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On trilinear oscillatory integrals

Michael Christ and Diogo Oliveira e Silva

Abstract. We examine a certain class of trilinear integral operators which
incorporate oscillatory factors eiP , where P is a real-valued polynomial,
and prove smallness of such integrals in the presence of rapid oscillations.

1. Introduction

This note continues the study of multilinear oscillatory integral expressions of the
form

I(λP ; f1, . . . , fn) =

∫
Rm

eiλP (x)
n∏
j=1

fj ◦ πj(x) η(x) dx,

where λ ∈ R is a parameter, P : Rm → R is a real-valued polynomial, πj : R
m → Vj

are orthogonal projections onto some subspaces Vj of Rm, fj : Vj → C are locally
integrable functions with respect to Lebesgue measure on Vj , and η ∈ C1

0 (R
m) is

compactly supported. All the subspaces Vj are assumed to have the same dimen-
sion, which is denoted by κ.

Christ, Li, Tao, and Thiele [5] initiated this study, exploring conditions on the
polynomial phase P and on the projections {πj} which ensure decay estimates of
the form

(1.1) |I(λP ; f1, . . . , fn)| ≤ C〈λ〉−ε
n∏
j=1

‖fj‖L∞(Vj).

Their results were restricted to the comparatively extreme cases κ = 1 and κ =
m− 1, and the small codimension case n ≤ m/(m− κ), leaving most cases open.

In the present paper we consider the trilinear situation in Rm = R2κ for arbi-
trary κ ≥ 2. A typical expression of this type is then

I(P ; f1, f2, f3) =

∫∫
R2κ

eiP (x,y) f1(x) f2(y) f3(x+ y) η(x, y) dx dy,

with coordinates (x, y) ∈ Rκ+κ. Before stating our main theorem, we introduce
some notation and recall relevant results from the literature.
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1.1. Review

Let d ≥ 1 be a positive integer, and let {πj}3j=1 be surjective linear mappings

from R2κ to Rκ. A polynomial P : R2κ → R is said to be degenerate (with respect
to the projections {πj}) if there exist polynomials pj : Rκ → R such that P =∑3

j=1 pj◦πj . The vector space of all degenerate polynomials P : R2κ → R of degree

≤ d is a subspace Pdegen of the vector space P(d) of all polynomials P : R2κ → R

of degree ≤ d. Denote the quotient space by P(d)/Pdegen, by [P ] the equivalence
class of P in P(d)/Pdegen, and by ‖·‖nd some fixed choice of norm for this quotient
space. In a similar way, let ‖·‖nc denote some fixed choice of norm for the quotient
space of polynomials P : R2κ → R of degree ≤ d modulo constants.

It will be convenient to work with norms defined by inner products. If P (x, y) =∑
α,β cαβx

αyβ, then set

‖P‖P(d) =
(∑
α,β

|cαβ|2
)1/2

, ‖P‖nc =
( ∑

(α,β) �=(0,0)

|cαβ|2
)1/2

.

One likewise defines the norm ‖ · ‖nd by choosing some Hilbert space structure for
P(d)/Pdegen.

The norm ‖ · ‖nc controls oscillatory integrals of the first kind, in light of the
following version of stationary phase.

Theorem 1.1. Let p(t) =
∑

|α|≤d cαt
α, cα ∈ R, be a polynomial in m variables of

degree d ≥ 1. Then

∣∣∣ ∫
[0,1]m

eip(t)dt
∣∣∣ ≤ Cd,m

( ∑
0<|α|≤d

|cα|
)−1/d

.

Theorem 1.1 is a straightforward consequence of the well-known lemma of van
der Corput [8].

On the other hand, the norm ‖ · ‖nd controls multilinear oscillatory integrals
(in particular, oscillatory integrals of the second kind), as is shown in [5]. The
following theorem is most relevant to our discussion.

Theorem 1.2. Suppose that n < 2m and d <∞. Then, for any family {Vj}nj=1 of
one-dimensional subspaces of Rm which lie in general position, there exist constants
C <∞ and ε > 0 such that

∣∣I(P ; f1, . . . , fn)∣∣ ≤ C〈‖P‖nd〉−ε
n∏
j=1

‖fj‖L2(Vj)

for all polynomials P : Rm → R of degree ≤ d and for all functions fj ∈ L2(R).
Moreover, ε can be taken to depend only on n,m, and d.



On trilinear oscillatory integrals 669

1.2. Result

Let {π1, π2, π3} be a collection of three surjective linear mappings from R2κ to Rκ.
We say that these lie in general position if for any two indices i �= j ∈ {1, 2, 3}, the
nullspace of πi is transverse to the nullspace of πj .

In the present paper we prove the following:

Theorem 1.3. Let κ ≥ 1 and d < ∞. Let {π1, π2, π3} be a collection of three
surjective linear mappings from R2κ to Rκ, which lie in general position. Then

(1.2)
∣∣I(P ; f1, f2, f3)∣∣ ≤ C〈‖P‖nd〉−ε

3∏
j=1

‖fj‖L2(Rκ),

for all polynomials P : R2κ → R of degree ≤ d and for all functions fj ∈ L2(Rκ),
with constants C, ε ∈ R

+ which depend only on κ, d, η, and {πj}.
A more general result is established in the sequel [4]. Both of these works rely

on dichotomies between structure and what may be termed pseudorandomness,
but the notions of structure employed are quite different. A general function fj
is decomposed as the sum of pseudorandom and structured parts, the structured
part being in turn an infinite sum of atomic functions with a particular structure.
Fundamental questions are how such a dichotomy can usefully be defined for in-
equalities (1.2), what form the atomic structured components should take, and
how a function can be efficiently decomposed into pseudorandom and structured
summands so that good quantitative bounds can be obtained.

In the present paper, the relevant atomic functions take the form eiφ(x), where
φ(x1, x2, . . . , xκ) is a real-valued polynomial of controlled degree with respect to xκ,
whose coefficients are unknown measurable real functions of (x1, x2, . . . , xκ−1).
Related reasoning is iterated to gain control of those coefficients. This argument
is relatively direct.

In contrast, [4] uses a cruder reductive argument which works with a class of
atomic functions which are less closely adapted to the oscillatory integral analysis,
yet do suffice for a proof of a bound (1.2) with some exponent ε > 0. It is shown
that there exist coordinates x = (x′, x′′) ∈ Rκ

′ ×Rκ
′′
, with both κ′ and κ′′ strictly

less than κ, with respect to which a structured component fj can be expressed as
a rapidly convergent sum of product functions f ′

j(x
′)f ′′

j (x
′′). No further structural

information is initially known about these atomic functions. This reduction is ap-
plied iteratively to the resulting factors, until a multilinear expression is reached
in which each factor fj depends only on a single real variable. Since that situation
was treated in [5], the proof is then complete. Fundamentally, after the iteration,
one is implicitly working with atomic functions of the form eiφ where φ =

∑κ
s=1 φs

with each φs being a polynomial of a single real variable. Most of the reasoning
is concerned with the linear algebra needed to show the existence of suitable coor-
dinates, rather than with any direct analysis of oscillatory integrals. The present
paper does involve such direct analysis.

In both works, as in [5], a key element (partly implicit rather than fully ex-
plicit) is the representation of a function fj as a sum of functions with specific
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structural properties, but the particular structural properties that arise here are
quite different from those in [4]. Since optimal decay exponents ε in the inequal-
ity (1.2) remain unknown, and the fundamental problem of devising a truly efficient
way of decomposing functions into pseudorandom and structured components re-
mains unresolved, both the approach of the present work, and that of [4] are of
potential interest.

As in [5], the reasoning here is organized in terms of a priori inequalities in
such a manner that the decomposition of a structured function as an infinite sum
of atomic functions is not made explicit. It is implicit below in the reduction
to (4.3), which is the inequality in question with one fj replaced by an atomic
function eiφ.

If x and y are real numbers, we will write x � y if there exists a finite constant C
such that x ≤ Cy. The constant C may depend on some parameters which will be
clear from the context. The notation 〈x〉 is shorthand for (1 + |x|2)1/2.

2. First reduction

It is no loss of generality to restrict attention to the case where R2κ is identified
with Rκx×Rκy , and π1(x, y) = x, π2(x, y) = y, and π3(x, y) = x+y. Indeed, since the
nullspaces of π1 and π2 are transverse, we may adopt coordinates (x, y) ∈ Rκ+κ

such that the nullspace of π1 is {(0, y)}, while the nullspace of π2 is {(x, 0)}.
Writing π3(x, y) = Ax + By where A,B : Rκ → Rκ are linear, the transversality
hypothesis implies that both A and B are injective. Therefore it is possible to
make invertible changes of coordinates in Rκx and Rκy so that A and B become the
identity operator, and π3(x, y) = x + y. Next, π1(x, y) = Dx for some invertible
D : Rκ → Rκ. By making a change of variables in the range of D, we may achieve
π1(x, y) ≡ x. Finally, a corresponding change of coordinates in the range of π2
makes π2(x, y) ≡ y.

In order to keep the notation simple, we will discuss in detail the case κ = 2,
then will indicate in §7 how the analysis extends without additional difficulty to
arbitrary dimensions.

3. Second reduction

We will restrict our attention to polynomial phases of the form λP , where λ ∈
(0,∞) and ‖P‖nd = 1, for, if ‖P‖nd = 0, then the conclusion of Theorem 1.3 is
trivial. In particular, henceforth P will be assumed nondegenerate with respect to
the projections {πj}3j=1.

In the following lemma, P(x2,y2)(x1, y1) := P (x1, y1, x2, y2), and ‖ · ‖nd denotes
a norm on the space of polynomials of degree ≤ d in x1 and y1 modulo degenerate
polynomials with respect to the projections (x1, y1) 
→ x1, y1, x1 + y1. We will
sometimes write I(P ) as a shorthand for I(P ; f1, f2, f3).

Let K ⊂ R2
x2,y2 be the projection of the support of η onto the (x2, y2)-plane.
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Lemma 3.1. Let P : R4 → R be a real-valued polynomial of degree ≤ d. If the poly-
nomial (x1, y1) 
→ P (x, y) is nondegenerate with respect to the one-dimensional pro-
jections (x1, y1) 
→ x1, (x1, y1) 
→ y1, and (x1, y1) 
→ x1+y1 for some (x2, y2)∈R2,
then there exists a constant C <∞ such that∣∣I(λP ; f1, f2, f3)∣∣ ≤ C

(
λ · sup

(x2,y2)∈K
‖P(x2,y2)‖nd

)−σ 3∏
j=1

‖fj‖2,

for all functions fj ∈ L2(R2), where σ > 0 is a constant which depends only on d.

Proof. We can apply Theorem 1.2 with m = 2 and n = 3 to conclude that

Jx2,y2(λP ) :=

∫∫
R2

eiλP (x1,y1,x2,y2)f1(x1, x2) f2(y1, y2) f3(x1 + y1, x2 + y2)

· η(x1, y1, x2, y2) dx1dy1
satisfies∣∣Jx2,y2(λP )

∣∣ ≤ C
(
1 + λ2|Q(x2, y2)|

)−ρ∥∥f1(·, x2)∥∥2 ∥∥f2(·, y2)∥∥2 ∥∥f3(·, x2 + y2)
∥∥
2

= C
(
1 + λ2|Q(x2, y2)|

)−ρ
g1(x2) g2(y2) g3(x2 + y2),

for some ρ > 0 depending only on d, where gj(t) = ‖fj(·, t)‖2 and Q(x2, y2) =
‖P(x2,y2)(·)‖2nd is a polynomial of degree ≤ 2d.

For ε > 0, let
Eε :=

{
(x, y) ∈ K : |Q(x, y)| < ε

}
.

A basic sublevel set estimate [1] yields

|Eε| ≤ C ‖Q‖−δ′L∞(K) ε
δ′ for δ′ =

1

deg(Q)

and some absolute constant C < ∞, if Q has positive degree. We now split
the original integral I(λP ; f1, f2, f3) into two pieces and estimate each of them
separately. On the one hand, Hölder’s and Young’s inequalities imply∫∫

Eε

|Jx2,y2(λP )| dx2 dy2 ≤ C

∫∫
Eε

g1(x2) g2(y2) g3(x2 + y2) dx2 dy2

≤ C |Eε|1/4
(∫∫

R2

g
4/3
1 (x2) g

4/3
2 (y2) g

4/3
3 (x2 + y2) dx2 dy2

)3/4

≤ C |Eε|1/4
3∏
j=1

‖g4/3j ‖3/43/2 = C |Eε|1/4
3∏
j=1

‖gj ‖2 ≤ C ‖Q‖−δL∞(K) ε
δ

3∏
j=1

‖fj ‖2.

On the other hand,∫∫
R2\Eε

|Jx2,y2(λP )| dx2 dy2 ≤ C(1 + λ2ε)−ρ
∫∫

R2

g1(x2) g2(y2) g3(x2 + y2) dx2 dy2

≤ C (1 + λ2ε)−ρ
3∏
j=1

‖gj ‖3/2 ≤ C (1 + λ2ε)−ρ
3∏
j=1

‖fj ‖2.
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If Q has degree zero then the same conclusion is reached more simply, with εδ
′

replaced by 1. Thus

∣∣I(λP ; f1, f2, f3)∣∣ ≤ C
[
‖Q‖−δL∞(K) ε

δ + (λ2ε)−ρ
] 3∏
j=1

‖fj‖2.

Since ‖Q‖L∞(K) = sup(x2,y2)∈K ‖P(x2,y2)‖2nd, optimizing in ε yields an upper bound

∣∣I(λP ; f1, f2, f3)∣∣ ≤ C
(
λ sup

(x2,y2)∈K
‖P(x2,y2)‖nd

)− 2ρδ
ρ+δ

3∏
j=1

‖fj‖2. �

4. Third reduction

The goal of this step is to show that it is enough to consider functions of the form
fj(u1, u2) = eiφj(u1,u2), where φj has polynomial dependence on u1 of bounded
degree and is real valued.

From the last section, we get the desired decay rate unless P is “almost degen-
erate” with respect to the projections (x1, y1) 
→ x1, y1, x1 + y1 for almost every
(x2, y2) ∈ R2, in the sense that

sup
(x2,y2)∈K

‖P(x2,y2)‖nd � λ−1+τ for some τ > 0.

We have the freedom to choose τ arbitrarily small later in the argument.
In this case, one can decompose

P (x, y) = q1(x1, x2, y2) + q2(y1, x2, y2) + q3(x1 + y1, x2, y2) +R(x, y),

for some measurable functions qj and R which are polynomials of degree ≤ d in x1
and y1, and where the remainder R satisfies

|R(x, y)| � λ−1+τ if (x, y) ∈ K ′

for any fixed compact set K ′ ⊂ R4. To justify this, for each integer k ≥ 0
choose some Hilbert space norm for the vector space of all degree k homogeneous
polynomials in x1 and y1. Write P(x2,y2)(x1, y1) = P (x, y). Write P (x, y) =∑d

k=0 Pk,(x2,y2)(x1, y1) where Pk,(x2,y2) is a homogeneous polynomial of degree k
in (x1, y1), whose coefficients are polynomials in (x2, y2). Now we use two facts
shown implicitly in [5]. First, if p =

∑
k pk is a decomposition of a polynomial in

(x1, y1) into its homogeneous summands of degree k, then
∑

k ‖pk‖nd is compara-
ble to ‖p‖nd. Second, if p(x1, y1) is homogeneous of degree k, then for any d ≥ k,
the norm of p in the space of all homogeneous polynomials of degree k modulo
polynomials cxk1 + c′yk1 + c′′(x1 + y1)

k is comparable to the norm ‖p‖nd of p in the
space of all polynomials of degrees ≤ d modulo all degenerate polynomials of de-
grees ≤ d, where degenerate polynomials are those which are sums of polynomials
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in x1, polynomials in y1, and polynomials in x1 + y1. Qualitative versions of these
two facts were established in [5]; the quantitative versions stated here follow from
the equivalence of all norms in any finite-dimensional vector space.

For each k, the projection Qk,(x2,y2) of Pk,(x2,y2) onto the span of xk1 , y
k
1 , and

(x1 + y1)
k has polynomial dependence on (x2, y2). Moreover, all coefficients of

Pk,(x2,y2)−Qk,(x2,y2) areO(λ
−1+τ ) for (x2, y2) ∈ K, and therefore for (x2, y2) in any

fixed bounded set. For k ≥ 2, Qk,(x2,y2) decomposes uniquely as q1,k(x2, y2)x
k
1 +

q2,k(x2, y2)y
k
1 + q3,k(x2, y2)(x1 + y1)

k; these coefficients qi,k continue to have poly-
nomial dependence on (x2, y2). For k = 1 there is likewise a unique such decompo-
sition, with the additional condition q3,k ≡ 0, and for k = 0, with two additional
conditions q2,k ≡ q3,k ≡ 0. Recombining terms gives the claim.

We use this to compute Jx2,y2 (a similar calculation occurs in [5], p. 340):

Jx2,y2(λP ) =

∫∫
R2

eiλP (x,y)f1(x) f2(y) f3(x+ y) η(x, y) dx1dy1

=

∫∫
R2

eiλq1(x1,x2,y2)f1(x1, x2) e
iλq2(y1,x2,y2)f2(y1, y2)

· eiλq3(x1+y1,x2,y2)f3(x1 + y1, x2 + y2) e
iλRη dx1dy1

=

∫∫
R2

g1(x1) g2(y1) g3(x1 + y1) ζ(x1, y1) dx1dy1

= C

∫∫ (∫
ĝ1(ξ1) e

ix1ξ1 dξ1

)
g2(y1) g3(x1 + y1)

·
(∫∫

ζ̂(ξ2, ξ3) e
i(x1,y1)·(ξ2,ξ3) dξ2dξ3

)
dx1dy1

= C

∫∫∫
ĝ1(ξ1) ζ̂(ξ2, ξ3)

·
[ ∫

g2(y1) e
iy1ξ3

(∫
g3(x1 + y1) e

ix1(ξ1+ξ2) dx1

)
dy1

]
dξ1dξ2dξ3

= C

∫∫∫
ĝ1(ξ1) ĝ2(ξ1 + ξ2 − ξ3) ĝ3(−ξ1 − ξ2) ζ̂(ξ2, ξ3) dξ1dξ2dξ3.

Implicit in this notation is the dependence of the functions gj := eiλqjfj and
ζ := eiλRη on x2 and y2.

Since λR is a polynomial in x1 and y1 of bounded degree which is O(λτ ) on
supp(η) and the same holds for all its derivatives, we have that

|ζ̂(ξ)| ≤ CN,η λ
Nτ (1 + |ξ|)−N , ∀ξ ∈ R

2, ∀N ∈ N,

provided η ∈ CN . In particular, if1 η ∈ C3
0 (R

4), then

|ζ̂(ξ)| ≤ C λ3τ (1 + |ξ|)−3, ∀ξ ∈ R
2.

1We lose no generality in assuming this extra smoothness on η: by the usual decomposition
of a compactly supported Hölder continuous function ζ = f + g into a smooth part f such that
‖f‖Cn = O(λCnδ) and a bounded remainder g such that ‖g‖∞ = O(λ−δ), it is easy to see that
if the result holds for some η ∈ Cn

0 (n ∈ N) with a constant C = O(‖η‖Cn ), then it will continue
to hold for all η which are compactly supported and Hölder continuous of order α.
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We use this (together with the Cauchy–Schwarz inequality and the Plancherel
formula) to conclude that

|Jx2,y2(λP )| ≤ C λ3τ‖ĝ1‖∞
∫∫∫ |ĝ2(ξ1 + ξ2 − ξ3)| |ĝ3(−ξ1 − ξ2)|

(1 + |(ξ2, ξ3)|)3 dξ1 dξ2 dξ3

≤ C λ3τ ‖ĝ1‖∞ ‖g2‖2 ‖g3‖2.
Let δ > 3τ and consider the set

F :=
{
(x2, y2) ∈ R

2 : ‖ĝ1‖∞ � λ−δ
}
.

There are two possibilities:

(i) If |F �| � λ−δ, then |I(λP )| � λ−(δ−3τ), as is easily seen by splitting the
integral

I(λP ) =

∫∫
R2

Jx2,y2(λP ) dx2 dy2

over the regions F and F �.

(ii) If |F �| � λ−δ, we set E := F �. Note that ‖ĝ1‖∞ � λ−δ for every (x2, y2) ∈ E.

Since condition (i) yields the desired decay, henceforth we restrict attention
to the case in which condition (ii) holds. Then there exists a measurable subset
E ⊂ R

2 such that |E| � λ−δ and ‖ĝ1‖∞ � λ−δ for every (x2, y2) ∈ E. We still
have the freedom to choose δ > 0 as small as we wish later in the argument.

Why is this conclusion of interest? Since

λ−δ � ‖ĝ1‖∞ = sup
ξ

∣∣∣ ∫
R

eiλq1(x1,x2,y2)f1(x1, x2) e
−ix1ξ dx1

∣∣∣,
we can find measurable functions θ and θ̃ such that, for (x2, y2) ∈ E,

λ−δ �
∣∣∣ ∫ eiλq1(x1,x2,y2)f1(x1, x2) e

−ix1θ(x2,y2) dx1

∣∣∣
= e−iθ̃(x2,y2)

∫
f1(x1, x2) e

iλq1(x1,x2,y2)−ix1θ(x2,y2) dx1.

Because we are working in a fixed bounded region, there exist a measurable
subset E1 ⊂ R such that |E1| � λ−δ and a single number y2 ∈ R such that for
each x2 ∈ E1, (x2, y2) ∈ E. Thus

λ−δ � e−iθ̃(x2,y2)

∫
f1(x1, x2) e

iλq1(x1,x2,y2)−ix1θ(x2,y2) dx1

=

∫
f1(x1, x2) e

iϕ1(x1,x2) dx1, if x2 ∈ E1,

where
ϕ1(x1, x2) = λq1(x1, x2, ȳ2)− x1θ(x2, ȳ2)− θ̃(x2, ȳ2)

is a real-valued polynomial in x1 of degree ≤ d, whose coefficients are measurable
functions of x2.
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We would like to use this to conclude that the inner product of f1 with e−iϕ1

is reasonably large. While this is not necessarily true, the following extension
argument will prove sufficient for our purposes: for every x2 ∈ R, choose θ∗(x2) in
a measurable way and such that

eiθ
∗(x2)

∫
R

f1(x1, x2) e
iϕ1(x1,x2) dx1 ≥ 0.

We can guarantee that θ∗ ≡ 0 on E1.
Define φ1(x1, x2) := θ∗(x2) + ϕ1(x1, x2). Then φ1 is likewise a real-valued

polynomial in x1 of degree ≤ d, whose coefficients are measurable functions of x2.
Now ∫

R

f1(x1, x2) e
iφ1(x1,x2) dx1 ≥ 0, for every x2 ∈ R,

while, for any x2 ∈ E1, ∫
R

f1(x1, x2) e
iφ1(x1,x2) dx1 � λ−δ.

Therefore, since |E1| � λ−δ,

|〈f1, e−iφ1〉| � λ−2δ.

Since ‖f1‖L2 = 1 and f1 is supported in a fixed bounded set,

(4.1)
∥∥f1 − 〈f1, e−iφ1〉e−iφ1

∥∥2
2
≤ (1− Cλ−4δ).

Let A(λ) be the best constant in the inequality∣∣I(λP ; f1, f2, f3)∣∣ ≤ A(λ) ‖f1‖L2 ‖f2‖L2 ‖f3‖L2 .

That A(λ) is finite is an immediate consequence of the dual form of Young’s
convolution inequality and the fact that, in this context, L2 ⊂ L3/2. Now (4.1)
implies∣∣I(λP ; f1, f2, f3)∣∣ =

=
∣∣I(λP ; f1 − 〈f1, e−iφ1〉 e−iφ1 , f2, f3) + I(λP ; 〈f1, e−iφ1〉 e−iφ1 , f2, f3)

∣∣
≤ A(λ)‖f1 − 〈f1, e−iφ1〉 e−iφ1‖2‖f2‖2‖f3‖2 + |〈f1, e−iφ1〉||I(λP ; e−iφ1 , f2, f3)|
≤ A(λ)(1 − Cλ−4δ)1/2 + C|I(λP ; e−iφ1 , f2, f3)|.

Therefore

A(λ) ≤ A(λ) (1 − Cλ−4δ )1/2 + C sup
φ1,f2,f3

∣∣I(λP ; e−iφ1 , f2, f3)
∣∣

where the supremum is taken over all functions f2 and f3 supported in the specified
regions satisfying ‖fj‖L2 = 1, and over all real-valued functions φ1(x1, x2) which
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are polynomials of degree ≤ d with respect to x1, with coefficients depending
measurably on x2. Since A(λ) <∞, it follows that

(4.2) A(λ) ≤ Cλ4δ sup
φ1,f2,f3

|I(λP ; e−iφ1 , f2, f3)|.

Therefore it suffices to prove that

(4.3)
∣∣I(λP ; e−iφ1 , f2, f3)

∣∣ ≤ C λ−ε ‖f2‖L2 ‖f3‖L2

for a certain ε > 0; for δ may then be chosen to equal ε/5.
By repeating the above steps for g2 and g3, we conclude that it suffices to prove

that there exists ε > 0 such that

(4.4)
∣∣I(λP ; eiφ1 , eiφ2 , eiφ3)

∣∣ ≤ C λ−ε

uniformly for all λ ≥ 1, all polynomials P satisfying ‖P‖nd = 1, and all real-valued
measurable functions φj(u1, u2) which are polynomials of degree ≤ d with respect
to u1.

5. Handling remainders

In the last section we have reduced matters to the case where the fj have the
special form ⎧⎪⎨⎪⎩

f1(x1, x2) = eiφ1(x1,x2)

f2(y1, y2) = eiφ2(y1,y2)

f3(x1 + y1, x2 + y2) = eiφ3(x1+y1,x2+y2),

where φj are partial polynomials in the sense described following (4.4). Write⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1(x1, x2) =

d∑
j=0

θ1,j(x2)x
j
1

φ2(y1, y2) =

d∑
k=0

θ2,k(y2) y
k
1

φ3(x1 + y1, x2 + y2) =

d∑
l=0

θ3,l(x2 + y2) (x1 + y1)
l

where θ1,j , θ2,k, and θ3,l are measurable and real-valued. Also express

P (x, y) =
∑
j,k

pjk(x2, y2)x
j
1 y

k
1 .

Then

I(λP ; f1, f2, f3) =

∫∫
eiλP eiφ1eiφ2 eiφ3 η dx dy

=

∫∫ (∫∫
ei

∑
j,k ψjk(x2,y2) x

j
1 y

k
1 η dx1 dy1

)
dx2 dy2,
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where

ψjk(x2, y2) =

{
θ1,j(x2) if k = 0

0 if k �= 0

}
+

{
θ2,k(y2) if j = 0

0 if j �= 0

}
+

(
j + k

k

)
θ3,j+k(x2 + y2) + λ pjk(x2, y2).

The desired bound |I(λP ; eiφ1 , eiφ2 , eiφ3)| ≤ Cλ−ε follows directly from The-
orem 1.1, unless there exists a measurable subset E ⊂ R2 of measure |E| � λ−δ

such that

(5.1)
∑

(j,k) �=(0,0)

|ψjk(x2, y2)| � λr , ∀(x2, y2) ∈ E.

We may choose δ, r > 0 to be as small as may be desired for later purposes, at the
expense of taking ε sufficiently small in (4.4).

The proof of the following lemma will be given later.

Lemma 5.1. Let P : R2 → RD be a real vector-valued polynomial of degree d,
and let f, g : [0, 1] → RD be measurable functions. Let E ⊆ [0, 1]2 be a measurable
subset of the unit square of Lebesgue measure |E| = ε > 0. Assume that

(5.2)
∣∣f(x) + g(y) + P (x, y)

∣∣ ≤ 1 for all (x, y) ∈ E.

Then there exist RD-valued polynomials Q1 and Q2 of degrees ≤ d and measurable
sets E1, E2 ⊆ [0, 1] such that⎧⎪⎨⎪⎩

|f(x)−Q1(x)| � ε−C for x ∈ E1

|g(y)−Q2(y)| � ε−C for y ∈ E2

|E1| ≥ cε, |E2| ≥ cε.

The constants c, C ∈ R+ depend only on d.

The phase estimates (5.1), together with Lemma 5.1, allow us to control most
of the terms θi. Letting k = 0, we have that

|ψj0(x2, y2)| =
∣∣∣θ1,j(x2) + θ3,j(x2 + y2) + λpj0(x2, y2)

∣∣∣ � λr

if 1 ≤ j ≤ d and (x2, y2) ∈ E. Since |E| � λ−δ, Lemma 5.1 implies that, for every

1 ≤ j ≤ d, there exists a real-valued polynomial Q̃1,j of degree ≤ d such that

|λ−rθ1,j(x2)− Q̃1,j(x2)| � (λ−δ)−C

whenever x2 ∈ E1; here, E1 ⊂ R is a measurable subset which does not depend
on j and such that |E1| � λ−δ. A similar conclusion can be drawn for each of the
terms θ3,l with 1 ≤ l ≤ d. Choosing j = 0 we control the terms θ2,k for 1 ≤ k ≤ d
in an analogous way.
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We conclude that, for every 1 ≤ j, k, l ≤ d,⎧⎪⎪⎨⎪⎪⎩
θ1,j(x2) = Q1,j(x2) + R̃1,j(x2)

θ2,k(y2) = Q2,k(y2) + R̃2,k(y2)

θ3,l(x2 + y2) = Q3,l(x2 + y2) + R̃3,l(x2 + y2)

where Q1,j, Q2,k, and Q3,l are polynomials of degree ≤ d, and the remainders
satisfy ⎧⎪⎪⎨⎪⎪⎩

|R̃1,j(x2)| � λβ if x2 ∈ E1,

|R̃2,k(y2)| � λβ if y2 ∈ E2,

|R̃3,l(x2 + y2)| � λβ if x2 + y2 ∈ E3,

for certain measurable subsets E1, E2, E3 ⊂ R which satisfy

|Ei| � λ−δ.

The parameter β := r + Cδ is a function of r, δ, and the constant C = C(d) from
Lemma 5.1.

We have estimates for the remainders Ri in rather small sets only, but it is
possible to reduce to the case in which these estimates hold globally, via an ex-
tension argument similar to the one used in the previous section. Set Q1(x) =∑d

j=1Q1,j(x2)x
j
1 and R̃1(x) =

∑d
j=1 R̃1,j(x2)x

j
1. By modifying each R̃1,j suitably

at each point of the complement of E1, we produce a function Φ1 = θ1,0+Q1+R1

such that θ1,0 is a measurable and real-valued function of x2, Q1(x) is a polynomial
function of x ∈ R2 of degree ≤ d, R1(x1, x2) is a polynomial in x1 of degree ≤ d
whose coefficients are measurable functions of x2, |R1(x)| � λβ for every x ∈ R2,
all functions are real-valued, and

(5.3) 〈eiφ1 , eiΦ1〉 � λ−δ.

By the same argument used to reduce from general fj to e
iφj in (4.2),

(5.4) A(λ) � λCδ sup
Φ1,φ2,φ3

∣∣I(λP ; eiΦ1 , eiφ2 , eiφ3)
∣∣,

where the supremum is taken over all Φ1, φ2, and φ3 of the above form. This
argument can be repeated twice more to give

(5.5) A(λ) � λCδ sup
Φ1,Φ2,Φ3

∣∣I(λP ; eiΦ1 , eiΦ2 , eiΦ3)
∣∣,

where each of the functions Φi shares the properties indicated above for Φ1.
Now

I(λP ; eiΦ1 , eiΦ2 , eiΦ3) =

∫∫
eiθ1,0(x2)eiθ2,0(y2)eiθ3,0(x2+y2)

·
(∫∫

eiλP (x,y)eiQ1(x)eiQ2(y)eiQ3(x+y)ei(R1(x)+R2(y)+R3(x+y)) η dx1dy1

)
dx2dy2.
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Let P̃ := P + λ−1Q1 + λ−1Q2 + λ−1Q3. Since [P ] = [P̃ ], ‖P‖nd = ‖P̃‖nd. We
are left with

I(λP ) =

∫∫
eiθ1,0(x2)eiθ2,0(y2)eiθ3,0(x2+y2)

·
(∫∫

eiλP̃ (x,y)ei(R1(x)+R2(y)+R3(x+y)) η dx1dy1

)
dx2dy2,

where all the functions in the exponents are real-valued, P̃ is a polynomial of de-
gree ≤ d such that ‖P̃‖nd = ‖P‖nd = 1, the θj,0 and the Rj are measurable func-
tions, and the remainders Rj(u1, u2) are polynomial functions of u1 of degrees ≤ d
which satisfy |Rj(u)| � λβ for all u ∈ R

2.

6. The end of the proof

Decompose

(6.1) P̃ = P0 + P ∗ where P0(x2, y2) = P̃ (0, 0, x2, y2)

and P ∗ = P̃ − P0.
Since

ψ00(x2, y2) = λP0(x2, y2) + θ1,0(x2) + θ2,0(y2) + θ3,0(x2 + y2),

we can write

(6.2)

I(λP )=

∫∫
eiψ00(x2,y2)

(∫∫
eiλP

∗(x,y)ei(R1(x)+R2(y)+R3(x+y)) η dx1dy1

)
dx2dy2.

Our main assumption, namely that P is nondegenerate with respect to the
projections {πj}3j=1, has not yet come into play. To apply it, we need a lemma:

Lemma 6.1. For any d ∈ N there exists c > 0 with the following property. Let
P̃ : R4 → R be any real-valued polynomial of degree ≤ d. Decompose P̃ = P0 + P ∗

as in (6.1). Then ∥∥‖P ∗
(x2,y2)

‖nc
∥∥
P(d)

+ ‖P0‖nd ≥ c ‖P̃‖nd.

The expression ‖P0‖nd in this lemma has two natural interpretations, but these
define the same quantity since

(6.3) min
deg(pi)≤d

∥∥P0(x2, y2) + p1(x1, x2) + p2(y1, y2) + p3(x1 + y1, x2 + y2)
∥∥
P(d)

= min
deg(qi)≤d

∥∥P0(x2, y2) + q1(x2) + q2(y2) + q3(x2 + y2)
∥∥
P(d)

.

The two inequalities implicit in this equality are obtained by setting qj(t) = pj(0, t),
and by setting pj(t1, t2) = qj(t2), respectively.
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Proof. The left-hand side defines a seminorm on the finite-dimensional vector space
of polynomials of degrees ≤ d modulo degenerate polynomials, so it suffices to show
that if ‖ ‖P ∗

(x2,y2)
‖nc ‖P(d) vanishes then P ∗ is degenerate, and correspondingly

for P0. For P0 this is a tautology, in view of (6.3). On the other hand, P ∗(x, y) =∑
(j,k) �=(0,0) qj,k(x2, y2)x

j
1y
k
1 where the qj,k are uniquely determined polynomials,

and ∥∥‖P ∗
(x2,y2)

‖nc
∥∥
P(d)

= 0 if and only if qj,k ≡ 0 for each j and k.

Thus P ∗ ≡ 0, so, in particular, P ∗ is degenerate. �

Therefore there exists a constant cd > 0 such that ‖‖P ∗
(x2,y2)

‖nc ‖P(d) ≥ cd or

‖P0‖nd ≥ cd.

6.1. Case 1:
∥∥‖P ∗

(x2,y2)
‖nc

∥∥
P(d)

≥ cd

We have that

I(λP ) =

∫∫
ei(λP0(x2,y2)+θ1,0(x2)+θ2,0(y2)+θ3,0(x2+y2))

·
( ∫∫

eiλP
∗(x,y)ei(R1(x)+R2(y)+R3(x+y)) η dx1dy1

)
dx2dy2,

where by Theorem 1.1, the absolute value of the inner integral is

�
(
λ‖P ∗

(x2,y2)
+ λ−1R1,(x2) + λ−1R2,(y2) + λ−1R3,(x2+y2)‖nc

)−1/d

.

Since |Rj | ≤ λβ and β < 1, we have that, if λ is large enough, then∥∥∥P ∗
(x2,y2)

+ λ−1R1,(x2) + λ−1R2,(y2) + λ−1R3,(x2+y2)

∥∥∥
nc

� ‖P ∗
(x2,y2)

‖nc

for every (x2, y2) ∈ R2. We conclude that the absolute value of the inner integral is

�
(
λ‖P ∗

(x2,y2)
‖nc

)−1/d
.

If (x2, y2) ∈ R2 is such that

‖P ∗
(x2,y2)

‖nc � λ−1+τ for some τ > 0,

we get the desired decay. Otherwise, observe that (i) implies a sublevel set estimate
of the form ∣∣{(x2, y2) ∈ R

2 : ‖P ∗
(x2,y2)

‖nc < λ−1+τ
}∣∣ � (λ−1+τ )δ.

Therefore the contribution of the set of such points (x2, y2) to the integral is small,
and this concludes the analysis of case 1.
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6.2. Case 2: ‖P0‖nd ≥ cd

By Fubini’s theorem,

I(λP ) =

∫∫ (∫∫
eiλ[P0(x2,y2)+P

∗(x,y)]

· ei(θ1,0+R1,(x1))(x2)ei(θ2,0+R2,(y1))(y2)ei(θ3,0+R3,(x1+y1))(x2+y2) η dx2dy2

)
dx1 dy1.

By Theorem 1.2, the absolute value of the inner integral in the last expression is
less than or equal to a constant multiple of (1 + λ2‖P0 + P ∗

(x1,y1)
‖2nd)−ρ, for some

ρ = ρ(d) > 0. It follows that

|I(λP )| �
∫∫ (

1 + λ2‖P0 + P ∗
(x1,y1)

‖2nd
)−ρ

dx1 dy1.

To handle this integral, note that P ∗(0, 0, x2, y2) = 0 and hypothesis (ii) together
imply that ∣∣∣{(x1, y1) ∈ R

2 : ‖P0 + P ∗
(x1,y1)

‖2nd < ε
}∣∣∣ � εδ

because (x1, y1) 
→ ‖P0+P ∗
(x1,y1)

‖2nd is a polynomial of degree ≤ 2d. An argument
entirely analogous to the one used to prove Lemma 3.1 concludes the analysis.

7. Higher dimensions and generalization

So far we have only discussed the case where the domain of P is R4, but the case
of R2κ for κ > 2 is treated in essentially the same way. Now write x = (x′, xκ),
y = (y′, yκ) where x′, y′ ∈ Rκ−1. The proof proceeds by induction on κ. The
only significant change in the proof is that in case 2 of the final step of the proof,
since Rκ−1 is no longer R1, Theorem 1.2 does not apply; instead, one simply invokes
the induction hypothesis.

Our result may be generalized to include arbitrary smooth phases and not just
polynomial ones. The details are a straightforward modification of those in [6] and
therefore they are not included.

8. Proof of Lemma 5.1

There remains to prove Lemma 5.1. The proof will rely on the following related,
but simpler, result. Let X be a normed linear space. We write |x| for the norm of
a vector in X .

Lemma 8.1. Let Ω and Ω′ be probability spaces with measures μ and μ′, and
let f and f ′ be X-valued functions defined on these spaces. Let 0 < r < 1 and
R ∈ (0,∞). Let E ⊂ Ω× Ω′ satisfy (μ× μ′)(E) ≥ r. Suppose that∣∣f(x)− f ′(x′)

∣∣ ≤ R for all (x, x′) ∈ E.
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Then there exist a ∈ X, G ⊂ Ω, and G′ ⊂ Ω′ such that

μ(G) ≥ cr,

μ′(G′) ≥ cr,

|f(x)− a| ≤ CR for all x ∈ G,

|f ′(x′)− a| ≤ CR for all x′ ∈ G′.

Here c and C are certain absolute constants.

Proof. Let |E| denote (μ × μ′)(E). Let π1 : Ω × Ω′ → Ω and π2 : Ω × Ω′ → Ω′

denote the canonical projections. For x ∈ π1(E) and x′ ∈ π2(E), consider the
slices {

Ex := {x′ ∈ Ω′ : (x, x′) ∈ E},
Ex′ := {x ∈ Ω : (x, x′) ∈ E}.

By Fubini’s theorem, Ex is μ′-measurable for μ-a.e. x and Ex′ is μ-measurable for
μ′-a.e. x′.

Claim. There exists (x0, x
′
0) ∈ E such that{

G := Ex′
0
⊂ Ω is μ-measurable and μ(G) ≥ cr,

G′ := Ex0 ⊂ Ω′ is μ′-measurable and μ′(G′) ≥ cr.

Assuming the claim, we have that⎧⎪⎨⎪⎩
|f(x)− f ′(x′0)| ≤ R for every x ∈ G,

|f(x0)− f ′(x′0)| ≤ R,

|f(x0)− f ′(x′)| ≤ R for every x′ ∈ G′.

Let a := (f(x0) + f ′(x′0))/2. Then, for any x ∈ G,

|f(x) − a| ≤ |f(x)− f ′(x′0)|+ |f ′(x′0)− a| ≤ 3

2
R,

and similarly for x′ ∈ G′.
To prove the claim, start by assuming that Ex and Ex′ are measurable for

every (x, x′) ∈ E. Express E as a disjoint union E = G ∪ B, where{ G =
{
(x, x′) ∈ E : μ′(Ex) ≥ r/4 and μ(Ex′) ≥ r/4

}
,

B = B1 ∪ B2 :=
{
(x, x′) ∈ E : μ′(Ex) < r/4

} ⋃ {
(x, x′) ∈ E : μ(Ex′) < r/4

}
.

We prove the stronger statement |G| > 0. Suppose on the contrary that |E| = |B|.
Then

r ≤ |E| = |B| = |B1 ∪ B2| ≤ |B1|+ |B2|,
whence |B1| ≥ r/2 or |B2| ≥ r/2. Without loss of generality assume that the
former holds. Then ∣∣∣{(x, x′) ∈ E : μ′(Ex) ≥ r

4

}∣∣∣ ≤ |E| − r

2
.
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However, defining S1 := {x ∈ π1(E) : μ′(E) ≥ r/4} and S2 := π1(E) \ S1, we have
that

|E| =
∫
π1(E)

μ′(Ex) dμ(x) =
∫
S1

μ′(Ex) dμ(x) +
∫
S2

μ′(Ex) dμ(x) ≤
(
|E| − r

2

)
+
r

4
,

a contradiction. �

Proof of Lemma 5.1. Let A be the norm of P in the quotient space of RD-valued
polynomials of degree ≤ d modulo degenerate polynomials with respect to the pair
of projections (x, y) 
→ x and (x, y) 
→ y. It is well known (see [8], p. 416) that a
decay bound of the form (1.1) holds for these projections. That is, for any d there
exists ρ > 0 such that for any compact sets K,K ′ ⊂ R there exists C < ∞ such
that ∣∣∣ ∫

R2

eiQ(x,y)f(x)g(y) dx dy
∣∣∣ ≤ C(1 + ‖Q‖nd)−ρ ‖f‖2 ‖g‖2

for all functions f and g supported on K and K ′ respectively, for all real-valued
polynomials Q of degree ≤ d. This in turn, applied to the individual components
of P , implies a sublevel set inequality of the form

|E| ≤ Cγ A
−γ ,

where Cγ = C/(1− γ), C is an absolute constant, and γ depends only on d; see
for instance the discussion in [3] for the simple derivation.

Hence A ≤ Cγε
−1/γ . That is,

inf
deg p,q≤d

sup
(x,y)∈[0,1]2

∣∣P (x, y)− p(x)− q(y)
∣∣ ≤ Cγ ε

−1/γ .

The infimum is actually a minimum, so there exist polynomials p and q of degree ≤
d such that

sup
(x,y)∈[0,1]2

∣∣P (x, y)− p(x)− q(y)
∣∣ ≤ Cγ ε

−1/γ .

In particular, for (x, y) ∈ E, we have that∣∣(f(x) + p(x)) + (g(y) + q(y))
∣∣ ≤ ∣∣f(x) + g(y) + P (x, y)

∣∣ + ∣∣p(x) + q(y)− P (x, y)
∣∣

≤ 1 + Cγ ε
−1/γ = C′

γ ε
−1/γ .

Apply Lemma 8.1 to conclude the existence of a ∈ C and E1 ⊂ [0, 1] such
that |E1| ≥ ε/4 and

|f(x) + p(x)− a| ≤ Cγ ε
−1/γ = Cγ |E|−1/γ for every x ∈ E1.

Proceeding similarly for g + q completes the proof. �
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