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Inviscid limit for the axisymmetric stratified
Navier–Stokes system

Samira Sulaiman

Abstract. This paper is devoted to the study of the Cauchy problem
for the stratified Navier–Stokes system in three-dimensional space. In the
first part of the paper, we prove the existence of a unique global solution
(vν , ρν) for this system with axisymmetric initial data belonging to the
Sobolev space Hs × Hs−2 with s > 5/2. The bounds on the solution are
uniform with respect to the viscosity. In the second part, we analyse the
inviscid limit problem. We prove that the viscous solutions (vν , ρν)ν>0

converge strongly in the space L∞
loc(R+;H

s ×Hs−2) to the solution (v, ρ)
of the stratified Euler system.

1. Introduction and main results

In this paper, we consider the incompressible stratified Navier–Stokes system in
three-dimensional space

(1.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tvν + vν · ∇vν − νΔvν +∇pν = ρν ez, (t, x) ∈ R+ × R

3

∂tρν + vν · ∇ρν −Δρν = 0

div vν = 0

(vν , ρν)|t=0 = (v0, ρ0).

Here, the vector field vν = (v1ν , v
2
ν , v

3
ν) stands for the velocity of the fluid and it is

assumed to be divergence-free, while the scalar function ρν denotes the density or
the temperature. The pressure pν is a scalar function given by the equation

Δpν = −div(vν · ∇vν) + ∂zρν .

The parameter ν > 0 is the kinematic viscosity, and the vector ez denotes the
vector (0, 0, 1). Note that the usual incompressible Navier–Stokes system arises as
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a particular case of (1.1): it suffices to take ρν = constant. It reads as follows:

(1.2)

⎧⎪⎨⎪⎩
∂tvν + vν · ∇vν − νΔvν +∇pν = 0

div vν = 0

vν |t=0 = v0.

In this case, the pressure pν is given by the equation

Δpν = −div(vν · ∇vν).

The mathematical theory of the Navier–Stokes equations (1.2) was initiated
by Leray in [18]. He proved the global existence of a weak solution of the sys-
tem (1.2) in the energy space by using a compactness method. Nevertheless, the
uniqueness of these solutions is only known for two spatial dimensions. A few
decades later, in [7], Fujita and Kato proved local well-posedness in the critical
Sobolev space Ḣ1/2(R3), by using a fixed point argument and taking advantage
of the time decay of the heat semiflow. The global existence of these solutions
is only proved for small initial data and the question for large data remains an
outstanding open problem. For more discussion, we refer the reader, for example,
to the papers [15], [16], and [22].

We can prove global existence when the initial data are not necessarily small
but have some special symmetry. Before going further into the details, we first
write the equation of the vorticity, which plays a central role in the theory of the
global well-posedness. For a given vector field v, the vorticity ω is defined by
ω = curl v = ∇× v, and, in the case of the system (1.2), it solves the transport-
diffusion equation

(1.3) ∂tων + vν · ∇ων − νΔων = ων · ∇vν .

The main difficulty is related to the dynamics of the stretching term ων · ∇vν .
Now we will see how to use the axisymmetry of the flows in order to simplify the
stretching term. We start with the following definition.

Definition 1.1. We say that a vector field v is axisymmetric (without swirl) if it
takes the form:

v(t, x) = vr(t, r, z)er + vz(t, r, z)ez,

where z = x3 , x = (x1, x2, z) , r = (x2
1+x2

2)
1/2, and (er, eθ, ez) is the cylindrical

basis of R3, given by

er =
(x1

r
,
x2

r
, 0
)
, eθ =

(− x2

r
,
x1

r
, 0
)
, and ez = (0, 0, 1).

The components vr and vz do not depend on the angular variable θ.

In what follows we need to recall some basic algebraic properties related to
some computations in the cylindrical coordinate system. For example, for an
axisymmetric vector field v, the operators v · ∇ and div have the forms

v · ∇ = vr∂r +
1

r
vθ∂θ + vz∂z = vr∂r + vz∂z(1.4)
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and

div v = ∂rv
r +

vr

r
+ ∂zv

z .

The vorticity ω of the vector field v has the special form

(1.5) ω = (∂zv
r − ∂rv

z)eθ := ωθeθ

and the stretching term reads

ω · ∇v =
vr

r
ω.

Consequently, the equation (1.3) becomes

∂tων + vν · ∇ων − νΔων =
vrν
r

ων .

The expression of the Laplacian operator in cylindrical coordinates is given by
Δ = ∂rr + 1

r∂r + ∂zz . Therefore, the scalar component ωθ
ν of the vorticity will

satisfies the equation

∂tω
θ
ν + vν · ∇ωθ

ν − ν
(
Δωθ

ν − ωθ
ν

r2

)
=

vrν
r

ωθ
ν .

We can easily check that the quantity β := ωθ
ν/r solves the equation

∂tβ + v · ∇β − ν
(
Δ+

2

r
∂r

)
β = 0.

Hence, we deduce that for all p ∈ [1,∞],

‖β(t)‖Lp ≤ ‖β0‖Lp .

These new conservation laws enabled Ukhoviskii and Iudovich [25], to show the
global well-posedness under the assumption v0 ∈ H1 and ω0, ω0/r ∈ L2∩L∞. This
result has been recently improved by many authors in various function spaces. The
inviscid case ν = 0 has also been treated. For more details see for example [1], [2],
[6], [14], [17], and [23].

Concerning the inviscid limit problem, that is the convergence of the viscous
solutions (vν)ν>0 to the solution of the incompressible Euler equation, we will
restrict ourselves to the discussion of the following results. In [19], Majda proved
that for v0 ∈ Hs with s > 5/2, the solutions (vν)ν>0 converge in L2 norm to the
unique solution v of the Euler system and the rate of convergence is of order νt.
By using an elementary interpolation argument we deduce strong convergence in
the Sobolev spaces Hη, for all η < s. We note that this result is local in time in
space dimension 3 and global in space dimension 2. Recently, Masmoudi proved
in [20] strong convergence for the same space Hs of initial data; his proof is based
on the use of a cutoff procedure. We mention that the inviscid limit problem in
the context of axisymmetric flows was studied in [14].

Next we discuss the stratified Navier–Stokes system (1.1), which has been in-
tensively studied in recent decades, and for which there have been proved many
results related to the global well-posedness problem.
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The study of the case of stratified Euler equations with axisymmetric initial
data was initiated by Hmidi and Rousset in [12]. This system is described by

(1.6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tv + v · ∇v +∇p = ρ ez

∂tρ+ v · ∇ρ−Δρ = 0

div v = 0

v|t=0 = v0, ρ|t=0 = ρ0.

To show global existence, one needs new a priori estimates, especially for the
function ζ := ωθ/r, which solves the equation

∂tζ + v · ∇ζ = −∂rρ

r
.

The main difficulty is to find a priori estimates on the density ρ to control the right-
hand side of the last equation. The idea is that the singularity 1/r on the axis
r = 0 is a derivative and that the term ∂rρ/r can be thought of as the Laplacian
of the density ρ. In [12], the authors try to use smoothing effects to control this
term ∂rρ/r. They gave a positive answer under the assumptions

v0 ∈ Hs, ρ0 ∈ Hs−2 ∩ Lm, s > 5/2, m > 6 and r2ρ0 ∈ L2.

Their basic idea consists in using the coupled function Γ := ζ + ∂r

r Δ−1ρ, which
satisfies the transport equation

∂tΓ + v · ∇Γ = −
[∂r
r
Δ−1, v · ∇

]
ρ.

Since the operator ∂r

r Δ−1 behaves like the Riesz transform on the class of axisym-
metric functions, the estimate of ‖ζ(t)‖L3,1 is equivalent to a bound on ‖Γ(t)‖L3,1 .
Therefore the difficulty reduces to estimating the singular commutator which arises
in the equation of Γ. For this purpose the authors used intensively the axisymmet-
ric structure of the velocity combined with some tools of harmonic analysis and
paradifferential calculus. The result of [12] is extended in [24] to the framework of
critical Besov spaces. More precisely, global existence was proved for

v0 ∈ B
5/2
2,1 , ρ0 ∈ B

1/2
2,1 ∩ Lm, m > 6 and r2ρ0 ∈ L2.

The aim of this paper is twofold. First, we extend the result of [12] to the stra-
tified Navier–Stokes system (1.1) with uniform bounds with respect to the viscosity
but for the subcritical regularities, that is, (v0, ρ0) ∈ Hs × Hs−2 with s > 5/2.
Second, we analyze the inviscid limit problem and we show strong convergence of
the solutions (vν , ρν) of the system (1.1) to the one of (1.6) in the same space
of initial data. We point out that our approach for the last point is completely
different from that in Masmoudi’s work [20] for the incompressible Navier–Stokes
equation.

First, we introduce the following space:

u ∈ χs
m ⇐⇒ u ∈ Hs−2 ∩ Lm and such that r2u ∈ L2.

We state now our main result.
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Theorem 1.2. Let s > 5/2, v0 ∈ Hs be an axisymmetric divergence-free vector
field without swirl, and let ρ0 ∈ χs

m with m > 6 be an axisymmetric function. Then
there exists a unique global solution (vν , ρν) of the system (1.1) such that

vν ∈ C(R+;H
s) and ρν ∈ C(R+;χ

s
m) ∩ L1

loc(R+; Lip),

with uniform bounds with respect to the viscosity.
Moreover, for any T > 0 we have

lim
ν→0

‖(vν − v, ρν − ρ)‖L∞
T (Hs×Hs−2) = 0,

where (v, ρ) is the solution of the system (1.6) with initial data (v0, ρ0).

Before giving some details about the proof, a few remarks are in order.

Remarks. (1) From the proof the rate of convergence in the L2 space is of order νt.
More precisely,

‖(vν − v, ρν − ρ)(t)‖L2 ≤ νt f(t),

with f is an explicit function depending only on the size of the initial data and the
variable time t.

(2) Our approach does not permit to treat the critical case v0 ∈ B
5/2
2,1 , ρ0 ∈ B

1/2
2,1 .

Even though, we can extend the result of Proposition 3.2 to the Lorentz space
L3,1, the difficulty relies on the establishment of maximal smoothing effects for a
transport-diffusion model in Lorentz space.

Now, we will discuss the main ideas of the proof of Theorem 1.2. To simplify
the notation, we will write (v, ρ) instead of (vν , ρν). First, recall that the vorticity
ω = ωθeθ satisfies

∂tω + v · ∇ω − νΔω =
vr

r
ω + curl (ρez).

This yields

∂tωθ + v · ∇ωθ − ν
(
Δωθ − ωθ

r2
)
=

vr

r
ωθ − ∂rρ.

It follows that ζ := ωθ/r obeys the equation

(1.7) ∂tζ + v · ∇ζ − ν
(
Δ+

2

r
∂r
)
ζ = −∂rρ

r
.

At this stage, we can try to use the method of [12], but unfortunately it seems to
be rigid and fails for the viscous case. Our alternative approach relies on the use
of maximal smoothing effects combined with a suitable commutator estimate.

To be more precise, we use an interpolation argument combined with the max-
imum principle to obtain, for p̄ > 3,

‖ζ(t)‖L3,1 ≤ C ‖ζ(t)‖L2∩Lp̄ ≤ C ‖ζ0‖L2∩Lp̄ + C

∫ t

0

∥∥∥∂rρ
r

(τ)
∥∥∥
L2∩Lp̄

dτ.
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As we will see the restriction of the operator ∂r/r to the class of axisymmetric
functions is dominated by the second derivative:∥∥∥∂r

r
ρ(t)

∥∥∥
Lp

≤ C ‖∇2ρ(t)‖Lp .

To estimate this last latter quantity we use the maximal smoothing effect
of the heat flow and the difficulty reduces to the analysis of the commutator∑

j ‖[Δj, v · ∇]ρ‖Lp which is the hard technical part of this paper. We shall prove
in Proposition 3.2 that, for p ∈ (1,+∞),∑

j≥−1

∥∥[Δj , v · ∇]ρ
∥∥
Lp

≤ C ‖v‖L2‖ρ‖Lp + C
∥∥ωθ

r

∥∥
L3,1∩Lp

(‖xhρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
,(1.8)

where xh := (x1, x2). Consequently, we obtain

(1.9) ‖ζ(t)‖L2∩Lp̄ ≤ C(t) e
C ‖xhρ‖L1

tB0∞,1 .

To estimate ‖xhρ‖L1
tB

0
∞,1

, we use the following inequality proved in [12]:

‖xhρ‖L1
tB

0
∞,1

≤ C0(t)
(
1 +

∫ t

0

h(τ) log
(
2 + ‖ζ‖L∞

τ L3,1

)
dτ

)
,

where t 
→ C0(t) is a given continuous function and t 
→ h(t) belongs to L1
loc(R+).

We conclude by using (1.8) and (1.9) combined with the Gronwall inequality to
obtain a global bound for ‖ζ(t)‖L3,1 , uniformly with respect to the viscosity.

Concerning the inviscid limit, we first prove strong convergence in L∞
loc(R+;L

2)
by making energy estimates. However the strong convergence in the space for initial
data in Hs×Hs−2 is more subtle. For this purpose we use interpolation arguments
combined with an additional frequency decay of the energy uniformly with respect
to t and ν in the spirit of [9] and [13].

This paper is organized as follows. In Section 2, we fix some notation, give
the definition of Besov and Lorentz spaces, and state some smoothing effects for
a transport-diffusion equation. In Section 3, we study the estimate of the com-
mutator

∑
j≥−1[Δj , v · ∇]ρ in Lp spaces. In the last section, we give the proof of

Theorem 1.2, which will be presented in several steps.

2. Tools and functional spaces

In this preliminary section, we introduce some basic notations and recall the defini-
tions of the usual and heterogeneous Besov spaces. We give also some results about
Lorentz spaces and discuss some well-known results about the Littlewood–Paley
decomposition and a transport-diffusion equation used later.
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2.1. Notation

For any positive A and B, the notation A � B means that there exists a positive
constant C independent of A and B and such that A � CB.

For any pair of operators X and Y acting on some Banach space A, the com-
mutator [X,Y ] is defined by XY − Y X.

For l ∈ N, we set

Φl(t) = C0 exp
(
. . . exp︸ ︷︷ ︸

l times

(C0 t
19/6) . . .

)
,

where C0 depends on the norms of the initial data and its value may vary from line
to line up to some absolute constants, but it does not depend on the viscosity ν.
We will make intensive use of the trivial facts∫ t

0

Φl(τ)dτ ≤ Φl(t) and exp
( ∫ t

0

Φl(τ)dτ
)
≤ Φl+1(t).

To define Besov spaces we need the following dyadic partition of unity (see [5], [16]).

Proposition 2.1. There exist two nonnegative radial functions χ ∈ C∞
0 (R3) and

ϕ ∈ C∞
0 (R3\{0}) such that

χ(ξ) +
∑
j≥0

ϕ(2−jξ) = 1, ∀ξ ∈ R
3,

|p− j| ≥ 2 ⇒ suppϕ(2−p·) ∩ suppϕ(2−j ·) = ∅,

j ≥ 1 ⇒ suppχ ∩ suppϕ(2−j ·) = ∅.

Let f ∈ S ′(R3). We define the nonhomogeneous Littlewood–Paley operators by

Δ−1f = χ(D)f, ∀j ≥ 0, Δjf = ϕ(2−jD)f and Sjf =
∑

−1≤k≤j−1

Δkf.

It may easily be checked that

f =
∑
j≥−1

Δjf, ∀f ∈ S ′(R3).

Moreover, the Littlewood–Paley operators satisfy the property of almost orthogo-
nality: for any f, g ∈ S ′(R3),

ΔpΔjf = 0 if |p− j| � 2; Δp(Sj−1fΔjg) = 0 if |p− j| � 5.

The following Bernstein inequality will be used constantly in the paper; see [5].

Lemma 2.2. There exists a constant C > 0 such that for every j, k ∈ N and for
every function v we have

sup
|α|=k

‖∂αSjv‖Lp2 ≤ Ck 2j(k+3(1/p1−1/p2)) ‖Sjv‖Lp1 , for p2 ≥ p1 ≥ 1,

C−k 2jk ‖Δjv‖Lp1 ≤ sup
|α|=k

‖∂αΔjv‖Lp1 ≤ Ck 2jk ‖Δjv‖Lp1 .
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From the paradifferential calculus introduced by J.-M. Bony in [4], the prod-
uct uv can be formally divided into three parts as follows:

(2.1) fg = Tfg + Tgf +R(f, g),

where
Tfg

def
=

∑
j

Sj−1fΔjg

and
R(f, g) =

∑
j

ΔjfΔ̃jg , with Δ̃j = Δj−1 +Δj +Δj+1.

2.2. Usual and heterogeneous Besov spaces

We recall now the following definition of general Besov spaces.

Definition 2.3. Let s ∈ R and 1 ≤ p, r ≤ +∞. The inhomogeneous Besov
space Bs

p,r is the set of tempered distributions f such that

‖f‖Bs
p,r

:=
(
2js‖Δjf‖Lp

)
�r

< +∞.

The following embeddings are an easy consequence of the Bernstein inequalities,

Bs
p1,r1 ↪→ Bs+3(1/p2−1/p1)

p2,r2 , p1 ≤ p2 and r1 ≤ r2.

Let T > 0, ρ ≥ 1, (p, r) ∈ [1,∞]2, and s ∈ R. We denote by Lρ
TB

s
p,r the space of

distributions f such that

‖f‖Lρ
TBs

p,r
:=

∥∥(2js‖Δjf‖Lp

)
�r

∥∥
Lρ

T

< +∞.

We say that f belongs to the Chemin–Lerner space L̃ρ
TB

s
p,r if

‖f‖
˜Lρ
TBs

p,r
:=

∥∥2js‖Δjf‖Lρ
TLp

∥∥
�r

< +∞.

The relations between these spaces are detailed in the following lemma, which is a
direct consequence of the Minkowski inequality.

Lemma 2.4. Let s ∈ R, ε > 0, and (p, r, ρ) ∈ [1,+∞]3. Then we have the embed-
dings

Lρ
TB

s
p,r ↪→ L̃ρ

TB
s
p,r ↪→ Lρ

TB
s−ε
p,r if r � ρ,

Lρ
TB

s+ε
p,r ↪→ L̃ρ

TB
s
p,r ↪→ Lρ

TB
s
p,r if ρ ≥ r.

We remark that the Sobolev space Hs coincides with the Besov space Bs
2,2 for

s ∈ R and we have the embedding

Hs ↪→ Lp, ∀ 0 ≤ s <
d

2
, with p =

2d

d− 2s
.

Now we will introduce the heterogeneous Besov spaces, which are extensions of
the classical Besov spaces.
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Definition 2.5. (i) A function Ψ : {−1} ∪ N → R∗
+ belongs to the class U if the

following conditions are satisfied:

(a) Ψ is a nondecreasing function.

(b) There exists C > 0 such that

sup
x∈N∪{−1}

Ψ(x+ 1)

Ψ(x)
≤ C.

(ii) The class U∞ is the set of functions Ψ ∈ U satisfying limx→+∞ Ψ(x) = +∞.

(iii) Let s ∈ R, (p, r) ∈ [1,∞]2, and Ψ ∈ U . We define the heterogeneous Besov
space Bs,Ψ

p,r as follows:

u ∈ Bs,Ψ
p,r if and only if ‖u‖Bs,Ψ

p,r
:=

(
Ψ(q)2qs‖Δqu‖Lp

)
�r

< +∞.

Observe that when the profile Ψ has exponential growth, Ψ(q) = 2αq, α ∈ R+,
then the heterogeneous Besov space Bs,Ψ

p,r reduces to the classical Besov space

Bs+α
p,r . When the profile Ψ is a nonnegative constant, it is clear that Bs,Ψ

p,r = Bs
p,r.

The next result shows that any element of a given Besov space is always more
regular than the prescribed regularity (see [9] for a proof).

Lemma 2.6. Let s ∈ R, p ∈ [1,+∞], r ∈ [1,+∞), and f ∈ Bs
p,r. Then there exists

a function Ψ ∈ U∞ such that f ∈ Bs,Ψ
p,r .

The following proposition will be useful later; see [11] for a proof.

Proposition 2.7. We have the following estimates:

a) Let p ∈ [1,∞], and let f, g and h be three functions such that xh ∈ L1,
∇f ∈ Lp, and g ∈ L∞. Then

‖h ∗ (f g)− f(h ∗ g)‖Lp ≤ ‖xh‖L1 ‖∇f‖Lp ‖g‖L∞.

b) Assume that xh ∈ L1, ∇f ∈ L∞, and g ∈ Lp, ∀p ∈ [1,∞]. Then we have

‖h ∗ (f g)− f(h ∗ g)‖Lp ≤ ‖xh‖L1 ‖∇f‖L∞ ‖g‖Lp.

2.3. Lorentz spaces and interpolation

Before defining the Lorentz spaces, we recall the notation of a nonincreasing re-
arrangement. The nonincreasing rearrangement h∗ : R+ → R+ of a measurable
function h is defined by the formula

h∗(t) := inf
{
s′ ≥ 0 : l({y, |h(y)| > s′}) ≤ t

}
,

where l denotes the usual Lebesgue measure.



440 S. Sulaiman

Definition 2.8 (Lorentz space). Let h a measurable function and 1 ≤ p ≤ ∞.
Then h belongs to the Lorentz space if

‖h‖Lp,r :=

⎧⎪⎨⎪⎩
(∫ ∞

0

(t1/p h∗(t))r
dt

t

)1/r

< ∞ if 1 ≤ r < ∞

sup
t>0

t1/p h∗(t) if r = ∞.

We can also define the Lorentz spaces by interpolation between Lebesgue spaces,

(Lp1 , Lp2)(μ,r) = Lp,r,

where 1 ≤ p1 < p < p2 ≤ ∞, 1/p = (1 − μ)/p1 + μ/p2, and 1 ≤ r ≤ ∞.

We have the classical properties:

‖uv‖Lp,r ≤ C ‖u‖L∞‖v‖Lp,r

Lp,r ↪→ Lp,r1 , ∀ 1 ≤ p ≤ ∞, 1 ≤ r ≤ r1 ≤ ∞, and Lp,p = Lp.
(2.2)

We have also L3,1 = (L2, Lp̄)(μ,1) with 3 < p̄ and we deduce that

(2.3) ‖u‖L3,1 ≤ C ‖u‖L2∩Lp̄ with 3 < p̄.

The following lemma will be used later; see for instance [16] and [21].

Lemma 2.9. There exists a constant C > 0 such that, for every 0 < β < 3,

‖f ∗ g‖L∞(R3) ≤ C‖f‖L3/β,∞(R3) ‖g‖L3/(3−β),1(R3).

Using Lemma 2.9 and the fact that 1/|x|2 ∈ L3/2,∞(R3), we get

‖∇Δ−1f‖L∞(R3) �
∥∥∥ 1

|x|2
∥∥∥
L3/2,∞(R3)

‖f‖L3,1(R3) � ‖f‖L3,1(R3).(2.4)

2.4. Estimates for a transport-diffusion equation

We will give now some useful estimates for any smooth solution of the linear
transport-diffusion model given by

(2.5)

{
∂tf + v · ∇f − κΔf = g,

f|t=0 = f0.

We will give estimates of two kinds. The first are Lp estimates, and the second
concern the smoothing effects. We start with the Lp estimates; see [8].

Lemma 2.10. Let v be a smooth divergence-free vector field on R
3 and let f be a

smooth solution of (2.5). Then for all p ∈ [1,∞] and for every κ ≥ 0, we have

‖f(t)‖Lp ≤ ‖f0‖Lp +

∫ t

0

‖g(τ)‖Lp dτ.
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We need the following result; see [10] for a proof.

Proposition 2.11. Let v be a smooth divergence-free vector field on R3 with vor-
ticity ω := curl v. Let f be a smooth solution of (2.5) with κ = 1 and g = 0. Then,
for every j ∈ N, and f0 ∈ Lp with 1 ≤ p ≤ ∞ and t ≥ 0, we have

22j‖Δjf‖L1
tL

p � ‖f0‖Lp

(
1 + (j + 1)‖ω‖L1

tL
∞ + ‖∇Δ−1v‖L1

tL
∞

)
.

We will need the following smoothing effects which are proved in [12].

Proposition 2.12. Let v be a smooth divergence-free vector field on R
3 and let f

be a smooth solution of (2.5) with κ = 1. Then, for every j ∈ N, p ≥ 2, and t ≥ 0,
we have

‖Δjf‖L∞
t Lp + 22j

∫ t

0

‖Δjf(τ)‖Lpdτ � ‖Δjf
0‖Lp +

∫ t

0

‖[Δj , v · ∇]f(τ)‖Lpdτ

+

∫ t

0

‖Δjg(τ)‖Lpdτ.

3. Commutator estimates

In this section, we discuss the commutator of the operator Δj and the convection
operator v · ∇. We start with the following estimate, which was proved in [9].

Proposition 3.1. Let v be a smooth divergence-free vector field on R3 and let u
be a smooth function. Then for every s > 0, r ∈ [1,+∞], and Ψ ∈ U as in
Definition 2.5, we have the estimate(

Ψ(j)2js
∥∥[Δj , v · ∇]u

∥∥
L2

)
�r

� ‖∇v‖L∞ ‖u‖Bs,Ψ
2,r

+ ‖∇u‖L∞ ‖v‖Bs,Ψ
2,r

.

We aim in this section to prove the following.

Proposition 3.2. Let v be an axisymmetric smooth and divergence-free vector
field without swirl and let ρ be an axisymmetric smooth scalar function. Then for
every j ≥ −1 and 1 < p < ∞, we have the estimate∑
j≥−1

∥∥[Δj , v · ∇]ρ
∥∥
Lp � ‖v‖L2 ‖ρ‖Lp +

∥∥ωθ

r

∥∥
L3,1∩Lp

(‖xhρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
,

where ωθ is the angular component of ω = ∇× v.

Proof. First, using the decomposition (2.1) of Bony, we write∑
j≥−1

[
Δj , v · ∇

]
ρ =

∑
j≥−1

3∑
i=1

[
Δj , Tvi · ]∂iρ+ ∑

j≥−1

3∑
i=1

[
Δj , T∂i· · vi

]
ρ

+
∑
j≥−1

3∑
i=1

[
Δj , R(vi·, ∂i)

]
ρ

:= I + II + III.
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Estimate of I. We start with the estimate of the first component I, that is,
for i = 1. Since v is divergence-free, we have Δv = −∇×ω. Then for axisymmetric
flows, we obtain that

v1(x) = Δ−1∂3ω
2 = Δ−1∂3

(
x1

ωθ

r

)
= Δ−1

(
x1∂3

ωθ

r

)
= x1Δ

−1∂3
(ωθ

r

)− 2∂13Δ
−2

(ωθ

r

)
.(3.1)

In the last line, we have used the following identity; see Lemma 2.10 in [12] for a
proof.

Lemma 3.3. For every f ∈ S(R3,R) and i, j ∈ {1, 2, 3}, we have

Δ−1(xi∂jf) = xiΔ
−1∂jf − 2Ri,jΔ

−1f,

where Ri,j = ∂i,jΔ
−1 is the Riesz transform.

Then we have

(3.2)
∑
j

[
Δj , Tv1 · ]∂1ρ =

∑
|q−j|≤4

[
Δj , Sq−1v

1
]
Δq∂1ρ

=
∑

|q−j|≤4

[
Δj , Sq−1

(
x1Δ

−1∂3
(ωθ

r

))]
Δq∂1ρ− 2

∑
|q−j|≤4

[
Δj , Sq−1∂13Δ

−2
(ωθ

r

)]
Δq∂1ρ.

By the definition of Δq, there exists a function ϕ ∈ S(R3) such that

x1Δqρ = x1 2
3q

∫
R3

ϕ(2q(x − y)) ρ(y) dy

= 23q
∫
R3

ϕ(2q(x− y)) y1ρ(y) dy + 23q
∫
R3

ϕ(2q(x− y)) (x1 − y1) ρ(y) dy

= Δq(x1ρ) + 2−q 23q ϕ1(2
q·) ∗ ρ,

where ϕ1(x) = x1ϕ(x). Consequently the commutator reads,

(3.3) [Δq, x1]ρ = −22q ϕ1(2
q·) ∗ ρ.

Similarly for the cutoff Sq, we obtain

(3.4) x1SqF = Sq(x1F ) + 22qχ1(2
q·) ∗ F,

where χ1(x) = x1χ(x) ∈ S(R3).

To estimate the first term of (3.2), we use (3.4) to write[
Δj , Sq−1

(
x1Δ

−1∂3
(ωθ

r

))]
Δq∂1ρ

=
[
Δj , x1Sq−1

(
Δ−1∂3

(ωθ

r

))]
Δq∂1ρ−

[
Δj , 2

2qχ1(2
q·) ∗Δ−1∂3

(ωθ

r

)]
Δq∂1ρ

=
[
Δj , Sq−1

(
Δ−1∂3

(ωθ

r

))]
x1Δq∂1ρ+ Sq−1Δ

−1∂3
(ωθ

r

) [
Δj , x1

]
Δq∂1ρ

−
[
Δj , 2

2qχ1(2
q·) ∗Δ−1∂3

(ωθ

r

)]
Δq∂1ρ.
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Therefore we obtain[
Δj , Sq−1

(
x1Δ

−1∂3
(ωθ

r

))]
Δq∂1ρ

=
[
Δj , Sq−1

(
Δ−1∂3

(ωθ

r

))]
∂1(x1Δqρ)−

[
Δj , Sq−1

(
Δ−1∂3

(ωθ

r

))]
Δqρ

+ Sq−1Δ
−1∂3

(ωθ

r

)[
Δj , x1

]
Δq∂1ρ−

[
Δj , 2

2qχ1(2
q·) ∗Δ−1∂3

(ωθ

r

)]
Δq∂1ρ.

Using (3.3) this gives[
Δj , Sq−1

(
x1Δ

−1∂3
(ωθ

r

))]
Δq∂1ρ

=
[
Δj , Sq−1

(
Δ−1∂3

(ωθ

r

))]
∂1Δq(x1ρ)+

[
Δj , Sq−1

(
Δ−1∂3

(ωθ

r

))]
∂1
(
22qϕ1(2

q·) ∗ ρ)
−
[
Δj , Sq−1

(
Δ−1∂3

(ωθ

r

))]
ΔqρSq−1Δ

−1∂3
(ωθ

r

) (
22jϕ1(2

j ·) ∗Δq∂1ρ
)

−
[
Δj , 2

2qχ1(2
q·) ∗Δ−1∂3

(ωθ

r

)]
Δq∂1ρ.

Therefore,∑
|q−j|≤4

[
Δj , Sq−1

(
x1Δ

−1∂3
(ωθ

r

))]
Δq∂1ρ := I1 + I2 + I3 + I4 + I5,

where

I1 =
∑

|q−j|≤4

[
Δj , Sq−1

(
Δ−1∂3

(ωθ

r

))]
∂1Δq(x1ρ),

I2 =
∑

|q−j|≤4

[
Δj , Sq−1

(
Δ−1∂3

(ωθ

r

))](
23q(∂1ϕ1)(2

q·) ∗ ρ
)
,

I3 = −
∑

|q−j|≤4

[
Δj , Sq−1

(
Δ−1∂3

(ωθ

r

))]
Δqρ,

I4 = −
∑

|q−j|≤4

Sq−1Δ
−1∂3

(ωθ

r

)(
22jϕ1(2

j ·) ∗Δq∂1ρ
)

I5 = −
∑

|q−j|≤4

[
Δj , 2

2qχ1(2
q·) ∗Δ−1∂3

(ωθ

r

)]
Δq∂1ρ.

Estimate of I1. We use Proposition 2.7-a), the continuity of the Riesz trans-
form in the Lp, space and the Bernstein inequality:

‖I1‖Lp ≤
∑

|q−j|≤4

‖xhj‖L1

∥∥∇Sq−1Δ
−1∂3

(ωθ

r

)∥∥
Lp‖∂1Δq(x1ρ)‖L∞

�
∑

|q−j|≤4

2−j‖xh‖L1

∥∥∇Δ−1∂3
(ωθ

r

)∥∥
Lp2

q‖Δq(x1ρ)‖L∞

�
∥∥ωθ

r

∥∥
Lp

∑
|q−j|≤4

2q−j‖Δq(x1ρ)‖L∞ �
∥∥ωθ

r

∥∥
Lp‖x1ρ‖B0

∞,1
,

where hj(x) = 23j h(2jx) ∈ S(R3).
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Estimate of I2. Using Proposition 2.7-a), the continuity of the Riesz transform
on Lebesgue space, and the Young inequalities for convolution, we get

‖I2‖Lp ≤
∑

|q−j|≤4

2−j‖xh‖L1

∥∥∇Sq−1Δ
−1∂3

(ωθ

r

)∥∥
Lp‖23q(∂1ϕ1)(2

q·) ∗ ρ‖L∞

�
∥∥∇Δ−1∂3

(ωθ

r

)∥∥
Lp

∑
|q−j|≤4

2−j 23q ‖(∂1ϕ1)(2
q·)‖L1‖ρ‖L∞

�
∥∥ωθ

r

∥∥
Lp

∑
|q−j|≤4

2q−j 2−q ‖∂1ϕ1‖L1‖ρ‖L∞ �
∥∥ωθ

r

∥∥
Lp‖ρ‖L∞.

Estimate of I3. We use Proposition 2.7-a) and the continuity of the Riesz
transform on the Lebesgue space:

‖I3‖Lp �
∑

|q−j|≤4

2−j‖xh‖L1

∥∥∇Sq−1Δ
−1∂3

(ωθ

r

)∥∥
Lp‖Δqρ‖L∞

�
∥∥ωθ

r

∥∥
Lp

∑
|q−j|≤4

2−j ‖Δqρ‖L∞ �
∥∥ωθ

r

∥∥
Lp ‖ρ‖L∞.

Estimate of I4. Using now the Hölder inequality, the continuity of the operator
Sq−1 in L∞ spaces, (2.4), the Young inequalities for convolution and the Bernstein
inequality, we get

‖I4‖Lp ≤
∑

|q−j|≤4

∥∥Sq−1Δ
−1∂3

(ωθ

r

)∥∥
L∞‖22 jϕ1(2

j ·) ∗Δq∂1ρ‖Lp

�
∥∥ωθ

r

∥∥
L3,1

∑
|q−j|≤4

2q−j‖ϕ1‖L1‖Δqρ‖Lp �
∥∥ωθ

r

∥∥
L3,1‖ρ‖B0

p,1
.

Estimate of I5. We use Proposition 2.7-a), the Young inequality for the con-
volutions, the continuity of the Riesz transform in Lp spaces and the Bernstein
inequality. We get

‖I5‖Lp �
∑

|q−j|≤4

2−j ‖xh‖L1

∥∥22qχ1(2
q·) ∗ ∇Δ−1∂3

(ωθ

r

)∥∥
Lp‖Δq∂1ρ‖L∞

�
∑

|q−j|≤4

2−j 22q ‖χ1(2
q·)‖L1

∥∥∇Δ−1∂3
(ωθ

r

)∥∥
Lp 2

q ‖Δqρ‖L∞

�
∥∥ωθ

r

∥∥
Lp

∑
|q−j|≤4

2−j 2−q ‖χ‖L1 2q ‖Δqρ‖L∞ �
∥∥ωθ

r

∥∥
Lp‖ρ‖L∞ .

Finally, we obtain∑
|q−j|≤4

∥∥∥[Δj , Sq−1

(
x1Δ

−1∂3
(ωθ

r

))]
Δq∂1ρ

∥∥∥
Lp

�
∥∥ωθ

r

∥∥
L3,1∩Lp ‖x1ρ‖B0

∞,1
+
∥∥ωθ

r

∥∥
L3,1∩Lp ‖ρ‖B0

p,1∩L∞ .(3.5)
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To estimate the second term of (3.2), we use Proposition 2.7-b), the Bernstein
inequality, (2.4), and the continuity of the Riesz transform on the Lorentz spaces.
We obtain:∑
|q−j|≤4

∥∥∥[Δj , Sq−1∂13Δ
−2

(ωθ

r

)]
Δq∂1ρ

∥∥∥
Lp

�
∑

|q−j|≤4

‖xhj‖L1

∥∥∇Sq−1∂13Δ
−2

(ωθ

r

)∥∥
L∞‖Δq∂1ρ‖Lp

�
∑

|q−j|≤4

2q−j‖xh‖L1

∥∥Sq−1∂13Δ
−1

(ωθ

r

)∥∥
L3,1‖Δqρ‖Lp �

∥∥ωθ

r

∥∥
L3,1‖ρ‖B0

p,1
.(3.6)

Plugging (3.5) and (3.6) into (3.2) we get∑
j

∥∥∥[Δj , Tv1 · ]∂1ρ∥∥∥
Lp

�
∥∥ωθ

r

∥∥
L3,1∩Lp

(‖x1ρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
.

The term
∑

j [Δj , Tv2 ·]∂2ρ can be estimated in the same way as above and we
obtain the estimate∑

j

∥∥∥[Δj , Tv2 · ]∂2ρ∥∥∥
Lp

�
∥∥ωθ

r

∥∥
L3,1∩Lp

(‖x2ρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
.

The estimate of the term
∑

j [Δj , Tv3 ·]∂3ρ will be done as follows. Since we have

Δv3 = −(∇× ω)3 = −(
∂rωθ +

ωθ

r

)
= −(

r∂r
(ωθ

r

)
+ 2

ωθ

r

)
= −(

xh · ∇h

(ωθ

r

)
+ 2

ωθ

r

)
,

using Lemma 3.3, we get

−v3(x) = Δ−1
(
xh · ∇h

(ωθ

r

))
+ 2Δ−1(

ωθ

r
)

= xh ·Δ−1∇h

(ωθ

r

)− 2

2∑
i=1

∂iiΔ
−2

(ωθ

r

)
+ 2Δ−1

(ωθ

r

)
= xh ·Δ−1∇h

(ωθ

r

)
+ 2 ∂33Δ

−2
(ωθ

r

)
.(3.7)

Then we have a decomposition of the commutator of the form,

−
∑
j

[
Δj , Tv3 · ]∂3ρ =

∑
|q−j|≤4

2∑
k=1

[
Δj , Sq−1

(
xkΔ

−1∂k
(ωθ

r

))]
Δq∂3ρ

+ 2
∑

|q−j|≤4

[
Δj , Sq−1∂33Δ

−2
(ωθ

r

)]
Δq∂3ρ.

This identity looks like (3.2), and by reproducing the analysis leading to (3.2),
we get∑

j

∥∥∥[Δj , Tv3 · ]∂3ρ∥∥∥
Lp

�
∥∥ωθ

r

∥∥
L3,1∩Lp

( 2∑
k=1

‖xkρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
.
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Estimate of II. Let us now turn to the estimate of the second term II. We
use (3.1), (3.3) and (3.4). With the same computations as for the term I, we get∑
j

[
Δj , T∂1 · v1

]
ρ =

∑
|q−j|≤4

[
Δj ,Δqv

1
]
Sq−1∂1ρ := II1 + II2 + II3 + II4 + II5 + II6,

where

II1 =
∑

|q−j|≤4

[
Δj ,ΔqΔ

−1∂3
(ωθ

r

)]
∂1Sq−1(x1ρ)

II2 =
∑

|q−j|≤4

[
Δj ,ΔqΔ

−1∂3
(ωθ

r

)](
23q(∂1χ1)(2

q·) ∗ ρ)
II3 = −

∑
|q−j|≤4

[
Δj ,ΔqΔ

−1∂3
(ωθ

r

)]
Sq−1ρ

II4 = −
∑

|q−j|≤4

ΔqΔ
−1∂3

(ωθ

r

)(
22jχ1(2

j·) ∗ Sq−1∂1ρ
)

II5 = −
∑

|q−j|≤4

[
Δj , 2

2qϕ1(2
q·) ∗Δ−1∂3

(ωθ

r

)]
Sq−1∂1ρ

II6 = −2
∑

|q−j|≤4

[
Δj ,Δq∂13Δ

−2
(ωθ

r

)]
Sq−1∂1ρ.

To estimate II1, we do not need to use the structure of the commutator. We will
use the Hölder and Bernstein inequalities and the following estimate: for every
p ∈ [1,∞] we have that

(3.8) ‖ΔqΔ
−1∂3f‖Lp � 2−q‖∇ΔqΔ

−1∂3f‖Lp � 2−q‖f‖Lp , ∀q ≥ 0.

Thus we have

‖II1‖Lp �
∑

|q−j|≤4

∥∥Δq

(
Δ−1∂3

(ωθ

r

))∥∥
Lp‖∂1Sq−1(x1ρ)‖L∞

�
∥∥ωθ

r

∥∥
Lp

∑
|q−j|≤4

2−q
∑

−1≤k≤q−2

2k ‖Δk(x1ρ)‖L∞ �
∥∥ωθ

r

∥∥
Lp ‖x1ρ‖B0

∞,1
.

The terms II2, II3, II4, II5 and II6 can be estimated in a manner similar to how I2,
I3, I4, I5, and the second term of (3.2) were estimated. Finally, we conclude that

‖II‖Lp �
∥∥ωθ

r

∥∥
L3,1∩Lp

( 2∑
i=1

‖xiρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
.

Estimate of III. We now consider the remainder term. We separate it into
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two terms, the high frequency term and the low frequency term:

III =
∑
j

[
Δj , R(v,∇)

]
ρ =

∑
q≥j−4

[
Δj ,ΔqvΔ̃q∇

]
ρ

=
3∑

j=−1

[
Δj ,Δ−1vΔ̃−1∇

]
ρ+

∑
q≥j−4,

q∈N

[
Δj ,ΔqvΔ̃q∇

]
ρ = III1 + III2.(3.9)

To treat the first term we use Proposition 2.7-b) and the Bernstein inequality:

‖III1‖Lp ≤
3∑

j=−1

‖xhj‖L1 ‖∇Δ−1v‖L∞ ‖Δ̃−1∇ρ‖Lp

�
3∑

j=−1

2−j ‖xh‖L1 ‖Δ−1v‖L2 ‖Δ̃−1ρ‖Lp � ‖v‖L2 ‖ρ‖Lp.(3.10)

For the second term III2, we first write the term inside the sum as follows:[
Δj ,Δqv

iΔ̃q∂i
]
ρ = Δj

(
Δqv

iΔ̃q∂iρ
)−Δqv

iΔ̃q∂iΔjρ

= Δj∂i
(
Δqv

iΔ̃qρ
)−Δj

(
Δq∂iv

iΔ̃qρ
)

− ∂i
(
Δqv

iΔ̃qΔjρ
)
+Δq∂iv

iΔ̃qΔjρ.

Summing over i = {1, 2, 3} and using the incompressibility of the velocity, we get

3∑
i=1

[
Δj ,Δqv

iΔ̃q∂i

]
ρ =

3∑
i=1

(
Δj∂i

(
Δqv

iΔ̃qρ
)− ∂i

(
Δqv

iΔ̃qΔjρ
))

.

Since

Δ̃qΔjρ = 0 if |q − j| ≥ 4 and Δj(Δqv
iΔ̃qρ) = 0 if j ≥ q + 4,

we obtain

III2 =

3∑
i=1

( ∑
q≥j−4,

q∈N

Δj∂i
(
Δqv

iΔ̃qρ
)− ∑

|q−j|≤3,
q∈N

∂i
(
Δqv

iΔ̃qΔjρ
))

=

3∑
i=1

IIIi2.

We now estimate III12. First, decomposing as in (3.2),

III12 =
∑

q≥j−4,
q∈N

Δj∂1
(
Δqv

1Δ̃qρ
)− ∑

|q−j|≤3,
q∈N

∂1
(
Δqv

1Δ̃qΔjρ
)

= III121 + III122 + III123 + III124,
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where

III121 =
∑

q≥j−4,
q∈N

Δj∂1

(
Δq

(
x1Δ

−1∂3
(ωθ

r

))
Δ̃qρ

)
III122 = −2

∑
q≥j−4,

q∈N

Δj∂1

(
Δq∂13Δ

−2
(ωθ

r

)
Δ̃qρ

)
III123 = −

∑
|q−j|≤3,

q∈N

∂1

(
Δq

(
x1Δ

−1∂3
(ωθ

r

))
Δ̃qΔjρ

)
III124 = 2

∑
|q−j|≤3,

q∈N

∂1

(
Δq∂13Δ

−2
(ωθ

r

)
Δ̃qΔjρ

)
.

Estimate of III121. To estimate the first term III121, we write, using (3.3),

III121 =
∑

q≥j−4,
q∈N

∂1Δj

(
Δq

(
Δ−1∂3

(ωθ

r

))
x1Δ̃qρ

)
−

∑
q≥j−4,

q∈N

∂1Δj

((
22qϕ1(2

q·) ∗Δ−1∂3
(ωθ

r

))
Δ̃qρ

)
:= III1211 + III1212 + III1213,

where

III1211 =
∑

q≥j−4,
q∈N

∂1Δj

(
ΔqΔ

−1∂3
(ωθ

r

)
Δ̃q(x1ρ)

)
III1212 =

∑
q≥j−4,

q∈N

∂1Δj

(
ΔqΔ

−1∂3
(ωθ

r

)(
22qϕ1(2

q·) ∗ ρ))
III1213 = −

∑
q≥j−4,

q∈N

∂1Δj

((
22qϕ1(2

q·) ∗Δ−1∂3
(ωθ

r

))
Δ̃qρ

)
.

To estimate the term III1211, we use the Bernstein and Hölder inequalities and (3.8).
We find

‖III1211‖Lp �
∑

q≥j−4,
q∈N

2j
∥∥ΔqΔ

−1∂3
(ωθ

r

)∥∥
Lp‖Δ̃q(x1ρ)‖L∞

�
∑

q≥j−4,
q∈N

2j−q
∥∥∇ΔqΔ

−1∂3
(ωθ

r

)∥∥
Lp‖Δ̃q(x1ρ)‖L∞

�
∥∥ωθ

r

∥∥
Lp

∑
q≥j−4,

q∈N

2j−q‖Δ̃q(x1ρ)‖L∞ �
∥∥ωθ

r

∥∥
Lp‖x1ρ‖B0

∞,1
.
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Now to estimate the terms III1212, we use the Young inequality and (3.8). We find

‖III1212‖Lp �
∑

q≥j−4,
q∈N

2j
∥∥ΔqΔ

−1∂3
(ωθ

r

)∥∥
Lp ‖22qϕ1(2

q·) ∗ ρ‖L∞

�
∥∥ωθ

r

∥∥
Lp

∑
q≥j−4,

q∈N

2j−q 2−q ‖ϕ1‖L1 ‖ρ‖L∞ �
∥∥ωθ

r

∥∥
Lp ‖ρ‖L∞.

The term III1213 can be estimated by using the Bernstein and Hölder inequalities,
combined with the convolution inequality and (2.4):

‖III1213‖Lp �
∑

q≥j−4,
q∈N

2j
∥∥22q ϕ1(2

q·) ∗Δ−1∂3
(ωθ

r

)∥∥
L∞ ‖Δ̃qρ‖Lp

�
∑

q≥j−4,
q∈N

2j−q ‖ϕ1‖L1

∥∥Δ−1∂3
(ωθ

r

)∥∥
L∞ ‖Δ̃qρ‖Lp

�
∥∥ωθ

r

∥∥
L3,1

∑
q≥j−4,

q∈N

2j−q ‖Δ̃qρ‖Lp �
∥∥ωθ

r

∥∥
L3,1 ‖ρ‖B0

p,1
.

Thus we obtain

(3.11) ‖III121‖Lp �
∥∥ωθ

r

∥∥
L3,1∩Lp

(‖x1ρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
.

Estimate of III122. Thanks to the Bernstein inequality, we have that, for every
p ∈ [1,∞] that,

(3.12) ‖Δq∂13Δ
−2f‖Lp � 2−2q ‖∇2Δq∂13Δ

−2f‖Lp � 2−2q ‖f‖Lp , ∀q ≥ 0.

This yields

‖III122‖Lp �
∑

q≥j−4,
q∈N

2j
∥∥Δq∂13Δ

−2
(ωθ

r

)∥∥
Lp ‖Δ̃qρ‖L∞

�
∥∥ωθ

r

∥∥
Lp

∑
q≥j−4,

q∈N

2j−q 2−q ‖Δ̃qρ‖L∞ �
∥∥ωθ

r

∥∥
Lp ‖ρ‖L∞.(3.13)

Estimate of III123. This term can be written in a manner similar to the
term III121, and we obtain finally

III123 = III1231 + III1232 + III1233 + III1234,
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where

III1231 = −
∑

|q−j|≤3,
q∈N

∂1

(
ΔqΔ

−1∂3
(ωθ

r

)
Δ̃qΔj

(
x1ρ

))
III1232 = −

∑
|q−j|≤3,

q∈N

∂1

(
ΔqΔ

−1∂3
(ωθ

r

)
Δ̃q

(
22jϕ1(2

j ·) ∗ ρ))
III1233 = −

∑
|q−j|≤3,

q∈N

∂1

(
ΔqΔ

−1∂3
(ωθ

r

)(
22qϕ1(2

q·) ∗Δjρ
))

III1234 =
∑

|q−j|≤3,
q∈N

∂1

((
22qϕ1(2

q·) ∗Δ−1∂3
(ωθ

r

))
Δ̃qΔjρ

)
.

We point out that, by reproducing the same analysis as for III121, we get

(3.14) ‖III123‖Lp �
∥∥ωθ

r

∥∥
L3,1∩Lp

(‖x1ρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
.

Estimate of III124. Using (3.12), we find

‖III124‖Lp �
∑

|q−j|≤3,
q∈N

2j
∥∥Δq∂13Δ

−2
(ωθ

r

)∥∥
Lp‖Δ̃qΔjρ‖L∞

�
∥∥ωθ

r

∥∥
Lp

∑
|q−j|≤3,

q∈N

2j−q2−q‖Δ̃qρ‖L∞ �
∥∥ωθ

r

∥∥
Lp‖ρ‖L∞.(3.15)

Combining (3.11), (3.13), (3.14), and (3.15), we find finally

(3.16) ‖III12‖Lp �
∥∥ωθ

r

∥∥
L3,1∩Lp

(‖x1ρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
.

The term III22 can be estimated as was III12. For the term III32, we use (3.7) and
then, reproducing the prior analysis, we get, with xh := (x1, x2), the estimate

‖III22‖Lp + ‖III32‖Lp �
∥∥ωθ

r

∥∥
L3,1∩Lp

(‖xhρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
.

Combining the above estimate with (3.16) yields

(3.17) ‖III2‖Lp �
∥∥ωθ

r

∥∥
L3,1∩Lp

(‖xhρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
.

Now, from (3.10) and (3.17) we get

‖III‖Lp � ‖v‖L2‖ρ‖Lp +
∥∥ωθ

r

∥∥
L3,1∩Lp

(‖xhρ‖B0
∞,1

+ ‖ρ‖B0
p,1∩L∞

)
.

This finishes the proof of the proposition. �
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4. Proof of Theorem 1.2

To prove Theorem 1.2, we will restrict ourselves to proving some a priori esti-
mates and the inviscid limit. The proof of the uniqueness and the existence of the
solutions are standard.

4.1. A priori estimates

We establish in this subsection some global a priori estimates which we need in the
proof of our main result. First we give some energy estimates and we shall prove
the estimate of ‖vr/r‖L∞ , which is based on the estimation of our commutator in
the previous section. Finally we will establish control of the Lipschitz norm of the
velocity. We start with the energy estimates.

4.1.1. Energy estimates. We have the following estimates.

Proposition 4.1. Let (v, ρ) be a smooth solution of (1.1). Then we have:
(a) For (v0, ρ0) ∈ L2 × L2, t ∈ R+, and ν ≥ 0,

‖v(t)‖2L2 + 2ν

∫ t

0

‖∇v(τ)‖2L2 dτ ≤ C0 (1 + t2),

where C0 depends on ‖v0‖L2 and ‖ρ0‖L2 but not on the viscosity ν.

(b) For ρ0 ∈ L2,

‖ρ‖2L∞
t L2 + 2 ‖∇ρ‖2L2

tL
2 = ‖ρ0‖2L2 and ‖ρ(t)‖L∞ ≤ C t−3/4 ‖ρ0‖L2.

The constant C does not depend on the viscosity.

Note that the axisymmetry of the velocity and the density are not needed in
this proposition. The proof of the first estimate (a) can be found in [3]. For the
proof of (b), see [12].

We aim now to give some estimates of the horizontal moment xhρ of the density
that will be needed later. See Proposition 4.2 (1)-(3) in [12] for a proof.

Proposition 4.2. Let v be a smooth vector field with zero divergence and let ρ be
a smooth solution of the second equation of (1.1). Then we have:

(1) If ρ0 ∈ L2 and xhρ
0 ∈ L2, there exists C0 > 0 such that, for every t ∈ R+,

‖xhρ‖L∞
t L2 + ‖xhρ‖L2

t Ḣ
1 ≤ C0(1 + t5/4).

(2) If ρ0∈L2 and |xh|2ρ0 ∈ L2, there exists C0 > 0 such that, for every t ∈ R+,∥∥|xh|2ρ
∥∥
L∞

t L2 +
∥∥|xh|2ρ

∥∥
L2

t Ḣ
1 ≤ C0(1 + t5/2),

where C0 depend only on the norm of the initial data and not on the viscosity.
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4.1.2. Strong estimates. We will prove in the first step a bound for ‖ω
r (t)‖L3,1

which is the quantity important for obtaining the global existence of smooth so-
lutions. It allows us to bound the vorticity in L∞ space for all times and then to
bound the Lipschitz norm of the velocity ‖∇v(t)‖L∞ .

Proposition 4.3. Let v0 be a smooth axisymmetric vector field with zero diver-
gence such that v0 ∈ L2, let its vorticity be such that ω0/r ∈ L2∩Lp̄ with 3 < p̄ < 6,
and let ρ0 ∈ B0

2,1 ∩B0
p̄,1 ∩ Lm, with m > 6, be an axisymmetric function such that

|xh|2ρ0 ∈ L2. Then for every t ∈ R+, we have∥∥ω
r
(t)

∥∥
L3,1 +

∥∥vr
r
(t)

∥∥
L∞ ≤ Φ2(t).

We recall that Φ2(t) = C0e
exp{C0t

19/6} and the constant C0 depends only on the
norm of the initial data but not on the viscosity ν.

Remark 4.4. We note that for ρ0 ∈ Hs−2 with s > 5/2, there exists p̄ > 3 such
that ρ0 ∈ B0

2,1 ∩B0
p̄,1.

Proof. We start with the following result proved in [2]:

|vr/r| � 1

| · |2 ∗ ∣∣ωθ

r

∣∣.
Using Lemma 2.9 and (2.3), we have, for p̄ > 3,

(4.1) ‖vr/r‖L∞ �
∥∥ 1

| · |2
∥∥
L3/2,∞

∥∥ωθ

r

∥∥
L3,1 �

∥∥ωθ

r

∥∥
L3,1 �

∥∥ωθ

r

∥∥
L2∩Lp̄ .

There remains to estimate ‖ωθ/r‖L2∩Lp̄ . For this purpose we recall that the func-
tion ζ := ωθ/r satisfies the equation

∂tζ + v · ∇ζ − ν
(
Δ+

2

r
∂r
)
ζ = −∂rρ

r
.

By making Lp estimates, we get

(4.2) ‖ζ(t)‖L2∩Lp̄ ≤ ‖ζ0‖L2∩Lp̄ +

∫ t

0

∥∥∂rρ
r

(τ)
∥∥
L2∩Lp̄ dτ.

At this stage we need the following lemma. We refer to [12] for the proof.

Lemma 4.5. For every axisymmetric smooth scalar function u, we have

∂r
r

u =
2∑

i,j=1

bij(x) ∂iju,

where the functions bij are bounded.

Consequently, for every 1 ≤ p ≤ ∞, we obtain∥∥∂r
r
u
∥∥
Lp � ‖∇2u‖Lp.
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Using Lemma 4.5, the Bernstein inequality, and Lemma 2.10 we obtain∥∥∂rρ
r

∥∥
L1

t (L
2∩Lp̄)

� ‖∇2ρ‖L1
t (L

2∩Lp̄) �
∑
j≥−1

‖Δj∇2ρ‖L1
t (L

2∩Lp̄)

�
∑
j≥−1

22j ‖Δjρ‖L1
t(L

2∩Lp̄)

�
∫ t

0

‖Δ−1ρ(τ)‖L2∩Lp̄ dτ +
∑
j≥0

22j
∫ t

0

‖Δjρ(τ)‖L2∩Lp̄ dτ

� t ‖ρ0‖L2∩Lp̄ +
∑
j≥0

22j
∫ t

0

‖Δjρ(τ)‖L2∩Lp̄ dτ.

Now use Proposition 2.12 to obtain∥∥∂rρ
r

∥∥
L1

t (L
2∩Lp̄)

� t ‖ρ0‖L2∩Lp̄ +
∑
j≥0

(
‖Δjρ

0‖L2∩Lp̄ +
∥∥[Δj , v · ∇]ρ

∥∥
L1

t (L
2∩Lp̄)

)
� ‖ρ0‖B0

2,1∩B0
p̄,1

(1 + t) +
∑
j≥0

∥∥[Δj , v · ∇]ρ
∥∥
L1

t (L
2∩Lp̄)

.

Therefore, using Proposition 3.2, we obtain

∥∥∂rρ
r

∥∥
L1

t (L
2∩Lp̄)

� ‖ρ0‖B0
2,1∩B0

p̄,1
(1 + t) +

∫ t

0

‖v(τ)‖L2‖ρ(τ)‖L2∩Lp̄ dτ

+

∫ t

0

‖ζ(τ)‖L2∩Lp̄

(‖xhρ(τ)‖B0
∞,1

+ ‖ρ(τ)‖B0
2,1∩B0

p̄,1∩L∞
)
dτ

� ‖ρ0‖B0
2,1∩B0

p̄,1
(1 + t) + ‖ρ0‖L2∩Lp̄

∫ t

0

‖v(τ)‖L2 dτ

+

∫ t

0

‖ζ(τ)‖L2∩Lp̄

(‖xhρ(τ)‖B0
∞,1

+ ‖ρ(τ)‖B0
2,1∩B0

p̄,1∩L∞
)
dτ.

Substituting this last estimate into (4.2) and using Proposition 4.1, we get

‖ζ(t)‖L2∩Lp̄ � ‖ζ0‖L2∩Lp̄ + ‖ρ0‖B0
2,1∩B0

p̄,1
(1 + t) + ‖ρ0‖L2∩Lp̄ C0 t (1 + t)

+

∫ t

0

‖ζ(τ)‖L2∩Lp̄

(‖xhρ(τ)‖B0
∞,1

+ ‖ρ(τ)‖B0
2,1∩B0

p̄,1∩L∞
)
dτ.

Gronwall’s inequality gives

(4.3) ‖ζ(t)‖L2∩Lp̄ ≤ C0(1 + t2) exp
{
C ‖xhρ‖L1

tB
0
∞,1

+ C ‖ρ‖
L1

t

(
B0

2,1∩B0
p̄,1∩L∞

)}.
To estimate the term ‖ρ‖L1

tB
0
2,1

, we use the embedding B
1/2
2,1 ↪→ B0

2,1, the interpo-

lation estimate, the Hölder inequality and Proposition 4.1:

‖ρ‖L1
tB

0
2,1

� ‖ρ‖
L1

tB
1/2
2,1

� ‖ρ‖1/2L∞
t L2 t

3/4 ‖∇ρ‖1/2
L2

tL
2 � t3/4 ‖ρ0‖L2 .
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The term ‖ρ‖L1
tL

∞ , can be estimated using the second estimate of Proposi-
tion 4.1-(b) and integrating in time. We get

‖ρ‖L1
tL

∞ � t1/4 ‖ρ0‖L2 ,

and, for ‖ρ‖L1
tB

0
p̄,1

, we have by the definition of the Besov spaces and for 2 < p̄ < 6

and Proposition 4.1-(b), that, for 2 < p̄ < 6,

‖ρ‖L1
tB

0
p̄,1

=
∑
q≥−1

‖Δqρ‖L1
tL

p̄ �
∑
q≥−1

23q(1/2−1/p̄) ‖Δqρ‖L1
tL

2

�
∑
q≥−1

2q(1/2−3/p̄) 2q ‖Δqρ‖L1
tL

2 � ‖ρ‖L1
tH

1 � t1/2 ‖ρ‖L2
tH

1 � t1/2 ‖ρ0‖L2.

Consequently, in light of (4.3), we obtain

‖ζ(t)‖L2∩Lp̄ ≤ C0 (1 + t2) eC(t3/4+t1/2+t1/4) ‖ρ0‖L2 e
C ‖xhρ‖L1

tB0∞,1

≤ C0 e
C0t

2

e
C ‖xhρ‖L1

tB0∞,1 .(4.4)

To estimate the term ‖xhρ‖L1
tB

0
∞,1

, we use the following inequality proved for

ρ0 ∈ L2 ∩ Lm with m > 6 and |xh|2ρ0 ∈ L2 (see [12] for a proof):

‖xhρ‖L1
tB

0
∞,1

≤ C0 (1 + t19/6) + C0

∫ t

0

(
τ13/6 + τ−3/4

)
log

(
2 + ‖ζ‖L∞

τ L3,1

)
dτ.

Hence, for p̄ > 3, we get

(4.5) ‖xhρ‖L1
tB

0
∞,1

≤ C0 (1+t19/6)+C0

∫ t

0

(
τ13/6+τ−3/4

)
log

(
2+‖ζ‖L∞

τ (L2∩Lp̄

)
dτ.

Combining (4.4) and (4.5), we find that

log
(
2 + ‖ζ ‖L∞

τ (L2∩Lp̄)

)
≤ C0 (1 + t19/6) + C0

∫ t

0

(
τ13/6 + τ−3/4

)
log

(
2 + ‖ζ‖L∞

τ (L2∩Lp̄)

)
dτ.

Gronwall’s inequality gives

log
(
2 + ‖ζ‖L∞

τ (L2∩Lp̄)

) ≤ C0 (1 + t19/6) eC0(t
19/6+t1/4) ≤ Φ1(t).

Therefore, using (4.5) once more, we get

‖xhρ‖L1
tB

0
∞,1

≤ Φ1(t).

This yields in (4.4) that
‖ζ(t)‖L2∩Lp̄ ≤ Φ2(t).

Hence, it follows from (4.1) that,

‖ζ(t)‖L3,1 ≤ Φ2(t).
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Then, with ω = ωθeθ, using (2.2), we have

‖ω
r
(t)‖L3,1 ≤ ‖ζ(t)‖L3,1 ≤ Φ2(t).

Thanks to (4.1), we obtain

‖v
r

r
(t)‖L∞ ≤ Φ2(t).

This finishes the proof of the proposition. �

Now we will use the above estimates to obtain a bound for ‖ω(t)‖L∞.

Proposition 4.6. Suppose the hypotheses of Proposition 4.3 and, additionally,
that ω0 ∈ L∞. Then, for every t ∈ R+, we have

‖ω(t)‖L∞ + ‖∇ρ‖L1
tL

∞ ≤ Φ4(t).

We recall that Φ4(t) does not depend on the viscosity.

Proof. Recall that the vorticity ω satisfies the equation

∂tω + v · ∇ω − νΔω =
vr

r
ω + curl (ρez).

Applying the maximum principle and using Proposition 4.3,

‖ω(t)‖L∞ ≤ ‖ω0‖L∞ +

∫ t

0

∥∥vr
r
(τ)

∥∥
L∞‖ω(τ)‖L∞dτ +

∫ t

0

‖curl (ρez)(τ)‖L∞dτ

≤ ‖ω0‖L∞ +

∫ t

0

Φ2(τ)‖ω(τ)‖L∞dτ +

∫ t

0

‖∇ρ(τ)‖L∞dτ.

By Gronwall’s inequality this implies

(4.6) ‖ω(t)‖L∞ ≤
(
‖ω0‖L∞ +

∫ t

0

‖∇ρ(τ)‖L∞dτ
)
Φ3(t).

There remains to estimate ‖∇ρ‖L1
tL

∞ . To this end, using the Bernstein inequality
for p̄ > 3, we obtain

‖∇ρ‖L1
tL

∞ ≤ ‖∇Δ−1ρ‖L1
tL

∞ +
∑
j≥0

‖∇Δjρ‖L1
tL

∞

� ‖ρ‖L1
tL

2 +
∑
j≥0

2j(3/p̄+1) ‖Δjρ‖L1
tL

p̄ .
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Using now Proposition 2.11, Proposition 4.1, and the Bernstein inequality for p̄>3,

‖∇ρ‖L1
tL

∞ � ‖ρ0‖L2t+
∑
j≥0

2j(3/p̄−1)‖ρ0‖Lp̄

(
1 + (j + 1)

∫ t

0

‖ω(τ)‖L∞dτ
)

+
∑
j≥0

2j(3/p̄−1)‖ρ0‖Lp̄

∫ t

0

‖∇Δ−1v(τ)‖L∞dτ

� ‖ρ0‖L2t+ ‖ρ0‖Lp̄

(
1 +

∫ t

0

‖ω(τ)‖L∞dτ +

∫ t

0

‖v(τ)‖L2dτ
)

� ‖ρ0‖L2t+ ‖ρ0‖Lp̄

(
1 + t‖v‖L∞

t L2 +

∫ t

0

‖ω(τ)‖L∞dτ
)

� ‖ρ0‖B0
2,1∩B0

p̄,1

(
1 + t+ C0t(1 + t) +

∫ t

0

‖ω(τ)‖L∞dτ
)

≤ C0

(
1 + t2 +

∫ t

0

‖ω(τ)‖L∞dτ
)
.(4.7)

Substituting (4.7) into (4.6) and using Gronwall’s inequality, we obtain

‖ω‖L∞ �
(
‖ω0‖L∞ + C0

(
1 + t2 +

∫ t

0

‖ω(τ)‖L∞dτ
))

Φ3(t) ≤ Φ4(t).

In (4.7) this gives
‖∇ρ‖L1

tL
∞ ≤ Φ4(t),

which is the desired result. �

Now we will propagate the subcritical Sobolev regularities globally in time.
This is based on the estimate of ‖∇v(t)‖L∞ . More precisely, we prove the following
proposition.

Proposition 4.7. Let (v, ρ) be a smooth solution of the stratified system (1.1)
with ν ≥ 0, and such that (v0, ρ0) ∈ Hs ×Hs−2 with s > 5/2. Then there exists
Ψ ∈ U such that (v0, ρ0) ∈ Hs,Ψ ×Hs−2,Ψ and, for every t ∈ R+,

‖v‖
˜L∞
t Hs,Ψ + ‖ρ‖

˜L∞
t Hs−2,Ψ + ‖ρ‖

˜L1
tH

s,Ψ �
(‖v0‖Hs,Ψ + ‖ρ0‖Hs−2,Ψ(1 + t)

)
exp

{
C(‖∇v‖L1

tL
∞ + ‖∇ρ‖L1

tL
∞)

}
.

If, in addition, ρ0 ∈ Lm with m > 6 and |xh|2ρ0 ∈ L2, then for every t ≥ 0, we get

‖∇v(t)‖L∞ ≤ Φ5(t), ‖v‖
˜L∞
t Hs,Ψ + ‖ρ‖

˜L∞
t Hs−2,Ψ + ‖ρ‖

˜L1
tH

s,Ψ ≤ Φ6(t).

The constants C, Φ5(t), and Φ6(t) do not depend on the viscosity.

Remark 4.8. From Definition 2.5, we observe that when the profile Ψ is a non-
negative constant, then Hs,Ψ = Hs. In this case, we get the global persistence of
the Sobolev regularities

‖∇v(t)‖L∞ ≤ Φ5(t), ‖v‖
˜L∞
t Hs + ‖ρ‖

˜L∞
t Hs−2 + ‖ρ‖

˜L1
tH

s ≤ Φ6(t).

Recall that Φ5(t) and Φ6(t) do not depend on the viscosity.
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Proof. We localize in frequency the equation of the velocity. Then we have, for
every j ≥ −1,

∂tΔjv + v · ∇Δjv − νΔΔjv +∇Δjp = Δjρez − [Δj , v · ∇]v.

Taking the L2- scalar product of the above equation with Δjv and using the Hölder
inequality,

1

2

d

dt
‖Δjv(t)‖2L2 + ν‖∇Δjv‖2L2 ≤ ‖Δjv(t)‖L2

(
‖Δjρ(t)‖L2 + ‖[Δj , v · ∇]v(t)‖L2

)
.

Then,
d

dt
‖Δjv(t)‖L2 ≤ ‖Δjρ(t)‖L2 + ‖[Δj , v · ∇]v(t)‖L2 .

Integrating in time we obtain

‖Δjv(t)‖L2 ≤ ‖Δjv
0‖L2 + ‖Δjρ‖L1

tL
2 + ‖[Δj , v · ∇]v‖L1

tL
2 .

Multiplying this inequality by Ψ(j)2sj and taking the �2-norm, we get

‖v‖
˜L∞
t Hs,Ψ ≤ ‖v0‖Hs,Ψ + ‖ρ‖

˜L1
tH

s,Ψ +
(
Ψ(j)2sj‖[Δj , v · ∇]v‖L1

tL
2

)
�2
.

Combining Lemma 2.4 with Proposition 3.1 we get,(
Ψ(j)2sj‖[Δj , v · ∇]v‖L1

tL
2

)
�2

�
∫ t

0

(
Ψ(j)2sj‖[Δj , v · ∇]v(τ)‖L2

)
�2
dτ

�
∫ t

0

‖∇v(τ)‖L∞‖v(τ)‖Hs,Ψdτ.

Therefore, we get

(4.8) ‖v‖
˜L∞
t Hs,Ψ ≤ ‖v0‖Hs,Ψ + ‖ρ‖

˜L1
tH

s,Ψ + C

∫ t

0

‖∇v(τ)‖L∞‖v(τ)‖Hs,Ψdτ.

Now, to estimate ‖ρ‖
˜L1
tH

s,Ψ , we use Proposition 2.12 for j ≥ 0:

‖Δjρ‖L∞
t L2 + 22j‖Δjρ‖L1

tL
2 � ‖Δjρ

0‖L2 + ‖[Δj , v · ∇]ρ‖L1
tL

2 .

Multiplying this last inequality by Ψ(j)2j(s−2), taking the �2 norm, and using the
Hölder inequality and Proposition 4.1-(b), we find

‖ρ‖
˜L∞
t Hs−2,Ψ + ‖ρ‖

˜L1
tH

s,Ψ

≤ ‖Δ−1ρ‖L∞
t L2 + ‖Δ−1ρ‖L1

tL
2 + ‖ρ0‖Hs−2,Ψ +

∥∥Ψ(j)2j(s−2)‖[Δj , v · ∇]ρ‖L1
tL

2

∥∥
�2

≤ Ct‖ρ0‖L2 + C ‖ρ0‖Hs−2,Ψ +
∥∥Ψ(j)2j(s−2)‖[Δj , v · ∇]ρ‖L1

tL
2

∥∥
�2
.

Since 0 < s− 2, using Proposition 3.1, we obtain that∥∥∥(Ψ(j)2j(s−2)‖[Δj , v · ∇]ρ‖L1
tL

2

)
j

∥∥∥
�2

≤ C

∫ t

0

‖∇v(τ)‖L∞‖ρ(τ)‖Hs−2,Ψdτ

+ C

∫ t

0

‖∇ρ(τ)‖L∞‖v(τ)‖Hs−2,Ψdτ.
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Therefore, using the embeddings Hs,Ψ ↪→ Hs−2,Ψ, we find

‖ρ‖
˜L∞
t Hs−2,Ψ + ‖ρ‖

˜L1
tH

s,Ψ � ‖ρ0‖L2t+ ‖ρ0‖Hs−2,Ψ

+

∫ t

0

‖∇ρ(τ)‖L∞‖v(τ)‖
˜L∞
τ Hs,Ψdτ

+

∫ t

0

‖∇v(τ)‖L∞‖ρ(τ)‖
˜L∞
τ Hs−2,Ψdτ.(4.9)

Setting f(t) :=‖v‖
˜L∞
t Hs,Ψ+‖ρ‖

˜L∞
t Hs−2,Ψ+‖ρ‖

˜L1
tH

s,Ψ and combining (4.8) and (4.9)

with Gronwall’s inequality, we obtain

(4.10) f(t) �
(
‖v0‖Hs,Ψ + ‖ρ0‖L2t+ ‖ρ0‖Hs−2,Ψ

)
e
C
(
‖∇v‖

L1
t L∞+‖∇ρ‖

L1
t L∞

)
.

To estimate the term ‖∇ρ‖L1
tL

∞ , we use Proposition 4.6 and to estimate the Lip-
schitz norm of the velocity we use the classical logarithmic estimate; for s > 5/2,

‖∇v‖L∞ � ‖v‖L2 + ‖ω‖L∞ log(e + ‖v‖Hs)

� ‖v‖L2 + ‖ω‖L∞ log(e + ‖v‖
˜L∞
t Hs,Ψ),

where in the last line we have used the embedding Hs,Ψ ↪→ Hs. Combining this
estimate with (4.10), Proposition 4.1-(a), and Proposition 4.6, we get

‖∇v‖L∞ ≤ Φ4(t)
(
1 + t+

∫ t

0

‖∇v(τ)‖L∞dτ
)
.

By Gronwall’s inequality this gives

‖∇v(t)‖L∞ ≤ Φ5(t).

Substituting this estimate into (4.10), we obtain finally

f(t) := ‖v‖
˜L∞
t Hs,Ψ + ‖ρ‖

˜L∞
t Hs−2,Ψ + ‖ρ‖

˜L1
tH

s,Ψ ≤ Φ6(t).

This finishes the proof of the proposition. �

4.2. Inviscid limit

We will prove that the family (vν , ρν)ν>0 is converges strongly in L∞
T Hs×L∞

T Hs−2

to the solution (v, ρ) of the Euler-stratified system (1.6) as ν → 0. More precisely,
we prove the following proposition.

Proposition 4.9. Let s > 5/2, let v0 be an axisymmetric divergence-free vector
field such that v0 ∈ Hs, and let ρ0 ∈ χs

m with 6 < m. Then the solution (vν , ρν) to
the system (1.1) converges strongly in L∞

loc(R+;H
s) × L∞

loc(R+;H
s−2), as ν → 0,

to the unique solution (v, ρ) of the system (1.6).
More precisely, there exists Ψ ∈ U∞ depending on the profile of the initial data

and such that for every T > 0

‖vν − v‖L∞
T Hs + ‖ρν − ρ‖L∞

T Hs−2 ≤
(√

ν +
1

Ψ(log(1/ν))

)
Φ7(T ).
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Proof. We will proceed in two steps. In the first, we prove that for any fixed T > 0,
the family (vν , ρν)ν converges strongly in L∞

T L2 when ν → 0, to the solution (v, ρ)
of the system (1.6) with initial data (v0, ρ0). In the second step, we will show how
to get strong convergence in the Sobolev spaces L∞

T Hs × L∞
T Hs−2 with s > 5/2.

We set
Wν := vν − v, Πν = pν − p and ην = ρν − ρ.

Then we obtain the equations:

(4.11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tWν + vν · ∇Wν +Wν · ∇v − νΔWν +∇Πν = νΔv + ην ez

∂tην + vν · ∇ην −Δην = −Wν · ∇ρ

divWν = 0

(Wν , ην)|t=0 = 0.

First, we take the L2 inner product of the first equation of (4.11) with Wν . Inte-
grating by parts and using the Hölder inequality, we get

1

2

d

dt
‖Wν(t)‖2L2 + ν‖∇Wν‖2L2 ≤ ν‖Δv‖L2‖Wν‖L2 + ‖∇v‖L∞‖Wν‖2L2

+ ‖ην‖L2‖Wν‖L2.

This gives

d

dt
‖Wν(t)‖L2 ≤ ν‖Δv‖L2 + ‖∇v‖L∞‖Wν‖L2 + ‖ην‖L2 .

Integrating in time this last inequality , we obtain

‖Wν(t)‖L2 ≤ ν‖Δv‖L1
tL

2 + ‖ην‖L1
tL

2 +

∫ t

0

‖∇v(τ)‖L∞‖Wν(τ)‖L2dτ.

From the inequality
‖Δv‖L2 ≤ C ‖v‖Hs , s ≥ 2,

and by using Gronwall’s inequality and Proposition 4.7, we find

‖Wν‖L∞
t L2 �

(
ν‖Δv‖L1

tL
2 + ‖ην‖L1

tL
2

)
e
‖∇v‖

L1
t L∞

≤ (
νt‖v‖

˜L∞
t Hs + ‖ην‖L1

tL
2

)
Φ6(t) ≤

(
ν + ‖ην‖L1

tL
2

)
Φ6(t).(4.12)

There remains to estimate ‖ην‖L1
tL

2 . To this end, we apply the maximum principle
to the second equation of (4.11). We get

‖ην(t)‖L2 ≤
∫ t

0

‖Wν · ∇ρ(τ)‖L2dτ

� ‖Wν‖L∞
t L2‖∇ρ‖L1

tL
∞ ≤ Φ4(t)‖Wν‖L∞

t L2 ,(4.13)

where we have used Proposition 4.6. Now, substituting (4.13) into (4.12) and using
Gronwall’s inequality we get, for all t ∈ [0, T ],

‖Wν‖L∞
t L2 ≤

(
ν +

∫ t

0

Φ4(τ)‖Wν‖L∞
τ L2dτ

)
Φ6(t) ≤ ν Φ7(t).(4.14)
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In view of (4.13), this gives that

‖ην‖L∞
t L2 ≤ ν Φ7(t) ∀t ∈ [0, T ].

Therefore,
‖Wν‖L∞

t L2 + ‖ην‖L∞
t L2 ≤ ν Φ7(t) ∀t ∈ [0, T ].

This proves the proof of the strong convergence in L∞
loc(R+;L

2).

We now turn to the proof of the strong convergence in the Sobolev spaces. Let
M ∈ N, that will be chosen later. Then, by definition of the Sobolev space we
have, for all t ∈ R+,

‖(vν − v)(t)‖2Hs =
∑
q≤M

22qs‖Δq(vν − v)(t)‖2L2 +
∑
q>M

22qs‖Δq(vν − v)(t)‖2L2

� 22Ms‖(vν − v)(t)‖2L2

+
1

Ψ2(M)

∑
q>M

Ψ2(q)22qs
(
‖Δqvν(t)‖L2 + ‖Δqv(t)‖L2

)2

� 22Ms‖Wν(t)‖2L2 +
1

Ψ2(M)

(
‖vν(t)‖2Hs,Ψ + ‖v(t)‖2Hs,Ψ

)
.

We have used the fact that the profile Ψ is nondecreasing. Now we use (4.14) and
Proposition 4.7 to get

‖(vν − v)(t)‖2Hs ≤
(
22Msν2 +

1

Ψ2(M)

)
Φ7(t).

It is enough to choose M such that

e2Ms ≈ 1

ν
.

Therefore we obtain that

‖(vν − v)(t)‖2Hs ≤
(
ν +

1

Ψ2( 1
2s log(

1
ν ))

)
Φ7(t).

Similarly for ‖(ρν − ρ)(t)‖Hs−2 , we obtain finally

‖(ρν − ρ)(t)‖2Hs−2 ≤
(
ν +

1

Ψ2( 1
2(s−2) log(

1
ν ))

)
Φ7(t) ≤

(
ν +

1

Ψ2( 1
2s log(

1
ν ))

)
Φ7(t).

In the last identity we have used the fact that the profile Ψ is nondecreasing.
Now for any λ > 0, the function defined by Ψλ(x) := Ψ(λx) belongs to the same
class U∞. Therefore, modifying Ψ we get

‖(vν − v)(t)‖Hs + ‖(ρν − ρ)(t)‖Hs−2 ≤
(√

ν +
1

Ψ(log( 1ν ))

)
Φ7(t).

It follows that

‖vν − v‖L∞
T Hs + ‖ρν − ρ‖L∞

T Hs−2 → 0 as ν → 0.

This finishes the proof the proposition. �
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