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Size estimates for the EIT problem with one

measurement: the complex case

Elena Beretta, Elisa Francini and Sergio Vessella

Abstract. In this paper we estimate the size of a measurable inclusion in
terms of power measurements for a single applied boundary current. This
problem arises in medical imaging for the screening of organs (see [17]).
For this kind of problem one has to deal mathematically with the complex
conductivity (admittivity) equation. In this case we are able to establish,
for certain classes of admittivities, lower and upper bounds of the measure
of the inclusion in terms of the power measurements. A novelty of our
result is that we are also able to estimate the volume of an inclusion having
part of its boundary in common with the reference body. Our analysis is
based on the derivation of energy bounds and fine quantitative estimates
of unique continuation for solutions to elliptic equations.

1. Introduction

In this paper we consider a mathematical problem arising in electrical impedance
tomography (EIT), a nondestructive technique for determining electrical properties
of a medium from measurements of voltages and currents at the boundary.

More precisely let Ω be the region occupied by a conducting medium and, at a
fixed frequency ω, consider the complex-valued admittivity function

γ(x) = σ(x) + i ω ε(x),

where σ(x) represents the electrical conductivity at the point x ∈ Ω and ε(x) the
electrical permittivity at a point x ∈ Ω.

EIT leads to the inverse problem of the determination of the admittivity γ from
electrical measurements on ∂Ω. This technique has several applications in medical
imaging, nondestructive testing of materials and geophysical prospection of the
underground. We refer to the review paper [9] and to [11] for an extensive bibliog-
raphy comprising relevant examples of applications. For a variational approach of
the admittivity equation see [12]. We point out that the admittivity equation also
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appears in the study of a model of electrical conduction in biological tissues as the
asymptotic limit of an elliptic equation with memory subject to periodic Dirichlet
boundary conditions (see [7] and [8]).

Relevant medical applications of EIT are for example breast cancer detection,
(see for example [11]) and screening of organs in transplantation surgery ([17]). In
these particular situations one can assume γ to have the form

γ = γ0 χΩ\D + γ1 χD,

where D ⊂ Ω is a measurable subset of Ω and γ0 �= γ1. Here D represents the
cancerous tissue or the degraded tissue which has a different admittivity than the
surrounding healthy tissue represented by Ω\D. In particular in organ screening D
represents a region occupied by the degraded tissue imbedded in the healthy tissue
and an important test to decide the quality of the organ is to give an estimate of
the size of D in terms of boundary observations ([17]).

We describe the mathematical problem: let Ω ⊂ R
n, n ≥ 2, be a smooth,

bounded domain and let D ⊂ Ω be a measurable subset of Ω. We denote by γ0
and γ1 the admittivities of Ω\D and D, respectively, with

γ0 = σ0 + i ε0 and γ1 = σ1 + i ε1,

(for simplicity we set ω = 1), we assume that

σ0 ≥ c0 > 0, σ1 ≥ c0 > 0,

this last condition corresponding to the dissipation of energy, and we let

γ = γ0 χΩ\D + γ1 χD.

Let h ∈ H−1/2(∂Ω) be a complex-valued boundary current flux and consider the
so-called background potential u0 ∈ H1(Ω) generated by the flux h, which is the
solution of ⎧⎨

⎩
div(γ0∇u0) = 0 in Ω,

γ0
∂u0
∂ν

= h on ∂Ω,

and let u1 ∈ H1(Ω) be the perturbed potential generated by the flux h in the
presence of the inclusion D, which is the solution to⎧⎨

⎩
div(γ∇u1) = 0 in Ω,

γ
∂u1
∂ν

= h on ∂Ω,

where the systems defining u0 and u1 are subject to some combon normalization
condition.

Consider now

W1 =

∫
∂Ω

hu1,
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which represents the power required to maintain the current h in the presence of
the inclusion D and analogously define

W0 =

∫
∂Ω

hu0,

the power required to maintain the current h in the unperturbed medium. Let

δW =W1 −W0

be the so called power gap.
We will show that, if the admittivities γ0 and γ1 are constant or if γ0 and γ1 are

variable scalar admittivities with γ0 satisfying �γ0 ≡ 0 and some extra conditions,
then the measure |D| of D can be estimated in terms of |δW |. For, we follow the
approach introduced in [5] and [6] where the authors derived estimates of |D| in
terms of the power gap for the real conductivity equation.

A different approach to deriving size estimates for real conductivity inclusions
when D comprises several connected components each of small size has been in-
troduced in [10]. There the authors use multiple boundary measurements of a
particular form to derive optimal asymptotic estimates of D. Recently Kang et al.
(see [18]) obtained sharp bounds of the size of two dimensional conductivity inclu-
sions from a pair of boundary measurements using classical variational principles.

We want to point out that in the the screening of organs it seems to be crucial
to consider complex admittivities since electrical permittivity plays an important
role in discriminating between degraded and normal tissue ([17]).

To derive our main results, as mentioned above, we follow the approach of [5]
and [6] making use of the following basic tools:

• Energy bounds.

• Quantitative estimates of unique continuation and Ap weights ([13]).

More precisely, the first step is to find energy bounds, i.e., lower and upper
bounds for

∫
D
|∇u0|2 in terms of |δW |, and the second is to find lower and up-

per bounds for
∫
D |∇u0|2 in terms of |D| by using regularity and quantitative

estimates of unique continuation of solutions to elliptic equations. Unfortunately,
differently from the conductivity case, the first step in the complex case seems not
to work for arbitrary admittivities but only for constant ones or for certain variable
scalar admittivities (see assumption (H3) in Section 2).

On the other hand we would like to emphasize that, in [5] and [6], the authors
make the following assumption

d(D, ∂Ω) ≥ d0 > 0.

Clearly this hypothesis is rather restrictive in the medical applications we have
in mind since regions of the degraded tissue might extend to the surface of the
organ. In this paper we remove this assumption and prove size estimates also for
an inclusion having part of its boundary in common with ∂Ω. This is accomplished
by deriving fine quantitative estimates of unique continuation (Lemma 4.4), using
reflection principles and suitable changes of variables.
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The paper is divided as follows. In Section 2 we state our main assumptions
and our main results. In Section 3 we derive energy bounds of the form

K1 |δW | ≤
∫
D

|∇u0|2 ≤ K2 |δW |.

In Section 4 we list some useful tools concerning quantitative estimates of
unique continuation. Section 5 is devoted to the proof of our main results. In
particular we derive lower and upper bounds for the measure of the inclusion in
terms of the energy of the background potential on D. Finally, in the appendix
(Section 6), we give, for the reader’s convenience, the proof of the doubling In-
equality stated in Section 4.

2. Main results

2.1. Notation and main assumptions

For every x ∈ R
n we set x = (x′, xn) where x′ ∈ R

n−1 for n ≥ 2.

Let x0 ∈ Rn and r > 0. We denote by Br(x0) and B
′
r(x

′
0) the open ball in Rn

centered at x0 of radius r and the open ball in Rn−1 centered at x′ of radius r,
respectively. We denote by Ql(x0) = {x ∈ Rn : |xj − x0j | ≤ l, j = 1, . . . , n} the
cube with center x0 and side length 2l.

Definition 2.1 (Ck,1 regularity). Let Ω be a bounded domain in Rn. Given k,
with k = 0, 1, we say that ∂Ω or Ω is of class Ck,1 with constants r0 andM0, if, for
any P ∈ ∂Ω, there exists a rigid transformation of coordinates under which P = 0
and

Ω ∩ {
B′

r0(0)× (−M0r0,M0r0)
}
=

{
x ∈ B′

r0(0)× (−M0r0,M0r0) : xn > ψ(x′)
}
,

where ψ is a Ck,1 function on B′
r0(0) such that

ψ(0) = 0, |∇ψ(0)| = 0 when k = 1, and ‖ψ‖Ck,1(B′
r0

) ≤M0r0.

For z, w ∈ Cn we write by z · w =
∑n

j=1 zjwj .

Remark 2.2. Our convention is to normalize all norms so that that their terms are
dimensionally homogeneous with respect to their argument and they coincide with
the standard definitions when the dimension parameter equals one. For instance,
the norm appearing above is meant as follows when k = 1:

‖ψ‖C1,1(B′
r0

) = ‖ψ‖L∞(B′
r0

) + r0 ‖∇ψ‖L∞(B′
r0

) + r20
∣∣∇ψ∣∣

1,B′
r0

,

where

|∇ψ|1,B′
r0

= sup
x,y∈B′

r0
x �=y

|∇ψ(x) −∇ψ(y)|
|x− y| .
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Similarly, given a function u : Ω �→ C,

‖u‖L2(Ω) = r−1
0

( ∫
Ω

|u|2
)1/2

, ‖u‖H1(Ω) = r−1
0

(∫
Ω

|u|2 + r20

∫
Ω

|∇u|2
)1/2

,

and so on for boundary and trace norms such as ‖ · ‖H1/2(∂Ω) or ‖ · ‖H−1/2(∂Ω).

We denote by Ωr, r > 0, the set

Ωr =
{
x ∈ Ω : dist(x, ∂Ω) > r

}
.

Let now state our main assumptions.

(H1) Assumptions on Ω.

Let M0, M1 and r0 be positive numbers such that M0 ≥ 1. We assume that

1. Ω is a bounded domain in Rn with connected boundary;

2. ∂Ω has C0,1 regularity with constants r0 and M0;

3. |Ω| ≤M1 r
n
0 .

(H2) Assumptions on D.

D is a Lebesgue measurable subset of Ω and

(H2a) there exists a positive constant d0 such that dist(D, ∂Ω) ≥ d0,

or

(H2b) there exist r1 ∈ (0, r0] and P ∈ ∂Ω such that D ⊂ Ω\Br1(P ).

(H3) Assumptions on the coefficients.

Let c0 ∈ (0, 1], μ0, and L be positive numbers. We assume the reference
medium and the inclusion have admittivities γ0 = σ0 + iε0 and γ1 = σ1 + iε1
satisfying

σj ≥ c0, |γj | ≤ c−1
0 in Ω, for j = 0, 1,

and, moreover we assume that:

(H3i) γ0 and γ1 are constants, and we set μ0 = |γ0 − γ1| > 0,

or

(H3ii) ε0(x) ≡ 0 in Ω, and |σ0(x)− σ0(y)| ≤ L
r0
|x− y| for x, y ∈ Ω, and

|ε1(x)| ≥ μ0 or σ1(x)− σ0(x) ≥ μ0 in Ω.

(H4) Assumptions on the boundary data.

(H4a) Let h ∈ H−1/2(∂Ω) be a complex-valued nontrivial current density on
∂Ω satisfying ∫

∂Ω

h = 0.
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or

(H4b) Let h ∈ H−1/2(∂Ω) be a complex-valued nontrivial current density on
∂Ω satisfying ∫

∂Ω

h = 0,

and such that

supp h ⊂ Γ0 := ∂Ω ∩Br1/2(P ),

for the same r1 and P as in assumption (H2b).

We denote by F (h) the frequency of h, that is

(2.1) F (h) =
‖h‖H−1/2(∂Ω)

‖h‖H−1(∂Ω)

.

Let

γ = γ0 χΩ\D + γ1 χD

and consider the unique solution u1 ∈ H1(Ω) of the problem

(2.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div(γ∇u1) = 0 in Ω,

γ
∂u1
∂ν

= h on ∂Ω,∫
∂Ω

u1 = 0.

Analogously we define the background potential u0 ∈ H1(Ω) generated by the
same current flux h, to be the unique solution to the problem

(2.3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div(γ0∇u0) = 0 in Ω,

γ0
∂u0
∂ν

= h on ∂Ω,∫
∂Ω

u0 = 0.

We shall denote by W1 and W0 the power necessary to maintain the current h
when D is present or absent, respectively, so that

W1 =

∫
∂Ω

hu1 =

∫
Ω

γ∇u1 ∇u1,

and

W0 =

∫
∂Ω

hu0 =

∫
Ω

γ0 ∇u0 ∇u0.

Let δW =W1 −W0 be the power gap.
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2.2. The main theorems

We first state our main result in the case of an inclusion D strictly contained in Ω.

Theorem 2.3. Let Ω satisfy (H1) and let D be a measurable subset of Ω satisfy-
ing (H2a). Let γ0 and γ1 satisfy (H3) and let h satisfy (H4a). Then,

C1

∣∣∣δW
W0

∣∣∣ ≤ |D|
|Ω| ≤ C2

∣∣∣δW
W0

∣∣∣1/p
where C1 depends on the parameters c0, μ0,M0, M1, d0/r0 and L, and the numbers
p > 1 and C2 depend on the same parameters and, in addition, on F (h).

We now state our main result in the case of of an inclusion that might have
part of its boundary in common with ∂Ω.

Theorem 2.4. Let Ω satisfy (H1) with ∂Ω ∈ C1,1 with constants r0 and M0 and
let D be a measurable subset of Ω satisfying (H2b). Let γ0 and γ1 satisfy (H3)
and let h satisfy (H4b). Then,

C1

∣∣∣δW
W0

∣∣∣ ≤ |D|
|Ω| ≤ C2

∣∣∣δW
W0

∣∣∣1/p,
where C1 depends on the parameters c0, μ0, M0, M1, r1/r0 and L,and the numbers
p > 1 and C2 depend on the same parameters and, in addition, on F (h).

The proofs of Theorem 2.3 and 2.4 will be given in Section 5.

3. Energy bounds

3.1. Energy identities

In this section, following an idea first introduced in [19], we use energy identities
in order to derive suitable energy bounds.

Let γ̃ be a complex admittivity and define the sesquilinear form

aγ̃(u, v) =

∫
Ω

γ̃∇u · ∇v.

If uγ̃ is a solution to ⎧⎨
⎩

div(γ̃∇uγ̃) = 0 in Ω,

γ̃
∂uγ̃
∂ν

= h on ∂Ω,

then

(3.1) aγ̃(uγ̃ , v) =

∫
∂Ω

hv, ∀v ∈ H1(Ω).

We observe that in general aγ̃ is not complex symmetric:

aγ̃(u, v)− aγ̃(v, u) =

∫
Ω

γ̃
(∇u · ∇v −∇v · ∇u) = 2i

∫
Ω

γ̃ �(∇u · ∇v).
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Lemma 3.1. Let γ0 and γ1 be in L∞(Ω), let γ = γ0 χΩ\D + γ1 χD, and let u1 and
u0 be the solutions of (2.2) and (2.3), respectively. The following identities hold:∫

Ω

γ |∇(u1 − u0)|2 −
∫
D

(γ1 − γ0)|∇u0|2 = δW + 2i

∫
Ω

γ�(∇u1 · ∇u0),(id1) ∫
Ω

γ0 |∇(u1 − u0)|2 +
∫
D

(γ1 − γ0)|∇u1|2 = −δW − 2i

∫
Ω

γ0�(∇u1 · ∇u0),(id2) ∫
D

(γ0 − γ1)∇u1 · ∇u0 = δW + 2i

∫
Ω

γ0�(∇u1 · ∇u0),(id3) ∫
D

(γ1 − γ0)∇u0 · ∇u1 = −δW − 2i

∫
Ω

γ�(∇u1 · ∇u0).(id4)

Proof. We write a0(u, v) := aγ0(u, v) and a1(u, v) := aγ(u, v) From (3.1) we have

a0(u0, v) = a1(u1, v) =

∫
∂Ω

hv, ∀v ∈ H1(Ω).

We compute

J1 := a1
(
u1 − u0, u1 − u0

)− [
a1(u0, u0)− a0(u0, u0)

]
=

∫
∂Ω

hu1 −
∫
∂Ω

hu0 + 2i

∫
Ω

γ �(∇u1 · ∇u0).(3.2)

On the other hand,

J1 =

∫
Ω

γ |∇(u1 − u0)|2 −
∫
Ω

(γ − γ0)|∇u0|2

=

∫
Ω

γ |∇(u1 − u0)|2 −
∫
D

(γ1 − γ0)|∇u0|2,(3.3)

and so, by (3.2) and (3.3) and the definition of δW , the identity (id1) follows.
Analogously we can compute

J2 := a0(u0 − u1, u0 − u1)− [a0(u1, u1)− a1(u1, u1)]

= −
∫
∂Ω

h(u1 − u0)− 2i

∫
Ω

γ0 �(∇u1 · ∇u0).

On the other hand,

J2 =

∫
Ω

γ0 |∇(u1 − u0)|2 +
∫
Ω

(γ1 − γ0) |∇u1|2

and, hence, (id2) follows.
Finally let us compute

a0(u1, u0)− a1(u1, u0) =

∫
D

(γ0 − γ1)∇u1 · ∇u0,
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and, observe that

a0(u1, u0)− a1(u1, u0) = a0(u1, u0)− a1(u1, u0) + a0(u0, u1)− a0(u0, u1)

=

∫
∂Ω

h(u1 − u0) + 2i

∫
Ω

γ0 �(∇u1 · ∇u0),

so that (id3) follows.
By symmetry we have also shown (id4) �

Remark 3.2. Note that by combining (id1) and (id4), we get as an easy conse-
quence of the definition of u0 and u1, that

(3.4)

∫
Ω

γ |∇(u1 − u0)|2 =

∫
D

(γ0 − γ1)∇(u1 − u0)∇u0.

3.2. The constant case

Proposition 3.3. Assume γ0 and γ1 satisfy (H3i) and let u0 and u1 solve (2.3)
and (2.2). Then

c0
(c0 + |γ1 − γ0|)|γ1 − γ0| |δW | ≤

∫
D

|∇u0|2 ≤
( 1

c0
+

2

|γ1 − γ0|
)
|δW |.

Proof. Since γ0 is constant and not zero we can write∫
Ω

�(∇u1 · ∇u0) = −
∫
Ω

�(∇u0 · ∇u1 −∇u0 · ∇u0
)

= −
∫
Ω

�
(
γ0
(∇u0 · ∇u1 −∇u0 · ∇u0

) 1

γ0

)

= −�
( 1

γ0

∫
Ω

γ0
(∇u0 · ∇u1−∇u0 · ∇u0

))
= −�

( 1

γ0

∫
∂Ω

h(u1 − u0)
)
= −�

(δW
γ0

)
,

and, hence, ∫
Ω

γ0 �(∇u1 · ∇u0) = −γ0 �
(δW
γ0

)
.

Then, if we set

(3.5) δV = δW − 2iγ0�
(δW
γ0

)
= δW + 2i

∫
Ω

γ0 �(∇u1 · ∇u0)

we can write the identities of Lemma 3.1 as∫
Ω

γ |∇(u1−u0)|2−
∫
D

(γ1 − γ0)|∇u0|2= 2i

∫
D

(γ1 − γ0)� (∇u1 · ∇u0)+ δV,(id1c) ∫
Ω

γ0 |∇(u1−u0)|2+
∫
D

(γ1 − γ0)|∇u1|2= −δV,(id2c) ∫
D

(γ0 − γ1)∇u1 · ∇u0 = δV,(id3c) ∫
D

(γ1 − γ0)∇u0 · ∇u1 = −2i

∫
D

(γ1 − γ0)� (∇u1 · ∇u0)− δV.(id4c)
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We write∫
D

|∇u0|2 =

∫
D

|∇(u0 − u1)|2 −
∫
D

|∇u1|2 + 2

∫
D

�(∇u1 · ∇u0)

≤
∫
Ω

|∇(u0 − u1)|2 −
∫
D

|∇u1|2 + 2

∫
D

�(∇u1 · ∇u0).(3.6)

By taking the real part of (id2c) we get∫
Ω

σ0|∇(u0 − u1)|2 + (σ1 − σ0)

∫
D

|∇u1|2 = −�(δV ).

By dividing by the positive constant σ0 and using the fact that both σ0 and σ1 are
positive we have

(3.7)

∫
Ω

|∇(u0 − u1)|2 −
∫
D

|∇u1|2 ≤ −�(δV )

σ0
.

Now we divide (id3c) by the constant γ0 − γ1 �= 0 and take the real part. We get∫
D

�(∇u1 · ∇u0) = �
( δV

γ0 − γ1

)
,

which, together with (3.7) and (3.6), gives∫
D

|∇u0|2 ≤ −�(δV )

σ0
+ 2�

( δV

γ0 − γ1

)
.

This leads to the upper bound∫
D

|∇u0|2 ≤ |δV |
( 1

c0
+

2

|γ0 − γ1|
)
.

To prove the lower bound observe that, by (3.4) and since �γ ≥ c0, we have

(3.8)
( ∫

Ω

|∇(u0 − u1)|2
)1/2

≤ |γ0 − γ1|
c0

(∫
D

|∇u0|2
)1/2

.

Hence, using the identity (id3c), we have

∣∣δV ∣∣ = ∣∣∣ ∫
D

(γ0 − γ1)∇u1 · ∇u0
∣∣∣ = ∣∣∣(γ0 − γ1)

( ∫
D

∇(u1 − u0) · ∇ū0 +
∫
D

|∇u0|2
)∣∣∣

≤ |γ0 − γ1|
(( ∫

D

|∇(u1 − u0)|2
)1/2( ∫

D

|∇u0|
)1/2

+

∫
D

|∇u0|2
)

≤ |γ0 − γ1|
( |γ0 − γ1|

c0

∫
D

|∇u0|2 +
∫
D

|∇u0|2
)
,

from which the lower bound∫
D

|∇u0|2 ≥ 1

|γ0 − γ1| (|γ0 − γ1|/c0 + 1)
|δV |

follows.
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Now, by using (3.5), we can see that

δV =
γ20
|γ0|2 δW.

Hence, in particular,
|δV | = |δW |

and the claim follows. �

3.3. The variable case

Proposition 3.4. Assume γ0 and γ1 satisfy (H3ii) and let u0 be the solution
of (2.3). Then

(3.9) K1 |δW | ≤
∫
D

|∇u0|2 ≤ K2 |δW |,

where

K1 =
c30

2(2 + c20)
and K2 = 2

( 1

μ0 c20
+

1

μ0
+

1

c0

)
.

Proof. If (H3ii) holds, then γ0 = σ0 and ε0 = 0. In this case, we have

∫
Ω

σ0�(∇u1 · ∇u0) =
∫
Ω

σ0� (∇u1 · ∇u0 −∇u0 · ∇u0)

= �
( ∫

Ω

σ0∇u0 · ∇u1 − σ0∇u0 · ∇u0
)

= �
( ∫

∂Ω

hu1 −
∫
∂Ω

hu0

)
= �(δW ) = −�(δW ),

and the energy identities become∫
Ω

γ|∇(u0 − u1)|2−
∫
D

(γ1 − γ0)|∇u0|2= δW+2i

∫
D

(γ1 − γ0)�(∇u1 · ∇u0),(id1*) ∫
Ω

γ0|∇(u0 − u1)|2 +
∫
D

(γ1 − γ0)|∇u1|2 = −δW,(id2*) ∫
D

(γ0 − γ1)∇u1 · ∇u0 = δW.(id3*)

By (id3*) we have that

∣∣δW ∣∣ = ∣∣∣ ∫
D

(γ0 − γ1)∇u1∇u0
∣∣∣

=
∣∣∣ ∫

D

(γ0 − γ1)∇(u1 − u0)∇u0 +
∫
D

(γ0 − γ1)|∇u0|2
∣∣∣

≤ sup
D

|γ0 − γ1|
((∫

D

|∇(u0 − u1)|2
)1/2( ∫

D

|∇u0|2
)1/2

+

∫
D

|∇u0|2
)
.(3.10)
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By (3.4), we have(∫
Ω

|∇(u1 − u0)|2
)1/2

≤ supD |γ0 − γ1|
c0

( ∫
D

|∇u0|2
)1/2

,

and by combining this with (3.10) we get

|δW | ≤ sup
D

|γ0 − γ1|
(supD |γ0 − γ1|

c0
+ 1

)∫
D

|∇u0|2 ≤ 2

c0

( 2

c20
+ 1

)∫
D

|∇u0|2,

and one side of the estimate (3.9) follows.
To derive the upper bound, let us first assume

(3.11) σ1 − σ0 ≥ μ0.

From the real part of (id2*) we get

(3.12)

∫
Ω

σ0|∇(u1 − u0)|2 +
∫
D

(σ1 − σ0)|∇u1|2 = −�(δW ),

hence, by assumption (3.11),∫
Ω

|∇(u1 − u0)|2 ≤ −�(δW )

c0
,∫

D

|∇u1|2 ≤ −�(δW )

μ0
,∫

D

|∇u0|2 ≤ 2

∫
D

|∇(u0 − u1)|2 + 2

∫
D

|∇u1|2 ≤ −2

(
1

c0
+

1

μ0

)
�(δW ).

On the other hand, if |ε1| ≥ μ0, then, from the imaginary part of (id2*), we get∫
D

|ε1||∇u1|2 = |�(δW )|,

and, hence,

(3.13)

∫
D

|∇u1|2 ≤ |�(δW )|
μ0

.

From the real part of (id2*) (see (3.12)) and from (3.13) we get∫
Ω

|∇(u1 − u0)|2 ≤
∫
Ω

σ0c
−1
0 |∇(u1 − u0)|2 = c−1

0

∫
D

(σ0 − σ1)|∇u1|2 − c−1
0 �(δW )

≤ c−1
0 sup

D
|σ0 − σ1|

∫
D

|∇u1|2 − c−1
0 �(δW )

≤ 1

c0 μ0
sup
D

|σ0 − σ1| |�(δW )| − c−1
0 �(δW )(3.14)

≤ 1

c20 μ0
|�(δW )| − 1

c0
�(δW ).(3.15)

By (3.13) and (3.14) we get the upper bound∫
D

|∇u0|2 ≤ 2
( 1

μ0 c20
+

1

c0
+

1

μ0

)
|δW |. �
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3.4. A one-dimensional example

We are not able to derive energy bounds and hence also estimates on the size
of D for arbitrary variable admittivities. Although the lack of symmetry in con-
dition (H3ii) may seem unnatural, it is in some sense optimal, as the following
example shows.

On the other hand we have seen in Proposition 3.4 that assumption (H3ii)
leads to energy estimates. The lack of symmetry of condition (H3ii), that seems
not natural, is in some sense optimal as the following example shows.

Let Ω = (−1, 1) and let D = [a, b] ⊂ (−1, 1). Consider the background solu-
tion u0 of {

(γ0u
′
0)

′ = 0 in (−1, 1),

(γ0u
′
0) (−1) = (γ0u

′
0) (1) = K ∈ C, u0(−1) + u0(1) = 0.

Integrating the equation, (γ0u
′
0)

′ = 0, and using the normalization conditions one
gets that

u0(x) = F0(x) +M, for x ∈ (−1, 1),

where

F0(x) =

∫
K

γ0(x)
dx,

and M = (F0(1) + F0(−1))/2.
Considering the perturbed solution u1 of{

(γu′1)
′ = 0 in (−1, 1),

(γu′1) (−1) = (γu′1) (1) = K ∈ C, u1(−1) + u1(1) = 0,

one gets

u1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
F0(x) +M if x ∈ (−1, a),

F1(x) +M +
F0(a) + F0(b)

2
− F1(a) + F1(b)

2
if x ∈ (a, b),

F0(x) +M +
F1(b)− F1(a)

2
− F0(b)− F0(a)

2
if x ∈ (b, 1),

where

F1(x) =

∫
K

γ1(x)
dx.

Hence

δW = K
(
u1(1)−u0(1))− (u1(−1)−u0(−1)

)
= K

(
u1(1)−u0(1)

)
=

|K|2
2

∫ b

a

( 1

γ1
− 1

γ0

)
dx,

�(δW ) =
|K|2
2

∫ b

a

(
σ0

σ2
0 + ε20

− σ1
σ2
1 + ε21

)
dx,
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and

�(δW ) =
|K|2
2

∫ b

a

(
− ε0
σ2
0 + ε20

+
ε1

σ2
1 + ε21

)
dx.

So, if one of the monotonicity conditions

σ1
σ2
1 + ε21

> (<)
σ0

σ2
0 + ε20

in (−1, 1)

or
ε1

σ2
1 + ε21

> (<)
ε0

σ2
0 + ε20

in (−1, 1)

holds, then either �(δW ) �= 0 or �(δW ) �= 0 and δW recovers (a, b) uniquely.

In particular observe that if ε0 = 0 we find that �(δW ) �= 0 if ε1 has constant
sign in (−1, 1) and �(δW ) �= 0 if σ1 − σ0 > 0 in (−1, 1) which are exactly the
condition (H3ii). If the above conditions fail uniqueness does not hold. Consider,
for example, γ0 = (2 + ix)2 for x ∈ (−1, 1) and γ1 = 17/4. Then one easily sees
that

�(δW ) = |K|2(b− a)
( 4

17
− 4− ab

(4 + b2)(4 + a2)

)
,

�(δW ) = |K|2(b− a)
(
− 2(a+ b)

(4 + b2)(4 + a2)

)
and clearly �(δW ) = �(δW ) = 0 for a = 1/2 and b = −1/2.

4. Main tools: quantitative estimates of unique continuation

We list now various forms of the quantitative estimates of unique continuation that
we will need in the sequel. Throughout this section we will assume that Ω ⊂ Rn is
a bounded domain of class C0,1 with constants r0 and M0. and A is a symmetric
n× n matrix with real entries defined in Rn satisfying:

(Uniform ellipticity) For a given λ0, 0 < λ0 ≤ 1,

(4.1) λ0|ξ|2 ≤ A(x)ξ · ξ ≤ λ0
−1|ξ|2, for every ξ ∈ R

n, x ∈ R
n.

(Lipschitz regularity) For a given λ1 > 0,

(4.2) |A(x) −A(y)| ≤ λ1
r0

|x− y|, for every x, y ∈ R
n.

Theorem 4.1 (Three spheres inequality, [3]). Let u ∈ H1(Ω) be a solution to the
equation

div(A(x)∇u(x)) = 0 in Ω.

For every r1, r2, r3, r̄, 0 < r1 < r2 < r3 ≤ r̄, and for every x0 ∈ Ωr̄,∫
Br2(x0)

|∇u0|2 ≤ C
( ∫

Br1 (x0)

|∇u|2
)θ(∫

Br3(x0)

|∇u|2
)1−θ

,

where C > 0 and θ, 0 < θ < 1, only depend on λ0, λ1, r1/r3, and r2/r3.
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Theorem 4.2 (Lipschitz propagation of smallness, [3]). Let h satisfy (H4) and
let u ∈ H1(Ω) be the solution of the Neumann problem

(4.3)

{
div (A(x)∇u(x)) = 0 in Ω,

A∇u · ν = h on ∂Ω.

For every ρ > 0 and for every x ∈ Ω2ρ, we have∫
Bρ(x)

|∇u|2 ≥ C−1

∫
Ω

|∇u|2,

where C ≥ 1 only depends on λ0, λ1, M0, M1, F (h), and ρ/r0.

The three spheres inequality and the Lipschitz propagation of smallness in [3] are
obtained for real valued functions u and h but with straightforward modifications
they apply to complex valued functions.

Theorem 4.3 (Doubling inequality). Let u ∈ H1(Br0(x0)) be the solution of

(4.4) div(A(x)∇u(x)) = 0 in Br0(x0).

Then, there exist positive constants α and C, depending only on λ0 and on λ1,
such that

(4.5)

∫
B2r(x0)

|∇u|2 ≤ C

( ∫
Br0 (x0)

|∇u|2∫
Br0/2(x0)

|∇u|2
)α ∫

Br(x0)

|∇u|2,

for every r such that 0 < r ≤ r0/2.

The doubling inequality was first derived by Garofalo and Lin in [15]. Later
it was also derived by Kukavica in [20] using Rellich’s identity. In the appendix,
for the convenience of the reader, we will give the proof of the doubling inequality
following the proof in [20], showing the modifications one must make in the case
of complex-valued functions and estimating more carefully the constant occurring
in the inequality.

Lemma 4.4. Let Ω satisfy (H1), let r and R be positive numbers such that
3
√
nR < r, and let u ∈ H1(Ω) be a nontrivial solution of

div(A(x)∇u(x)) = 0 in Ω.

Assume that Ωr �= ∅. Then, for every x0 ∈ Ωr and for every measurable set
E ⊂ QR(x0), we have

(4.6)
|E|

|QR(x0)| ≤
(

H
∫
E
|∇u|2∫

QR(x0)
|∇u|2

)1/p

,
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where H and p > 1 are given by

p = 1 +
log 4Fr(u)

log(17/16)
, and H =

(
27Fr(u)

)p(p−1)
,

where

(4.7) Fr(u) = C

( ∫
Ω |∇u|2∫

Ωr/2
|∇u|2

)C

and C depends on λ0, λ1, M0, M1, and r/r0.

Sketch of the proof. Lemma 4.4 can be proved by adapting the proof of Lemma 2.4
in [21]. We describe in detail the necessary changes. The most important difference
between Lemma 2.4 in [21] and our lemma is that |∇u|2 appears in the bound (4.6)
while in [21] |u|2 is involved.

Observe that |∇u|2 satisfies the following reverse Hölder inequality (RHI):

( 1

|QR(x0)|
∫
QR(x0)

(|∇u|2)1+δ
)1/(1+δ)

≤ C

|QR(x0)|
( ∫

Br(x0)
|∇u|2∫

Br/2(x0)
|∇u|2

)α ∫
QR(x0)

|∇u|2,(4.8)

for any x0 ∈ Ωr and R such that 0 < 2
√
nR ≤ r, where C and α depend only

on λ0 and λ1 and δ > 0 is arbitrary.

In fact, if we set

τ =
1

|QR(x0)|
∫
QR(x0)

u(x)dx,

from [16], the Poincaré inequality and (4.5) we get,

sup
QR(x0)

|∇u|2 ≤ C

R2
sup

Q3/2R(x0)

|u− τ |2 ≤ C′

Rn+2

∫
Q2R(x0)

|u− τ |2

≤ C′′

Rn

∫
Q2R(x0)

|∇u|2 ≤ C′′

Rn

∫
B2

√
nR(x0)

|∇u|2

≤ C′′′

Rn

( ∫
Br(x0)

|∇u|2∫
Br/2(x0)

|∇u|2
)α ∫

QR(x0)

|∇u|2,

where C′, C′′ and C′′′ and α depend on λ0 and λ1 only. We derive (4.8) in a trivial
manner.

Using iteratively the three spheres inequality we get the estimate (see [4])

(4.9)

∫
Ωr/2

|∇u|2 ≤ C
( ∫

Br/2(x0)

|∇u|2
)θ( ∫

Ω

|∇u|2
)1−θ

,
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where 0 < θ < 1 and θ and C depend on λ0, λ1,M0,M1 and r/r0. From (4.9) we
have trivially

(4.10)

∫
Br(x0)

|∇u|2∫
Br/2(x0)

|∇u|2 ≤
∫
Ω
|∇u|2∫

Br/2(x0)
|∇u|2 ≤

(
C
∫
Ω
|∇u|2∫

Ωr/2
|∇u|2

)1/θ

.

From (4.10) and (4.8) we get the following version of RHI:

(4.11)
( 1

|QR(x0)|
∫
|QR(x0)

(|∇u|2)1+δ
)1/(1+δ)

≤ F

|QR(x0)|
∫
QR(x0)

|∇u|2,

for any x0 ∈ Ωr and for any R such that R ∈ (0, r
2
√
n
] and δ > 0, where

(4.12) F =

(
C
∫
Ω |∇u|2∫

Ωr/2
|∇u|2

)α/θ

,

with C,α and θ depending only on λ0, λ1,M0,M1, and r/r0. In order to prove (4.9)
we used the Lipschitz regularity of ∂Ω in order to guarantee that Ωρ is a connected
set for ρ sufficiently small. If (4.11) holds for r small then it clearly holds also for
large r. The most difficult part of the proof is to show that the lemma follows
from (4.11) but this can be found in Theorem 2.11 in [14], while an explicit eval-
uation of the constants can be found in [21]. �

5. Proof of the main results

In this section we will use the quantitative unique continuation estimates stated
in the previous section and regularity results for solutions of elliptic equations to
get upper and lower bounds of the measure |D| of the inclusion D, in terms of the
energy related to the background potential u0.

Throughout this section we will assume that A is a symmetric real n×n matrix
defined in Rn satisfying (4.1) and (4.2)

Proposition 5.1. Let Ω ⊂ Rn satisfy (H1) with ∂Ω of class C0,1 and let D ⊂ Ω
satisfy (H2a). Let h satisfy (H4a) and let u ∈ H1(Ω) be a solution to the Neu-
mann problem (4.3) such that

(5.1)

∫
∂Ω

u = 0.

Then

(5.2)
( |D|
|Ω|

)p

≤ C
(∫

D
|∇u|2∫

Ω
|∇u|2

)
,

where p, p > 1 and C depend only on d0/r0,M0,M1, λ0, λ1, and F (h), where F (h)
is given by (2.1).
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Proof. Let δ = d0/(4
√
n) and cover D with pairwise internally disjoint closed

cubes, Qj, j = 1, . . . , N , of side length δ. Assume that Qj∩D �= ∅ for j = 1, . . . , N .
We have

(5.3) D ⊂ ∪N
j=1Qj ⊂ Ω 3

4d0
.

The value of p > 1 will be chosen later. From (5.3) and Hölder inequality (in
what follows p′ = (p− 1)/p) we get

|D| =
N∑
j=1

|D ∩Qj| =
N∑
j=1

|D ∩Qj |
|Qj | |Qj|

≤
( N∑

j=1

( |D ∩Qj|
|Qj |

)p)1/p( N∑
j=1

|Qj |p′)1/p′

≤ |Ω 3
4d0

|
( N∑

j=1

( |D ∩Qj|
|Qj |

)p)1/p

.

Hence, for any p > 1 we have

(5.4)
( |D|
|Ω|

)p

≤
N∑
j=1

( |D ∩Qj |
|Qj |

)p

.

Now, in order to choose p and to bound the right-hand side of (5.4) we apply
Lemma 4.4 with r = 3

4d0 and we bound Fr(h) defined in (4.7) from above. We
bound

∫
Ωr/2

|∇u|2 from below by observing that, for x̄ ∈ Ωr, applying the Lipschitz

propagation of smallness (LPS) with ρ = r/2, we get

(5.5)

∫
Ωr/2

|∇u|2 ≥
∫
Br/2(x̄)

|∇u|2 ≥ C−1
1

∫
Ω

|∇u|2,

where C1 ≥ 1 depends on d0/r0,M0,M1, λ0, λ1, and F (h), where F (h) is given
by (2.1). Hence, by (5.5), we obtain that

Fr(h) ≤ C1.

Now let

(5.6) p = 1 +
log 4C2

1

log(17/16)
.

By Lemma 4.4 we have

(5.7)
( |D ∩Qj|

|Qj |
)p

≤ (27C2
1 )

p(p−1)

∫
D∩Qj

|∇u|2∫
Qj

|∇u|2 , j = 1, . . . , N.

We use the LPS property again to estimate the right-hand side of (5.7) from above.
Denoting by xj the center of the cube Qj we have

(5.8)

∫
Qj

|∇u|2 ≥
∫
Bδ/2(xj)

|∇u|2 ≥ C−1
2

∫
Ω

|∇u|2,

where C2 ≥ 1 depends on d0/r0,M0,M1, λ0, λ1, and F (h). By (5.8), (5.7), (5.6),
and (5.4) we get the claim. �
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Proposition 5.2. Let Ω ⊂ Rn satisfy (H1) with ∂Ω of class C1,1, let D ⊂ Ω
satisfy (H2b), let the function σ0 be as in (H3), and let h satisfy (H4b). Let
u ∈ H1(Ω) be the solution to the Neumann problem{

div((σ0(x)∇u(x)) = 0 in Ω,

σ0∇u · ν = h on ∂Ω,

satisfying the normalization condition (5.1). Then( |D|
|Ω|

)p

≤ C
(∫

D
|∇u|2∫

Ω |∇u|2
)
,

where p, p > 1 and C depend only on r1/r0,M0,M1, c0, L, and F (h), where F (h)
is given by (2.1).

Proof. Define Γ := ∂Ω ∩Br1(P ). First we construct a suitable family of cylinders
covering ∂Ω\Γ.

Let
r2 = min

{ r1
4
√
n
,

r0
2
√
nM0

}
and fix r ∈ (0, r2], to be chosen later. Let {Qj}Jj=1 a family of closed mutually
internally disjoint cubes of side length 2r such that

(∂Ω\Γ)
⋂
Qj �= ∅, j = 1, . . . , J, and ∂Ω\Γ ⊂

J⋃
j=1

Qj .

Fix j ∈ {1, . . . , J} and let xj ∈ (∂Ω\Γ) ∩ Qj . Let νj be the exterior unit normal
vector to ∂Ω at xj on Let Rj the cylinder centered at xj with axis parallel to νj
and with base a ball of radius 2

√
nr and with height 2

√
nM0r. Setting R̃j =

2(Rj − xj) + xj one sees easily that

J⋃
j=1

R̃j ⊃ Ω\Ω2
√
nr

and hence

(5.9) dist
(
Ω\

J⋃
j=1

R̃j , ∂Ω
)
≥ 2

√
nr.

Furthermore, since the interiors of the cubes Qj , j = 1, . . . , J , are pairwise disjoint
and since, obviously,

J⋃
j=1

Qj ⊂
{
x ∈ R

n : dist(x, ∂Ω) < 2
√
nr

}
,

we obtain for J the estimate

(5.10) J ≤ (2r)−n
∣∣∣ J⋃
j=1

Qj

∣∣∣ ≤ C
(r0
r

)n−1

,
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where C depends only on M0 and M1. Let

D′ = D
⋂( J⋃

j=1

R̃j

)
, and D′′ = D\D′.

From (5.9) we have
dist(D′′, ∂Ω) ≥ 2

√
nr.

From this last inequality and Proposition 5.1 we get

(5.11)
( |D′′|

|Ω|
)p

≤ Cr

(∫
D′′ |∇u|2∫
Ω
|∇u|2

)
,

where Cr depends only on r/r0,M0,M1, c0, L, and F (h).
Let, for a fixed index j ∈ {1, . . . , J} ,

Dj := R̃j ∩D′ and R̂j := 2(R̃j − xj) + xj .

It is easy to see that if

r ≤ min
{ r1

16
√
n
√
1 +M2

0

,
r2
2

}

then

(5.12) dist(R̂j ,Γ0) ≥ r1
4
,

where we recall that Γ0 = Γ∩Br1/2(P ). Furthermore, up to a rigid transformation
such that xj = 0, we have

R̂j ∩ Ω =
{
(x′, xn) ∈ R

n : xn > ψ(x′), |x′| ≤ 8
√
nr, |xn| ≤ 8

√
nM0r

}
,

where
ψ(0) = |∇ψ(0)| = 0

and
‖ψ‖L∞ + r0‖∇ψ‖L∞ + r20‖D2ψ‖L∞ ≤M0r0.

Without loss of generality we may assume that σ0(0) = 1. Following the ar-
guments of [1] or [2] we can construct a function Ψ ∈ C1,1(Bρ0(0),R

n), where

ρ0 = 16
√
n
√
1 +M2

0 r such that

Ψ(x′, ψ(x′)) = (x′, 0), ∀x′ ∈ B′
ρ0
(0),(5.13)

Ψ(R̂j ∩ Ω) ⊂ {
(x′, xn) : xn > 0

}
.(5.14)

Moreover, there exist C1, C2 ≥ 1 depending only on M0 such that

C−1
1 |x− z| ≤ |Ψ(x)−Ψ(z)| ≤ C1|x− z|, ∀x, z ∈ Bρ0(0),(5.15)

C−1
2 ≤ |detDΨ(x)| ≤ C2, ∀x ∈ Bρ0(0),(5.16)
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and, setting A(y) = {aij(y)}nij=1, where

A(y) = |detDΨ−1(x)| (DΨ) (Ψ−1(y))σ0 (Ψ
−1(y)) (DΨ)T (Ψ−1(y)),(5.17)

v(y) = u(Ψ−1(y)),(5.18)

we have

A(y) = Id,(5.19)

ank(y
′, 0) = akn(y

′, 0) = 0, k = 1, . . . , n,(5.20)

C−1
3 |ξ|2 ≤ A(y)ξ · ξ ≤ C3 |ξ|2, ∀ξ ∈ R

n, ∀y ∈ Ψ(Ω ∩ R̂j),(5.21)

|A(y)−A(z)| ≤ C4

r
|y − z|, ∀y, z ∈ Ψ(Ω ∩ R̂j),(5.22)

where, in (5.19), Id denotes the identity matrix and C3, C4 ≥ 1 depend only onM0.
Furthermore, recalling R̂j ∩ Γ0 �= ∅ and (5.12) we have

(5.23)

⎧⎨
⎩
div((A(y)∇yv(y)) = 0 in Ψ(Ω ∩ R̂j),
∂v

∂yn
(y′, 0) = 0 on Ψ(∂Ω ∩ R̂j).

From the properties of the matrix A, in particular from (5.20), we have that the
function ṽ defined by

(5.24) ṽ(y′, yn) := v(y′, |yn|)
solves an elliptic equation with Lipschitz coefficients in the principal part. More
precisely, let Ã(y) = {ãij(y)}ni,j=1 be the matrix with entries

ãij (y
′, |yn|) = aij (y

′, |yn|), if i, j ∈ {1, . . . , n− 1} or i = j = n,

ãij (y
′, yn) = ãij (y

′, yn) = sgn(yn) anj (y
′, |yn|), if i, j ∈{1, . . . , n− 1} or i =j.

Then we have
div

(
(A(y)∇y ṽ(y)

)
= 0 in Λ̂j ,

where
Λ̂j =

{
(y′, yn) ∈ R

n : (y′, |yn|) ∈ Λ̂+
j

}
,

with
Λ̂+
j = Ψ(Ω ∩ R̂j).

It is easy to see that the matrix Ã satisfies uniform ellipticcity and Lipschitz
continuity with the same constants as in (5.21) and (5.22).

In the sequel we will use the notation

Λ̃+
j := Ψ(Ω ∩ R̃j),

Λ̃j :=
{
(y′, yn) ∈ R

n : (y′, |yn|) ∈ Λ̃+
j

}
,

D̃j := Ψ(Dj).

Since our aim is to bound |Dj|, we proceed initially as in the proof of Proposi-
tion 5.1.
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First we note that from (5.15) we get

dist(D̃j , ∂Λ̂j) ≥ δ0 :=
2
√
nr

C1
,

where C1 is the constant appearing in (5.15). Cover D̃j by pairwise internally
disjoint closed cubes, Qj,k, k = 1, . . . , Nj , of side length δ1 := δ0/(4

√
n). We have

D̃j ⊂
Nj⋃
k=1

Qj,k ⊂ Λ̂ 3
4 δ0
.

Since we are interested in applying Lemma 4.4 with Ω = Λ̂j and r̄ = δ0/4 we need
to prove first the following claim

Claim 1. There exists a constant C depending only on c0, L,M0,M1, r/r0, and
F (h) such that

(5.25) F̃j,r̄(ṽ) :=

∫
Λ̂j

|∇ṽ|2∫
Λ̂j,r̄/2

|∇ṽ|2 ≤ C, j = 1, . . . , J,

(with C independent of j).

Proof of the claim. Since for r̄ = δ0/4 we have that Λ̂j,r̄/2 ⊃ Λ̃, recalling that ṽ is
the even reflection of v = u ◦Ψ−1, by a change of variables we derive

(5.26) F̃j,r̄(ṽ) ≤ C

∫
R̂j∩Ω

|∇u|2∫
R̃j,r̄/2∩Ω

|∇u|2 , j = 1, . . . , J,

where C depends only on c0, L,M0,M1, and r/r0. Now, since

R̃j ∩ Ω ⊃ B√
nr(xj − 2

√
nrν) := B(j),

dist(B(j), ∂(R̃j ∩ Ω)) ≥ √
nr,

estimating the right-hand side of (5.26) and applying the LPS property we get

F̃j,r̄(ṽ) ≤ C

∫
Ω
|∇u|2∫

B(j) |∇u|2 ≤ C′,

where C′ depends only on c0, L,M0,M1, r/r0, and F (h).

We choose r = r2. Proceeding as in the proof of Proposition 5.1 and using (5.26)
we obtain

(5.27) |D̃j | ≤ |Λ̂j |
(∫

D̃j
|∇ṽ|2∫

Λ̂j
|∇ṽ|2

)1/p

, j = 1, . . . , J,

where C and p ∈ (1,∞) depend on c0, L,M0,M1, r1/r0, and F (h).
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From the definitions of ṽ and of Λ̂j , with some simple change of variables and
using again the LPS property, we derive from (5.27)

(5.28) |Dj | ≤ C |Ω|
(∫

Dj
|∇u|2∫

Ω |∇u|2
)1/p

, j = 1, . . . , J,

where C and p ∈ (1,+∞) depend on c0, L,M0,M1, r1/r0, and F (h).
From (5.28) and from (5.10) we have

(5.29) |D′| ≤
J∑

j=1

|Dj | ≤ C |Ω|
(∫

D′ |∇u|2∫
Ω
|∇u|2

)1/p

,

where C and p ∈ (1,∞) depend on c0, L,M0,M1, r1/r0, and F (h). From (5.29)
and (5.11) the claim follows. �

Proposition 5.3. Under the same hypotheses of Proposition 5.2 we have∫
D |∇u|2∫
Ω
|∇u|2 ≤ C r−n

1 |D| ,

where C depends only on r1/r0,M0,M1, c0 and L.

Proof. Trivially we have

(5.30)

∫
D

|∇u|2 ≤ |D| ‖∇u‖2L∞(D) ≤ |D| ‖∇u‖2L∞(Ω\Br1 (P )).

Since σ0∇u · ν = 0 on ∂Ω\Br1/2(P ), from standard estimates for elliptic equa-

tions, [16], and from the Poincaré inequality, we have that, letting τ = 1
|Ω|

∫
Ω u,

there hold

‖∇u‖2L∞(Ω\Br1 (P )) ≤
C1

r21
‖u− τ‖2L∞(Ω\B 3

4
r1

(P )) ≤
C1 C2

rn+2
1

‖u− τ‖2L2(Ω\Br1/2
(P ))

≤ C1 C2

rn+2
1

‖u− τ‖2L2(Ω) ≤
C1 C2 C3 r

2
0

rn+2
1

‖∇u‖2L2(Ω),(5.31)

where C1 depends only on r1/r0,M0,M1, c0 and L; C2 depends on r1/r0,M0,M1

and c0; and C3 depends on M0 and M1. From (5.30) and (5.31) we get∫
D |∇u|2∫
Ω
|∇u|2 ≤ C4 r

−n
1 |D|,

where C4 depends only on r1/r0,M0,M1, c0 and L. �

We are now ready to prove our main results.

Proof of Theorem 2.3. By standard elliptic estimates, we have

sup
D

|∇u0| ≤ C sup
Ωd0/2

|u0| ≤ C‖u0‖L2(Ω),
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From the trivial estimate∫
Ω

|∇u0|2 ≤ c−1
0

∫
Ω

∇u0 · ∇u0 = c−1
0 W0,

and from the Poincaré inequality, we have

(5.32) sup
D

|∇u0| ≤ CW
1/2
0 ,

where C depends on c0, L, d0/r0, and M0. Hence from (5.32) we get for |D| the
lower bound

(5.33)

∫
D

|∇u|2 ≤ |D| ‖∇u‖2L∞(D) ≤ C |D|W0.

By Proposition 5.1 and (5.33) we obtain

C̃1

∫
D |∇u0|2
W0

≤ |D|
|Ω| ≤ C̃2

(∫
D |∇u0|2
W0

)1/p

,

where C̃1 depends only on d0/r0, M0, M1, c0 and L and C̃2 depends only on d0/r0,
M0, M1, c0, L and F (h). Finally, applying Proposition 3.3 if γ0, γ1 are constant
and satisfy (H3i) or applying Proposition 3.4 if γ0 and γ1 satisfy (H3ii), we get

C1

∣∣∣δW
W0

∣∣∣ ≤ |D|
|Ω| ≤ C2

∣∣∣δW
W0

∣∣∣1/p,
where C1 depends only on the a priori constants c0, μ0, M0, M1, d0/r0, L, and
the number p > 1 and C2 depends on the same parameters and F (h). �

Proof of Theorem 2.4. By Propositions 5.2 and 5.3 applied to the background po-
tential u0 that solves (2.3) (in the constant case up to a rescaling by a constant)
we get

C′
1

∫
D |∇u0|2
W0

≤ |D|
|Ω| ≤ C′

2

(∫
D |∇u0|2
W0

)1/p

,

where C′
1 depends only on r1/r0, M0, M1, c0 and L and C′

2 depends on r1/r0, M0,
M1, c0, L, and F (h). Finally applying Proposition 3.3 if γ0, γ1 are constant and
satisfy (H3i) or applying Proposition 3.4 if γ0 and γ1 satisfy (H3ii) we get

C1

∣∣∣δW
W0

∣∣∣ ≤ |D|
|Ω| ≤ C2

∣∣∣δW
W0

∣∣∣1/p,
where C1 depends only on the a priori constants c0, μ0,M0,M1, r1/r0, L, and the
number p > 1 only and C2 depends on the same parameters and F (h). �
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6. Appendix

Proof of Theorem 4.3. The doubling inequality proved in [20] and [4] can be ex-
tended with straightforward arguments to the case of complex valued solutions of

div(A(x)∇u(x)) = 0 in Br0(x0).

We give an idea of the modifications that need to be done to the proof. We
assume that

(6.1) A(0) = Id

and define, for 0 < r < R0,

(6.2) H(r) =

∫
∂Br

A(x)x · x
|x|2 |v(x)|2, I(r) =

∫
Br

A(x)∇v · ∇v, N(r) =
rI(r)

H(r)
.

If, instead of Rellich’s identity used in [20], we use the relation

2�[(β · ∇v̄)div(A∇v)] = div
[
2�((β · ∇v̄)A∇v)− β(A∇v · ∇v̄)]

+ (divβ)A∇v · ∇v̄ − 2�[∂l βj alk ∂kv ∂j v̄]+ βj(∂jalk) ∂kv∂lv̄,

with β sufficiently smooth vector field on R
n, we get that there exist constants

C1 > 1, C2, and c, with C1 > 1, C2, depending only on λ0 and λ1 and c an
absolute constant, such that∫

Br

|v|2 ≤ λ20r

∫
∂Br

|v|2, for r ≤ R0

C1
,(6.3)

∣∣∣H ′(r) − n− 1

r
H(r)− 2I(r)

∣∣∣ ≤ cλ1
R0

H(r),(6.4)

N(r)eC2 r/R0 increasing in (0, R0].(6.5)

From (6.4) we have

d

dr

(
log

H(r)

rn−1

)
≤ cλ1

R0
+

2N(r)

r
,(6.6)

2N(r)

r
≤ d

dr

(
log

H(r)

rn−1

)
+
cλ1
R0

.(6.7)

Let R1 := R0/C1 and ρ,R ∈ (0, R1] be such that 3ρ ≤ R. Integrating both sides
of (6.6) in the interval [ρ, 3ρ] we get, using (6.5),

log
H(3ρ)

3n−1H(ρ)
≤ 2cλ1ρ

R0
+

∫ 3ρ

ρ

2N(r)

r
≤ 2cλ1ρ

R0
+

∫ 3ρ

ρ

2N(r)

r
eC2r/R0

≤ 2 c λ1 ρ

R0
+ 2N(3ρ) e3C2ρ/R0 log 3 ≤ 2cλ1R

3R0
+ 2N(R) e3C2R/R0 log 3.
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Hence, for ρ ∈ (0, R/3], and R ∈ (0, R1], one has

(6.8)
1

R
log

H(3ρ)

3n−1H(ρ)
≤ 2cλ1

3R0
+ 2eC2R/R0

N(R)

R
log 3.

From (6.8) and (6.7) we get, for ρ ∈ (0, R1/3] and R ∈ (0, R1],

(6.9)
1

R
log

H(3ρ)

3n−1H(ρ)
≤ C3

R0
+ eC2(log 3)

d

dR

(
log

H(R)

Rn−1

)
,

where C3 = eC2 log 3 + 2cλ1/3. This last inequality implies, in particular, that for
any ρ ∈ (0, R1/9] and R ∈ (R1/2, 3R1/4] one has (integrating both sides of (6.9)
over [R1/3, R])

log 6 log
H(3ρ)

3n−1H(ρ)
≤ log

R

R1/3

∫ R

R1/3

1

t
log

H(3ρ)

3n−1H(ρ)
dt

≤ C3 λ1
R− R

R0
+ eC2(log 3) log

H(R)

(3R/R1)n−1H(R1/3)

≤ C3 λ1 + eC2(log 3) log
H(R)

(3/2)n−1H(R1/3)
.

Hence, for ρ ∈ (0, R1/9] andR ∈ (R1/2, 3R1/4], by the elementary properties of
the logarithm, we have,

(6.10) H(3ρ) ≤ C4

( H(R)

H(R1/3)

)C5

H(ρ),

where C4 and C5 depend only on λ0 and λ1. Integrating both sides of (6.10), we
derive, for every ρ ∈ (0, R1/9] and R ∈ (R1/2, 3R1/4],∫ ρ

0

H(3s) ds ≤ C4

( H(R)

H(R1/3)

)C5
∫ ρ

0

H(s) ds.

From (6.2) we get∫ ρ

0

H(s) ds ≤ λ−1
0

∫
Bρ

|v|2 and

∫ ρ

0

H(3s) ds ≥ λ0
3

∫
B3ρ

|v|2.

From the last two inequalities and from (6.10) one has

(6.11)

∫
B3ρ

|v|2 ≤ 3λ−2
0 C4

( H(R)

H(R1/3)

)C5
∫
Bρ

|v|2,

for ρ ∈ (0, R1/9] and R ∈ (R1/2, 3R1/4].
Now, (6.11) holds also if instead of v we insert v − τρ where τρ = 1

|Bρ|
∫
Bρ
v.

Denoting by H̃(r) the function upon substituting v− τρ for v in (6.2), we have,
recalling local boundness of solutions to elliptic equations, [16],

(6.12) H̃(R) ≤ λ−2
0

∫
∂BR

|v − τρ|2 ≤ 4λ−2
0 Rn−1 ‖v‖L∞(BR) ≤ C

R1

∫
BR1

|v|2,
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for every R ∈ (R1/2, 3R1/4] where C depends only on λ0. On the other hand,
applying (6.3), we obtain

(6.13) H̃(R1/3) ≥ λ0

∫
∂BR1/3

|v − τρ|2 ≥
∫
BR1/3

|v − τρ|2 ≥ R1

C

∫
BR1/6

|∇v|2,

where C ≥ 1 depends only on λ0. From (6.12), (6.13), and (6.11) we get

(6.14)

∫
B3ρ

|v − τρ|2 ≤ C6

( ∫
BR1

|v|2
R2

1

∫
BR1/6

|v|2
)C5

∫
Bρ

|v − τρ|2,

where C6 ≥ 1 depends on λ0, λ1. Using the Poincaré inequality and the Caccioppoli
inequality to bound the right-hand side of (6.14) from above and the left-hand side
of (6.14) from below, we obtain, for any ρ ∈ (0, R1/3],

(6.15)

∫
B2ρ

|∇v|2 ≤ C7

( ∫
BR1

|v|2
R2

1

∫
BR1/6

|∇v|2
)C5

∫
Bρ

|∇v|2,

where C6 ≥ 1 depends on λ0 and λ1.
Iterating (6.15), by simple calculations we get

(6.16)

∫
Bαρ

|∇v|2 ≤ C8N
′
v α

logNv/log 2

∫
Bρ

|∇v|2,

for any α ≥ 1 and ρ such that 3αρ ≤ R1. Here we have set

N ′
v =

( ∫
BR1

|v|2
R2

1

∫
BR1/6

|∇v|2
)C5

and C8 depends on λ0 and λ1 only. Now we remove condition (6.1). To this end,
let A(x) be a symmetric matrix satisfying (4.1) and (4.2) and let v ∈ H1(BR0)
a weak solution of (4.4). Let us introduce the change of variables y = Jx where
J =

√
A−1(0) and consider, for any r > 0, the ellipsoids

Er :=
{
x ∈ R

n : A−1(0)x · x < r2
}
= J−1(Br).

Setting w(y) = v(J−1y) and Ã(y) = JA(J−1y)J one has

div
(
Ã(y)∇yw(y)

)
= 0 in BR0

√
λ0
,

λ20|ξ|2 ≤ Ã(y) ξ · ξ ≤ λ−2
0 |ξ|2, ∀y ∈ R

n, ∀ξ ∈ R
n,

|Ã(y1)− Ã(y2)| ≤ λ
−3/2
0 λ1
R0

|y1 − y2|, ∀y1, y2 ∈ R
n and Ã(0) = Id.

Furthermore, since
B√

λ0r
⊂ Er ⊂ Br/

√
λ0
, ∀r > 0,

by simple changes of variables we have

(6.17) λ
n/2+1
0

∫
B√

λ0r

|∇v|2 dx ≤
∫
Br

|∇w|2 dy ≤ λ
−(n/2+1)
0

∫
B

r/
√

λ0

|∇v|2 dx.
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for all r > 0. We apply (6.16) to w and we obtain

(6.18)

∫
Bαρ

|∇w|2 dy ≤ C′
8N

′′
w α

logN ′′
w/log 2

∫
Bρ

|∇w|2 dy

for any α ≥ 1 and ρ such that 3αρ ≤ R1

√
λ0 := R2, where

N ′′
w =

( ∫
BR2

|w|2dy
R2

2

∫
BR2/6

|∇w|2
)C′

5

and C′
5 and C′

8 depend on λ0 and λ1 only. From (6.17) and (6.18) we derive easily∫
Bαρ

|∇v|2 dx ≤ λ
−(n/2+1)
0

∫
B

αρ/
√

λ0

|∇w|2 dy

≤ C′
8N

′′
w (λ−1

0 α)logN ′′
w/log 2 λ

−(n/2+1)
0

∫
B

ρ
√

λ0

|∇w|2 dy

≤ C′
8 λ

−(n+2)
0 N ′′

w (λ−1
0 α)logN ′′

w/log 2

∫
Bρ

|∇v|2 dx,(6.19)

for any α ≥ 1 and ρ such that 3αρ ≤ R2. From (6.19) and using (6.17) to estimate
N ′′

w in terms of v we get

(6.20)

∫
B2ρ

|∇v|2 dx ≤ C10

( ∫
BR1

|v|2
R2

1

∫
BR1λ0/6

|∇v|2
)C9

∫
Bρ

|∇v|2 dx

for any ρ ≤ R1λ0/6 and where C9 and C10 depend on λ0 and λ1 only.
Applying (6.20) to v − 1

|BR1 |
∫
BR1

v and using the Poincaré inequality we have

(6.21)

∫
B2ρ

|∇v|2 dx ≤ C11

( ∫
BR1

|∇v|2
R2

1

∫
BR1λ0/6

|∇v|2
)C9

∫
Bρ

|∇v|2 dx

for ρ ≤ R1λ0/6. Finally we want to prove (4.5). Let ρ ∈ [R1λ0/6, R0/2]. We
trivially have

∫
B2ρ

|∇v|2 dx ≤
∫
BR0

|∇v|2 dx =

( ∫
BR0

|∇v|2 dx∫
BR1λ0/6

|∇v|2 dx
)∫

BR1λ0/6

|∇v|2 dx

≤
( ∫

BR0
|∇v|2 dx∫

BR1λ0/6
|∇v|2 dx

)∫
Bρ

∇v|2 dx.

From last inequality and from (6.21) we immediately get, for ρ ∈ [0, R0/2],

(6.22)

∫
B2ρ

|∇v|2 dx ≤ C11

( ∫
BR0

|∇v|2 dx∫
BR1λ0/6

|∇v|2 dx
)∫

Bρ

|∇v|2 dx.



Size estimates for the EIT problem: the complex case 579

Now, we apply the three spheres inequality

(6.23)

∫
BR0/2

|∇v|2 dx ≤ C12

(∫
BR0

|∇v|2 dx
)θ( ∫

BR1λ0/6

|∇v|2 dx
)1−θ

,

where C12 and θ ∈ (0, 1) depend only on λ0 and λ1. From (6.23) we have trivially∫
BR0

|∇v|2 dx∫
BR1λ0/6

|∇v|2 dx ≤ C12

( ∫
BR0

|∇v|2 dx∫
BR0/2

|∇v|2 dx
)1/(1−θ)

.

From this last inequality and (6.22) we finally get (4.5). �
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