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Calderón commutators and the Cauchy integral

on Lipschitz curves revisited
I. First commutator and generalizations

Camil Muscalu

Dedicated to Professor Nicolae Popa, on the occasion of his 70th birthday

Abstract. This article is the first in a series of three papers, whose aim
is to give new proofs to the well-known theorems of Calderón, Coifman,
McIntosh and Meyer [2], [4] and [5]. Here we treat the case of the first
commutator of Calderón and some of its generalizations.

1. Introduction

This is the first paper of three, whose aim is to give new proofs to the well-
known theorems of Calderón, Coifman, McIntosh, and Meyer [2], [4], and [5],
which established Lp estimates for the so called Calderón commutators and the
Cauchy integral on Lipschitz curves.

We refer the reader to the book [4] of Coifman and Meyer for a description of
the history of these fundamental analytical objects, the role they play in analysis,
and the various methods that have been further developed to understand these
operators since the appearance of the original articles.

Other expository papers, where some of these results are described and con-
nected with other parts of mathematics, are the proceedings of the plenary talks at
the 1974 ICM in Vancouver and the 1978 ICM in Helsinki, given by Fefferman [6]
and Calderón [3].

Our approach will also turn out to be sufficiently flexible and generic, to allow
us to generalize these classical results in various new ways.

This first paper describes the case of the first commutator and its generaliza-
tions, the second one treats the case of the Cauchy integral on Lipschitz curves and
its generalizations and, finally, the third will be devoted to the extension of all these
results to the multiparameter setting of polydiscs of arbitrary dimension, solving
completely along the way an open question of Coifman from the early eighties.

Mathematics Subject Classification (2010): Primary 42; Secondary 35.
Keywords: Calderón commutators, Littlewood–Paley projections, logarithmic estimates.
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We naturally start with the first commutator.
Given a Lipschitz function A on the real line (so A′ := a ∈ L∞(R)) one formally

defines the linear operator C1(f) by the formula

(1.1) C1(f)(x) = p.v.

∫
R

A(x) −A(y)

(x − y)2
f(y) dy ,

where the meaning of the principal value integral is

(1.2) lim
ε→0

∫
ε<|x−y|<1/ε

A(x)−A(y)

(x − y)2
f(y) dy

whenever the limit exists. This is the so called first commutator of Calderón. Note
that the simplest particular case is when A(x) = x, in which case C1(f) is the
classical Hilbert transform.

Observe that when a and f are Schwartz functions, then (1.2) makes perfect
sense. Indeed, for a fixed ε > 0, one can rewrite the corresponding expression
in (1.2) as

−
∫
ε<|t|<1/ε

A(x+ t)−A(x)

t2
f(x+ t) dt =−

∫
ε<|t|<1/ε

[A(x+ t)−A(x)

t

]
f(x+ t)

dt

t

=−
∫
ε<|t|<1/ε

[ ∫ 1

0

a(x+ αt) dα
]
f(x+ t)

dt

t
.(1.3)

Then, write a and f as

a(x+ αt) =

∫
R

â(ξ1) e
2πi(x+αt)ξ1 dξ1 and f(x+ t) =

∫
R

f̂(ξ) e2πi(x+t)ξ dξ.

Using these formulas in (1.3), the expression becomes

(1.4) −
∫
R2

mε(ξ, ξ1) f̂(ξ) â(ξ1) e
2πix(ξ+ξ1) dξ dξ1,

where

mε(ξ, ξ1) =

∫ 1

0

∫
ε<|t|<1/ε

1

t
e2πit(ξ+αξ1) dt dα,

which is known to converge pointwise to

−
∫ 1

0

sgn(ξ + αξ1) dα.

In particular, the dominated convergence theorem implies that in (1.4) the limit
as ε→ 0 exists and it equals

(1.5)

∫
R2

[ ∫ 1

0

sgn(ξ + αξ1) dα
]
f̂(ξ) â(ξ1) e

2πix(ξ+ξ1) dξ dξ1.

Because of (1.5), one can think of C1 as being a bilinear operator in f and a and
henceforth we will denote it by C1(f, a). The following theorem of Calderón is
classical [2].
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Theorem 1.1. For every A′ = a ∈ L∞ and every 1 < p < ∞, the operator C1

extends naturally to a bounded linear operator from Lp(R) into Lp(R), satisfying

(1.6) ‖C1(f, a)‖p � ‖a‖∞ · ‖f‖p.
The precise way in which the operator C1 can be extended as claimed in the

Theorem 1.1, will be described in detail a bit later.
At this point, one should observe that the symbol of (1.5), given by

(1.7) (ξ, ξ1) →
∫ 1

0

sgn(ξ + αξ1) dα

is not a Marcinkiewicz–Hörmander–Mihlin symbol (see [15]) and as a consequence,
the Coifman–Meyer theorem on paraproducts (see [4]) cannot be applied. More
precisely, one can see that away from the lines ξ = 0 and ξ+ξ1 = 0, the symbol (1.7)
is many times differentiable and behaves like a classical symbol, but along them
it is only continuous. The observation on which our approach is based, is that
in spite of this lack of differentiability, when one smoothly restricts (1.7) to an
arbitrary Whitney square with respect to the origin1, the Fourier coefficients of
the corresponding function decay at least quadratically. This fact (which will be
proved carefully in Lemma 2.4) will reduce the problem to one of proving estimates
for the associated bilinear operators, which do not grow too fast with respect to
the indices of the Fourier coefficients. We will see that these upper bounds can
grow at most logarithmically, which will be more than enough to make the final
power series convergent. This is, in just a few words, the strategy of our proof.

Before proceeding, let us also remark that if one permutes the two integrations
in (1.5), one can rewrite that expression as∫ 1

0

BHTα(f, a)(x) dα,

where BHTα is the so called bilinear Hilbert transform of parameter α. An al-
ternative approach to the first commutator (suggested by Calderón), was to prove
Lp × L∞ → Lp estimates for these operators, with implicit constants that are
integrable or even uniform in α. Estimates for the bilinear Hilbert transform have
been first proved by Lacey and Thiele in [8] and [9], and uniform estimates have
been later on obtained by Thiele [16], Grafakos and Li [7], and Li [10]. It is also
interesting to remark that it is not yet known whether such an approach works for
the second Calderón commutator 2 which this time can be written as∫

[0,1]2
THTα,β(f, a, a)(x) dα dβ.

Recently, in [14], Palsson proved many estimates for the operator
∫ 1

0 THTα,β dα
(β is fixed now), but so far there are no Lp estimates available (uniform or not)

1These are squares whose sides are parallel to the coordinate axes and whose distances to the
origin are comparable to their sidelengths.

2The second commutator can similarly be seen as a trilinear operator with symbol∫
[0,1]2 sgn(ξ + αξ1 + βξ2) dα dβ.
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Figure 1. The singularities of the symbol of the first commutator

for the corresponding trilinear operator THTα,β which has been called by several
authors the trilinear Hilbert transform.

Now returning to (1.6), in order to describe the way in which C1(f, a) can be
defined for any a ∈ L∞ and any f ∈ Lp(R), we need to say a few words about
adjoints of bilinear operators.

If m(ξ1, ξ2) is a bounded symbol, denote by Tm(f1, f2) the bilinear operator
given by

(1.8) Tm(f1, f2)(x) =

∫
R2

m(ξ1, ξ2) f̂1(ξ1) f̂2(ξ2) e
2πix(ξ1+ξ2) dξ1 dξ2,

for Schwartz functionsf1 and f2. Associated with it is the trilinear form Λ(f1, f2, f3)
defined by

Λ(f1, f2, f3) =

∫
R

Tm(f1, f2)(x) f3(x) dx,

again for Schwartz functions f1, f2, and f3.
There are two adjoint operators T ∗1

m and T ∗2
m naturally defined by the equalities∫

R

T ∗1
m (f2, f3)(x) f1(x) dx = Λ(f1, f2, f3)

and ∫
R

T ∗2
m (f1, f3)(x) f2(x) dx = Λ(f1, f2, f3),

respectively. It is very easy to observe that both of them are also bilinear multi-
pliers whose symbols are m(−ξ1 − ξ2, ξ2) and m(ξ1,−ξ1 − ξ2) respectively.
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Now, if a and f are Schwartz functions, the inequality (1.6) is equivalent to

(1.9)
∣∣∣ ∫

R

C1(f, a)(x) g(x) dx
∣∣∣ � ‖a‖∞ · ‖f‖p · ‖g‖p′

for any Schwartz function g, where p′ is the dual index of p (so 1/p+ 1/p′ = 1).
We also know from the proceeding that

(1.10)

∫
R

C1(f, a)(x) g(x) dx =

∫
R

C∗2
1 (f, g)(x) a(x) dx.

We are going to prove in the rest of the paper that

(1.11) ‖C∗2
1 (f, g)‖1 � ‖f‖p · ‖g‖p′

for any Schwartz functions f and g, and this shows that C∗2
1 can be extended by

density to the whole Lp × Lp′
. However, this then means that the right hand side

of (1.10) makes sense for any a ∈ L∞, not only for bounded Schwartz functions,
and this suggests extending C1(f, a) by duality. More specifically, for f ∈ Lp and
a ∈ L∞, one can define C1(f, a) to be the unique Lp function satisfying (1.10) for
any g ∈ Lp′

.
This discussion also proves that to demonstrate Theorem 1.1, we only need to

prove (1.11). The idea now is to discretize C∗2
1 and reduce (1.11) to a discrete

finite model.

Acknowledgment. I wish to thank Eli Stein who after a talk I gave in Pisa,
kindly pointed out to me that the maximal Theorem 4.1 that will enter the picture
later on, was actually known and can be found in Chapter II of [15].

2. Reduction to a finite localized model

We start with some standard notation and definitions. An interval I of the real
line R is called dyadic if it is of the form I = [2kn, 2k(n + 1)] for some k, n ∈ Z.
We will denote by D the set of all such dyadic intervals.

If I ∈ D, we say that a smooth function ΦI is a bump adapted to I if and
only if

|∂α(ΦI)(x)| ≤ Cα,N · 1

|I|α · 1(
1 + dist(x, I)/|I|)N

for every integer N and sufficiently many derivatives α, where |I| is the length
of I. The intuition here is that the function ΦI and many of its derivatives, are
essentially supported on the interval I, in the sense that they decay very rapidly
away from this interval. For example, if Φ is a fixed Schwartz function, then the
function defined by ΦI(x) := Φ((x − cI)/|I|) is clearly a bump function adapted
to the interval I (here, cI stands for the center of I).

Then, if ΦI is a bump adapted to I, we say that |I|−1/p ΦI is an Lp-normalized
bump adapted to I, for 1 ≤ p ≤ ∞. Also, if I ∈ D and n ∈ Z we denote by In
the new dyadic interval [2k(n−n), 2k(n+1−n)] sitting n units of length |I| away
from I.
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Definition 2.1. A sequence of L2-normalized bumps (ΦI)I adapted to dyadic in-
tervals I is said to be of φ type if and only if for each I there exists an inter-
val ωI (= ω|I|), symmetric with respect to the origin, such that supp Φ̂I ⊆ ωI and
|ωI | ∼ |I|−1.

Definition 2.2. A sequence of L2-normalized bumps (ΦI)I adapted to dyadic in-
tervals I is said to be of ψ type if and only if for each I there exists an interval ωI

(= ω|I|) such that supp Φ̂I ⊆ ωI and |ωI | ∼ |I|−1 ∼ dist(0, ωI).

Fix now two integers n1 and n2 and a finite arbitrary collection of dyadic
intervals I ⊆ D. Consider also three sequences of L2-normalized bumps (Φ1

In1
)I∈I ,

(Φ2
In2

)I∈I , (Φ3
I)I∈I adapted to In1 , In2 , and I, respectively, such that at least two

of them are of ψ type. The following theorem holds.

Theorem 2.3. The bilinear operator defined by

(2.1) TI(f, g) :=
∑
I∈I

1

|I|1/2 〈f,Φ1
In1

〉〈g,Φ2
In2

〉Φ3
I

is bounded from Lp × Lq → Lr for any 1 < p, q < ∞ and 0 < r < ∞ so that
1/p+ 1/q = 1/r, with a bound of type

O
(
log <n1> log <n2>

)
depending also implicitly on p and q but independent of the cardinality of I and of
the families of bumps considered (here <n> simply means 2 + |n|).

As we will see, Theorem 2.3 lies at the heart of our estimates. In the rest of
the section we will show how it implies the desired inequality (1.11). The idea
is to discretize C∗2

1 and show that it can be reduced to operators of type (2.1).
Equivalently, since it has the same trilinear form, we will discretize C1 instead. We
start with two Littlewood–Paley decompositions and write

1(ξ) =
∑
k1

Ψ̂k1(ξ) and 1(ξ1) =
∑
k2

Ψ̂k2(ξ1)

where as usual, Ψ̂k1(ξ) and Ψ̂k2(ξ1) are supported in the regions |ξ| ∼ 2k1 and
|ξ1| ∼ 2k2 respectively. In particular, we get

(2.2) 1(ξ, ξ1) =
∑
k1,k2

Ψ̂k1(ξ) Ψ̂k2(ξ1).

By splitting (2.2) over the regions where k1 � k2, k2 � k1 and k1 ∼ k2 we obtain
the final decomposition

1(ξ, ξ1) =
∑
k

Φ̂k(ξ) Ψ̂k(ξ1)(2.3)

+
∑
k

Ψ̂k(ξ) Φ̂k(ξ1)(2.4)

+
∑

k1∼k2

Ψ̂k1(ξ) Ψ̂k2(ξ1).(2.5)
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By inserting this into (1.5), C1(f, a) splits as a sum of three different expres-
sions. It is easy to see that the symbol of that corresponding to (2.4) is a classical
symbol and for this part the inequality (1.11) follows from the Coifman–Meyer
theorem on paraproducts [4]. We are thus left with understanding the other two
terms. Notice that the first (corresponding to (2.3)) interacts with the line ξ = 0,
while the third (corresponding to (2.5)) interacts with the line ξ + ξ1 = 0 along
which the original symbol ∫ 1

0

sgn (ξ + αξ1) dα

is only continuous. Also, for simplicity, henceforth we will replace
∫ 1

0
sgn(ξ +

αξ1) dα with
∫ 1

0 1R+(ξ+αξ1) dα since the difference of the corresponding operators
is just the product of a and f which clearly satisfies the original Hölder type
inequalities.

Now fix a parameter k ∈ Z and consider the corresponding expressions (also,
since k1 ∼ k2 we assume that they are equal, for simplicity). Their trilinear forms
are given by

∫
ξ+ξ1+ξ2=0

[ ∫ 1

0

1R+(ξ + αξ1) dα
]
Φ̂k(ξ) Ψ̂k(ξ1) Ψ̂k(ξ2) f̂(ξ) ĝ(ξ1) ĥ(ξ2) dξ dξ1 dξ2

and∫
ξ+ξ1+ξ2=0

[ ∫ 1

0

1R+(ξ + αξ1) dα
]
Ψ̂k(ξ) Ψ̂k(ξ1) Φ̂k(ξ2) f̂(ξ) ĝ(ξ1) ĥ(ξ2) dξ dξ1 dξ2.

Clearly, the functions Ψ̂k(ξ2) and Φ̂k(ξ2) have been inserted naturally into the
above expressions (the first are supported away from zero while the support of the
second contains the origin).

Now, on the support of Φ̂k(ξ) Ψ̂k(ξ1), the function
∫ 1

0
1R+(ξ + αξ1) dα can be

written as a double Fourier series of type

(2.6)
∑
n,n1

Ck
n,n1

e2πi
n

2k
ξ e2πi

n1
2k

ξ1 .

Similarly, on the support of Ψ̂k(ξ) Ψ̂k(ξ1) the same function can also be written as

(2.7)
∑
n,n1

C̃k
n,n1

e2πi
n

2k
ξ e2πi

n1
2k

ξ1 .

The following lemma will be crucial and gives upper bounds for these Fourier
coefficients.

Lemma 2.4. One has

|Ck
n,n1

| � 1

<n>2
· 1

<n1>M
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and also ∣∣C̃k
n,n1

∣∣ � 1

<n>2
· 1

<n− n1>M
+

1

<n>M
· 1

<n1>M

for a fixed large integer M , uniformly in k.

We prove Lemma 2.4 at the end of this section. Roughly speaking, it shows
that all the Fourier coefficients decay at least quadratically.

Now, (2.6) yields expressions of the form∫
ξ+ξ1+ξ2=0

[
Φ̂k(ξ) e

2πi n

2k
ξ
][
Ψ̂k(ξ1) e

2πi
n1
2k

ξ1
]
Ψ̂k(ξ2) f̂(ξ) ĝ(ξ1) ĥ(ξ2) dξ dξ1 dξ2,

which can be rewritten as∫
R

(f ∗ Φ1,n
k )(x)(g ∗Ψ2,n1

k )(x)(h ∗Ψ3
k)(x) dx,

and this can be further discretized by standard arguments (as explained in [13] for
instance) as an average of expressions of type

(2.8)
∑

|I|=2−k

1

|I|1/2 〈f,Φ1
In〉 〈g,Φ2

In1
〉Φ3

I ,

where the functions Φ2
In1

and Φ3
I are of ψ type.

Similarly, (2.7) yields expressions of the form∫
ξ+ξ1+ξ2=0

[
Ψ̂k(ξ) e

2πi n

2k
ξ
][
Ψ̂k(ξ1) e

2πi
n1
2k

ξ1
]
Φ̂k(ξ2) f̂(ξ) ĝ(ξ1) ĥ(ξ2) dξ dξ1 dξ2

and as we have seen, these can be further rewritten and discretized again in the
form (2.8), where this time Φ1

In
and Φ2

In1
are of ψ type. The connection with (2.1)

should be clear by now. If one adds all the expressions of the form (2.8) for all
the scales k ∈ Z, one obtains a discrete trilinear form corresponding to the part
of C1 related to (2.3) (and of course, as we mentioned, there is a similar trilinear
form related to (2.5)). In particular, since we are interested in estimating C∗2

1 , its
bilinear model is of the form

∑
I∈I

1

|I|1/2 〈f,Φ1
In〉 〈h,Φ2

I〉Φ3
In1

which should be rewritten as

∑
I∈I

1

|I|1/2 〈f,Φ1
In−n1

〉 〈h,Φ2
I−n1

〉Φ3
I

to be able better able to compare it with (2.1).
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Now, using the fact that C∗2
1 (f, g) makes perfect sense for Schwartz functions

(in fact, it can be written as an expression similar to (1.5)) and by the triangle
inequality, Fatou’s lemma and Theorem 2.3, it follows that

‖C∗2
1 (f, g)‖1 �

∑
n,n1

sup
k

(|Ck
n,n1

|, |C̃k
n,n1

|) · log <n− n1> · log <n1> ·‖f‖p · ‖g‖p′ ,

which is clearly bounded by ‖f‖p · ‖g‖p′ as a consequence of the quadratic decay
in Lemma 2.4. This completes the proof of (1.11).

We now describe the proof of Lemma 2.4. We first record the following.

Lemma 2.5. One has the following identities:

(a) ∂2ξ

(∫ ξ1

0

1R+(ξ + α) dα
)
= δ0(ξ + ξ1)− δ0(ξ).

(b) ∂2ξ1

( ∫ ξ1

0

1R+(ξ + α) dα
)
= δ0(ξ + ξ1).

(c) ∂ξ∂ξ1

(∫ ξ1

0

1R+(ξ + α) dα
)
= ∂ξ1∂ξ

(∫ ξ1

0

1R+(ξ + α) dα
)
= δ0(ξ + ξ1),

where δ0 is the Dirac distribution with respect to the origin.

Proof. This is straightforward. For example, we show (a). One has

∂2ξ

(∫ ξ1

0

1R+(ξ + α) dα
)
= ∂ξ

(∫ ξ1

0

δ0(ξ + α) dα
)

= ∂ξ

(∫ ξ+ξ1

ξ

δ0(α) dα
)
= δ0(ξ + ξ1)− δ0(ξ). �

To prove now the estimates in Lemma 2.4, we rewrite (for instance) C̃k
n,n1

as

1

2k
1

2k

∫
R2

[ ∫ 1

0

1R+(ξ + αξ1) dα
] ̂̃
Ψk(ξ)

̂̃
Ψk(ξ1) e

−2πi n

2k
ξ e−2πi

n1
2k

ξ1 dξ dξ1

=

∫
R2

[ ∫ 1

0

1R+(ξ + αξ1) dα
] ̂̃
Ψ(ξ)

̂̃
Ψ(ξ1) e

−2πinξ e−2πin1ξ1 dξ dξ1

=

∫
R2

[ 1

ξ1

∫ ξ1

0

1R+(ξ + α) dα
] ̂̃
Ψ(ξ)

̂̃
Ψ(ξ1) e

−2πinξ e−2πin1ξ1 dξ dξ1

:=

∫
R2

[ ∫ ξ1

0

1R+(ξ + α) dα
] ̂̃
Ψ(ξ)

̂̃̃
Ψ(ξ1) e

−2πinξ e−2πin1ξ1 dξ dξ1,(2.9)

where
̂̃
Ψ(ξ),

̂̃
Ψ(ξ1), and

̂̃̃
Ψ(ξ1) are supported away from the origin and are adapted

to scale 1.
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The idea is of course to integrate by parts as much as we can in (2.9) and
keep track of the upper bounds that one gets in this way. We begin integrating

by parts in ξ as much as we can. Since both
∫ ξ1
0

1R+(ξ + α) dα and
̂̃
Ψ(ξ) depend

on ξ, the ξ derivatives can hit either of the terms. If the derivative hits twice

the term
∫ ξ1
0 1R+(ξ + α) dα then, because of Lemma 2.5, the ξ variable disappears

and becomes −ξ1 (notice that ξ cannot be zero in this case) at which point (2.9)
simplifies to an expression of type

∫
R

̂̃
Ψ(−ξ1)

̂̃̃
Ψ(ξ1) e

−2πiξ1(n−n1) dξ1.

However this term can be integrated by parts as many times as we wish and this
explains the appearance of the first upper bound for |C̃k

n,n1
|. If on the contrary,

the ξ derivative did not hit the term
∫ ξ1
0 1R+(ξ+α) dα two times, even after many

integrations by parts, this means that we already gained a factor of type 1/<n>M

at which moment we stop integrating in ξ and start integrating by parts in ξ1.

As before, if the ξ1 derivatives hit the term
∫ ξ1
0 1R+(ξ + α) dα until one reaches

δ0(ξ + ξ1) then ξ1 becomes −ξ and after that one integrates by parts a smooth
function obtaining an upper bound of type 1/<n>M · 1/<n− n1>

M which is
smaller than the previously discussed one.

If finally, the ξ1 derivative does not hit
∫ ξ1
0 1R+(ξ + α) dα until it becomes

δ0(ξ + ξ1), then this means that it keeps hitting the smooth function of ξ1, in
which case we obtain an upper bound of type 1/<n>M · 1/<n1>

M as desired.
The second term Ck

n,n1
can be treated similarly. One should just remark that in

this case the equality ξ1 = −ξ is impossible and only δ0(ξ) remains after integrating
by parts, which explains the slight difference between the two upper bounds.

As a consequence, we are left with proving Theorem 2.3.

3. Proof of Theorem 2.3

The proof is based on the method introduced in [11] and [12].
We assume without loss of generality that the families (Φ2

In2
)I and (Φ3

I)I are

of ψ type (since all the other possible cases can be treated in a similar way). Fix
also 1 < p, q <∞ and 0 < r <∞ so that 1/p+ 1/q = 1/r. We will prove that TI
maps Lp × Lq → Lr,∞ since then (2.1) follows easily by standard interpolation
arguments.

As usual (more specifically, as a consequence of scaling invariance and of the
duality Lemma 5.4 from [1]), it is enough to show that given a measurable set
E ⊆ R with |E| = 1, one can find E′ ⊆ E with |E′| ∼ 1 and so that

(3.1)
∑
I∈I

1

|I|1/2
∣∣ 〈f,Φ1

In1
〉∣∣ ∣∣ 〈g,Φ2

In2
〉∣∣ ∣∣ 〈h,Φ3

I〉
∣∣ � log <n1> · log <n2>,

where h := χE′ .
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Define now the shifted maximal operator Mn1 and the shifted square func-
tion Sn2 by

Mn1f(x) := sup
x∈I

1

|I|
∫
R

|f(y)| χ̃In1
(y) dy

where χ̃In1
(y) denotes the function

χ̃In1
(y) =

(
1 +

dist(y, In1)

|In1 |
)−100

,

while Sn2 is given by

Sn2g(x) :=
(∑

I

∣∣〈g,Φ2
In2

〉∣∣2
|I| 1I(x)

)1/2

.

As we will see later, both these are bounded on every Lp space for 1 < p <∞,
with bounds of types O(log < n1 >) and O(log < n2 >), respectively. These im-
portant estimates will be proved in detail at the end of the paper (see Sections 4
and 5).

Using these two facts we define an exceptional set as follows.
First, define the set Ω′

0 by

Ω′
0 :=

{
x : Mn1f(x) > C log <n1>

}⋃{
x : Sn2f(x) > C log <n2>

}
.

Now let d a positive integer and # be an integer so that 2d < |#| ≤ 2d+1.
Define the set Ωd

# by

Ωd
# :=

{
x :Mn1−#f(x) > C log <n1 −#> 25d

}
and then define also the set Ω′′

0 by

Ω′′
0 :=

⋃
d≥0

⋃
2d<|#|≤2d+1

Ωd
#.

Define the set Ω′′′
0 in a similar way to Ω′′

0 but using the function g and the corre-
sponding index n2 instead. Then, define Ω0 to be

(3.2) Ω0 := Ω′
0 ∪ Ω′′

0 ∪ Ω′′′
0

and finally, the exceptional set

Ω :=
{
x :M(1Ω0)(x) >

1

100

}
.

Observe that |Ω| << 1 if C is chosen large enough and this allows us to define
the set E′ by E′ := E\Ω and to observe that |E′| ∼ 1, as desired. To estimate (3.1)
properly, we split is into two parts as follows:

(3.3)
∑

I∩Ωc �=∅
+

∑
I∩Ωc=∅

:= I + II.
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Estimates for I

First, we observe that since I ∩ Ωc �= ∅ one has |I ∩ Ω0|/|I| < 1/100 which means
that |I ∩ Ωc

0| > 99
100 |I|.

We now perform three independent stopping time type arguments for the func-
tions f, g, and h which will be combined carefully later.

Define first

Ω1 =
{
x :Mn1(f)(x) >

C log <n1>

21

}

and set

I1 =
{
I ∈ I : |I ∩Ω1| > 1

100
|I|

}
,

then define

Ω2 =
{
x :Mn1(f)(x) >

C log <n1>

22

}
and set

I2 =
{
I ∈ I \ I1 : |I ∩Ω2| > 1

100
|I|

}
,

and so on. The constant C > 0 here is the one in the definition of the set E′

before. Clearly, since I is finite, we will run out of dyadic intervals after a while,
thus producing the sets ({Ωn})n and ({In})n.

Independently, define

Ω′
1 =

{
x : Sn2(g)(x) >

C log <n2>

21

}
and set

I ′
1 =

{
I ∈ I : |I ∩Ω′

1| >
1

100
|I|

}
,

then as before define

Ω′
2 =

{
x : Sn2(g)(x) >

C log <n2>

22

}

and set

T′
2 =

{
I ∈ I \ I ′

1 : |I ∩Ω′
2| >

1

100
|I|

}
,

and so on, producing the finitely many sets ({Ω′
n})n and ({I ′

n})n. Of course, we
would like to have such a decomposition available for h as well. To do this, we
first need to construct the analogue for it of the set Ω0. To do this, first choose an
integer N > 0 large enough such that for every I ∈ I we have |I ∩ Ω

′′c
−N | > 99

100 |I|
where we defined

Ω′′
−N =

{
x : S(h)(x) > C 2N

}
.
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Then, similarly to the previous algorithms, we define

Ω′′
−N+1 =

{
x : S(h)(x) >

C 2N

21

}
and set

I ′′
−N+1 =

{
I ∈ I : |I ∩ Ω′′

−N+1| >
1

100
|I|

}
,

and then define

Ω′′
−N+2 =

{
x : S(h)(x) >

C 2N

22

}
and set

T′′
−N+2 =

{
I ∈ I \ I ′′

−N+1 : |I ∩Ω′′
−N+2| >

1

100
|I|

}
,

and so on, constructing the finitely many sets ({Ω′′
n})n and ({T′′

n})n.
Using all these decompositions, we can decompose the term I further as

(3.4)
∑

l1,l2>0,l3>−N

∑
I∈Il1,l2,l3

1

|I|3/2
∣∣〈f,Φ1

In1
〉∣∣ ∣∣〈g,Φ2

In2
〉∣∣ ∣∣〈h,Φ3

I〉
∣∣ ∣∣I∣∣,

where
Il1,l2,l3 := Il1 ∩ I ′

l2 ∩ I ′′
l3 .

Then, observe that, since I belongs to Il1,l2,l3 , it has not been selected at any of
the previous l1 − 1, l2 − 1 and l3 − 1 steps respectively, which means that all of
|I ∩ Ωl1−1|, |I ∩ Ω′

l2−1|, and |I ∩ Ω′′
l3−1| are smaller than 1

100 |I|. Equivalently, one
has

|I ∩ Ωc
l1−1| >

99

100
|I|, |I ∩Ω

′c
l2−1| >

99

100
|I|, and |I ∩ Ω

′′c
l3−1| >

99

100
|I|,

which implies that

(3.5)
∣∣I ∩ Ωc

l1−1 ∩ Ω
′c
l2−1 ∩Ω

′′c
l3−1

∣∣ > 97

100
|I|.

Using this in (3.4) one can estimate that expression by∑
l1,l2>0,

l3>−N

∑
I∈Il1,l2,l3

1

|I|3/2 |〈f,Φ1
In1

〉| |〈g,Φ2
In2

〉| |〈h,Φ3
I〉|

∣∣I ∩ Ωc
l1−1 ∩ Ω

′c
l2−1 ∩Ω

′′c
l3−1

∣∣

=
∑

l1,l2>0,

l3>−N

∫
Ωc

l1−1∩Ω
′c
l2−1∩Ω

′′c
l3−1

∑
I∈Il1,l2,l3

|〈f,Φ1
In1

〉|
|I|1/2

|〈g,Φ2
In2

〉|
|I|1/2

|〈h,Φ3
I〉|

|I|1/2 χI(x) dx

�
∑

l1,l2>0,

l3>−N

∫
Ωc

l1−1∩Ω
′c
l2−1∩Ω

′′c
l3−1∩ΩIl1,l2,l3

Mn1(f)(x)Sn2(g)(x)S(h)(x) dx

�
∑

l1,l2>0,

l3>−N

log <n1> log <n2> 2−l1 2−l2 2−l3 |ΩIl1,l2,l3
|,(3.6)
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where
ΩIl1,l2,l3

:=
⋃

I∈Il1,l2,l3

I.

On the other hand, we also have

|ΩIl1,l2,l3
| ≤ |ΩIl1

| ≤
∣∣∣ {x :M(χΩl1

)(x) >
1

100

}∣∣∣
� |Ωl1 | =

∣∣∣ {x :Mn1(f)(x) >
C log <n1>

2l1

}∣∣∣ � 2l1p.

Similarly, we have
|ΩIl1,l2,l3

| � 2l2q

and also
|ΩIl1,l2,l3

| � 2l3α,

for every α > 1. Here we used the facts that the operators Mn1 , Sn2 and S are
bounded on Ls as long as 1 < s <∞ and that |E′

3| ∼ 1. In particular, this implies
that

(3.7) |ΩIl1,l2,l3
| � 2l1pθ1 2l2qθ2 2l3αθ3

for any 0 ≤ θ1, θ2, θ3 < 1 such that θ1 + θ2 + θ3 = 1.
On the other hand, (3.6) can be split into

log <n1> log <n2>

·
( ∑

l1,l2>0,l3>0

2−l1 2−l2 2−l3 |ΩIl1,l2,l3
|+

∑
l1,l2>0,0>l3>−N

2−l1 2−l2 2−l3 |ΩIl1,l2,l3
|
)
.(3.8)

To estimate the first expression in (3.8) we use the inequality (3.7) for θ1, θ2, and θ3
such that 1−pθ1 > 0, 1−qθ2 > 0, and 1−αθ3 > 0, while to estimate the second term
we use (3.7) for θ1, θ2, and θ3 such that 1− pθ1 > 0, 1− qθ2 > 0, and 1− αθ3 < 0.
With these choices, the sum in (3.8) is indeed is O(log <n1> log <n2>), as de-
sired. This ends the discussion of I.

Estimates for II

This term is simpler to estimate, now that we have defined the exceptional set
carefully. Notice that the intervals of interest are those inside Ω. One can split
them as

⋃
d≥0 Id where

Id :=
{
I ∈ I : I ⊆ Ω and 2d ≤ dist(I,Ωc)

|I| < 2d+1
}
.

Observe that for any d ≥ 0 one has∑
I∈Id

|I| � |Ω| � 1.



Calderón commutators and Cauchy integral I 741

Also, for every I ∈ Id one has that 2dI∩Ωc = ∅ and there exists Ĩ dyadic and of the
same length, which lies # steps of length |I| away from I (with 2d ≤ |#| ≤ 2d+1),

and having the property that Ĩ ∩ Ωc �= ∅. In particular, this means that In1 and

In2 are n1 −# and n2 −# steps of length |I| away from Ĩ. Using all these facts,
one can estimate this term II by

∑
d≥0

∑
I∈Id

|〈f,Φ1
In1

〉|
|I|1/2

|〈g,Φ2
In2

〉|
|I|1/2

|〈h,Φ3
I〉|

|I|1/2 |I|

�
∑
d≥0

∑
2d≤|#|≤2d+1

∑
I∈Id

(
log <n1 −#>

)
25d

(
log <n2 −#>

)
25d 2−Md |I|

� (log <n1>) (log <n2>)(3.9)

by using the trivial fact that, for j = 1, 2,

log <nj −#>≤ log <nj> · <#> .

The proof is now complete.

4. Appendix 1 to Section 3: Logarithmic estimates for the
shifted maximal function

The goal of this section is to prove the following theorem that has been used
before. This result can be found in Stein [15], but we decided to give a selfcon-
tained proof of it here (which we (re)discovered independently), not only for the
reader’s convenience, but also because some notation will be introduced that will
be used later.

Theorem 4.1 ([15]). For any n ∈ Z, and for every 1 < p <∞, the shifted maximal
function Mn is bounded on every Lp space, with a bound of type O(log <n>).

Proof. First, we observe that in order to prove the desired estimates, it is enough
to prove them for the corresponding sharp maximal function M̃n defined by

(4.1) M̃nf(x) := sup
x∈I

1

|In|
∫
In

|f(y)| dy ,

where the suppremum is taken only over dyadic intervals.
To see this, fix x and I so that x ∈ I. One can write

1

|In|
∫
In

|f(y)| dy �
∑
#∈Z

[ 1

|I#n |

∫
I#
n

|f(y)| dy
] 1

<#>100
,

where I#n is the dyadic interval of the same length as In and lying # steps of
length |In| away from it. In particular, using the proceeding and assuming that
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the theorem holds for M̃n, one has

‖Mnf‖p �
∑
#∈Z

1

<#>100

∥∥M̃n+# f
∥∥
p
�

∑
#∈Z

1

<#>100

(
log <n+#>

)‖f‖p
�

∑
#∈Z

1

<#>100

(
log(<n><#>)

)
� log <n> ‖f‖p,

as desired. We are then left with proving the theorem for M̃n.
Now let λ > 0. We claim that one has the inequality

(4.2)
∣∣ {x : M̃nf(x) > λ

}∣∣ � (
log <n>

) ∣∣ {x :Mf(x) > λ
}∣∣

where M is the classical Hardy–Littlewood maximal operator. Assuming (4.2),

the theorem for M̃n follows from the Hardy–Littlewood theorem by interpolation
with the trivial L∞ estimate.

Finally, to prove (4.2) denote by Iλ
n the collection, of all dyadic intervals In,

maximal with respect to inclusion, for which

1

|In|
∫
In

|f(y)| dy > λ.

Note that all of them are disjoint and one also has⋃
In∈Iλ

n

In = {x :Mf(x) > λ}.

Then, for every such maximal dyadic interval In, consider its dyadic subintervals of
lengths |In|, |In|/2, |In|/22, etc. Observe that there exist only [log <n>] disjoint

dyadic intervals I1n, I
2
n, . . . , I

[log<n>]
n of the same length as |In|, so that the translate

with −n corresponding units of any such smaller dyadic subinterval of In becomes

a subinterval of one of these I1n, I
2
n, . . . , I

[log<n>]
n . The claim is now that

{
x : M̃nf(x) > λ

} ⊆
⋃

In∈Iλ
n

(
In ∪ I1n ∪ · · · ∪ I [log<n>]

n

)
.

To see this, pick x0 so that Mnf(x0) > λ. This then means, in particular, that
there exists a dyadic interval J containing x0, so that 1

|Jn|
∫
Jn

|f(y)| dy > λ.

Because of the previous construction, one can find selected maximal interval of
type In, so that Jn ⊆ In. But then, this means in particular that J itself will be

a subset of either In or I1n or. . . or I
[log<n>]
n , which implies the claim.

It is now easy to see that together this claim and the disjointness of the maximal
intervals In, imply (4.2). The proof is then complete3. �

3Of course, since the trivial L∞ estimate comes with an O(1) bound, by interpolation the Lp

bound of Mn will be even O((log <n>)1/p). However, for simplicity, we used the O(log <n>)
bound all the time.
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5. Appendix 2 to Section 3: Logarithmic estimates for the
shifted square function

The goal of this last section is to prove the following theorem which played an
important role earlier in the argument4.

Theorem 5.1. For any n ∈ Z, and every 1 < p < ∞, the shifted square func-
tion Sn is bounded on every Lp space, with a bound of type O(log <n>).

Proof. Besides the observations of the previous section, the proof is based on a
classical decomposition of Calderón and Zygmund [15].

First, observe that Sn is bounded on L2 with a bound independent of n. Indeed,
one can see that

‖Snf‖2 =
(∑

I

〈f,ΦIn〉2
)1/2

which is clearly comparable to the L2 norm of the classical Littlewood–Paley square
function, which is known to be bounded on L2.

Next, we show that

(5.1) ‖Snf‖1,∞ � (log <n>) ‖f‖1,

or, more precisely, that

(5.2)
∣∣ {x ∈ R : Snf(x) > λ

}∣∣ � log <n>
1

λ
‖f‖1.

Fix such a λ > 0 and construct a Calderón–Zygmund decomposition of the func-
tion f at level λ. Choose maximal dyadic intervals one-by-one so that

1

|J |
∫
J

|f(y)| dy > λ.

Observe that these intervals are by construction pairwise disjoint and denote their
union by Ω. One has

(5.3) |Ω| =
∑
J

|J | < 1

λ

∑
J

∫
J

|f(y)| dy ≤ 1

λ
‖f‖1.

Now split the function f as

f = g + b,

where

g := fχΩc +
∑
J

[ 1

|J |
∫
J

f(y) dy
]
χJ ,

4It may very well be that this result has been observed before (as was the case with the
previous shifted maximal function) but since we did not find it in the literature, we have included
a self-contained proof of it in what follows.
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and

b := f − g :=
∑
J

bJ , where bJ :=
[
f − 1

|J |
∫
J

f(y) dy
]
χJ .

Clearly, suppbJ ⊆ J . Observe also that one has

|f(x)| ≤ λ

for every x ∈ Ωc and, as a consequence,

‖g‖∞ � λ

since one also observes that∣∣∣ 1

|J |
∫
J

f(y) dy
∣∣∣ ≤ 1

|J |
∫
J

|f(y)| dy ≤ 2

|J̃ |

∫
J̃

|f(y)| dy ≤ 2λ,

where J̃ is the unique dyadic interval containing J and twice as long as J . It is
also important to observe that ∫

R

bJ(y) dy = 0,

by definition, and also that

‖bJ‖1 =
∫
J

|bJ(y)| dy ≤
∫
J

|f(y)| dy+
( 1

|J |
∫
J

|f(y)| dy
)
|J | �

∫
J

|f(y)| dy � λ|J |,

as we have seen before.
Using all these properties, one can write∣∣ {x ∈ R : Sn f(x) > λ

}∣∣
≤ ∣∣ {x ∈ R : Sng(x) > λ/2

}∣∣+ ∣∣ {x ∈ R : Snb(x) > λ/2
}∣∣.(5.4)

To estimate the first term in (5.4), we use the L2 boundedness of Sn and we write

∣∣ {x ∈ R : Sng(x) > λ/2
}∣∣ � 1

λ2
‖Sng‖22 � 1

λ2
‖g‖22 =

1

λ2

∫
R

|g(x)|2 dx

� 1

λ2
λ

∫
R

|g(x)| dx =
1

λ
‖g‖1

� 1

λ

(∫
Ωc

|f(x)| dx +
∑
J

∫
J

|f(x)| dx
)
� 1

λ
‖f‖1,

as desired.
To estimate the second term in (5.4), we proceed as follows. First, for any

interval J , consider the associated J1, J2, . . . , J [log<n>] as defined in the previous
section and define the set ΩJ by

ΩJ := 5J
⋃

5J1 ⋃
5J2 ⋃

. . .
⋃

5J [log<n>].



Calderón commutators and Cauchy integral I 745

Then, one has∣∣ {x ∈ R : Snb(x) > λ/2
}∣∣ ≤ ∣∣∣ {x ∈

⋃
J

ΩJ : Snb(x) > λ/2
}∣∣∣(5.5)

+
∣∣∣ {x ∈

(⋃
J

ΩJ

)c

: Snb(x) > λ/2
}∣∣∣.

The first expression is easy to estimate since one can write∣∣∣ {x ∈
⋃
J

ΩJ : Snb(x) > λ/2
}∣∣∣ ≤ ∣∣∣ ⋃

J

ΩJ

∣∣∣ � (
log <n>

)∑
J

|J |

�
(
log <n>

) 1
λ
‖f‖1,

as we have seen before. The second expression in (5.5) can be majorized by

1

λ

∫(⋃
J ΩJ

)c
Sn b(x) dx ≤ 1

λ

∑
J

∫(⋃
J ΩJ

)c
Sn bJ(x) dx ≤ 1

λ

∑
J

∫
(ΩJ )c

Sn bJ(x) dx

and we claim now that for any J one has

(5.6)

∫
(ΩJ )c

Sn bJ(x) dx � λ|J |.

Assuming (5.6), one can continue the previous inequality and further majorize it by

1

λ
λ
∑
J

|J | � |Ω| � 1

λ
‖f‖1

as desired.
We are then left with proving our claim (5.6). First, we majorize the left-hand

side of it by∫
(ΩJ )c

(∑
I

|〈bJ ,ΦIn〉|
|I|1/2 1I(x)

)
dx =

∑
I

∫
(ΩJ )c

|〈bJ ,ΦIn〉|
|I|1/2 1I(x) dx

=
∑

|I|≤|J|

∫
(ΩJ )c

|〈bJ ,ΦIn〉|
|I|1/2 1I(x) dx +

∑
|I|>|J|

∫
(ΩJ )c

|〈bJ ,ΦIn〉|
|I|1/2 1I(x) dx

:= A+B.

Estimating A

The main observation here is to realize that since |I| ≤ |J | and I ∩ (ΩJ )
c �= ∅, one

must in particular have In ∩ 3J = ∅. This allows one to estimate A by

∑
|In|≤|J|

(
1 +

dist(In, J)

|In|
)−10

∫
R

|bJ(y)| dy � λ|J |
∑

|In|≤|J|

(
1 +

dist(In, J)

|In|
)−10

� λ|J |,

as required by (5.6).
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Estimating B

This time, one has to take into account the fact that

(5.7)

∫
R

bJ(y) dy = 0.

As before, one can estimate B by∑
|In|>|J|

|〈bJ ,Φ∞
In〉|,

where this time Φ∞
In

:= |In|1/2 ΦIn is an L∞ normalized bump. In order to em-
phasize that the dependence of n is now irrelevant now we rewrite the above
expression as ∑

|K|>|J|
|〈bJ ,Φ∞

K 〉| ,

where the sum is over dyadic intervals K.
Fix K such that |K| > |J | and observe that

|〈bJ ,Φ∞
K 〉| =

∣∣∣ ∫
R

bJ(z)Φ∞
K (z) dz

∣∣∣ = ∣∣∣ ∫
J

bJ(z)
(
Φ∞

K (z)− Φ∞
K (cJ )

)
dz

∣∣∣,
where cJ denotes the midpoint of the interval J .

Then, observe that, for z ∈ J , one has

∣∣Φ∞
K (z)− Φ∞

K (cJ )
∣∣ � |J | 1

|K|
(
1 +

dist(K, J)

|K|
)−10

,

which can be further estimated by

|J | 1

|K|
(
1 +

dist(K, J)

|K|
)−10

∫
J

|bJ(y)| dy � |J | 1

|K|
(
1 +

dist(K, J)

|K|
)−10

λ |J |.

Finally, the corresponding (5.6) follows from the straightforward observation that

∑
|K|>|J |

|J |
|K|

(
1 +

dist(K, J)

|K|
)−10

� 1.

By interpolating between L2 and weak-L1 we obtain the theorem for any 1 <
p ≤ 2. To prove the rest of the estimates we proceed as usual, by duality. Fix
2 < p <∞. By using Khinchin’s inequality, one can write

‖Snf‖pp =

∫
R

(∑
I

|〈f,ΦIn〉|2
|I| χI(x)

)p/2

dx �
∫
R

∫ 1

0

∣∣∣∑
I

rI(t)〈f,ΦIn〉hI(x)
∣∣∣pdx dt

=

∫ 1

0

∥∥∥∑
I

rI(t)〈f,ΦIn〉hI
∥∥∥p
p
dt,(5.8)

where (rI)I are the Rademacher functions and (hI)I the L2-normalized Haar func-
tions.
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Now fix t ∈ [0, 1] and consider the linear operator

f →
∑
I

rI(t)〈f,ΦIn〉hI .

Using the fact that Sn and the Littlewood–Paley square function associated to
(hI)I are bounded on Ls for 1 < s ≤ 2, an argument identical to the one used
to prove Theorem 2.3 shows that the above operator is also bounded on Ls for
1 < s ≤ 2 and by duality, bounded on Ls for 2 ≤ s < ∞ as well, with bounds
independent of t that grow logarithmically in < n >. Using these observations
in (5.8) completes the proof of the theorem. �

6. Generalizations

First observe that the first commutator C1f can also be written as

(6.1) C1f(x) = p.v.

∫
R

(Δt

t
A(x)

)
f(x+ t)

dt

t
,

where Δt is the finite difference operator at scale t given by

Δtg(x) := g(x+ t)− g(x).

There is a very simple way to motivate the introduction of this operator. Start
with the Leibnitz rule

(Af)′ = A′f +Af ′

and solve for A′f to obtain

A′f = (Af)′ −Af ′ = D(Af)−ADf = [D,A]f

where D is the operator of taking one derivative and A is viewed now as the opera-
tor of multiplication with the function A(x). In particular, assuming that A′ ∈ L∞,
the commutator [D,A] maps Lp into itself boundedly, for every 1 < p <∞. One
might ask: Does this property hold for the operator [|D|, A] as well? A straightfor-
ward calculation shows that [|D|, A] is precisely the first commutator of Calderón.

Given this, it is of course natural to ask: What can be said about the double
commutator [|D|, [|D|, A]]?

A direct calculation shows that the expression [|D|, [|D|, A]](f)(x) equals

(6.2) p.v.

∫
R2

(Δt

t
◦ Δs

s
A(x)

)
f(x+ t+ s)

dt

t

ds

s
,

a formula that can be naturally seen as a bilinear operator, this time depending
on f and A′′. Its symbol can be again calculated easily and it is given by

( ∫ 1

0

sgn(ξ + αξ1) dα
)2

,

which is precisely the square of the symbol of the first commutator of Calderón.
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Theorem 6.1. Let a �= 0 and b �= 0 and consider the expression

p.v.

∫
R2

(Δat

t
◦ Δbs

s
A(x)

)
f(x+ t+ s)

dt

t

ds

s
.

Viewed as a bilinear operator in f and A′′, it extends naturally as a bounded
operator from Lp × Lq into Lr for every 1 < p, q ≤ ∞ with 1/p+ 1/q = 1/r and
1/2 < r <∞.

To prove this theorem, one applies the same method described earlier for the
first commutator. One just has to observe that the symbol of this operator is
given by (∫ 1

0

sgn (ξ + αaξ1) dα
)(∫ 1

0

sgn (ξ + αbξ1) dα
)
,

and after that to realize that each factor satisfies the same desired quadratic esti-
mates. So this time one needs to decompose each factor as a double Fourier series
as we did before. The fact that one can go all the way down to 1/2 with the
estimates is a simple consequence of the statement that series of type∑

n1,n2∈Z

|C(n1, n1)|r log <n1> log <n2>

are always convergent as long as the constants C(n1, n2) decay at least quadrati-
cally in n1 and n2 and r > 1/2. The details are straightforward and are left to the
reader. Clearly, one can generalize the above theorem even further, in the most
obvious way. We will come back to this in the second paper of the sequel.

Another generalization we have in mind comes from the identity

(6.3) A′B′ = (AB)′′ − (BA′)′ − (AB′)′ +A′B′.

As a consequence of this identity, the right hand side of (6.3) satisfies Hölder
estimates of the form∥∥(AB)′′ − (BA′)′ − (AB′)′ +A′B′∥∥

r
� ‖A′‖p ‖B′‖q

for indices p, q, and r as before. Does this inequality continue to hold if one replaces
every derivative D by its modulus |D|? As before, a direct calculation shows that
the new expression

|D|2(AB) − |D| (B |D|A)− |D| (A |D|B)
+ (|D|A) (|D|B)

can be rewritten as

(6.4) p.v.

∫
R2

(Δt

t
A(x + s)

)(Δs

s
B(x+ t)

) dt
t

ds

s
.

The right way to look at this formula is to view it as a bilinear operator in A′

and B′. Its symbol can be calculated quite easily and it is given by

(6.5)
(∫ 1

0

sgn (ξ1 + αξ2) dα
)( ∫ 1

0

sgn (ξ2 + βξ1) dβ
)
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which is a symmetric function in the variables ξ1 and ξ2. Because of this symmetry
we like to call expressions such as the ones in (6.4) circular commutators. We will
return to them in the second paper of the series.

Theorem 6.2. Let a �= 0 and b �= 0 and consider the expression

p.v.

∫
R2

(Δat

t
A(x+ s)

)(Δbs

s
B(x + t)

) dt
t

ds

s
.

Viewed as a bilinear operator in A′ and B′, it extends naturally as a bounded
operator from Lp × Lq into Lr for every 1 < p, q ≤ ∞ with 1/p+ 1/q = 1/r and
1/2 < r <∞.

The proof uses the same method, since it is not difficult to see that the symbols
of such bilinear operators are again products of symbols of the first commutator
kind and they each satisfy the same quadratic estimates.
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