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Inviscid limit for the axisymmetric stratified
Navier—Stokes system

Samira Sulaiman

Abstract. This paper is devoted to the study of the Cauchy problem
for the stratified Navier—Stokes system in three-dimensional space. In the
first part of the paper, we prove the existence of a unique global solution
(vy, pv) for this system with axisymmetric initial data belonging to the
Sobolev space H® x H*™? with s > 5/2. The bounds on the solution are
uniform with respect to the viscosity. In the second part, we analyse the
inviscid limit problem. We prove that the viscous solutions (vy, py)v>0
converge strongly in the space L2, (Ry; H® x H*™?) to the solution (v, p)
of the stratified Euler system.

1. Introduction and main results

In this paper, we consider the incompressible stratified Navier—Stokes system in
three-dimensional space

oy + v, - Vo, —vAv, +Vp, = pye., (t,z) € Ry x R3

Opy +v, - Vp, —Ap, =0

dive, =0

(vuv pV)lt:O = (,007 pO).

(1.1)

Here, the vector field v, = (v}, v2,v3) stands for the velocity of the fluid and it is
assumed to be divergence-free, while the scalar function p, denotes the density or

the temperature. The pressure p, is a scalar function given by the equation
Ap, = —=div(vy, - Vo) + 0.pu.

The parameter v > 0 is the kinematic viscosity, and the vector e, denotes the
vector (0,0, 1). Note that the usual incompressible Navier—Stokes system arises as
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a particular case of (1.1): it suffices to take p, = constant. It reads as follows:
Oy, + v, - Vo, —vAv, +Vp, =0
(1.2) dive, =0
Vy|i=0 = 0.
In this case, the pressure p, is given by the equation
Ap, = —=div(v, - Vo).

The mathematical theory of the Navier-Stokes equations (1.2) was initiated
by Leray in [18]. He proved the global existence of a weak solution of the sys-
tem (1.2) in the energy space by using a compactness method. Nevertheless, the
uniqueness of these solutions is only known for two spatial dimensions. A few
decades later, in [7], Fujita and Kato proved local well-posedness in the critical
Sobolev space H'/ 2(R?), by using a fixed point argument and taking advantage
of the time decay of the heat semiflow. The global existence of these solutions
is only proved for small initial data and the question for large data remains an
outstanding open problem. For more discussion, we refer the reader, for example,
to the papers [15], [16], and [22].

We can prove global existence when the initial data are not necessarily small
but have some special symmetry. Before going further into the details, we first
write the equation of the vorticity, which plays a central role in the theory of the
global well-posedness. For a given vector field v, the vorticity w is defined by
w = curl v =V X v, and, in the case of the system (1.2), it solves the transport-
diffusion equation

(1.3) Oy + vy - Vw, — vAw, = wy, - V.

The main difficulty is related to the dynamics of the stretching term w, - Vu,.
Now we will see how to use the axisymmetry of the flows in order to simplify the
stretching term. We start with the following definition.

Definition 1.1. We say that a vector field v is axisymmetric (without swirl) if it
takes the form:
v(t,x) = 0" (t,r 2)e, + 07 (t, 1 2)es,

where z = x5 , © = (21,22,2) , © = (23 +23)1/2,

basis of R?, given by

and (e,,eg,e,) is the cylindrical

er= (300, = (=32 TH0), and e =(0,0.1)

The components v" and v* do not depend on the angular variable 6.

In what follows we need to recall some basic algebraic properties related to
some computations in the cylindrical coordinate system. For example, for an
axisymmetric vector field v, the operators v - V and div have the forms

1
(1.4) v-V=2"0,+ ;veag + 070, =070, + 070,
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and
,UT
dive = 0,0" + — + 0,0,
r
The vorticity w of the vector field v has the special form
(1.5) w=(0,0" — 0,v%)ep := wey

and the stretching term reads

I

w-Vv=—uw.
r

Consequently, the equation (1.3) becomes
/UT'
Orw, + v, - Vw, — vAw, = 2 w,.
r

The expression of the Laplacian operator in cylindrical coordinates is given by
A = Opp + %5‘,, + 0,,. Therefore, the scalar component wg of the vorticity will
satisfies the equation

0 9 0w v 0
Ow,, + v, - Vw,, — Z/(AWV — T—;’) = TVWU'

We can easily check that the quantity 3 := w?/r solves the equation
2
0B +v-VB—v(A+20,)8=0.

Hence, we deduce that for all p € [1, o],
1B e < 118°| e

These new conservation laws enabled Ukhoviskii and Iudovich [25], to show the
global well-posedness under the assumption v € H' and wq,wo/r € L?N L. This
result has been recently improved by many authors in various function spaces. The
inviscid case v = 0 has also been treated. For more details see for example [1], [2],
6], [14], [17], and [23].

Concerning the inviscid limit problem, that is the convergence of the viscous
solutions (vy),>0 to the solution of the incompressible Euler equation, we will
restrict ourselves to the discussion of the following results. In [19], Majda proved
that for v* € H® with s > 5/2, the solutions (v, ), converge in L? norm to the
unique solution v of the Euler system and the rate of convergence is of order vt.
By using an elementary interpolation argument we deduce strong convergence in
the Sobolev spaces H", for all n < s. We note that this result is local in time in
space dimension 3 and global in space dimension 2. Recently, Masmoudi proved
in [20] strong convergence for the same space H* of initial data; his proof is based
on the use of a cutoff procedure. We mention that the inviscid limit problem in
the context of axisymmetric flows was studied in [14].

Next we discuss the stratified Navier—Stokes system (1.1), which has been in-
tensively studied in recent decades, and for which there have been proved many
results related to the global well-posedness problem.
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The study of the case of stratified Euler equations with axisymmetric initial

data was initiated by Hmidi and Rousset in [12]. This system is described by
Ow~+v-Vuo+Vp=pe,
Op+v-Vp—Ap=0

(1.6) '
divo =0

V=0 = 0’ Plt=0 = PO-

To show global existence, one needs new a priori estimates, especially for the

function ¢ := wy/r, which solves the equation

O
O +v-V(=— Tp.

The main difficulty is to find a priori estimates on the density p to control the right-
hand side of the last equation. The idea is that the singularity 1/r on the axis
r = 0 is a derivative and that the term 0,p/r can be thought of as the Laplacian
of the density p. In [12], the authors try to use smoothing effects to control this
term O,p/r. They gave a positive answer under the assumptions

e HY, e H " NL™ 5s>5/2,m>6 and r*p’c L%

Their basic idea consists in using the coupled function I' := ( + 8—;A_1 p, which
satisfies the transport equation

ol'+v-VI = — @Afl,wv p-
r

Since the operator %A‘l behaves like the Riesz transform on the class of axisym-
metric functions, the estimate of ||{(¢)|| 3.1 is equivalent to a bound on ||T'(¢)]| p3.1.
Therefore the difficulty reduces to estimating the singular commutator which arises
in the equation of I'. For this purpose the authors used intensively the axisymmet-
ric structure of the velocity combined with some tools of harmonic analysis and
paradifferential calculus. The result of [12] is extended in [24] to the framework of
critical Besov spaces. More precisely, global existence was proved for

UOGB%Q, poeB;(12ﬁLm,m>6 and r%p° € L2

The aim of this paper is twofold. First, we extend the result of [12] to the stra-
tified Navier—Stokes system (1.1) with uniform bounds with respect to the viscosity
but for the subcritical regularities, that is, (v°, p°) € H* x H*~% with s > 5/2.
Second, we analyze the inviscid limit problem and we show strong convergence of
the solutions (v,,p,) of the system (1.1) to the one of (1.6) in the same space
of initial data. We point out that our approach for the last point is completely
different from that in Masmoudi’s work [20] for the incompressible Navier—Stokes
equation.

First, we introduce the following space:

uex:, <= uc H"2NL™and such that r?u € L%

We state now our main result.
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Theorem 1.2. Let s > 5/2, v° € H* be an avisymmetric divergence-free vector
field without swirl, and let p° € x5, with m > 6 be an avisymmetric function. Then
there exists a unique global solution (v,,p,) of the system (1.1) such that

vy € C(RJW HS) and pv € C(RJW an) n Llloc(R+; Llp),

with uniform bounds with respect to the viscosity.
Moreover, for any T > 0 we have

11% ||('U1/ — U, py — p)”L%a(He. x Hs—2) = 07

where (v, p) is the solution of the system (1.6) with initial data (v, p°).
Before giving some details about the proof, a few remarks are in order.

Remarks. (1) From the proof the rate of convergence in the L? space is of order vt.
More precisely,
(v = v, 00 = ) ()l L2 < vt f(2),

with f is an explicit function depending only on the size of the initial data and the
variable time t.

(2) Our approach does not permit to treat the critical case vy € B;/f, po € B;,/f.
Even though, we can extend the result of Proposition 3.2 to the Lorentz space
L3, the difficulty relies on the establishment of maximal smoothing effects for a
transport-diffusion model in Lorentz space.

Now, we will discuss the main ideas of the proof of Theorem 1.2. To simplify
the notation, we will write (v, p) instead of (v,, p,). First, recall that the vorticity

w = weq satisfies

T

Ow +v-Vw—vAw = YW+ cul (pez).
r

This yields
we r

Oiwy + v - Vwy — I/(Awg — —2) - wy — Opp.
r r
It follows that ¢ := wy/r obeys the equation

Orp
.

(L.7) atCJr’U'VC*Z/(AJr%aT)C:f

At this stage, we can try to use the method of [12], but unfortunately it seems to
be rigid and fails for the viscous case. Our alternative approach relies on the use
of maximal smoothing effects combined with a suitable commutator estimate.

To be more precise, we use an interpolation argument combined with the max-
imum principle to obtain, for p > 3,

? (T)’ dr.

L2NLP

t
IC@®)1z2x < CICO N 2nze < ClICNz2nzs +C / |
0
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As we will see the restriction of the operator 0, /r to the class of axisymmetric
functions is dominated by the second derivative:

|%o)] <19

To estimate this last latter quantity we use the maximal smoothing effect
of the heat flow and the difficulty reduces to the analysis of the commutator
>_; lI[Aj,v-V]p|l» which is the hard technical part of this paper. We shall prove
in Proposition 3.2 that, for p € (1, +00),

Z H[AJ’U : v]pHLp

Jj=—-1

(18) < C ol lollzr + C |2 s (lenplime, , + ol nz):

where xj, := (21, z2). Consequently, we obtain

c HxthLfl,Bgo,l

(1.9) [C)L2nre < C(t) e

To estimate ||zpp|[z1po . We use the following inequality proved in [12]:

t
lenelliims, , < Colt)(1+ / h(r)og (24 [[Clps- £ )dr ),

where ¢ — Cy(t) is a given continuous function and ¢ — h(t) belongs to L{ (R4).
We conclude by using (1.8) and (1.9) combined with the Gronwall inequality to
obtain a global bound for ||{(¢)|| 3.1, uniformly with respect to the viscosity.

Concerning the inviscid limit, we first prove strong convergence in L (R ; L?)
by making energy estimates. However the strong convergence in the space for initial
data in H® x H5~2 is more subtle. For this purpose we use interpolation arguments
combined with an additional frequency decay of the energy uniformly with respect
to ¢t and v in the spirit of [9] and [13].

This paper is organized as follows. In Section 2, we fix some notation, give
the definition of Besov and Lorentz spaces, and state some smoothing effects for
a transport-diffusion equation. In Section 3, we study the estimate of the com-
mutator ngq[Ajv v+ V]p in LP spaces. In the last section, we give the proof of

Theorem 1.2, which will be presented in several steps.

2. Tools and functional spaces

In this preliminary section, we introduce some basic notations and recall the defini-
tions of the usual and heterogeneous Besov spaces. We give also some results about
Lorentz spaces and discuss some well-known results about the Littlewood—Paley
decomposition and a transport-diffusion equation used later.
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2.1. Notation

For any positive A and B, the notation A < B means that there exists a positive
constant C' independent of A and B and such that A < CB.

For any pair of operators X and Y acting on some Banach space A, the com-
mutator [X, Y] is defined by XY — Y X.

For [ € N, we set

D;(t) = Coexp (...exp(C’O t19/6) ..),
————

| times

where Cjy depends on the norms of the initial data and its value may vary from line
to line up to some absolute constants, but it does not depend on the viscosity v.
We will make intensive use of the trivial facts

/0 t &)(r)dr < ®(1) and exp ( /0 t @I(T)dT) < B (1)

To define Besov spaces we need the following dyadic partition of unity (see [5], [16]).

Proposition 2.1. There exist two nonnegative radial functions x € C°(R3) and
¢ € CP(R3\{0}) such that

XE) +> (2798 =1, VEeR?,
Jj=>0
lp—jl = 2= suppp(277) Nsuppp(277-) = &,
j>1=suppyNsuppp(277) = 2.
Let f € 8'(R?). We define the nonhomogeneous Littlewood-Paley operators by
Af=x(D)f, ¥j>0, Ajf=9@27D)f and S;f= > Apf.
—1<k<j—1
It may easily be checked that
F=>Af, VfeS'RY).
j>—1

Moreover, the Littlewood—Paley operators satisfy the property of almost orthogo-
nality: for any f,g € &' (R?),

A =0 -5l 22 A(S;1fA9) =0 iflp—j|>5.
The following Bernstein inequality will be used constantly in the paper; see [5].

Lemma 2.2. There exists a constant C > 0 such that for every j, k € N and for
every function v we have

sup ||0*S;v| e < C* 94 (k+3(1/p1—1/p2)) |S;vllres, for pa >p1 >1,

| =F

CR2* Al e < \STP,C”WAWHLM < CR2F | Aj]| e
o=
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From the paradifferential calculus introduced by J.-M. Bony in [4], the prod-
uct uv can be formally divided into three parts as follows:

(2.1) fg=Trg+Tyf + R(f,9).

where ot
Trg = > Si1fAg
J
and

R(f.9) =) AjfAsg, with Aj=Aj 1+ A7+ A,
i

2.2. Usual and heterogeneous Besov spaces

We recall now the following definition of general Besov spaces.

Definition 2.3. Let s € R and 1 < p,r < 4o00. The inhomogeneous Besov
space By . is the set of tempered distributions f such that

I fllBs, = (2714, fllzr) 0 < +o0.
The following embeddings are an easy consequence of the Bernstein inequalities,
By = B;rj,%l/prl/m)a p1 <p2 and 71 <7,

Let T >0,p>1, (p,r) € [1,00]?, and s € R. We denote by L4.B; . the space of
distributions f such that

Fllzems, =112 flzr),.

Lo < +o0.

We say that f belongs to the Chemin—Lerner space Z%B;r if
11120 5y = 112125 fll 2o

The relations between these spaces are detailed in the following lemma, which is a
direct consequence of the Minkowski inequality.

o < oo,

Lemma 2.4. Let s € R,e > 0, and (p,r, p) € [1,+00]®. Then we have the embed-
dings
L4y, = 4B, — LyBL ifr>p,
LAB3YE — LhBS, < LABS, ifp>r.
We remark that the Sobolev space H* coincides with the Besov space B3 , for

s € R and we have the embedding

2d
d—2s

Now we will introduce the heterogeneous Besov spaces, which are extensions of
the classical Besov spaces.

, d )
H? — LP, VO§5<§, with p =
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Definition 2.5. (i) A function ¥ : {—1} UN — R* belongs to the class U/ if the
following conditions are satisfied:

(a) ¥ is a nondecreasing function.

(b) There exists C' > 0 such that

sup  ——— =
zeNU{—1} 14€9)

(ii) The class Us is the set of functions ¥ € U satisfying lim, 1 oo ¥(z) = +o00.

(iii) Let s € R, (p,7) € [1,00]%, and ¥ € U. We define the heterogeneous Besov
space BV as follows:

u € B;;g’ if and only if |ju]

pew = (V@27 Agullr) . < +oc.

Observe that when the profile U has exponential growth, ¥U(q) = 2% « € R,
then the heterogeneous Besov space B;;E’ reduces to the classical Besov space
B;,J;a. When the profile ¥ is a nonnegative constant, it is clear that B;:E’ =B, ,.

The next result shows that any element of a given Besov space is always more
regular than the prescribed regularity (see [9] for a proof).

Lemma 2.6. Let s € R, p € [1, 400, r € [1,+00), and f € B, .. Then there exists
a function ¥ € Uy, such that f € B;:g’.

The following proposition will be useful later; see [11] for a proof.

Proposition 2.7. We have the following estimates:
a) Let p € [1,00], and let f,g and h be three functions such that xh € L',
VfelLPl and g € L. Then

|hx(fg) = f(hxg)llLe < llzhllLa [V £Le gl
b) Assume that xh € L', Vf € L>, and g € L?, Vp € [1,00]. Then we have

[P (f g) = f(hxg)llee < |z hllLy IV fllze llgll -

2.3. Lorentz spaces and interpolation

Before defining the Lorentz spaces, we recall the notation of a nonincreasing re-
arrangement. The nonincreasing rearrangement h* : Ry — R of a measurable
function h is defined by the formula

h*(t) := inf {s' >0:1({y, |h(y)| >s'}) < t},

where [ denotes the usual Lebesgue measure.
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Definition 2.8 (Lorentz space). Let h a measurable function and 1 < p < oc.
Then h belongs to the Lorentz space if

t

sup tY/P h*(t) if = oo.
>0

© 1/r
(/ (/7 B* (1)) ﬁ) <oo if 1<r <o
IAllzer == 0

We can also define the Lorentz spaces by interpolation between Lebesgue spaces,
(LPY, LP2) 0y = P,

where 1 <py <p<p2<oo,1/p=(1—pu)/p1+ pn/p2, and 1 <r < co.

We have the classical properties:

[uvllLer < Cllul|pee|[v]|Lrr
LPT — [P YV 1<p<oo, 1<r<r;<oco, and LPP=1L",

(2.2)
We have also L*! = (L?, L), 1) with 3 < p and we deduce that

(2.3) [ullpsa < Cllullp2nps  with 3 <p.

The following lemma will be used later; see for instance [16] and [21].
Lemma 2.9. There exists a constant C' > 0 such that, for every 0 < 8 < 3,

I f *QHLOO(R?') < C||f||L3/13’°°(R3) ||9HL3/(3*/3%1(R3)'

Using Lemma 2.9 and the fact that 1/|z|? € L3/%°°(R3), we get

_ 1
ey VAl S | ] Il S 1Sz ces).

L3/2,00(R3)

2.4. Estimates for a transport-diffusion equation

We will give now some useful estimates for any smooth solution of the linear
transport-diffusion model given by

{6tf+v~Vf—fiAf=g,
f\t:ozfo'

We will give estimates of two kinds. The first are LP estimates, and the second
concern the smoothing effects. We start with the LP estimates; see [8].

(2.5)

Lemma 2.10. Let v be a smooth divergence-free vector field on R? and let f be a
smooth solution of (2.5). Then for all p € [1,00] and for every k > 0, we have

1F Ol < 10z +/0 lg(m)l|zr dr.
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We need the following result; see [10] for a proof.

Proposition 2.11. Let v be a smooth divergence-free vector field on R* with vor-
ticity w := curlv. Let f be a smooth solution of (2.5) with k =1 and g = 0. Then,
for every j €N, and fO € LP? with 1 < p < oo and t > 0, we have

21|85 fll e SN0 Le (1 + ( + Dllwllzipe + HVA—lU”LtlLOO)-
We will need the following smoothing effects which are proved in [12].

Proposition 2.12. Let v be a smooth divergence-free vector field on R? and let f
be a smooth solution of (2.5) with k = 1. Then, for every j € N, p > 2, and t > 0,
we have

t t
I\Ajfl\L?Ler?zj/ IIAjf(T)IILpdTSHAijHLv+/ 1A, v VIf(T)|rdr
0 0

t
+ / 1A;9(r) | rdr.

3. Commutator estimates

In this section, we discuss the commutator of the operator A; and the convection
operator v - V. We start with the following estimate, which was proved in [9].

Proposition 3.1. Let v be a smooth divergence-free vector field on R? and let u
be a smooth function. Then for every s > 0, r € [1,4+00], and ¥ € U as in
Definition 2.5, we have the estimate

(w62 18,0 Dl ), S Vol fullpyw + [ Vallzos ol g

We aim in this section to prove the following.

Proposition 3.2. Let v be an axisymmetric smooth and divergence-free vector
field without swirl and let p be an axisymmetric smooth scalar function. Then for
every j > —1 and 1 < p < 0o, we have the estimate

S s v Vol S ollse loller + 220 s (2ol + 1915 i)
j>—1

where wy is the angular component of w =V X v.

Proof. First, using the decomposition (2.1) of Bony, we write

> [Ajv-V]p= )] i[Aj,ﬂ,i Joip+ ) Zgj[Aj,Tai. '] p

j>—1 j>—1i=1 j>—1i=1
3
+ > > [A5 R, 0)]p
j>—1i=1

=1+ 1T+ 1IIL
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Estimate of I. We start with the estimate of the first component I, that is,
for i = 1. Since v is divergence-free, we have Av = —V x w. Then for axisymmetric
flows, we obtain that

v (@) = A 105w = A0, (xl%) N (xlagf%)
(3.1) =21 A7 0 (50) — 201877 (2F).
In the last line, we have used the following identity; see Lemma 2.10 in [12] for a
proof.
Lemma 3.3. For every f € S(R* R) and i,j € {1,2,3}, we have
A Y20 f) = 2 A0, f — 2R ;AT
where R; ; = 0; ;A™1 is the Riesz transform.

Then we have

(32) D [AjTa-]op= D> [A;,S;—1v']A0ip

J la—jl<4
— wo _o ,We
= Y A Sa@AT (5| A0 -2 Y] (A5 S0 (20 A0
lg—jl<4 lg—j|<4
By the definition of A, there exists a function ¢ € S(R?) such that
o1Bap =121 [ o(21(a - ) plo) dy
-
= 2% /3 p(29(z — y)) y1p(y) dy + 2 /3 p(2(z —y)) (x1 —y1) ply) dy
R R
= Dg(z1p) +2792%0 1 (29) % p,
where ¢1(z) = z1¢(x). Consequently the commutator reads,
(3.3) [Ag. a1]p = —2%T 1 (27:) % p.
Similarly for the cutoff S;, we obtain
(3.4) 218, F = Sy(x1F) + 2% (29) * F,
where x1(7) = z1x(z) € S(R3).
To estimate the first term of (3.2), we use (3.4) to write
_ w
[Aja Sq-1 (xlA 163(79))} AqO1p

= [As w8, (AT (20)) | Ag0up — [, 220x (2%) + A7 05 (21) | 4,010
= (25 Sum1 (A710(50) |21 80000 + Sy AT (20 [A. 1] A1
= a5, 2200 (20) £ A7105(20) | Ag0rp.

r
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Therefore we obtain
|85, S0 (1A7195(22)) | 2,019

= [AJ—,Sq,l(Aflag(ﬂ))}al(xlqu) - [Aj,sq,l(Aflag(%))]qu

S AT 0 (50 [, 01 |00 — 4,220 (21) + A7105(22) | A, 010,

Using (3.3) this gives
[Aj,Sq_l(xlAflag(%))]Aqalp
= (25, S0 (A7 (20)) | 18 (@1p)+ [ Ay, Sy (A7 (22)) ] 01 (2291 (27) x p)

— 881 (7105 (22)) | AgpS, 1 AT (22) (2¥01(27) + A, 1)

- a5 20aen) < A0 (2) ] A0
Therefore,

Z [AjaSq—l(mlA_lafa(%))}Aqalp =L +L+Is+ 1L +1s,
l[g—j]<4

where

3 [Aj,sq_l(A—lay,(“%))}alAq(xlp),

l[g—j]<4
> [Ansa(aTta(Eh) ] (2 @) @) ),
lg—j]<4
== Y [AnS (A7 %(5) A,
[g—j|<4
= Y Siatay(d )(223¢1(27)*Aq81p)
lg—jl<4
L=— Y [Aj,22qxl(2Q)*A L9 (22 )}A 1 p.
[g—j]<4

Estimate of I;. We use Proposition 2.7-a), the continuity of the Riesz trans-
form in the LP?, space and the Bernstein inequality'

Mallze < D llahylip || VS A~ 133 HLpHalﬁq(fvlp)||L°°
lg—j|<4
< Y 27 ah|p || VAT Lo (<2 )||Lp2q||Aq($1P)HL°°
[g—j]<4
<)L HLp 3 2079 (@1p) o S || 2 HLpHxlpllso ,
l[g—j|<4

where h;(z) = 237 h(27z) € S(R?).
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Estimate of I,. Using Proposition 2.7-a), the continuity of the Riesz transform
on Lebesgue space, and the Young inequalities for convolution, we get

Illze < 32 27 fahlloa ][ VSa-1 8785 (52) |, 12%(Br01) (27 # ol

lg—jl<4
SIvaTta (=), X 27 2 @ie) @) e il
lg—jl<4
SI=EL X 22 e lnllelio S |52 el
lg—jl<4

Estimate of I3. We use Proposition 2.7-a) and the continuity of the Riesz
transform on the Lebesgue space:

Mallee S D 277 |lwhl|]| V1A~ Loy (<2 )||Lp||qu||L°o
lg— j\<4

N, > 27 Agpll S H 2l Nl e
lg—j]<4

=

r

Estimate of 1. Using now the Holder inequality, the continuity of the operator
Sq—1 in L™ spaces, (2.4), the Young inequalities for convolution and the Bernstein
inequality, we get

Ml < 3 [|Sg-1 A~ 105(2 )||Lw||22fso1<2f->*Aqamnm
lq—j]<4

I e 32 2ol Aaple S 2] ol
lg—j|<4

Estimate of I5. We use Proposition 2.7-a), the Young inequality for the con-
volutions, the continuity of the Riesz transform in LP spaces and the Bernstein
inequality. We get

Malle S Y 277 ol oa][220x: (27) 5 VA~ 05 (22 )IIL,;IIAqalpIILoo

l[g—j]<4
S Z 277 2% ||x1 (20) || 11 || VAT 133 ||Lp 29[| Agpll L
lg—j|<4
H Do S 277270y 27 | Agpll= S |22 ||Lp|\p||Loo
l[g—j]<4

Finally, we obtain

Z H [AJ” Sq—1<$1A7163(%))} AqalpHLp
lg—j|<4
<=2

2 psage ol + (122

L31ALP HP”Bgylme-
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To estimate the second term of (3.2), we use Proposition 2.7-b), the Bernstein
inequality, (2.4), and the continuity of the Riesz transform on the Lorentz spaces.
We obtain:

H [A,—, sq,lawA*?(%)}AqalpHm

l[g—j|<4
DY Hl“thLl||V5q—1313A_2(%)HLwHAqamHLv
lg—jl<4
(36) < Z 2q*j||:ch|\L1HSq,1813A*( )||L31|\qu”“<” ||L31||PHB,,1'
lg—j|<4

Plugging (3.5) and (3.6) into (3.2) we get
S| (257 Joue|| S 1% s (leallse., + ollsg r)-
J

The term ) [A;,T,2:]02p can be estimated in the same way as above and we
obtain the estimate

S| (a5 e Jou] S 1= s (loarliss., + lollsg r)-
J

The estimate of the term };[A;,T}s-]03p will be done as follows. Since we have
Av® = —(V x w)3 = —(ywp + %) —(rd, ( %) +2—)
we we
=—(zp - Vp(—)+2—
(- T (20) +222),
using Lemma 3.3, we get

—v(z) = Az, - Vh(r))JrQA ( )

r

= 2 ATV, (2D) fQZa“A =) 42071 (22
1=1
(3.7) = - Alv( ) +20530" ( 9.
Then we have a decomposition of the commutator of the form,

Z (85, T -10sp= 3 Z[A],Sq (@ AT10(22)) | Ag0ap

lq—jl<4 k=1
+2 ) [Aj,sq_laggA—Q(%)}Aqagp.
lg—jl<4

This identity looks like (3.2), and by reproducing the analysis leading to (3.2),
we get

2
S (25 T 1000 S 1= o (3 Nl + Iollmg e )-
k=1
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Estimate of II. Let us now turn to the estimate of the second term II. We
use (3.1), (3.3) and (3.4). With the same computations as for the term I, we get

S [A)Ts 0 p= Y [, Ag'] Sy 101p =TTy + 1Ty + IT5 + Ty + 115 + 1T,
J lg—jl<4

where

M= 3 [A5,8,4710()]05, 1(1p)
lg—jl<4

L= 3 [A,8,87 5 ()] (24000 +)

lg—j]<4

Ho=— 3 [A,8,870:(2)] S5m0

lg—jl<4

Iy =— Z AqA_laff(%) (2% x1(27) * S4-101p)

lg—jl<4

B w
Is=— ) {AJ»QQqsﬁl(?q')*A 183(70)}5‘1*181’7

lg—jl<4
_o W
II6 = -2 Z [Aj,AqalgA 2(7‘9)}5’(;—1810-

lg—jl<4

To estimate 111, we do not need to use the structure of the commutator. We will
use the Holder and Bernstein inequalities and the following estimate: for every
p € [1, 00] we have that

~ ~

(38)  [[AAT O flLe S27UVAAT s f e S 27 flle, Vg >0.
Thus we have

Mhlizr S 3 [|Aa(A7 () 1181 (ap) e
lg—j|<4
I, S 2 Y Al S 122, el
lg—jl<4 —1<k<q—2

The terms I, I3, 114, IT5 and IIg can be estimated in a manner similar to how I,
I3, 1y, I5, and the second term of (3.2) were estimated. Finally, we conclude that

2
We
Iz S 12 g (3 Ii0lme, + ol e )-
=1

Estimate of III. We now consider the remainder term. We separate it into
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two terms, the high frequency term and the low frequency term:

I = Z (A, R, V)]p= > [A;,AA,V]p

q=j—4
3
(3.9) = > [A AL wA L V]p+ D [A), AwAV]p =111, + 111,
j=—1 a2 4

To treat the first term we use Proposition 2.7-b) and the Bernstein inequality:

3
1L e < 3 ahillon [VA_v] = 1A-1 V]| s
j=—1
3 . ~
(3.10) < S 27 ekl JA_wllze 1A ipllee S [ollee llole-
j=—1

For the second term IIls, we first write the term inside the sum as follows:

(A, AgviAdi]p = A (A Agdip) — A AgdiAp
= AJ& (Aqviqu) - Aj (Aqaﬂ)lqu)
— 0 (A AL p) + AgDiv Ay Ajp.

Summing over ¢ = {1,2,3} and using the incompressibility of the velocity, we get

23: [Aj,Aqv@qai} ZS: (A 0, (AgviAgp) — 8'(Aqvi£qup)).

i=1 =1
Since
AAjp=0if [g—j| >4 and Aj(A'Ap) =0 if j > q+4,
we obtain
3 3 .
ML =3 (3 a0(anBe) = > 9:(A0A,Ap)) = > T
=1 q>j—4, la—371<3, =1

q€eN q€EN

We now estimate IIT}. First, decomposing as in (3.2),

= > Ao (A Agp) — Y 01 (A0 A p)

q>j—4, lg—3l<3,
qeN qEN

= 1113, + IT1, + 1113, + IT13,,
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where

ML, = 0 8,01 (8(:187105(22)) A, p)
q=j—4
q€eN

M, = -2 > A0 (AqawA*(%)&qp)
q=j—4
qeN

My == > 0y (A(mA7105(20)A,4,0)

lg—3l<3
qeN

Ik, =2 a(Aa A*Q%ﬁAv)
24 ‘q;;ésv 1 qV13 ( r ) q jp
qEN

Estimate of II1},. To estimate the first term III3;, we write, using (3.3),
_ w X
III%l = Z 81A](AQ(A 163(79))1‘1qu)
2q q —1g (YO\\ X
- > 31Aj((2 P1(27) x A 33(7))qu>

= My + My, + g5,

where
T, = Z 31Aj(AqA7133(%)£q(x1p)>
M = Y0 A, (A8,0710:(%7) (2% (27) + )

w, ~
My, =— Y alAj((22q¢1(2q~) * A*lag(Te))qu)
To estimate the term IIT},,, we use the Bernstein and Hélder inequalities and (3.8).
We find

Iy e S D0 27[|a,A 7 0s(22 )HLPIIAq(fcw)IILw

q=j—4,

q€EN
< Y VAL (Z) A @)l
2
<122 Z 27 Ag(@1p)llz S [[5H] llerplse -

q23j—
qEN
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Now to estimate the terms IIT3,,, we use the Young inequality and (3.8). We find

MGialer £ 37 271188705 (52) | 12791 (2%) # ol
e
1= X 2 2 el el S (|52 Dol
q>j—4,
qEN

The term III%13 can be estimated by using the Bernstein and Holder inequalities,
combined with the convolution inequality and (2.4):

IMglee S 30 27 (2201 (20) + A~ 05 (22 )||Loo 1A o

q=j—4,
q€EN
< D 27| ||AT 19, (22 ||Loo 1Agpll L
q=j—4,
qEN
SN on X 27 1B ple S 1152 o el s, -
q>j—4,
qEN
Thus we obtain
(3.11) ||11121||Lp<|| ||L31mL,,(H331p||Bo + ol o ,ares)-

Estimate of III%Q. Thanks to the Bernstein inequality, we have that, for every
p € [1, 00] that,

(3.12)  [|Ag013AT 2 fllLe S 272 VPAOA T fllLe S 272 | fllLe, Vg > 0.

~ ~

This yields

Milizr £ D7 27 A28 (52) |, B0l

q>j—4,
q€EN
(3.13) N|| I D 27727 | Agpl= S ||—HLpHpIILw-
q>j—4,
q€EN

Estimate of III};. This term can be written in a manner similar to the
term III},, and we obtain finally

I35 = My + My + Mg + Mgy,
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where

My == Y. 0(8,A7105(20) 3,4, (w1p) )

la—3il<3,
q€eN

My == > 81(AQA7133(%)5q(22j<P1(2j')*P))
la—3l<3,
qeN

Mg == > 01(A,A710(22) (221 (2%) = Ayp) )
la—jl<3,
q€eN

M = Y on((261(27) « A105(22)) B,8p).
la—3j|<3,
q€EN

We point out that, by reproducing the same analysis as for III%l, we get
(3-14) ||Ist||LP S || ||L3 mLp(HJL“W”BgQY1 + ”pHBg,lﬂL‘X’)-
Estimate of IIT},. Using (3.12), we find

ikl £ 3 280602l Bersple

\q*J’G\SB,

q

(3.15) H e S 2 Q|\qu||m<u ol Nl e
lg—71<3,
qEN

Combining (3.11), (3.13), (3.14), and (3.15), we find finally
(3.16) I er 5 12 o (sl + ol o).

The term IIT3 can be estimated as was IIT5. For the term III3, we use (3.7) and
then, reproducmg the prior analysis, we get, with zj, := (21, 22), the estimate

I + s S 220 g (e, , + ollmg, eee)-
Combining the above estimate with (3.16) yields
(3.17) Tl o 122 g (lanpls, , +1pl5g ).
Now, from (3.10) and (3.17) we get

I e S flollze el + | <2 ||L3 i (lznpllse  +llellso ar)-

This finishes the proof of the proposition. O
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4. Proof of Theorem 1.2

To prove Theorem 1.2, we will restrict ourselves to proving some a priori esti-
mates and the inviscid limit. The proof of the uniqueness and the existence of the
solutions are standard.

4.1. A priori estimates

We establish in this subsection some global a priori estimates which we need in the
proof of our main result. First we give some energy estimates and we shall prove
the estimate of ||v" /7| L, which is based on the estimation of our commutator in
the previous section. Finally we will establish control of the Lipschitz norm of the
velocity. We start with the energy estimates.

4.1.1. Energy estimates. We have the following estimates.

Proposition 4.1. Let (v, p) be a smooth solution of (1.1). Then we have:
(a) For (v°,p°) € L2 x L%, t € Ry, and v > 0,

t
lo(®)l|72 + 21// IVo(r)[[Z- dr < Co (1 +¢%),
0
where Cy depends on ||v°]| 12 and ||p°| 2 but not on the viscosity v.
(b) For p° € L?,
plZeere +20Vpl 7202 = [16°72 and  [Ip(t)]|z= < O3/ [|p°) 2.
The constant C' does not depend on the viscosity.

Note that the axisymmetry of the velocity and the density are not needed in
this proposition. The proof of the first estimate (a) can be found in [3]. For the
proof of (b), see [12].

We aim now to give some estimates of the horizontal moment x,p of the density
that will be needed later. See Proposition 4.2 (1)-(3) in [12] for a proof.
Proposition 4.2. Let v be a smooth vector field with zero divergence and let p be
a smooth solution of the second equation of (1.1). Then we have:

(1) If p° € L? and xp,p° € L?, there exists Co > 0 such that, for everyt € R,

lznpllLge 2 + llznpll L2 g < Co(1 +t7/4).

(2) If p° € L? and |z,|?p° € L?, there exists Cy > 0 such that, for everyt € R,

H|xh|2p||Lg°L2 + |||mh|2PHL;zH1 < Co(1+1°7/?),

where Cy depend only on the norm of the initial data and not on the viscosity.
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4.1.2. Strong estimates. We will prove in the first step a bound for || ()| 3.1
which is the quantity important for obtaining the global existence of smooth so-
lutions. It allows us to bound the vorticity in L°° space for all times and then to
bound the Lipschitz norm of the velocity ||Vv(t)| pe.

Proposition 4.3. Let 10 be a smooth azisymmetric vector field with zero diver-
gence such that v° € L2, let its vorticity be such that w®/r € L>NLP with 3 < p < 6,
and let p° € B9, N B0 A NL™, with m > 6, be an azisymmetric function such that
|zp|?p° € L2 Then for every t € Ry, we have

12O o + 150 < 220

We recall that ®o(t) = CoeeXP{Cot *°} and the constant Cy depends only on the
norm of the initial data but not on the viscosity v.

Remark 4.4. We note that for p° € H*=2 with s > 5/2, there exists p > 3 such
that p° € BY | N BY .

Proof. We start with the following result proved in [2):
" /rl S | |

Using Lemma 2.9 and (2.3), we have, for p > 3,

1

(4.1) [v" /rllLe S ||| 2 ||L3/z oo H ||L3 1S H HL3 1S H ||L2F1LP

There remains to estimate |lwg/7||r2nrs. For this purpose we recall that the func-
tion ¢ := wy/r satisfies the equation

2 Or
G +v-VC—v(A+20,)¢ =~ Tp.
By making LP estimates, we get
0 L Onp
(4.2) IS L2nre < [[¢7]lL2nLe + ; == Lenrs dr

At this stage we need the following lemma. We refer to [12] for the proof.
Lemma 4.5. For every azisymmetric smooth scalar function u, we have
P 2
%u = Z bij(z) 0iju
1,7=1
where the functions b;; are bounded.

Consequently, for every 1 < p < oo, we obtain

1=Full < 1V2ullze-
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Using Lemma 4.5, the Bernstein inequality, and Lemma 2.10 we obtain

Orp
H% HL%(LQQL;;) S HV2P||L§(L2nLﬁ) S Z HAJ‘VQPHLg(L?nLﬁ)

j=-1
S Z 2% HAJPHL%(LzﬁLﬁ)
j=-1
t ) t
S [ 18cp@ s dr+ 32 [ 18500l lans dr
0 - 0
j=0

t
St leznre + Z 2% / 1A p(T)|| L2 re dT.
3>0 0

Now use Proposition 2.12 to obtain

0,
||%p||L%(Lsz;7) 5 t HpO”LQﬁLT7 + Z (”AijHLQﬁLf’ + H[Ajav . V]pHL%(L2ﬂLﬁ))
j=0

5 HpOHBg’lF‘IBgyl(l + t) + Z H[Ajav : V]pHL%(LQr‘]LF)'
>0

Therefore, using Proposition 3.2, we obtain
a?"p < 0 '
HTHL%(LW\Lﬁ) Sle HBgylﬁBg,l(l +1) + ; o)z lp(T)l| L2ALs dT
t
+ [ 1CEzznns (onolr)lse,, + 107, g ra) d

o : 1NB,

t

S 1l g (L+ 0+ [0l [ o) 22
e 0

t
+ [ 0wz (oo, + 107 g iy o) dr
Substituting this last estimate into (4.2) and using Proposition 4.1, we get
IO z2nLe S N¢°L2nLs + ||PO||Bg,1mBgyl(1 + 1)+ 10’ L2Ls Cot (1 +1)
t
+ / I zznzs (lenp@llse , + I0()sg g oz dr-
Gronwall’s inequality gives

(@3) 16O zner < Colt+ ) exp {Cllampllnymn, , +Cllolly (g opo cie) }

To estimate the term |[p|[ 159 , We use the embedding 3217/12 < BY |, the interpo-
lation estimate, the Holder inequality and Proposition 4.1:

1/2 1/2
lollimg, S lellpige S ol /4 1Vpll e S 641160 2
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The term [|p[|z1ze, can be estimated using the second estimate of Proposi-
tion 4.1-(b) and integrating in time. We get

/4

||PHL1LOO S HPOHL%

and, for HpHLlBO , we have by the definition of the Besov spaces and for 2 < p < 6
and Pr0p051t10n 4 1-(b), that, for 2 < p < 6,

HPHL%Bg1 Z HquHLtlLﬁ S Z p3a(l/2-1/P) HquHLtlL?

q>—1 q>—1
<S> 200220 | Apll e S ol S 72 Nollzm S 672 16° o
q>-1

Consequently, in light of (4.3), we obtain
Cllzn
IC(E) | 2nze < Co (1 + 2) CE/ 2+ D102 Clonellngog,
2 C“IhPHLlBO 1

(4.4) < Cpeo!

To estimate the term |xppl| LBy, We use the following inequality proved for
pY € L2 N L™ with m > 6 and |xh|2p0 € L? (see [12] for a proof):

|lznpllipe, , < Co(1+ 1976y + ¢y /Ot (7136 + 773/4) log (2 + [|¢|| oo o1 ) dr-
Hence, for p > 3, we get
(4.5) HJL“hP||Lt113gQ1 < Co (1+t19/6)+00/0t (713/6+7'_3/4) log (2+HCHL$°(L2mLﬁ) dr.
Combining (4.4) and (4.5), we find that
1og (2 4 ([ [| oo (z2nLr))
< Co(1+75) + Co /Ot (7136 + 773/%) Jog (2 + [|¢ || pow (r2nLm) ) dT-
Gronwall’s inequality gives
1og (2 + [I¢]l Lae(r2nrey) < Co (1 +11976) Qo Y < (1),
Therefore, using (4.5) once more, we get
lznpllpy o, < Pa(t).

This yields in (4.4) that
€O L2nLr < P2(2).
Hence, it follows from (4.1) that,

[CE)lLza < Pa(t).
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Then, with w = wgey, using (2.2), we have
w
1= @llzea < [C@ONzer < B2(2)-

Thanks to (4.1), we obtain

1=l < @),

This finishes the proof of the proposition. O

Now we will use the above estimates to obtain a bound for |jw(t)]| .

Proposition 4.6. Suppose the hypotheses of Proposition 4.3 and, additionally,
that w°® € L>™. Then, for every t € Ry, we have

lw®lze +VpllLize < Palt).
We recall that ®4(t) does not depend on the viscosity.

Proof. Recall that the vorticity w satisfies the equation

T

Ow +v-Vw—rvAw = YW+ cul (pez).
r

Applying the maximum principle and using Proposition 4.3,

t Ur t
lo®llz~ < |l + / |2 oo + / Jeurl (pez) () | o dr
t t
< ol + / Bo (1) o) | e i + / IV () dr.
0 0

By Gronwall’s inequality this implies

(4.6) o)z < (lllz + / IV ()| dr ) @),

There remains to estimate |[Vp| 11z To this end, using the Bernstein inequality
for p > 3, we obtain

IVollripe < IVA-1plLize~ +Z IVA;pllLpe
j=0

Slellzize + ZQj(S/ﬁH) 12;pllL1zs-
Jj=>0
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Using now Proposition 2.11, Proposition 4.1, and the Bernstein inequality for p> 3,

t
IVellegse S 1lot + 32 2P un (14 G +1) [ fo(llumdr)
>0 0

t
+ PO [ [TA ol dr
0

Jj=0
t t
S loat + 1600 (1+ [ o(llmdr + [ ot podr)
0 0
t
St + 10°0er (14 tholzze + [ Jo(o)llumdr)
0
i
S 1Pl g, (1+ ¢+ Cot( )+ [ [t mdr)
’ D, 0

(@7) < o1+ e +/Ot Jeo() wdr)-

Substituting (4.7) into (4.6) and using Gronwall’s inequality, we obtain

el 5 (Jlam + Co(t+ £+ [ u(r)lmdr) ) @s(6) < 240)

In (4.7) this gives
[Vpllpipee < Pa(t),
which is the desired result. O

Now we will propagate the subcritical Sobolev regularities globally in time.
This is based on the estimate of || V()| . More precisely, we prove the following
proposition.

Proposition 4.7. Let (v,p) be a smooth solution of the stratified system (1.1)
with v > 0, and such that (v°,p°) € H® x H*~2 with s > 5/2. Then there exists
U c U such that (v°, p°) € HSY x H*=2Y and, for every t € Ry,

[0l 7oe preve + 1P zoe pro—ze0 + N0l z2 o S (1001 arssw + [10°| pre-2w (1 +2))
exp {C(| Vol pip~ + Vol pip=)}-
If, in addition, p® € L™ with m > 6 and |z,|?p° € L?, then for every t > 0, we get
1900l < @5(t), ol + [0 ges + ol 73000 < D0
The constants C, ®5(t), and Pg(t) do not depend on the viscosity.

Remark 4.8. From Definition 2.5, we observe that when the profile ¥ is a non-
negative constant, then H*Y = H*. In this case, we get the global persistence of
the Sobolev regularities

IV0o(®lle <50 0lzmpe + Ioll oo + ol e < Do)
Recall that ®5(t) and Pg(t) do not depend on the viscosity.
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Proof. We localize in frequency the equation of the velocity. Then we have, for
every j > —1,

OhAjv+v-VAju—vAANv+VAjp=Ajpe, —[Aj,v- V]u.
Taking the L?- scalar product of the above equation with Ajv and using the Holder
inequality,
1d
2dt
Then,

180172 + vIVA ]I < IIAjv(t)HLz(I\Ajp(t)l\Lz + Ay, V]v(t)l\Lz>.

%Ilﬁjv(t)l\w < NAjpM)llL2 + [[[Ag, v Vv(©)]| L2
Integrating in time we obtain
[A0) L2 < [18;0° 2 + 1Al Lize + 1Az, v - VIol| Lo
Multiplying this inequality by ¥(j)2%/ and taking the £?-norm, we get
Pollzgsrew < 10%mes + ol + (T2 11850 Viollzy2) -
Combining Lemma 2.4 with Proposition 3.1 we get,

(e2as,v- Vellnre) , S / (w50 Vo(r)l2) dr

t
S /0 Vo ()| Lo [0(T) || gr.v d.

Therefore, we get

t
48) vz prew < 10°Masce + lpll7s o0 +C/O IVo() || Lo 0(T) | 112w d.
Now, to estimate Hp||Z%H5,\I,, we use Proposition 2.12 for j > 0:
18;pll ez + 2% AspllLire S 1850° L2 + 145, 0 - Vil Lo

Multiplying this last inequality by ¥(5)27(*=2), taking the 2 norm, and using the
Holder inequality and Proposition 4.1-(b), we find

10l e e+ 1] 73 5100
<A ipllizrs + 1A ipllpize + [0 + €G220 Viplpize] e
< Ct g2 + C 1o e + |2 GIZ2 185, 0- Vol a2

Since 0 < s — 2, using Proposition 3.1, we obtain that
t
(2210850 lolzgea) ||, < € [ 190D lotle-awr

t
e / IV 6 o [0(7) | gro—s.0.b.
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Therefore, using the embeddings H*Y «— H*~ %Y we find

(RS NP P ey P
t
AT TP

t
(4.9) Ll )G PR

Setting f(t):= Hv||zthq, +||pHZ§oHS,2,\p +|\p||Z%H5,\I, and combining (4.8) and (4.9)
with Gronwall’s inequality, we obtain

@30) £ S (10w + 160l ot + 10w ) T a1 s),

To estimate the term ||Vpl[ 170, we use Proposition 4.6 and to estimate the Lip-
schitz norm of the velocity we use the classical logarithmic estimate; for s > 5/2,

[Vollzee S llvllz> + [[wll o log(e + [|v]| )

S llvllpz + llwllzee log(e + ([0l zoe o),

where in the last line we have used the embedding H*Y < H*. Combining this
estimate with (4.10), Proposition 4.1-(a), and Proposition 4.6, we get

V| pe < <I>4(t)(1 +t+ /Ot HV’U(T)HLOOdT).
By Gronwall’s inequality this gives
Vo)l Lo < P5(t).
Substituting this estimate into (4.10), we obtain finally
F0) 1= [ollz e + 1ol e grose + 10l e < @600

This finishes the proof of the proposition. O

4.2. Inviscid limit

We will prove that the family (v, p,, ), >0 is converges strongly in LS H® x LSS H*~?2
to the solution (v, p) of the Euler-stratified system (1.6) as v — 0. More precisely,
we prove the following proposition.

Proposition 4.9. Let s > 5/2, let v° be an azisymmetric divergence-free vector
field such that v° € H®, and let p° € x2, with 6 < m. Then the solution (v,,p,) to
the system (1.1) converges strongly in LS (Ry; H®) x L2 (Ry; HS2), as v — 0,
to the unique solution (v, p) of the system (1.6).

More precisely, there exists ¥ € Uy, depending on the profile of the initial data

and such that for every T > 0

1
ol oy — ollperes < Toa o) 27
low = vl + o = plluz s < (V2 + Grory) 21(0)
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Proof. We will proceed in two steps. In the first, we prove that for any fixed T > 0,
the family (v, p, ), converges strongly in L L? when v — 0, to the solution (v, p)
of the system (1.6) with initial data (v°, p°). In the second step, we will show how
to get strong convergence in the Sobolev spaces L H*® x L% H™2 with s > 5/2.
We set

W, :=v, —v, I, =p, —p and n, = p, — p.

Then we obtain the equations:
oW, +v, - VW, + W, - Vo —vAW, + VII, =vAv+n,e,
Oy + vy -V, — An, = =W, - Vp
diviw, =0
(Wo,mv)jt=0 = 0.

First, we take the L? inner product of the first equation of (4.11) with W,,. Inte-
grating by parts and using the Holder inequality, we get

(4.11)

1d
5 7 We@IZe + VIVIWLIILe < vl Av] L2l Wol| 2 + [ Vollee [ W |IZ:
+ ol L2 [Wo [l 2.
This gives

d
S IWe®llzz < v[Avze + Vol [Wollr2 + [l 2.

Integrating in time this last inequality , we obtain

t
IWo (D)2 < vl|Av]lpipe + [lnullpyee +/ Vo)l Lo W (7) || L2 d
0
From the inequality
[Av|[2 < Cllollas, 5>2,
and by using Gronwall’s inequality and Proposition 4.7, we find

GVl oo

IWollzgere £ (WlAvlpye + Invllzyr2)
(4.12) < (vl g g + lInwllzyzz) @) < (v + ol ) @o(t)-

There remains to estimate ||, || iz2- To this end, we apply the maximum principle
to the second equation of (4.11). We get

t
)z < / W, - Vp(r)| 2dr
(4.13) < Wl 2| Vol e < Ba(8)[Wo 23 1

where we have used Proposition 4.6. Now, substituting (4.13) into (4.12) and using
Gronwall’s inequality we get, for all ¢ € [0, 7],

t
(4.14) W, || oo 2 < (y+/ @4(T)||WV||L$OL2dT) B(t) < v Dy (t).
0
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In view of (4.13), this gives that
[llpsere <v®q(t) Vtel[0,T].

Therefore,
Wollpsere + mwllpeerz < v @7(t) Vvt e [0,T].

This proves the proof of the strong convergence in L® (Ry; L?).

We now turn to the proof of the strong convergence in the Sobolev spaces. Let
M € N, that will be chosen later. Then, by definition of the Sobolev space we
have, for all t € R,

1oy = o) (DT = D 22PNAg (0 = 0)(DOlF2 + D 22 Ag (0 — 0)(D)]7

q<M q>M
<22Ms||( —v)(®)l7

Z T2 22qs(HA v (t)llz2 + I\Aqv<f>|‘L2)2

1
< 22ME W, ()22 + SN (Hvy(t)llif.w + ||v(t>|\?qs,w)-

We have used the fact that the profile ¥ is nondecreasing. Now we use (4.14) and
Proposition 4.7 to get

(0 =)0l < (2% + g ) 100

It is enough to choose M such that

—_

e2Ms ~

S

Therefore we obtain that

1
nm~wwmps@+@@;agﬁém>

Similarly for |[(p, — p)(¢)||gs—2, we obtain finally

1 ) 1
O7(t) < (1/ + T
V2 (= log()) W2 (5; log(3))
In the last identity we have used the fact that the profile ¥ is nondecreasing.
Now for any A > 0, the function defined by ¥y (z) := ¥(Az) belongs to the same
class Uy,. Therefore, modifying ¥ we get

1w =) Olle + 1w = POllre2 < (Vi +

1o = P) O3 < (v + ) (1),

1

D ().
(10g(%)))
It follows that

lve —vllsems + lpy — pllogerrs—2 — 0 as v — 0.

This finishes the proof the proposition. O
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