous conormality globally at lbz.
Finally, using Lemma 4.4 once more, and the last statement in Proposition 4.3,
we check that the sum in μj ≥ N over the error terms O(r′2N ) in (4.17) is a

term bounded by CNr
′2N (r/r′)N . This completes the proof of polyhomogeneous

conormality at zf. �

Figure 2. Support of G̃f .

Proposition 4.5 implies, in particular, that G̃ decays exponentially, with all
its derivatives, as r′ → ∞, i.e., when approaching the boundary rbi. Similarly
in the region r/r′ ≥ 4, as r → ∞, i.e., when approaching lbi, the kernel is also
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exponentially decreasing. Therefore we cut off G̃ to restrict it away from the r = r′

to obtain a well defined operator G̃f with the kernel

(4.18) G̃f (r, r
′, y, y′) = G̃(r, r′, y, y′)

(
χ
(4r
r′
)
+ χ

(4r′
r

))
.

Here χ is a smooth cutoff function χ : [0,∞) → [0, 1] such that χ
(
[0, 1/2]

)
= 1 and

χ
(
[1,∞)

)
= 0. Thus the support of G̃f is contained in {r/r′ ≤ 1/4} ∪ {r/r′ ≥ 4},

as illustrated in Figure 2. (The subscript ‘f’ stands for ‘far from the diagonal’.)
At last, similar to (4.6), we define

(4.19) Gf = rr′G̃f .

4.5. Near diagonal

The formula obtained in the previous section does not have good convergence
properties near the diagonal, so in this section we construct an operator Gnd which
is a parametrix for P near the diagonal. The subscript nd means “near diagonal”.

Near the zf-face we consider the b-elliptic operator P̃ . In order to keep it away
from the sf-face, we multiply it with a cutoff function, so we consider P̃χ(r), where
χ : [0,∞) → [0, 1] is a smooth cutoff function as above. By the ellipticity of P̃ near

the zf-face, and by Proposition 2.13, there is G̃zf
nd in the full b-calculus such that

(4.20) P̃ G̃zf
ndχ(r) = χ(r) + Ẽzf ,

where Ẽzf is smooth across the diagonal and vanishes to first order at zf (as a
b-half density). Let

(4.21) Gzf
nd = rr′G̃zf

nd.

Then we have
PGzf

ndχ(r) = χ(r) + Ezf ,

where Ezf = (r′/r)Ẽzf is smooth across the diagonal and vanishes to first order
at zf as a b-half density.

Near the sf-face the operator P is elliptic in the scattering calculus. We multiply
it with 1 − χ(r) to keep it away from the zf -face, i.e., we consider the operator
P
(
1−χ(r)

)
. Since P

(
1−χ(r)

)
is elliptic near the sf-face, and its normal operator

ΔRn + 1 is invertible, by Proposition 2.22, there is Gsf
nd in the scattering calculus

such that
PGsf

nd

(
1− χ(r)

)
= 1− χ(r) + Esf ,

where the error term Esf is smooth across the diagonal and vanishes to infinite
order at bf and sf.

Now we define Gnd by

Gnd =
(
Gzf

ndχ(r) +Gsf
nd(1− χ(r))

)(
1− χ

(4r
r′
)
− χ

(4r′
r

))
.
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Then we have

(4.22) PGnd = Id+End,

where the error term End is smooth across the diagonal, and vanishes to first order
at zf (as a b-half density) and to infinite order at all other boundary hypersurfaces.
We may assume that Gnd is supported close to the union of the diagonal, zf, and sf.

We now define our global parametrix to be

(4.23) Ga = Gf +Gnd.

4.6. The indicial operator at zf

In this subsection we show that the leading behaviour of Ga at zf agrees with
that of Gzf

nd. To do this, it suffices to show that the indicial operator of G̃ agrees
(at least for r/r′ < 1/4 and r/r′ > 4, where we have shown convergence of the

series) with that of G̃zf
nd. By Proposition 2.13, the indicial operator of G̃zf

nd is equal

to Ib(P̃ )−1. Let us now determine this indicial operator.
The indicial operator of P̃ is

Ib
(
P̃χ(r)

)
= −(r∂r)

2 +ΔY + V0(y) +
(d− 2

2

)2

.

Let μ2
j , uj, and Πj be defined as in Section 4.3. Here, instead of (4.8) and (4.9)

we have

Ib
(
P̃χ(r)

)
=

∑
j

Πj Sj ,

where
Sj = −(r∂r)

2 + μ2
j .

As in Section 4.3, the kernel S−1
j is

S−1
j (r, r′) =

⎧⎪⎪⎨
⎪⎪⎩

1

2μj

( r
r′
)μj

∣∣∣dr
r

dr′

r′

∣∣∣1/2, r < r′,

1

2μj

(r′
r

)μj
∣∣∣dr
r

dr′

r′

∣∣∣1/2, r > r′.

Hence

(4.24)
(
Ib(P̃ )

)−1
(s, y, y′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

∑
j

1

μj
uj(y)uj(y′)s+μj

∣∣∣ds
s
dhdh′

∣∣∣1/2, s > 1,

1

2

∑
j

1

μj
uj(y)uj(y′)s−μj

∣∣∣ds
s
dhdh′

∣∣∣1/2, s < 1,

with s = r/r′. The convergence of this sum can be analyzed using Lemma 4.4; the
sum converges smoothly for s < 1 and for s > 1.
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Now we determine the leading behaviour of G̃ at zf. We only consider the
case r/r′ < 1/4, as the case r/r′ > 4 is completely parallel. Recall from expres-
sion (4.11) that for r/r′ < 1/4 we have

G̃(r, r′, y, y′) =
∑
j

uj(y)uj(y′) Iμj (r)Kμj (r
′)
∣∣∣dr
r

dr′

r′
dh dh′

∣∣∣1/2.
We use the limiting forms for small arguments from Section 9.6 of [1]: when

r, r′ → 0,

(4.25) Iμj (r) =
rμj

2μj Γ(μj + 1)

(
1 +O(r2)

)
,

and

(4.26) Kμj (r
′) =

2μj−1 Γ(μj)

r′μj

(
1 +O(r′ε)

)
,

where we can take ε to be min(2, 2μ0) if μ0 �= 1, or any number less than 2 if
μ0 = 1 (since then there is a log term r′ log r′ in the expansion of K1(r

′)). By
Proposition 4.3 the error terms are uniform in μj , so we can sum over j to obtain

(4.27) G̃0(r, r
′, y, y′) =

1

2

∑
j

1

μj
uj(y)uj(y′)

( r
r′
)μj

∣∣∣dr
r

dr′

r′
dh dh′

∣∣∣1/2 +O(r′ε).

Since dr/rdr′/r′ = ds/sdr′/r′, the expression (4.27) shows that the restriction of

G̃(r, r′, y, y′) to zf is identical to the restriction Ib(G̃
zf
nd) of G̃zf

nd to zf. Since the
cutoff function used to define Gf is χ(4r/r′) + χ(4r′/r), and that used to define
Gnd is 1−χ(4r/r′)−χ(4r′/r), we see that Ga has the same leading asymptotic at

zf as Gzf
nd = rr′G̃zf

nd, namely rr′Ib(P̃ )−1.

4.7. Construction of P−1

We have constructed an approximate inverse Ga = Gf +Gnd; let E be the corre-
sponding error term:

PGa = Id+E.

We next try to solve awayE to obtain our finalG = P−1. We begin by summarising
the properties of Ga and E.

Proposition 4.6. As a multiple of the Riemannian half-density |rd−1r′d−1drdr′dh
dh′|1/2 on M2

b,sc, the kernel Ga is the sum of two terms. One is Gnd, supported

where 1/8 ≤ r/r′ ≤ 8, and is such that ρd−2
zf Gnd is conormal of order −2 with

respect to the diagonal uniformly up to both zf and sf, where ρzf is any boundary
defining function for zf, and is rapidly decreasing at bf. The other term Gf =
Ga −Gnd satisfies:

(i) it is smooth at the diagonal, and polyhomogeneous conormal at all boundary
hypersurfaces;
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(ii) it vanishes to infinite order at lbi, rbi, and bf;

(iii) it vanishes to order 1− d/2 + μ0 at lbz and rbz;

(iv) it vanishes to order 2− d at zf.

Proof. The properties of Gnd follow from properties of the full b-calculus and of
the scattering calculus recalled in Section 2.

The diagonal part of property (i) of Gf is clear; in fact, it is supported away
from the diagonal. Polyhomogeneity of Gf at lbz and rbz follows from Proposi-
tion 4.5 and the symmetry of Gf , while polyhomogeneity (in a trivial sense, with
an empty index set) at lbi, rbi, and bf follows from the exponential decrease of Gf

as r or r′ tends to infinity, as shown by Lemma 4.4.
We obtain the vanishing order at lbz from equations (4.11), (4.18), and (4.19).

Since r is the boundary defining function for lbz, we need to compute its power.
Clearly one power of r comes from (4.19), while Iμ0(r) in (4.11) gives us the
power rμ0 . Then the difference between the b-half density and the Riemannian
half-density gives us a power of r−d/2 (as in (4.7)). Combining these we conclude
that the vanishing order at lbz is 1−d/2+μ0. The vanishing order at rbz is similar.

Last, we show (iv). Since both r and r′ vanish at zf , to obtain the vanishing
order of Ga at zf , as a scattering-half-density, we combine the powers of r and r′

in (4.21) and (4.19) with the factor (rr′)−d/2 involved in the change from a b-half
density to the Riemannian half-density. So the order of vanishing is 1− d/2 + 1−
d/2 = 2− d. �

Proposition 4.7. The error term E has the following properties on M2
b,sc :

(i) it is smooth in the interior;

(ii) it vanishes to first order (as a b-half-density, or to order 1− d as a Rieman-
nian half-density) at the zf -face;

(iii) it vanishes to infinite order at lbz, rbz, lbi, rbi, sf, and bf;

(iv) it is compact on L2(M); in fact its Schwartz kernel is Hilbert–Schmidt.

Moreover, the k-fold composition Ek satisfies similar conditions, with (ii) strength-
ened to vanishing to order k at zf as a b-half-density.

Proof. Property (i) follows from the choice of Gnd. Property (ii) follows from the
fact that the indicial operator of (rr′)−1Ga is equal to Ib(P̃ )

−1, as shown in the
previous subsection. To show property (iii), consider the Gf term. Since Gf is
equal to the exact inverse of P outside the region {1/8 ≤ r/r′ ≤ 8}, PGf is
supported in this region, hence vanishes in a neighbourhood of lbz, rbz, lbi, and
rbi (see Figure 2). On the other hand, by Proposition 4.5, Gf has empty index set
at bf and sf, so PGf vanishes to all orders there. On the other hand, by (4.22),
Gnd contributes an error term End that is smooth across the diagonal and vanishes
to infinite order at all boundary hypersurfaces other than zf. This establishes (iii).
Properties (i), (ii), and (iii) show that E has an L2 kernel, proving property (iv).

To show the last remark, we use a smooth cutoff function to divide E into two
parts, E = Eb+Esc, where Eb is an order −∞ operator in the b-calculus, vanishing
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to first order at zf, and Esc is an order (−∞,∞) operator in the scattering calculus.
Then Ek = (Eb + Esc)

k. Any mixed terms will vanish to infinite order at each
boundary hypersurface. Of the remaining terms, using the composition properties
of the b-calculus and scattering calculus recalled in Section 2, Ek

b is order −∞ in
the b-calculus and vanishes to order k at zf, while Ek

sc is order (−∞,∞) in the
scattering calculus. Moreover, Ek is supported where {8−k ≤ r/r′ ≤ 8k}, hence
vanishes in a neighbourhood of lbz, rbz, lbi, and rbi. �

We proceed to solve away E. To do so, we would like to invert Id+E. However,
it might not be invertible; if not, we perturb Ga so that Id+E becomes invertible.

To do this, we first observe that since E is compact on L2(M), according to
Proposition 4.7, Id+E is Fredholm of index 0, and its null space and cokernel
both have the same finite dimension, say N . Removing the null space gives us
an invertible operator, and to achieve that we add a rank N operator to Ga. To
construct the rank N operator we need the following lemma.

Lemma 4.8. Let S ⊂ L2(M) be the set of functions

S =
{
g ∈ C∞(M) : ∇(k)g = O(r∞) as r → 0 and

O(r−∞) as r → ∞, for all k ∈ N0

}
.

There exist smooth functions ψ1, . . . , ψN , φ1, . . . , φN ∈ S such that

(i) ψ1, . . . , ψN span the null space of Id+E, and

(ii) Pφ1, . . . , PφN span a space complementary to the range of Id+E.

Proof. We choose the ψi to be any basis of the null space of Id+E. To show
ψi ∈ S, we note that ψi = −E(ψi), hence iterating, we have ψi = E2Nψi for each
N ≥ 1. Now we consider mapping properties of the operator EN . First, writing
E = Eb + Esc as in the proof of Proposition 4.7, it is easy to see that Esc and
∇Esc map L2(M) to 〈r〉−LL2(M) for arbitrary L. (Here ∇ is shorthand for the
vector of derivatives (∂r, r

−1∂yi).) As for Eb, since it has negative order in the b-
calculus and vanishes to first order at zf, we see that Eb maps L2(M) to rL2(M).
Since the kernel (r/r′)aE has the same properties as E listed in Proposition 4.7, it
follows that Eb maps raL2(M) to ra+1L2(M) for any a. Also, applying a derivative

∇z = (∂r, r
−1∂yi) or ∇z′ = (∂r′ , r

′−1
∂y′

i
) to Eb, it is still of negative order in the

b-calculus, though no longer vanishing at zf, so we see that both ∇zEb and ∇z′Eb

map raL2(M) to raL2(M) for any a. Summarizing, we have

(4.28)
E acts as a bounded map raL2(M) → ra+1〈r〉−LL2(M),

∇zE and ∇z′E act as bounded maps raL2(M) → ra〈r〉−LL2(M).

Applying these properties of E iteratively, we see that

(4.29) ∇(N1)
(
r−N 〈r〉2N∇(N−N1)E2N

)
acts as a bounded map L2(M) to L2(M)

for any N and 0 ≤ N1 ≤ N .



Riesz transform on metric cones 505

In (4.29) the derivatives may be either in the left variable z or the right vari-
able z′. Hence, considering left derivatives, taking N1 > d/2 and using the Sobolev
embedding HN1(M) → L∞(M) shows that ψi is in rN 〈r〉−2NCN−N1(M). Let-
ting N → ∞, we see that ψi is smooth and its derivatives have rapid decay both
as r → 0 and r → ∞, hence ψi ∈ S.

As for the φi, to show that we can choose functions φ1, . . . , φN as above, let J
be the closed subspace of L2(M) given by the closure of the range of P restricted
to the subspace S. It suffices to show that J contains a subspace complementary
to the range of Id+E, as if that is true, then we can choose a basis for such a
subspace, approximate each with points of the form Pφi, φi ∈ S, and then the span
of the Pφi will also be a complementary subspace, provided the approximations
are sufficiently good.

We claim that the orthocomplement of J is a finite dimensional subspace
given by

K =
{
f ∈ L2(M) : (Δ + V0/r

2 + 1)f(r, y) = 0 for r > 0
}
.

Notice that then f cannot be in the domain of P (unless f = 0), since H is a
nonnegative operator, so P = H + 1 has trivial null space. Nevertheless it is
possible that K is nontrivial; to give an example, if M = R

3 and V0 = 0 then K
would be one-dimensional, spanned by the function e−r/r. In general,K is spanned
by functions of the form r−(d−2)/2Kμj (r)uj(y) with μj < 1; it is straightforward

to check that these are O(r−d/2+1−μj ) as r → 0, and exponentially decreasing as
r → ∞, hence in L2(M).

To show that K is indeed the orthocomplement of J , let f ∈ J⊥. Then

〈Pu, f〉 = 0, for all u ∈ S.

In particular, this is true for u ∈ S supported away from r = 0. This implies that
Pf = 0 distributionally away from r = 0. By elliptic regularity this means that f
is smooth for r �= 0. Then we can integrate by parts and deduce

〈u, (Δ + V0/r
2 + 1)f〉 = 0, for all u ∈ S supported away from r = 0.

By density of this space of functions u, we see that (Δ+V0/r
2 +1)f(r, y) = 0 a.e.

Since f is smooth for r > 0 this means that (Δ + V0/r
2 + 1)f(r, y) = 0 for r > 0,

i.e, f ∈ K. Conversely, if f ∈ K then f is orthogonal to J , since integration by
parts is justified for u ∈ S.

To complete the proof it remains to show that J contains a subspace comple-
mentary to the range of Id+E. This is equivalent to the condition that

J + ran(Id+E) = L2(M).

In turn, this is equivalent to

J⊥ ∩ (
ran(Id+E)

)⊥
= {0}.

Using J⊥ = K, this is equivalent to

(4.30) K ∩ null(Id+E∗) = {0}.



506 A. Hassell and P. Lin

The last condition is straightforward to verify. In fact, E∗ also satisfies properties
(i)–(iv) of Proposition 4.7, so just as above we see that null(Id+E∗) is contained
in S. Certainly S is contained in domP . However, there are no nontrivial solu-
tions to Pf = 0 for f ∈ domP , since P = H + 1 and H is a positive operator.
Hence (4.30) is satisfied, which completes the proof. �

Let Q be the rank N operator

Q =

N∑
i=1

φi〈ψi, ·〉,

where 〈ψi, ·〉means the inner product with ψi. The functions ψ1, . . . , ψN , φ1, . . . φN
are chosen as in Lemma 4.8. Then we have

P (Ga +Q) = Id+E + PQ,

which is invertible. From this we obtain

P−1 = (Ga +Q)(Id+E + PQ)−1.

Using property (ii) of Lemma 4.8, we see that Ga + Q has the ‘same’ properties
as Ga, i.e., it has those properties listed in Proposition 4.6, and E′ := E+PQ has
properties (i)–(iv) listed in Proposition 4.7. Define an operator S by

S = (Id+E′)−1 − Id .

Then we can write
P−1 = (Ga +Q)(Id+S).

We need to know the properties of S.

Lemma 4.9. The operator S has properties (i)–(iv) listed in Proposition 4.7.

Remark 4.10. A similar analysis was made in Section 5.4 of [29].

Proof. Using the identities (Id+S)(Id+E′) = (Id+E′)(Id+S) = Id, we obtain

(4.31) S = −E′ + E′2 + E′SE′.

For any positive integer N , we substitute the expression (4.31) into itself 2N − 1
times, and we get

(4.32) S =

4N∑
j=1

(−1)jE′j + E′2NSE′2N .

Using the last part of Proposition 4.7, we see that the term
∑4N

j=1(−1)jE′j has all

the properties listed in the Lemma, so we focus on the term SN := E′2NSE′2N .
Using (4.29), we see that

∇(N1)
z (r−N 〈r〉2N∇(N−N1)

z E′2N ) and ∇(N1)
z′ (r′−N 〈r′〉2N∇(N−N1)

z′ E′2N )
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are bounded operators on L2. Since S is Hilbert–Schmidt, it follows that

∇(N1)
z ∇(N1)

z′
(
(rr′)−N 〈r〉2N 〈r′〉2N∇(N−N1)

z ∇(N−N1)
z′ SN

)
= ∇(N1)

z

(
r−N 〈r〉2N∇(N−N1)

z E′2N) ◦ S ◦ ∇(N1)
z′

(
r′−N 〈r′〉2N∇(N−N1)

z′ E′2N)
is also Hilbert–Schmidt, i.e., has an L2 kernel. Using Sobolev embeddings as in
the argument below (4.29), this gives regularity and vanishing (at the boundary
of M2

b,sc) of SN of some finite order N − O(1), and hence the same finite order
regularity and vanishing of S. Since this argument can be made for any N , this
proves that S has the properties (i)–(iv) listed in Proposition 4.7. �

To summarise, we have

G = P−1 = (Ga +Q)(Id+S),

where Ga + Q has those properties listed in Proposition 4.6, Id+S is a compact
operator, and S has those properties listed in Lemma 4.9. Our final step is to an-
alyze the composition (Ga+Q)(Id+S) and show that G itself satisfies all the con-
ditions listed in Proposition 4.6. We summarise key information about G = P−1

obtained through our construction in the following theorem. To state it, define
ω = 1 − χ(4r/r′)− χ(4r′/r) where χ is as in (4.18); thus, ω is a smooth function
on the blown-up space supported away from lbz, lbi, rbz, and rbi, and equal to 1
on a neighbourhood of the diagonal. Also let ρzf be a boundary defining function
for zf.

Theorem 4.11. Let Gc = ωG and Gs = (1 − ω)G. Then, as a multiple of the
Riemannian half-density, i.e., the scattering-half-density |rd−1r′d−1drdr′dhdh′|1/2,
on M2

b,sc, ρ
d−2
zf Gc is conormal of order −2 with respect to the diagonal uniformly

up to both zf and sf, while Gs satisfies properties (i)–(iv) listed in Proposition 4.6.

Remark 4.12. The subscripts c and s are chosen to indicate that Gc is the part
of G which is conormal at the diagonal, while Gs is the part of G which is smooth
at the diagonal.

Proof. We have already proved these properties for Ga, in Proposition 4.6, so we
need to check them for the terms Q+QS+GaS = G−Ga. Since Q and QS both
are smooth and vanish to infinite order at the boundaries, these terms trivially
satisfy all the conditions. So it remains to check that GaS has the same properties
as Ga.

We write GaS as a sum of two parts. Let η : [0,∞) → [0, 1] be a smooth cutoff
function such that η([0, 1]) = 0 and η([2,∞)) = 1. The first part η(r)Gaη(r

′) is in
the scattering calculus. Note that η(2r′)S is also in the scattering calculus, and
that (

η(r)Gaη(r
′)
)(
η(2r′)S

)
=

(
η(r)Gaη(r

′)
)
S.

Therefore by Proposition 2.17, this term is in the scattering calculus. The second
part Ga − η(r)Gaη(r

′) is in the full b-calculus. (Although the support of this
term meets the boundary hypersurfaces lbi and rbi, its Schwartz kernel is rapidly
vanishing there, enabling us to regard it as living in the b-calculus.) In a similar
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sense, S is in the small b-calculus (it vanishes rapidly at every boundary hypersur-
face except zf). Therefore by Proposition 2.12,

(
Ga − η(r)Gaη(r

′)
)
S is in the full

b-calculus, with the same index sets at lbz and rbz as Ga. Therefore the required
properties for Gc and property (i) for Gs follow. Also, since S vanishes to first
order at zf, the same is true for the composition

(
Ga−η(r)Gaη(r

′)
)
S. So GaS has

the same vanishing orders (or better) at the boundary hypersurfaces as Ga. �

Remark 4.13. In the case of the potential V ≡ 0, we have μ0 = d/2− 1. So the
vanishing order in item (iii) of Theorem 4.11 becomes 0. This is consistent with
the case when the cone is Rd and the potential V ≡ 0, when the cone tip can be
chosen arbitrarily, and G is smooth everywhere.

The vanishing orders of G = P−1 at various boundaries of M2
b,sc are shown in

Figure 3.

Figure 3. The vanishing properties at various boundaries

Remark 4.14. The construction of G = P−1 in this section is sketched in p. 885ff
of [27] by C. Guillarmou and the first author, but details are lacking. It is not
fully justified in [27] that the kernel is in the scattering calculus near sf, and in the
b-calculus near zf. For this reason we have given complete details in this section.

5. The boundedness of the Riesz transform

5.1. Estimate on the kernel

Recall that the Riesz transform T with the inverse square potential V = V0/r
2,

defined in Section 4, can be expressed as

T =
2

π

∫ ∞

0

∇(
H + λ2

)−1
dλ,

where H is given by (1.4), and recall that H is homogenous of degree −2. Our
analysis of the Riesz transform will be based on the following estimate on the
kernel T (z, z′).
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Proposition 5.1. We have the following estimate on the kernel of T :

(5.1) |T (z, z′)| �
∫ ∞

0

λd−2
∣∣∇(

G(λz, λz′)
)∣∣ dλ,

where G = P−1 = (H + 1)−1, with the properties listed in Theorem 4.11.

Proof. This comes from the relationship between (H + λ2)−1 and G = (H +1)−1,
which is

(5.2) (H + λ2)−1(z, z′) = λd−2(H + 1)−1(λz, λz′).

The power −2 of λ appears because H is homogenous of degree −2. Remember
these kernels are Riemannian half-densities, and this accounts for the power d of λ:∣∣(λr)d−1(λr′)d−1 d(λr) d(λr′) dh dh′

∣∣1/2 = λd
∣∣ rd−1 r′d−1 dr dr′ dh dh′

∣∣1/2. �

5.2. Boundedness on L2(M)

Proposition 5.2. The Riesz transform T with the inverse square potential V =
V0/r

2 is bounded on L2(M).

Proof. Our assumption (1.3) implies that for some small positive ε,

ΔY + V0(y) +
(d− 2

2

)2

>
ε

1− ε
V0(y).

Hence ΔY + V0(y)/(1− ε) + ((d− 2)/2)2 > 0. It follows from Proposition 4.1 that
Δ + 1

(1−ε)r2V0(y) > 0, or equivalently Δ + 1
r2V0(y) > εΔ. From this,

〈Tf, T f〉 =
〈
Δ
(
Δ+

1

r2
V0(y)

)−1/2
f,
(
Δ+

1

r2
V0(y)

)−1/2
f
〉

≤
〈
ε−1

(
Δ+

1

r2
V0(y)

)(
Δ+

1

r2
V0(y)

)−1/2
f,
(
Δ+

1

r2
V0(y)

)−1/2
f
〉

= ε−1
〈(

Δ+
1

r2
V0(y)

)1/2
f,
(
Δ+

1

r2
V0(y)

)−1/2
f
〉
= ε−1〈f, f〉.

Therefore T is bounded on L2(M). �

5.3. The diagonal region

To understand the Riesz transform on Lp, we decompose G as in Theorem 4.11.
Here we will write G1 for Gc = ωG (recall ω = 1 − χ(4r/r′) − χ(4r′/r)), and we
further decompose Gs = G2 + G3, where G2 = Gχ(4r/r′) and G3 = Gχ(4r′/r).
Thus G = G1 + G2 + G3. Notice that G2 and G3 are supported away from
the diagonal, in particular where the infinite series (4.11) has good convergence
properties as shown in Proposition 4.5. We correspondingly decompose the Riesz
transform into three pieces. See Figure 4. Thus we have

(5.3) Ti(z, z
′) =

2

π

∫ ∞

0

λd−2 ∇z

(
Gi(λz, λz

′)
)
dλ.
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Figure 4. The operators Gi and Ti are supported in region Ri, i = 1, 2, 3.

We now show that T1 is of weak type (1, 1). For that we first need to estimate
the derivatives of G1.

Lemma 5.3. Let d(z, z′) denote the distance between z and z′ on M . On the
support of ω, we have ρbf � d(z, z′)−1, where ρbf is a boundary defining function
for bf.

Proof. Let z = (r, y) and z′ = (r′, y′). Observe from (3.1) that d(z, z′) is bounded
above by r + r′. Therefore in the region {1/8 ≤ r/r′ ≤ 8} we have

d(z, z′)−1 ≥ (r + r′)−1 = r′−1
(
1 +

r

r′
)−1

≥ 1

9
r′−1.

As r′−1 is a boundary defining function for bf on the support of ω, the result
follows. �

Lemma 5.4. The kernel G1 satisfies the estimate that for any integer j ≥ 0, we
have ∣∣∇j

z,z′G1(z, z
′)
∣∣ �

{
d(z, z′)2−d−j , d(z, z′) ≤ 1,

d(z, z′)−N , d(z, z′) ≥ 1,

for any N > 0.

Proof. Note that G1 is supported in the region R1 = {1/8 ≤ r/r′ ≤ 8}. Since
ρd−2
zf G1 is conormal of order −2 with respect to the diagonal, by Proposition 3.1

and Lemma 3.2, near the diagonal we have∣∣ ρd−2
zf G1(z, z

′)
∣∣ � a

(2−d)/2
diag .

Near zf, adiag is comparable to d(z, z′)2/ρ2zf , so it follows that near zf, we have∣∣G1(z, z
′)
∣∣ � d(z, z′)2−d.

Away from zf, adiag is comparable to d(z, z′)2, therefore∣∣G1(z, z
′)
∣∣ � a

(2−d)/2
diag = d(z, z′)2−d.
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Now let us consider the behaviour of G1 near bf. By Theorem 4.11, we know
that G1 vanishes to infinite order at bf, while by Lemma 5.3, we know that ρbf �
d(z, z′)−1. Therefore near the bf-face we know that∣∣G1(z, z

′)
∣∣ � d(z, z′)−N ,

for any N > 0. As for the rest of R1, after we take away the neighbourhoods near
zf, bf, and the diagonal, we are left with a compact set, on which both G1 and
d(z, z′)−1 are continuous with d(z, z′)−1 being nonzero. Therefore we can conclude
that

|G1(z, z
′)| �

{
d(z, z′)2−d, d(z, z′) ≤ 1,

d(z, z′)−N , d(z, z′) ≥ 1,

for any N > 0.
Estimates on the derivatives of G follow in a similar way, using the conormality

of G. Notice that a derivative ∇z is of the form r−1 times a smooth b-derivative
for small r, and is a smooth scattering vector field for r large. So for r small, for
each derivative we lose a factor of r (due to conormality at the boundary) times a

factor of a
1/2
diag (due to conormality at the diagonal) – that is, an overall factor of

d(z, z′). Similarly, for r large, for each derivative we lose a factor of a
1/2
diag due to

conormality at the diagonal, which is comparable to d(z, z′) for r large. �

Proposition 5.5. The operator T1 maps L1(M) into L1,weak(M).

Proof. We apply Calderón–Zygmund theory; see Section 8.1.1 of [25]. It is suffi-
cient to verify the conditions

(i) T1 is bounded on L2(M);

(ii) |T1(z, z′)| ≤ C(
d(z, z′)

)d ;
(iii) |∇zT1(z, z

′)| ≤ C(
d(z, z′)

)d+1
and |∇z′T1(z, z

′)| ≤ C(
d(z, z′)

)d+1
,

for some constant C > 0.
We already know from Proposition 5.2 that T is bounded on L2(M). So to

verify condition (i), we just need to show T − T1 is bounded on L2(M), which is
covered by Proposition 5.13 in Section 5.4.

Now we show conditions (ii) and (iii). By Lemma 5.4 we know the kernel G1

satisfies, with any λ > 0,

∣∣∇z

(
G1(λz, λz

′)
)∣∣ ≤ λ

∣∣(∇zG1)(λz, λz
′)
∣∣ �

{
λ2−d d(z, z′)1−d, λ d(z, z′) ≤ 1,

λ−N+1 d(z, z′)−N , λ d(z, z′) ≥ 1,

and

∣∣∇2
z

(
G1(λz, λz

′)
)∣∣ ≤ λ2

∣∣(∇2
zG1)(λz, λz

′)
∣∣ �

{
λ2−d d(z, z′)−d, λ d(z, z′) ≤ 1,

λ−N+2 d(z, z′)−N , λ d(z, z′) ≥ 1,
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for any N > 0. We use this in (5.1) to estimate T1(z, z
′):

|T1(z, z′)| �
∫ ∞

0

λd−2
∣∣∇z

(
G1(λz, λz

′)
)∣∣ dλ

�
∫ 1/d(z,z′)

0

d(z, z′)1−d dλ+

∫ ∞

1/d(z,z′)
λd−N−1d(z, z′)−N dλ

= 2d(z, z′)−d (Choose N = d+ 1.)

Now estimate the derivative with respect to z. The z′ case is similar.

|∇zT1(z, z
′)| = 2

π

∣∣∣ ∫ ∞

0

λd−2∇z∇z

(
G1(λz, λz

′)
)
dλ

∣∣∣
�

∫ 1/d(z,z′)

0

d(z, z′)−d dλ+

∫ ∞

1/d(z,z′)
λd−Nd(z, z′)−N dλ

= 2d(z, z′)−d−1. (Choose N = d+ 2.)

This completes the proof. �

By interpolation, we obtain the following proposition.

Proposition 5.6. The operator T1 is bounded on Lp(M) for any p > 1.

Proof. By the Marcinkiewicz interpolation theorem, we know that T1 is bounded
on Lp(M) for all 1 < p ≤ 2. Next, because Lemma 5.4 applies to derivatives of G1

in both the left and right variables, Proposition 5.5 holds also for the adjoint of T1,
hence the adjoint is also bounded on Lp(M) for all 1 < p ≤ 2. Using duality, we
get boundedness of T1 on Lp(M) for 2 ≤ p <∞. �

5.4. Off-diagonal region

To study the boundedness of the two off-diagonal operators T2 and T3, the following
lemmas will be useful. They are similar to Lemma 5.4 in [30], but not covered by it.

Lemma 5.7. Consider the kernel K(r, r′) defined by

K(r, r′) =

{
r−α r′−β , r ≤ r′,
0, r > r′.

If α+ β = d, β > 0, and p satisfies

(5.4) p <
d

max(α, 0)
,

then K is bounded as an operator on Lp(R+; r
d−1dr).

Proof. The proof is essentially taken from [30]. To find out for what p the oper-
ator with kernel K(r, r′) is bounded on Lp(R+, r

d−1dr), we consider the isometry
M : Lp(R+, r

d−1dr) → Lp(R+, r
−1dr) defined by

(Mf)(r) = rd/p f(r).
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Then the kernel of the operator K̃ =MKM−1 : Lp(R+, r
−1dr) → Lp(R+, r

−1dr) is

K̃(r, r′) = rd/p r′d−d/pK(r, r′) =
( r
r′
)−α+d/p

χ{r≤r′}.

Make the substitution s = ln r and s′ = ln r′. Then K̃(s, s′) is an operator on
Lp(R, ds), and

K̃(s, s′) = e(−α+d/p)(s−s′) χ{s−s′≤0}.

This is a convolution operator, so it is bounded provided the kernel is an L1-
function with variable s− s′. Since s− s′ ≤ 0, we want −α+ d/p > 0. That is,

p <
d

max(α, 0)
.

Since we want p > 1, we require α < d, i.e., β > 0. �

Lemma 5.8. Consider the kernel K(r, r′) defined by

K(r, r′) =

{
0, r ≤ r′,

r−γr′−δ, r > r′.

If γ + δ = d, γ > 0, and p satisfies

(5.5) p >
d

min(γ, d)
,

then K is bounded as an operator on Lp(R+; r
d−1dr).

Proof. By duality and Lemma 5.7. �

Corollary 5.9. Let K(r, r′, y, y′) be a kernel on the cone M satisfying

∣∣K(r, r′, y, y′)
∣∣ ≤

{
r−α r′−β , r ≤ r′,
0, r > r′.

If α+ β = d, β > 0, and p satisfies

(5.6) p <
d

max(α, 0)
,

then K is bounded as an operator on Lp(M ; rd−1drdh). Similarly, if K(r, r′, y, y′)
satisfies

|K(r, r′, y, y′)| ≤
{
0, r ≤ r′,
r−γ r′−δ , r > r′,

with γ + δ = d, γ > 0, then if p satisfies

(5.7)
d

min(γ, d)
< p,

K is bounded as an operator on Lp(M ; rd−1drdh).

Proof. This follows from Lemmas 5.7 and 5.8 and the fact that the cross section Y
has finite volume. �
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Proposition 5.10. The operator T2 is bounded on Lp(M) for

(5.8) p <
d

max(d/2− μ0, 0)
,

where μ0 > 0 is the square root of the smallest eigenvalue of the operator ΔY +
V0(y) + ((d − 2)/2)2.

Proof. By Theorem 4.11, we have

(5.9)
∣∣G2(r, r

′, y, y′)
∣∣ � ρ2−d

zf ρ
1−d/2+μ0

lbz ρ∞rbi = r1−d/2+μ0 r′ 1−d/2−μ0 〈r′〉−∞,

where μ0 > 0 is as above. On the support of T2 and for r′ ≤ 1 we can use boundary
defining functions

ρzf = r′, ρlbz =
r

r′
, ρrbi = 1,

while for r′ ≥ 1 we can use

ρzf = 1, ρlbz = r, ρrbi = r′−1.

Therefore, (5.9) implies that

∣∣G2(λr, λr
′, y, y′)

∣∣ �
{
λ2−d r1−d/2+μ0 r′ 1−d/2−μ0 , λ ≤ 1/r′,

λ1−d/2+μ0−N r1−d/2+μ0 r′ −N , λ ≥ 1/r′,

for any N > 0. Then, using the conormality of G2 at the boundary, we have

(5.10)
∣∣∇z

(
G2(λr, λr

′, y, y′)
)∣∣ �

{
λ2−d r−d/2+μ0 r′ 1−d/2−μ0 , λ ≤ 1/r′,

λ1−d/2+μ0−N r−d/2+μ0 r′ −N , λ ≥ 1/r′,

for all N > 0, since ∇z is equal to 1/r times a tangential derivative for small r.
Using (5.3) and the fact that G2 is supported where r ≤ r′, we estimate

|T2(r, r′, y, y′)| �
∫ ∞

0

λd−2
∣∣∇z

(
G2(λr, λr

′, y, y′)
)∣∣ dλ

�
∫ 1/r′

0

λd−2
(
λ2−d r−d/2+μ0 r′ 1−d/2−μ0

)
dλ

+

∫ 1/r

1/r′
λd−2

(
λ1−d/2+μ0−N r−d/2+μ0 r′ −N

)
dλ

= r−d/2+μ0 r′ 1−d/2−μ0

∫ 1/r′

0

dλ + r−d/2+μ0 r′ −N

∫ 1/r

1/r′
λd/2+μ0−N−1 dλ

= r−d/2+μ0 r′ −d/2−μ0 +
1

d/2 + μ0 −N

(
rN−d r′ −N − r−d/2+μ0 r′ −d/2−μ0

)
� r−d/2+μ0 r′ −d/2−μ0 for N > μ0 +

d

2
.
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By Corollary 5.9, we conclude that T2 is bounded on Lp(M) provided that

p <
d

max(d/2− μ0, 0)
. �

Remark 5.11. When V ≡ 0, then μ0 = d/2 − 1, and its first eigenfunction u0
is a constant function. In Section 5.5 we will improve estimate (5.10) to obtain a
bigger range for p for this special case.

Proposition 5.12. The operator T3 is bounded on Lp(M) for

p >
d

min(1 + d/2 + μ0, d)
,

where μ0 > 0 is the square root of the smallest eigenvalue of the operator ΔY +
V0(y) + ((d − 2)/2)2.

Proof. This proof is very similar to that of Proposition 5.10. By Theorem 4.11,
we have

(5.11)
∣∣G3(r, r

′, y, y′)
∣∣ � ρ2−d

zf ρ
1−d/2+μ0

rbz ρ∞lbi = r1−d/2−μ0 r′ 1−d/2+μ0 〈r〉−∞.

On the support of T2 and for r ≤ 1 we can use boundary defining functions

ρzf = r, ρrbz =
r′

r
, ρrbi = 1,

while for r ≥ 1 we can use

ρzf = 1, ρlbz = r′, ρrbi = r−1.

It follows that, as in the proof of Proposition 5.10, by the conormality of G3 at
the boundary, that for all N > 0,

∣∣∇z

(
G3(λr, λr

′, y, y′)
)∣∣ �

{
λ2−d r−d/2−μ0 r′ 1−d/2+μ0 , λ ≤ 1/r,

λ−d/2+μ0−N+1 r−N−1 r′1−d/2+μ0 , λ ≥ 1/r,

Then using (5.3) and the fact that G3 is supported where r′ ≤ r, we have

|T3(r, r′, y, y′)| �
∫ ∞

0

λd−2
∣∣∇z

(
G3(λr, λr

′, y, y′)
)∣∣ dλ

�
∫ 1/r

0

λd−2
(
λ2−d r−d/2−μ0 r′ 1−d/2+μ0

)
dλ

+

∫ 1/r′

1/r

λd−2
(
λ−d/2+μ0−N+1 r−N−1 r′ 1−d/2+μ0

)
dλ

= r−d/2−μ0 r′ 1−d/2+μ0

∫ 1/r

0

dλ+ r−N−1 r′ 1−d/2+μ0

∫ 1/r′

1/r

λd/2+μ0−N−1 dλ

� r−1−d/2−μ0 r′ 1−d/2+μ0 for N > μ0 +
d

2
.
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Applying Corollary 5.9, we conclude that T3 is bounded on Lp(M) provided that

p >
d

min(1 + d/2 + μ0, d)
. �

Proposition 5.13. The operator T1 is bounded on L2(M).

Proof. Since 2 satisfies the boundedness criteria in both Proposition 5.10 and
Proposition 5.12, the operator T2 + T3 = T − T1 is bounded on L2(M). The
operator T is bounded on L2(M) by Proposition 5.2, and from this the bounded-
ness of T1 on L2(M) follows. �

Remark 5.14. Proposition 5.13 completes the missing part in the proof of Propo-
sition 5.5.

5.5. Proofs of main results

Proof of Theorem 1.3. Since T = T1 + T2 + T3, we just combine Proposition 5.6,
Proposition 5.10, and Proposition 5.12 to prove the first part of this theorem.

For the second part, with V �≡ 0, for p outside the interval (1.8), the coun-
terexamples from Section 5.2 of [27] serve to show the lack of boundedness of T
on Lp(M). (For purposes of comparison, note that the variables x and x′ in [27]
correspond to 1/r and 1/r′ in this paper.) �

Proof of Theorem 1.1. Suppose that the potential V is identically zero; we proceed
to show that the upper threshold for Lp boundedness is p = d(d/2−μ1)

−1. Notice
that T1 and T3 are automatically bounded on this extra range, so we only have to
consider T2, which has an expression of the form

(5.12) T2(z, z
′) =

2

π
χ(4r/r′)

∫ ∞

0

λd−2 ∇z

(
G(λz, λz′)

)
dλ.

We recall that G = rr′G̃ and substitute the infinite series (4.11) for G̃ here, and
consider the first term in this sum separately from the rest.

Since μ0 = d/2− 1 when V0 = 0, the first term here is

(rr′)1−d/2 u0(y)u0(y
′) Id/2−1(r)Kd/2−1(r

′)

times the Riemannian half-density. (Recall this gives us an extra factor of (rr′)−d/2

compared to writing it as a b-half-density, as in (4.6) versus (4.7).) When V0 = 0,
the eigenfunction u0(y) is constant. Also, Id/2−1(r) = crd/2−1 +O(rd/2+1) and is

conormal at r = 0, implying that ∇r(r
1−d/2Id/2−1(r)) = O(r). Hence

∇z(r
1−d/2 u0(y) Id/2−1(r)) = O(r);

that is, in this special case, applying the derivative ∇z makes the kernel vanish
to an additional order, instead of one order less as is usually the case. Therefore,
after taking the gradient in the left variables, this term is bounded by

C r r′ 2−d
, for r′ ≤ 1, and by C r r′ −N

, for r′ ≥ 1,
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for any integer N . Now we substitute this in (5.12) and find that the contribution
to T2 of the μ0-term is bounded by

∫ 1/r′

0

λ2−d
(
λdr r′ 2−d)

dλ+

∫ ∞

1/r′
λ2−d

(
λ2−N r r′ −N)

dλ ≤ C r r′ −1−d
.

Remembering that this term is supported in {r ≤ r′}, we see from Corollary 5.9
that this term is bounded on Lp for all p ∈ (1,∞).

Consider the remainder of the series. The argument in the previous subsection
applies, except that the series now begins with the μ1 term rather than the μ0

term, so we have boundedness in the range (5.8) with μ1 replacing μ0, completing
the proof. �

A. Estimates on modified Bessel functions

Proof of Proposition 4.3. From Section 9.6 of [1], we have representations

(A.1) Iμ(r) =
2−μ rμ

π1/2 Γ(μ+ 1/2)

∫ 1

−1

(1− t2)μ−1/2 e−rt dt,

and

Kμ(r) =
π1/2 2−μ rμ

Γ(μ+ 1/2)

∫ ∞

1

e−rt (t2 − 1)μ−1/2 dt.

By introducing a new integration variable r
√
t2 − 1 we can convert this to

(A.2) Kμ(r) =
π1/2 2−μ r−μ

Γ(μ+ 1/2)

∫ ∞

0

e−
√
r2+t2

√
r2 + t2

t2μ dt.

We now estimate each of these integrals in a way that is uniform as μ→ ∞. It
is straightforward to estimate Iμ:

e−rIμ(r) =
2−μ rμ

π1/2Γ(μ+ 1/2)

∫ 1

−1

(1− t2)μ−1/2 e−r(t+1) dt

≤ 2−μ rμ

π1/2 Γ(μ+ 1/2)

∫ 1

−1

e−r(t+1) dt ≤ 2 · 2−μ rμ

π1/2 Γ(μ+ 1/2)
.

We next estimate Kμ. We use

∣∣∣e−
√
r2+t2

√
r2 + t2

∣∣∣ ≤ e−r/2 e−t/2

t

to get

(A.3)
∣∣Kμ(r)

∣∣ ≤ π1/2 e
−r/2 r−μ 2μ Γ(2μ)

Γ(μ+ 1/2)
.
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We also want estimates for the derivatives of Iμ and Kμ. For the derivatives
of Iμ, derivatives in r hit either the rμ factor outside the integral in (A.2) or the
e−rt factor inside the integral. Suppose that j derivatives hit the r−μ factor and
the remainder act inside the integral. The former gives a factor (−μ)(−μ − 1)
· · · (−μ− j + 1)r−j , while the latter give a factor (−t)l−j which is bounded by 1
in magnitude. Thus we get an estimate

(A.4)
∣∣∣( d

dr

)l

Iμ(r)
∣∣∣ ≤ Cl μ

l 2
−μ rμ−l er

Γ(μ+ 1/2)
, 1 ≤ l ≤ μ,

with Cl depending on l but not μ or r. (The reason for the restriction l ≤ μ is
because we gain a factor (μ − l + 1)(μ − l + 2) · · ·μr−l from differentiating rμ l
times, and this would be much bigger in magnitude than μlr−l for l >> μ.)

For the derivatives of Kμ, derivatives in r hit either the r−μ factor outside

the integral in (A.2) or the e−
√
r2+t2/

√
r2 + t2 factor inside the integral. Suppose

that j derivatives hit the r−μ factor and the remainder act inside the integral. The
former gives a factor (−μ)(−μ− 1) · · · (−μ− j+1)r−j while the latter gives terms

of the form (powers of r) times e−
√
r2+t2 times a sum of powers of (r2 + t2)−1/2,

where the powers range from l − j + 1 to 2(l − j) + 1. Due to the factor t2μ, we

can differentiate inside the integral up to μ times, and estimating e−
√
r2+t2(r2 +

t2)−k/2 ≤ e−t/2e−r/2t−k we end up showing

(A.5)
∣∣∣( d

dr

)l

Kμ(r)
∣∣∣ ≤ Cl μ

l 2
μ Γ(2μ) r−μ−l e−r/2

Γ(μ+ 1/2)
, 1 ≤ l ≤ μ.

Then, using the identity

(A.6) Γ(2μ) =
22μ−1

√
π

Γ(μ) Γ(μ+ 1/2)

in (A.3) and (A.5) we obtain (4.13) in Proposition 4.3.
To prove the properties of an,μ and bn,μ in (4.14) and (4.15), we observe that

such expansions are well known properties of modified Bessel functions; see 9.6.10
and 9.6.11 in [1]. The leading coefficients are given by

a0,μ =
Γ(μ+ 1/2)

Γ(μ+ 1)
, b0,μ = 2−2μ−1

and they satisfy a recurrence relation

an,μ =
an−1,μ

4(n2 + μn)
, bn,μ =

bn−1,μ

4(n2 − μn)
, 1 ≤ n < μ,

which follows from substituting these expansions into the Bessel ODE. The bounds
claimed in Proposition 4.3 follow directly.

To prove the bound on the error term for Iμ, we write the function e−rt as its
Taylor polynomial of degree 2(N − 1) centred at rt = 0 and use the Lagrange form
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of the remainder:

e−rt =

2N−1∑
j=0

(−rt)j
j!

+ (−rt)2N e−r′t

(2N)!
, r′ ≤ r.

Substituting this into (A.1), we see that the Taylor polynomial yields the expansion
to order rμ+2N−2 while we estimate the remainder as above, showing that the
O(r2N ) term in (4.14) is uniform in μ. A similar argument shows the O(r2N ) term
in (4.15) is uniform in μ. This completes the proof of Proposition 4.3. �

Proof of Lemma 4.4. Note that for any μj ≥ 2M , we have

μj −M =M + (μj − 2M) ≥M +
(μj − 2M

2

)
=
μj

2
.

Therefore, ∑
μj≥2M

μN
j αμj−M ≤

∑
μj≥2M

μN
j αμj/2 ≤

∑
μj≥2M

μN
j βμj/2.

There is an integer N1(β,N) > 2M such that for all j ≥ N1(β,N), jN ≤ β−j/4.
It follows that

(A.7)

∑
μj≥2M

μN
j β

μj/2 ≤
∑

2M≤μj<N1(β,N)

μN
j βμj/2 +

∑
μj≥N1(β,N)

β−μj/4 βμj/2

≤ ∣∣{j : μj < N1(β,N)}∣∣N1(β,N)N +
∑

μj≥N1(β,N)

βμj/4.

Using Weyl’s law for the eigenvalue counting function for ΔY , we see that

(A.8)
∣∣{j : μj ≤ μ}∣∣ ≤ Cμd−1.

Letting μ = N1(β,N), we see that the first term in the last line of (A.7) is
bounded by CN1(β,N)d+N−1.

Consider the second term. An implication of (A.8) is that we have

μj ≥
( j
C

)1/(d−1)

,

for any j ∈ N. Therefore,∑
μj≥N1(β,N)

βμj/4 ≤
∑

μj≥N1(β,N)

β
1
4 (j/C)1/(d−1) ≤

∑
j≥0

β
1
4 (j/C)1/(d−1)

.

There is N2(β,C) ∈ N such that for all j ≥ N2(β,C), we have 1
4 (j/C)

1/(d−1) >

logγ j, where γ = β−1/2 > 1. Then∑
j≥1

β
1
4 (j/C)1/(d−1) ≤

∑
0≤j<N2(β,C)

β
1
4 (j/C)1/(d−1)

+
∑

j≥N2(β,C)

βlogγ j

≤ N2(β,C) +
∑

j≥N2(β,C)

j−2 ≤ N2(β,C) +
π2

6
.

(A.9)
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The remaining part of the summation is from M to 2M ,∑
M≤μj<2M

μN
j α

μj−M≤ ∣∣ {j : μj < 2M} ∣∣ (2M)N ≤ C(2M)d−1(2M)N= C(2M)d+N−1.

Bringing all the parts together, we have

∑
μj≥M

μN
j α

μj−M ≤ C(2M)d+N−1+ CN1(β,N)d+N−1+N2(β,C)+
π2

6
<∞.(A.10)

Note the finite constant depends on M , N , C, and β, but not α, therefore we have
uniform boundedness in α. �
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