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Uniformizing complex ODEs and applications

Julio C. Rebelo and Helena Reis

Abstract. We introduce a method for estimating the size of the domain of
definition of the solutions of a meromorphic vector field on a neighborhood
of its pole divisor. The technique relies, in a certain sense, on obtaining
a quantitative variant of some well-known results concerning the distance
function between complex submanifolds in the presence of metrics with
positive curvature. Several applications of these ideas are provided includ-
ing a type of “confinement theorem” for the solutions of the differential
equations associated to complete polynomial vector fields on Cn as well
as obstructions to realizing certain germs of vector fields as a singularity
of a globally defined holomorphic vector field on a compact Kähler man-
ifold. As a complement, a new approach to certain classical equations is
proposed and detailed in the case of Halphen equations.

1. Introduction

The object of this paper is a method to investigate the domain of definition of
the solutions of a differential equation associated with a meromorphic vector field
(to abridge notation, we shall refer to these functions as solutions of meromorphic
vector fields). The method is quite general in that it applies to arbitrarily high
dimensions whereas it provides new results already in dimension 3. This paper
has two parts, the first presents the general setup along with basic estimates and
results. Applications of this material are then provided in the second part.

This introduction is aimed only at stating the main applications considered in
this paper. These were chosen to indicate ways of exploiting the basic phenomena
on which our analysis relies and are not intended to be the sharpest possible. In
Section 2, we shall provide a more detailed discussion explaining our point of view
and underlining the common structures behind the theorems stated below. It is
also to be noted that these applications concern very special types of vector fields
(or of differential equations) such as complete vector fields and Halphen equations.
Nonetheless the setting is also well adapted to investigating differential equations
having meromorphic solutions including several classical equations appearing in

Mathematics Subject Classification (2010): 37F75, 34M05, 34M55.
Keywords: Complex ODE, maximal domain of solutions, entire solutions, Halphen equations.



800 J. C. Rebelo and H. Reis

mathematics and physics, for example equations arising in the works of Painlevé
and Chazy as well as certain Lorenz systems [38]. Through the work of Ablowitz,
Segur and others, some of our statements can also be adapted to solutions of
certain nonlinear evolution equations and to solutions of linear integral equations
in Gelfand–Levitan–Marcenko theory, see [1], [2]. More details on these issues can
be found in Section 2. Whereas these connections will not be developed here, they
provide a clear indication that “further applications” are likely to be found in the
future.

Let X be a polynomial vector field on Cn of degree at least 2. Suppose that X
is complete, i.e., its complex solutions are defined for all T ∈ C. When X happens
to be completely integrable, i.e., when it admits n − 1 independent first integrals,
its orbits can be compactified into rational curves by adding to them some “sin-
gular points at infinity”. This fact can be interpreted as a type of confinement
phenomenon for the corresponding solutions. Our first result is a sharp, whereas
weaker, generalization of this confinement phenomenon to arbitrary complete poly-
nomial vector fields. To state it, we proceed as follows. Being polynomial, X
defines a singular holomorphic foliation D on CPn = Cn ∪Δ∞ viewed as a com-
pactification of Cn. Consider a leaf L of D (details on the definition of “leaf” in
the singular context can be found in Section 2.2). On L two singular oriented
real one-dimensional foliations H and H⊥ will be defined. They will depend on
the leaf L of D in a regular way as will be apparent from their definitions; see
Sections 3 and 6. More importantly, H and H⊥ are mutually orthogonal with
respect to the conformal structure on L. In fact, they agree respectively with the
real foliation and the purely imaginary foliation induced on L by a certain Abelian
form. Since L is endowed with a conformal structure, it also makes sense to de-
fine foliations Hθ whose oriented trajectories make an angle θ with the oriented
trajectories of H (θ ∈ [−π/2, π/2]). The trajectories of these foliations define the
“directions of confinement” for L as will follow from Theorem A below. In the
sequel Φ : C × Cn → Cn stands for the holomorphic flow generated by X , while
Sing (D) ⊂ CPn denotes the singular set of D.

Theorem A. Suppose that X is a complete polynomial vector field on Cn of degree
at least 2. Fix an arbitrarily small neighborhood V of (Sing (D) ∩Δ∞) ∪ Sing (X)
in CPn and suppose given a point p ∈ Cn such that X(p) �= 0, and an angle
θ ∈ (−π/2, π/2). Denote by Lp (resp. l+,θ

p ) the leaf of D through p (resp. the semi-

trajectory of Hθ initiated at p) and consider the lift c : [0,∞) → C of l+,θ
p by Φ;

i.e., t ∈ [0,∞) 	→ Φ(c(t), p) is a one-to-one parametrization of l+,θ
p (c(0) = 0).

Then there is a constant C such that

meas ({t ∈ [0,∞) ; Φ(c(t), p) �∈ V }) < C ,

where meas stands for the usual Lebesgue measure on R.

The preceding theorem states that the trajectory l+,θ
p spend most of its “life”

in the neighborhood V and hence arbitrarily close to the singular points of D or
of X . Furthermore the constant C varies continuously with θ. In particular, if a
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compact interval [−π/2+ δ, π/2− δ] ⊂ (−π/2, π/2) is fixed, then C can be chosen
so that the above estimate holds for every θ ∈ [−π/2 + δ, π/2 − δ]. The uniform
dependence of C on θ ∈ [−π/2 + δ, π/2− δ] allows us to generalize the statement
to paths c ⊂ Lp more general than the trajectories of Hθ. For example, we may
consider paths c as before such that the angle made at the point c(t) by the tangent
vector c′(t) and the foliation H lies in [−π/2 + δ, π/2− δ] for all t. The interested
reader will have no difficulty in adapting the statement of Theorem A to these
more general situations.

Confinement phenomena are in stark contrast with ergodicity so that it is
natural to search for a variant of Theorem A focusing on the “area” of the region
defined in C by those values of T for which Φ(T, p) ∈ V . This variant might be
viewed, in particular, as a “super nonergodic” phenomenon for complete vector
fields. To state it, let Br ⊂ C denote the disc of radius r centered on 0 ∈ C.
A continuous properly embedded path c : (−∞,∞) → C is said to be a separating
curve if it is of class C∞, except possibly on a discrete set, and if it either is
periodic or satisfies the conditions limt→−∞ c(t) = ∞ and limt→∞ c(t) = ∞. Here,
the condition limt→±∞ c(t) = ∞ simply means that the curve eventually leaves
every compact subset of C. A separating curve divides C in at least two connected
components with at least one of these components unbounded. Then we have:

Theorem A’. Let X, V , Lp and p ∈ Cn be as in the statement of Theorem A.
Consider the parametrization of Lp by C (possibly as a covering map) which is
given by Φp(T ) = Φ(T, p). Then there exists a separating curve c : (−∞,∞) → C,
Φp(c(0)) = p, and an unbounded component U+ of C \ c(t) such that the following
holds: the set TV ⊂ U+ ⊂ C defined by

TV = {T ∈ U+ ⊂ C ; Φ(T, p) ∈ V }

satisfies

lim
r→∞

Meas (TV ∩Br)

Meas (U+ ∩Br)
= 1 ,

where Meas stands for the usual Lebesgue measure of C (
 R2).

The above statement contrasts markedly with various equidistribution results
obtained by Fornaess–Sibony and also studied by X. Gómez-Mont and his collab-
orators; see [18], [17] and [5]. The reader will note that these authors work in a
generic setting having “hyperbolic nature” whereas the previous statements are
closer to the nongeneric “parabolic” case.

Unlike most standard averaging theorems, the statement above holds for every
point p ∈ Cn and not only for almost every point. Moreover, it is easy to conclude
from the proof given in Section 6.1 that for almost all points p the corresponding
separating curve is smooth.

This separating curve turns out to have a natural interpretation as a geodesic of
a suitable singular flat structure on C. Furthermore, this (singular) flat structure
on C has “bounded geometry” in a natural sense despite the noncompactness
of C. The nature of this “bounded geometry” issue deserves some additional
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comments (the reader is referred to Section 6.1 for details). The notion of bounded
geometry is, indeed, related to the analogous statement concerning the leaves of
a (regular) foliation defined on a compact manifold; see for example [33]. More
precisely, consider for a regular foliation defined on some compact manifoldM and
some geometric object defined on M , the simplest example being a Riemannian
metric. The restriction of this metric to a noncompact leaf L of the foliation must
have “bounded geometry” which, in the case of a Riemannian metric, means that
the injectivity radius and all the standard curvatures are bounded. Since L is
noncompact, not every Riemannian metric defined on L needs to have “bounded
geometry”: the point of the preceding observation is that metrics induced on L
from the ambient compact manifoldM always belong to this distinguished class of
metrics. Furthermore, this observation boils down to the fact that the coefficients
of the metric are, ultimately, defined on the compact manifold M and therefore
are “bounded” in a natural sense. Since only the compactness of the ambient
manifold M plays a role in the discussion, the same argument also applies for
“foliated objects”, such as Riemannian metrics defined only on the tangent bundle
of the foliation or, more directly, defined on the corresponding leaves (provided that
they vary “continuously” from leaf to leaf). Clearly, none of this needs to hold if
the ambient manifold M is not compact. Having recalled these simple facts, let
us go back to our complete polynomial vector field defined on Cn. Although Cn

is not compact, it can be compactified into CPn and, as already pointed out,
the foliation D associated to X extends to CPn. As far as “bounded geometry”
for the leaves of D is concerned, the issue is then to decide whether or not the
foliated flat structure in question (i.e., the “geometric object” in question) can be
extended to all of CPn. For example, considering the standard setting where the
leaf L is contained in Cn, this leaf is endowed with a flat structure, or equivalently,
with a (singular) Abelian form (called the time-form) induced by duality with the
restriction of X to L itself. This Abelian form, however, does not extend to CPn

since X has poles on the hyperplane at infinity Δ∞ and the geometry arising from
the mentioned Abelian form is not “bounded” in general. Nonetheless, the flat
structure for which the above mentioned separating curve happens to be a geodesic
does have an extension to Δ∞; see Remark 6.3 in Section 6.1. Furthermore the
“extended” flat structure still varies “continuously” with the leaves which, in turn,
guarantees the existence of “bounds” for the corresponding geometry.

Now we return to the statement of Theorem A’. The fact that the preceding
flat structure has “bounded geometry” implies, in particular, that Meas (U+ ∩Br)
is, in fact, comparable to the Euclidean measure of Br provided that r is large.
Since discs of large radius are also used in the construction of Ahlfors currents, the
previous statement may look a bit surprising since these currents do not charge
singular points. However, this difference is easily explained since the construction
of Ahlfors currents is based on the “global volume” of a leaf and this may have little
relation with the asymptotic behavior of the solution of the corresponding differ-
ential equation which is a function of a different parameter, namely the “time”. To
be more precise, fix a diffeomorphism between C and a leaf L, for example the time
t diffeomorphism Φt induced by the corresponding vector field. To construct the
Ahlfors current, the ambient manifold is equipped with a Hermitian metric which
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is then pulled back by Φt to yield a metric dC on C. The desired current is
then constructed by choosing a suitable sequence of discs Bri whose radii ri are
measured with respect to dC and satisfy ri → ∞. Clearly a small neighborhood V
of a singular point in M has small diameter for the fixed Hermitian metric and so
does a connected component (L ∩ V )0 of L ∩ V . The diameter (resp. the “area”),
of φ−1

t ((L ∩ V )0) with respect to dC is therefore small as well. Now, the metric
dC may differ markedly from the Euclidean metric on C so that the Euclidean
area of φ−1

t ((L ∩ V )0) might be large. The proofs of the preceding theorems will
make it clear that this phenomenon is precisely what happens in these cases. As a
conclusion, whereas Ahlfors currents are among the most efficient tools for studying
(singular) holomorphic foliations possessing leaves covered by C, they might be less
so when the main object of study is solution of a differential equation viewed as a
function of the parameter “time”.

The statements of Theorems A and A’ indicate that the structure of the sin-
gularities of D lying in Δ∞ must carry significant information about the global
dynamics of corresponding vector fields. This can be thought of as a principle sim-
ilar to Painlevé’s test for the existence of meromorphic solutions for a differential
equation (this is a context where our methods can also be applied). In a sense,
this might partly explain the remarkable effectiveness of Painlevé’s test. In any
case, letting this principle guide us, it is natural to wonder that complete vector
fields whose associated foliations D have only simple singularities in Δ∞ must be
amenable to a detailed global analysis. Throughout this paper, asimple singularity
means one of the following types of singular points q ∈ Δ∞ for D:

(1) Nondegenerate singularities: this means that D can locally be represented by
a vector field having nondegenerate linear part at q (i.e., the Jacobian matrix
of X at q is invertible, equivalently, it possesses n eigenvalues different from
zero). Since resonances may arise, we assume that q is not of Poincaré–Dulac
type, i.e., if all the eigenvalues of D at q belong to R∗

+ then D must be locally
linearizable at q.

(2) Codimension 1 saddle nodes: these are singularities of D lying in Δ∞ whose
eigenvalue associated to the direction transverse to Δ∞ is equal to zero
whereas it has n − 1 eigenvalues different from zero and corresponding to
directions contained in Δ∞. Again we require that the (n − 1)-dimensional
singularity induced on the plane Δ∞ should not be a singularity of Poincaré–
Dulac type.

Note that singular points of D as in (1) above are necessarily isolated though
this is no longer the case for Codimension 1 saddle nodes since these singularities
may be contained in a curve of singularities of X transverse to Δ∞. Next we have:

Theorem B. Let X be a complete polynomial vector field on Cn whose singular
set has codimension at least 2. Suppose that all singularities of D lying in Δ∞ are
simple. Then X has degree at most 1.

Note that the assumption that X is complete as vector field is essential for
the preceding statement and cannot be replaced by other standard weaker notions



804 J. C. Rebelo and H. Reis

such as the slightly weaker condition of having meromorphic solutions defined on
all of C. In fact, consider the pair of commuting vector fields given by

Z0 = (−3x2 + y2 + 2xz)
∂

∂x
+ 2y(−3x+ 2z)

∂

∂y
+ 2z(3x− z)

∂

∂z
,

Z∞ = 2y(−x+ z)
∂

∂x
+ (3x2 − y2)

∂

∂y
+ 2yz

∂

∂z
.

Consider also the linear span of Z0 and Z∞, i.e., all vector fields that are obtained
as a linear combination of Z0 and Z∞. It is shown in [24] that the solutions of
every element in this family of vector fields are meromorphic functions defined
on all of C. In other words, these vector fields are very close to being complete
vector fields. In addition, every two members of this family have essentially the
same simple singularities on Δ∞ and these are simple in the above indicated sense.
Nonetheless, not only are vector fields in this family quadratic, but this family con-
tains an infinite set of vector fields whose underlying foliations are not completely
integrable in the sense that their leaves cannot be compactified into compact Rie-
mann surfaces. This example, as well as the work of Guillot in [25] and [26], sheds
light on the importance of the assumption on completeness made in the statement
of Theorem B. Similarly, it also shows that the same completeness assumption is
crucial for Theorems A and A’ as well.

Theorem B will be proved in Section 6.2. The statement of this theorem may be
compared to results of [15] for complete polynomial vector fields on C2. It is to be
noted that the results of [15] chronologically preceded the classification obtained
in [7]. Also, the more recent paper [29] contains a general classification theorem
for meromorphic vector fields admitting maximal solutions on algebraic surfaces
and these include complete vector fields as in [7]. All these questions are however
wide open for n ≥ 3 and Theorem B is a contribution to answering them.

To have a better appreciation of the difficulties involved in these problems,
following [29], we consider the case of semi-complete vector fields, i.e., vector fields
admitting solutions defined on maximal domains of C. A vector field is said to
be semi-complete on a domain U if the solution φ satisfying φ(0) = p ∈ U of the
associated differential equation is defined on a maximal domain of C for all p ∈ U .
Here, a domain V ⊆ C where the solution φ is defined is said to be maximal if
for every point T̂ in the boundary ∂V of V and every sequence {Ti} ⊂ V such
that Ti → T̂ , the sequence φ(Ti) leaves every compact set in U ; see Section 2.2
for further details. Clearly, a complete vector field is automatically semi-complete
since we can take V = C so that ∂V = ∅. If polynomial semi-complete vector
fields on Cn are considered, then even the quadratic homogeneous case is already
hard to understand once n ≥ 3. A. Guillot has conducted detailed research about
semi-complete quadratic homogeneous vector fields in [25] and [26]. In [25], by
building on a certain variant of the Painlevé test, he introduced certain lattices (of
coefficients) where all these vector fields are to be found, while in [26] he studied
the special case of Halphen vector fields and the related problem about actions
of PSL (2,C) on compact 3-manifolds. The beauty and depth of these results
motivated us to try to apply our techniques to vector fields satisfying the conditions
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stated in [25] which will be said to belong to the Painlevé–Guillot lattice (the reader
interested in the case n = 3 is referred to [23] for an especially detailed discussion).

Note that a semi-complete vector field of C3 belonging to the Painlevé–Guillot
lattice may not be complete and, moreover, its orbits (thought of as leaves of the
associated foliation) may be hyperbolic Riemann surfaces. The latter situation ac-
tually occurs with Halphen vector fields except for a few special cases; see [23], [26],
or Section 7.2. In this introduction, a Halphen vector field always means a hyper-
bolic Halphen vector field in the sense explained in Section 7.2. These vector fields
are semi-complete and their solutions are defined on maximal domains which are
either a bounded region of C or an unbounded hyperbolic region (for example the
complement of a disc).

Among the various results obtained by Guillot on quadratic semi-complete
vector fields (see [23], [25], [28]) there is a special class of exceptional cases whose
dynamics is very hard to understand. In this direction, our methods allow us
to say something nontrivial about these dynamics by considering the existence of
dicritical singularities at infinity for the corresponding vector fields. Given a vector
field X in a Painlevé–Guillot lattice, a singular point for the associated foliation
lying in the hyperplane at infinity which has all its eigenvalues contained in R+

will be called a dicritical singularity at infinity for X . Now we have:

Theorem C. Suppose that X is a holomorphic vector field defined on a compact
manifold N . Consider a singularity p ∈ N of X and denote by X2 the first non-
zero homogeneous component of the Taylor series of X at p (which is supposed to
be quadratic). Suppose that one of the following condition holds:

• X2 is a vector field in the Painlevé–Guillot lattice having no dicritical singu-
larity at infinity.

• X2 is a hyperbolic Halphen vector field (in this case N has dimension 3).

Then N does not a carry a Kähler structure.

Note that the second item of Theorem C is sharp in the sense that [26] con-
tains examples of compact 3-manifolds equipped with a global holomorphic vector
field exhibiting the singularity of a hyperbolic Halphen vector field. Naturally the
corresponding manifolds are not Kähler.

As to the first item, we are aware of no explicit example of vector field having no
dicritical singularity at infinity and these do not exist for n = 2. They are unlikely
to exist for n = 3, though we have no clear idea of what may happen in higher
dimensions. In fact, from the known (low-dimensional) cases, it appears that the
quadratic vector fields in question have a tendency to exhibit dicritical singularities
at infinity. In this sense, as stated, the first item of Theorem C may be vacuous.
However, there are several ways to turn this item into a meaningful statement
about the dynamics of the vector field in question when dicritical singularities at
infinity are present; see Section 2.2. For example, we have:

Theorem C’. Suppose that X is a holomorphic vector field defined on a compact
Kähler manifold N of dimension n. Consider a singularity p ∈ N of X and denote
by X2 the first nonzero homogeneous component of the Taylor series of X at p.
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If X2 belongs to the Painlevé–Guillot lattice, then X2 has dicritical singularities
at infinity. Furthermore, every regular leaf of the foliation induced by X2 on Δ∞
must pass through one of these dicritical singular points.

Theorems C and C’ will be proved in Section 7. The proofs are, very short
and rely on the material developed in the preceding sections. The rest of Sec-
tion 7 contains a discussion of the main dynamical issues associated to Halphen
vector fields. The corresponding results are definitely not new as they can all be
found in [26] together with a large amount of additional information. However,
the discussion in Section 7 makes the article self-contained in the sense that all
the properties of Halphen vector fields needed to prove Theorems C and C’ are
worked out here. Moreover, we have two additional motivations to carry out the
mentioned analysis. Our first motivation has to do with the well-known fact that,
in the context of differential equations without movable critical points, there is the
phenomenon of natural boundaries. When this phenomenon is regarded from the
point of view of semi-complete vector fields, it simply means that the maximal do-
main of definition of the solution is bounded in C. This is precisely what happens
in the case of Halphen vector fields. Whereas the methods used to prove Theo-
rems A and B have natural reformulations in the case of solutions of differential
equations that happen to be meromorphic functions on C, it is unclear that these
provide information in the case of solutions having a natural boundary. This leads
us to work out the discussion of Halphen vector fields to show how the presence
of an associated fibration can be combined with ideas from Kleinian group the-
ory to yield new insights in these cases as well. A second motivation is that our
discussion leads to a generalization of this picture in terms of representations of
SL (2,C) in higher dimensions. Indeed, the paper ends with an appendix contain-
ing some questions for which we believe the ideas developed here may be useful.
These questions include nonfree representations of SL (2,C).

Acknowledgements. Both authors are very grateful to A. Guillot for many
discussions concerning several aspects of this work and, in particular, for hav-
ing explained to us many issues in [26]. Thanks are also due to the anonymous
referee for very valuable comments and suggestions. Discussions with X. Gómez-
Mont concerning complete real vector fields and Lorenz equations also improved
our understanding of the material. Finally additional comments by F. Cano and
J.-P. Ramis have helped to enlarge the scope of possible future applications of this
work.

2. Overview of methods, further results, and background ma-
terial

This section contains a general description of the structure of the paper as well as
some qualitative explanation of our techniques. Quantitative information required
by the corresponding proofs will be given in the subsequent sections. Some com-
plements to the theorems stated in the introduction will also be provided along
with background material on semi-complete vector fields.
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2.1. Methods and results

First, a general point should be made about the vector fields and differential equa-
tions considered in this work. This is due to the fact that they are far from being
generic. For example, complete vector fields on Cn are very nongeneric among
polynomial and rational vector fields or among singular holomorphic foliations on
projective spaces. Indeed, as Riemann surfaces, the leaves of a foliation on CPn

induced by a complete vector field are quotients of C and this, by itself, is already
very nongeneric. Whereas they are non-generic, they are interesting since, for
example, they constitute a natural Lie algebra for the group of algebraic automor-
phisms of Cn [3] and remain an object of intensive study as shown by the recent
works of A. Bustinduy, L. Giraldo, M. Brunella, and others (see [9], [10] and [7]).
When working with differential equations, one often encounters very special (i.e.,
non-generic) examples that turn out to play crucial roles in the theory. Apart
from complete vector fields, our techniques also apply to semi-complete ones, i.e.,
to those vector fields admitting solutions defined on maxima subsets of C (see
below and Section 2.2 for further details). Halphen vector fields as studied in [26]
satisfy this condition and they will be revisited in Section 7. The importance of
Halphen vector fields is undisputed since they appear in mathematical physics as
well as in number theory through the celebrated functions P, Q and R of Ramanu-
jan. Yet another class of special equations that fits in the pattern of our theory
consists of those equations having meromorphic solutions defined on all of C. Here
the reader is reminded that the class of differential equations with meromorphic
solutions includes the Painlevé 1, 2 and 4 equations, the modified Painlevé 3 and 5
equations as well as many Chazy equations. As already mentioned, linear inte-
gral equations in Gelfand–Levitan–Marcenko form also lead to equations having
P-property that can be treated similarly; see [1], [2]. Even in the case when the
solutions possess a natural boundary, and therefore are not defined on all of C, our
methods can sometimes be used. A concrete example of this situation is provided
by our discussion of Halphen vector fields in Section 7. Another direction that is
left for future investigation concerns the connections of our work with the point of
view developed by X. Gómez-Mont and his collaborators concerning in particular
the real Lorenz attractor for which a “real” variant of our method seems to yield
new information; see [5] and [22].

Now we outline the structure of this paper. Consider a polynomial vector
field X on Cn and denote by D the associated foliation induced on CPn. Let Xd

stand for the top degree homogeneous component of X (having degree d ≥ 2) and
suppose that Xd is not a multiple of the radial vector field. Under this assumption,
the foliation D leaves the hyperplane at infinity Δ∞ = CPn \ Cn invariant. In
addition, and modulo a minor issue discussed in Section 3, the restriction of D
to Δ∞ coincides with the foliation induced on Δ∞ by Xd. Alternatively, and
modulo the natural identification Δ∞ 
 CPn−1, the foliation in question is simply
given by the direction of Xd projected on CPn−1 viewed as the space of radial lines
in Cn (note that Xd is homogeneous and it is not a multiple of the radial vector
field). A third way to see this foliation consists of noting that it coincides with the
foliation induced on the exceptional divisor Δ0 
 CPn−1 by the one point blow-up



808 J. C. Rebelo and H. Reis

of Xd at the origin. The foliation on CPn associated to Xd is denoted by F and
its restriction to Δ∞ is denoted by F∞. If L∞ is a leaf of F∞, then the “cone
over L∞” is invariant by F .

Fundamentally our method relies on estimating the “speed” of the vector fieldX
near Δ∞. This is done in two steps. The first step consists of eliminating the
unbounded factor of X over Δ∞ so as to obtain a local regular vector field about
every regular point p ∈ Δ∞ of F∞. However, it turns out that these locally
defined vector fields depend to some extent on the choice of local coordinates so
that they do not patch together to yield a foliated global vector field. Nonetheless,
two local representatives obtained through overlapping coordinates differ only by a
multiplicative constant. This means that this collection of local vector fields defines
a global affine structure (induced by Xd or by X) on every leaf of F∞. In other
words, the foliation F∞ can be equipped with a global foliated affine structure
although this affine structure does not give rise to a global foliated vector field.
Another version of this affine structure already appeared in [25] as well as in a
previous work of the first author [35] under the name of renormalized time-form.
It also plays an important role in [29]. In our context, the interest of the mentioned
affine structure is that it helps to provide estimates for the flow of X as long as
accurate estimates for the distance from the orbit in question to Δ∞ are available.

Now we describe the second ingredient of our construction, namely a quantita-
tive measure for the decay of the distance between a local piece of leaf of F and Δ∞.
Because Δ∞ ⊂ CPn and the Fubini–Study metric on CPn has positive curvature, it
is well known that complex submanifolds always bend towards Δ∞; see for exam-
ple [32]. In other words, the distance induced by the Fubini–Study metric between
a leaf L of F to Δ∞ cannot have a local minimum at a point p ∈ L unless p also
belongs to Δ∞ (in which case the distance is zero). Our mentioned second ingredi-
ent is a consequence of this remark. Actually, we shall use the Euclidean metric in
suitably chosen affine coordinates, as opposed to the globally defined Fubini–Study
metric. The advantage of choosing this Euclidean metric lies in the fact that it
is better adapted to working with the above mentioned affine structure. Besides,
by exploiting the fact that the submanifolds in question are leaves of a foliation,
an estimate for the rate of decay for the distance of a leaf to Δ∞ is derived. The
phenomenon is essentially as follows. At each regular point p of a leaf L of F
there is the steepest descent direction of L towards Δ∞, namely the negative of
the gradient of the distance function restricted to L. This yields a singular real
one-dimensional oriented foliation H on L. Furthermore the conformal structure
on L is such that the foliation H⊥ orthogonal to H is constituted by level curves
of the mentioned distance function.

Roughly speaking, it can then be obtained that L approaches Δ∞ exponentially
fast along the trajectories of H. Combined to the uniform estimates related to the
foliated affine structure, this estimate yields accurate estimates for the time taken
by the flow of X along the trajectories of H. The discussion actually shows that
the time taken by X to cover an entire (infinite) trajectory is finite provided that
the trajectory remains away from the singularities of F lying in Δ∞. This result is
sharpened in Section 5 by allowing the trajectory to accumulate on simple singular
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points. An analogous estimate is still obtained. In particular, there is only one
special type of simple singularity that can yield an “endpoint” for the trajectories
of H and, in this case, this will be a point of intersection of the leaf L and the
hyperplane Δ∞: the corresponding trajectory of H should then be thought of as
being finite. Finally, switching back and forth between estimates involving Xd and
estimates involving X is not hard since X is close to Xd near Δ∞.

The material mentioned above is covered in Sections 3, 4, and 5. Armed with
these results we begin in Section 6 to prove the theorems stated in the introduction.
Theorems A and A’ are very natural. Since X is complete, the integral of its time-
form over a trajectory of H cannot converge (where the reader is reminded that the
time-form is the Abelian dual to X on the leaves of D). Moreover this trajectory
can never reach Δ∞ since X is complete on Cn. This observation appears to
clash with our previous estimate asserting convergence of the integral in question
as long as the corresponding trajectory remains away from the singularities of F
(or D) lying in Δ∞. The apparent contradiction is then explained by the fact that
the flow of X spends all but a finite amount of its existence in arbitrarily small
neighborhoods of the singular set. The proof of Theorem A’ goes along similar
lines. In fact, the results obtained for the foliation H are also valid for every
oriented foliation Hθ forming an angle θ ∈ (−π/2, π/2) with H. Once again the
foliations Hθ are well defined since the leaves of F , D are endowed with conformal
structures. Modulo fixing a base point and using the obvious identifications, the
union of the corresponding trajectories spans an unbounded region of C viewed as
the domain of definition of the solution in question. Finally, we shall also have
control on the geometry of this region which will enable us to derive Theorem A’.

Given a solution φ : C → Cn of a complete polynomial vector field, we say
that φ is eventually confined at a singular point p ∈ Δ∞ if for every neighborhood
U ⊂ CPn of p, there is a compact set K ⊂C such that φ(T ) ∈ U whenever
T ∈C \K. Theorems A and A’ are clearly sharp a generic solution of a complete
vector field cannot be eventually confined at singular points unless the vector field
is completely integrable. Indeed, owing to the Remmert–Stein theorem, this type of
confinement would mean that the solution is contained in a rational curve. In turn,
if most solutions are contained in rational curves, then the underlying foliations
must have all its leaves contained in rational curves which implies, in particular,
that the vector field is completely integrable as desired. There are, however, simple
examples complete polynomial vector fields on C2, such as y∂/∂y + xy[x∂/∂x −
y∂/∂y], whose orbits accumulate on all of the line at infinity. These orbits are
therefore Zariski dense.

In view of Theorems A and A’, it is natural to imagine that the singular set of D
contains significant information about the global geometry of complete polynomial
vector fields. Theorem B is a contribution to the study of these vector fields as well
as a test of the extent to which their global dynamics can be determined by the
structure of their singularities. From an abstract point of view, this may be seen
as a first attempt at understanding the remarkable effectiveness of the Painlevé
test in differential equations. In fact, since Theorems A and A’ can be adapted to
the context of differential equations having meromorphic solutions, we can expect
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that the local information concentrated in the singular points is likely to strongly
influence the global behavior of the solution itself. To substantiate this expectation,
the idea will be to consider complete vector fields having simple singularities and
to check what can then be said about the vector field in question. From this point
of view, Theorem B is satisfactory since the dynamics of the corresponding vector
field is fully determined.

The proof of Theorem B is arguably the most elaborate application of our
techniques. Let us briefly describe its main ingredients. The central difficulty is to
guarantee the existence of a “dicritical singularity” for D in Δ∞, i.e., a linearizable
singularity all of whose eigenvalues belong to Z+. The existence of this type of
singularity implies, in particular, that the generic orbit of the vector field X is
of type C∗ in the sense of [37] and several additional properties follow at once.
To ensure the existence of this singularity is, however, a subtle question that can
be approached as follows. First, let X be replaced by its top degree homogeneous
component Xd along with its associated foliation F . The property of having a
dicritical singularity at Δ∞ is common to D and F so that it is more convenient to
work with homogeneous vector fields. Nonetheless, when replacing X by Xd, we
need to cope with the fact that Xd is no longer complete but only semi-complete.
In other words, every solution φ : V ⊂ C → U of Xd on Cn is such that whenever a
sequence {Ti} ⊂ V converges to a point T̂ in the boundary of V the corresponding
sequence φ(Ti) leaves every compact set in U . Being only semi-complete Xd may
reach infinity in finite time and this gives rise to further difficulties.

Another difficulty arising from the difference between semi-complete and com-
plete vector fields is the fact that the leaves of the foliation associated to a semi-
complete vector field may be hyperbolic Riemann surfaces, as happens in the case
of Halphen vector fields; see Section 7. However, in the case of a foliation as-
sociated to the top degree homogeneous component of a complete vector field,
it can be proved that the corresponding leaves are still quotients of C. This is
done by resorting to a result due to Brunella concerning the plurisubharmonic
variation of the foliated Poincaré metric; see [6]. The solutions of Xd will therefore
be meromorphic functions defined on C or C minus one or two points. Next, we
use our results involving the time taken by Xd to cover trajectories of H in the
singular context (namely the main result of Section 5, Theorem 5.1). Theorem 5.1
immediately implies that the solutions cannot be meromorphic on all of C and,
by exploiting additional properties of the foliations H and H⊥, a contradiction
ensuring the existence of the desired dicritical singularity is finally reached.

Let us now make some comments about the assumption that the singularities
of D lying in Δ∞ are simple in the sense described in the introduction. This
assumption does not immediately simplify the problem since there may exist codi-
mension 1 saddle nodes whose local analysis is already fairly complicated. Also,
the statement of Theorem B may be extended to encompass more general singu-
larities belonging to the class of absolutely isolated singularities; see [12]. While we
shall not seek to establish any of these extensions, at the very end of Section 5 the
reader will find some information on the structure of more degenerate singularities
for which our methods might still work. It is also interesting to observe that our
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techniques apply equally well to rational vector fields as to polynomial ones. In
practice, passing from polynomial to rational vector fields amounts to changing the
divisor of poles of the vector field in question. The divisor of poles of a rational
vector field may or may not include Δ∞ and its analysis leads to numerous addi-
tional possibilities whose understanding may partially be facilitated by our ideas.
In particular, several Painlevé equations are included in this class of problems.

As mentioned A. Bustinduy, L. Giraldo, and their collaborators have been
investigating properties of the solutions of complete vector fields through various
methods such as the theory of Nevanlinna, Andersen–Lempert theories, and so
on; see [9], [10] and [3]. Similarly, if a classical result due to Forstneric [19] is
taken into account, our method is likely to find some applications in the theory of
holomorphic differential equations blowing up in finite real time. This should lead
to some progress in questions similar to those treated by Fornaess and Grellier
in [16] which itself connects with previous works by a number of authors including
possible applications in the spirit of [11].

Finally, and as already mentioned, the beautiful results obtained by A. Guillot
in [25] and [26] provide a natural motivation for trying to apply our techniques to
quadratic semi-complete vector fields such as those considered by Guillot. These
vector fields are referred to as belonging to the Painlevé–Guillot lattice. The tools
developed in this paper will enable us to show that a vector field in the Painlevé–
Guillot lattice failing to have a dicritical singularity at infinity must have leaves
that are hyperbolic Riemann surfaces. This fact, in turn, will quickly lead us to
Theorem C by resorting again to Brunella’s result on the variation of the Poincaré
metric; see [6]. A point to be made here has to do with the lack of explicit examples
of vector fields in the Painlevé–Guillot lattice having no dicritical singularity at
infinity. We believe this example does not exist in dimension 3 and it is unclear
to us whether or not it does in higher dimensions. However, the argument used
in the proof of Theorem C allows us to conclude that the foliation induced on C3

associated to the vector field in question not only has a dicritical singularity at
infinity, but also has the following properties:

• The foliation induced on the hyperplane at infinity is such that all its leaves
have to pass through a dicritical singularity lying in the hyperplane in ques-
tion (Theorem C’).

• The restriction of the vector field X to a generic leaf L of its associated
foliation is either complete or conjugate to the vector field x2∂/∂x on all
of C. In the second case, the blow-up of X at the origin has a dicritical
singularity on the exceptional divisor. Moreover, the saturate of this dicritical
singularity by the foliation defines an open set where the vector fieldX admits
nonconstant first integrals.

Concerning the proofs of the above claims, the reader is referred to Remark 7.2.
Another minor point that can be mentioned is that the statement of Theo-

rem C also holds for vector fields slightly more general than those belonging to the
Painlevé–Guillot lattice. Namely, in our case, the condition used by Guillot may
be relaxed to allow the eigenvalue associated to the direction transverse to the ex-
ceptional divisor to vanish. Another relatively minor point has to do with a slight
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relaxation of the assumption made in Theorems C and C’ or, more precisely, with
the assumption that Xk is quadratic, i.e., that k = 2. Recall that in the statement
of Theorems C and C’ the vector field X has the form X = Xk + · · · where Xk is
the first nonzero homogeneous component of the Taylor series of X at the origin.
Now, note that Xk may have a codimension 1 zero set, in which case we can set
Xk = P.Y cd2 where P is a homogeneous polynomial and Y cd2 a homogeneous vec-
tor field whose zero set has codimension at least 2. Because the foliations induced
on the corresponding projective space by Xk and by Y cd2 coincide, the statements
of the mentioned theorems remain valid for vector fields X whose first nonzero
homogeneous component is a multiple of a semi-complete vector field lying in the
Painlevé–Guillot lattice. In fact, in the Painlevé–Guillot lattice there are (semi-
complete) vector fields admitting nonconstant holomorphic first integrals. If Y
stands for one of these vector fields and P stands for a holomorphic first integral
of Y , then the statement of Theorem C (resp. Theorem C’) also applies to vector
fields X whose first nonzero homogeneous component has the form PY , for ex-
ample. The reader will also notice that a similar extension concerning hyperbolic
Halphen vector fields is vacuous in the sense that the vector fields in question have
only constant holomorphic first integrals.

Among vector fields in the Painlevé–Guillot lattice, the examples provided by
Halphen vector fields are again special in the sense that they do have dicritical
singularities at infinity and still the leaves of their associated foliation may be
hyperbolic Riemann surfaces. Although these results, and many others, are due
to A. Guillot and appear in [26], we found it was worthwhile to rederive them by
using our general point of view. This discussion takes up most of the last section
of this paper. It involves, in particular, some considerations about convergence of
Poincaré series that differ from the classical theory.

Another motivation for us to revisit Guillot’s work on Halphen vector fields is
to pave the way for additional possible applications of our techniques, some of them
indicated in the appendix. These include the classification of the first homogeneous
components at a singular point of a globally defined holomorphic vector field on
a compact Kähler threefold. As will be explained later, this classification must
be identical to the classification of the top degree homogeneous components of
complete polynomial vector fields on C3; see the appendix.

2.2. A brief review of semi-complete vector fields and additional back-
ground material

Most of the discussion below concerns basic properties of semi-complete vector
fields that will often be encountered in the course of this paper. Some general subtle
notions involving singular foliations and their corresponding leaves, as needed for
Brunella’s theorem [6], will also quickly be reviewed.

First consider a 1-dimensional singular holomorphic foliation D defined on a
compact manifold M and denote by Sing (D) its singular set. Thus Sing (D) is an
analytic set of M having codimension at least 2. Since Brunella’s theorem [6] will
be used in Section 6, we shall adopt the definition of leaf for D that is required
by the statement of his theorem. The subtle point in this notion of leaf lies in the
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fact that leaves are sometimes allowed to contain points from Sing (D). Since the
definition of leaf for the restriction of D to M \ Sing (D) is clear, we can work on
a local setting and consider the n-dimensional polydisc Dn about the origin. This
polydisc comes equipped with the trivial fibration Dn = Dn−1 ×D → Dn−1. A
meromorphic map f : Dn →M is said to be a foliated meromorphic immersion if
the indeterminacy set I(f) of f intersects each vertical fiber of Dn in a discrete
set and if f satisfies the following additional conditions:

• f is an immersion on the complement of I(f).

• In the complement of I(f), f takes vertical fibers to leaves of D (more gen-
erally to the leaves the foliation under consideration).

Consider now a regular point p in M \ Sing (D) and let L′
p denote the leaf

through p of the (regular) foliation obtained by restriction of D to M \ Sing (D).
A closed subset K ⊂ L′

p is called a vanishing end of L′
p if the following conditions

are satisfied:

• K is isomorphic to the punctured disc and the holonomy of the restriction
of D to M \ Sing (D) corresponding to the cycle ∂K has finite order k.

• There is a foliated meromorphic immersion f : Dn →M such that

ı ) I(f) ∩ ({0} × D) = {0} ⊂ D ⊂ C, where “0” stands for the origin of
Dn−1 ⊂ Cn−1.

ıı ) The image of f restricted to ({0}×D) is the interior of K. Furthermore
f : ({0}×D) → Int (K) is a regular covering of degree k, where Int (K)
stands for the interior of K.

The general definition of leaf of a foliation D on M as above is as follows.
Consider a regular point p ∈M \ Sing (D) along with the leaf L′

p through p of the
(regular) foliation obtained by restricting D to M \ Sing (D). If L′

p possesses no
vanishing ends, then the leaf Lp of D containing p is exactly L′

p. Otherwise this
leaf Lp will consist of L′

p with the ends of the vanishing ends added to it where the
operation of adding an end to L′

p should be understood in the sense of orbifolds;
the multiplicity of the added point will be the order k of the holonomy relative
to ∂K. These orbifolds can then be turned into Riemann surfaces by the standard
normalization. An immediate consequence of the preceding construction is the
following.

Corollary 2.1. Let D, M and Sing (D) be as above. Fixed p ∈ M \ Sing (D), let
Lp (resp. L′

p) denote the leaf of D through p (resp. the leaf of the restriction of D
to M \ Sing (D) through p). Then L′

p ⊂ Lp and Lp \ L′
p is a discrete set. �

With the above definition of leaf, the main result of [6] reads as follows: if D is a
singular holomorphic foliation defined on a compact Kähler manifold M , then the
Poincaré metric along the leaves of D has plurisubharmonic variation. In particu-
lar, unless no leaf of the foliation in question is hyperbolic, the set of nonhyperbolic
leaves is “small” in the sense that it is a pluripolar set.
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After these general considerations about holomorphic foliations, we recall that
a meromorphic vector field X defined on an open set U of a (possibly open) mani-
fold M naturally defines a singular holomorphic foliation on U . In particular, if X
is a meromorphic vector field defined on a compact manifold M , then it induces a
singular holomorphic foliation D on all of M .

Our next step is to recall the exact definition of semi-complete vector fields.

Definition 2.2. A holomorphic vector field X on a complex manifoldM is called a
semi-complete vector field if for every p ∈M there exists a connected domain Up ⊂
C with 0 ∈ Up and a map φp : Up →M such that:

• φp(0) = p and dφp(t)/dt|t=t0 = X(φp(t0)).

• For every sequence {ti} ⊂ Up such that limi→∞ ti ∈ ∂Up the sequence
{φp(ti)} escapes from every compact subset of M .

A meromorphic vector field X on a complex manifold M is semi-complete if its
restriction to the open set where X is holomorphic is semi-complete in the above
mentioned sense.

The reader will note that the standard theorem about existence of local solu-
tions for ordinary differential equations ensures that a map φ : Up →M satisfying
the first condition in the preceding definition always exists. It is therefore the
second condition that makes the definition nontrivial. This second condition is a
natural generalization of the analogous phenomenon that always happens for real
time ordinary differential equations when the time approaches one of the endpoints
of its maximal interval of definition. In this sense, semi-complete vector fields are
those whose solutions admit a maximal domain of definition in C. It follows at once
from this definition that vector fields whose solutions are meromorphic functions
defined on C are automatically semi-complete. Moreover, the solutions of semi-
complete vector fields may actually be defined on bounded domains of C in an
essential way; see [26] or Section 7. This essential boundary is thus a continuum of
singularities for the solution of the associated differential equation. Furthermore,
this boundary may move with the initial condition (or rather with the leaf of the
underlying foliation). Thus this class of vector fields (or equations) is, in a sense,
more general than those possessing Painlevé property; see, for example, [31].

The following simple lemma already conveys some useful information concern-
ing semi-complete vector fields.

Lemma 2.3. A semi-complete meromorphic vector field on a curve is necessarily
holomorphic.

Proof. Let X be a meromorphic vector field on the curve Σ and suppose that X has
a pole at p ∈ Σ. The vector field is given, in a neighborhood of p, by z−qf(z)∂/∂z
for some q > 0 and a nonvanishing holomorphic function f . There is a coordi-
nate w where the vector field has the form w−p∂/∂w. The solution with initial

condition w0 �= 0 is multivalued and given by p+1

√
(1 + p)t+ wp+1

0 . Hence, there

is no neighborhood of p where the vector field is semi-complete. �
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This implies that a semi-complete meromorphic vector field on a compact curve
is globally holomorphic and thus, unless it is identically zero, the curve must be
either elliptic or rational.

More generally, consider a meromorphic vector field X along with its associated
singular holomorphic foliation D. The singular set of D (resp. X) will be denoted
by Sing (D) (resp. Sing (X)). Note that, unlike Sing (D), Sing (X) contains the
divisor of zeros and poles of X so that it can have codimension 1 components.
Given a point p ∈ M that is regular for X , consider the leaf Lp of D through p.
Inside Lp, there are two open sets that may naturally be considered, namely:

• The set Vreg ⊂ Lp. This set is identified with the leaf L′
p of the restriction

of D to the complement of Sing (D).

• The set WX consisting of those points in Lp at which the vector field X is
holomorphic and different from zero.

Clearly WX ⊆ Vreg ⊆ Lp. On WX , consider the time-form induced by X namely,
the 1-form dT defined by letting dT.X(q) = 1. The time-form is holomorphic and
nonzero on WX . It has a meromorphic extension to Vreg and, a priori, may have
essential singularities at the discrete set Lp \ Vreg.

At this point two additional remarks can be made concerning the definition
of semi-complete vector fields. The first one is that X is semi-complete if and
only if for every point p regular for X , the natural map φp : Up → WX is proper
and, hence, a covering (since it is clearly a local diffeomorphism). Also, by ex-
ploiting this condition, it is easy to see that for every embedded (one-to-one) path
c : [0, 1] →WX ⊂ Lp, the integral ∫

c

dT

is different from zero provided that X is semi-complete; see [34].
At this point, Lemma 2.3 can be improved as follows.

Lemma 2.4. Consider a meromorphic vector field along with its associated sin-
gular foliation D. Fix a leaf L of D not contained in the divisor of zeros or poles
of X and suppose that X is semi-complete. Then the restriction X|L of X to L
is holomorphic on all of L. Besides, if p ∈ L is a singular point of X|L , then the
second jet of X|L at p is different from zero.

Proof. Let us first show that X|L is holomorphic. In view of Lemma 2.3, it suffices
to show that X|L cannot have an essential singularity at a point p ∈ L \ Vreg.
Assuming, aiming at a contradiction, the existence of a point p ∈ L \Vreg at which
X has an essential singularity, note that p also yields an essential singularity for
the time-form dT induced on L by X . Now, fix a local disc B ⊂ L about p and

consider the map Dev : B̃ \ {p} −→ C defined by

Dev (x) =

∫ x

x0

dT ,

where B̃ \ {p} stands for the universal covering of the punctured disc B \ {p}
and where x0 is a fixed base point. The semi-completeness of X implies that the
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map Dev must be one-to-one. This is however impossible as follows from a simple
application of Picard theorem, see [35].

It remains only to check that the second jet of X|L cannot vanish at a (neces-
sarily isolated) singular point. The proof is a simple variant of the argument given
in the proof of Lemma 2.3. Details are left to the reader. �

Lemma 2.4 has the following useful corollary.

Corollary 2.5. Suppose that X is a semi-complete vector field defined on the
complement of a discrete set ℵ ⊂ C. Then X is holomorphic on all of C and, in
fact, extends to a holomorphic vector field globally defined on CP1. �

Semi-complete vector fields have additional useful global properties. For exam-
ple, unlike complete vector fields, semi-complete vector fields are invariant under
birational transformations. In this sense, from the point of view of birational ge-
ometry, the notion of semi-complete vector field is more natural than the notion
of complete vector field; see [29].

Another less immediate, though still elementary, global property originally es-
tablished in [21] asserts that the space of semi-complete holomorphic vector fields is
closed in the topology of uniform convergence. More precisely, suppose that {Xn}
is a sequence of holomorphic vector fields defined on some (possibly open) man-
ifold M converging to a (holomorphic) vector field X on M for the topology of
uniform convergence on compact subsets. Under this assumption, the limit vector
field X must be semi-complete provided that Xn is a semi-complete vector field
for every n ∈ N.

From the preceding results, the following useful fact can be derived.

Lemma 2.6. Suppose that X is a semi-complete polynomial vector field on Cn

having degree d. If Xd denotes the homogeneous component of degree d of X,
then Xd is itself semi-complete on all of Cn. In particular, if Xd is a nonconstant
multiple fR of the radial vector field R = x∂/∂x+ y∂/∂y+ z∂/∂z, then the degree
of the (homogeneous) form f must equal 1.

Proof. To show thatXd is itself a homogeneous semi-complete vector field, consider
the homothety Λk of Cn having the form Λk(x1, . . . , xn) = (kx1, . . . , kxn), for
k ∈ N∗. Clearly for every k ∈ N∗, the vector field (Λk)∗X is semi-complete on Cn.
Since a constant multiple of a semi-complete vector field is again semi-complete,
it follows that the vector fields Yk = k1−d(Λk)∗X are semi-complete on Cn for
every k ∈ N. When k → ∞, it is clear that the sequence of vector fields Yk
converges uniformly to Xd on compact subsets of Cn. It then follows that Xd is
semi-complete as desired.

For the second part of the statement, note that every radial line through the
origin is left invariant by the radial vector field R and hence by Xd. By restrict-
ing Xd to a “generic” line as before, we obtain a 1-dimensional semi-complete
vector field having an isolated singular point at the origin. However, owing to
Lemma 2.4, the order of this singular point cannot exceed 2. Hence the degree of
the nonconstant homogeneous polynomial f cannot exceed 1 which completes the
proof of the lemma. �
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3. Homogeneous vector fields and their foliations

Unless otherwise stated, throughout this paper homogeneous vector fields are sup-
posed to have degree d ≥ 2 and not to equal a multiple of the radial vector field.
In this section we work in dimension n = 3 merely for notational simplicity, since
all the arguments presented in the sequel carry over word-for-word to higher di-
mensions.

Consider a homogeneous polynomial vector field X of degree d ≥ 2 defined
on C3. Since X is homogeneous, its associated foliation F is invariant under
homotheties of the form (x, y, z) 	→ (λx, λy, λz), λ ∈ C∗, and, therefore, also
induces a foliation of CP2. An alternative way to look at this situation consists of
blowing-up X at the origin of C3 (an one-point blow-up). We denote by C̃3 the
corresponding blow-up of C3 and by Δ0 = π−1(0) the resulting exceptional divisor,

where π : C̃3 	→ C3 is the corresponding projection. The transform (i.e., the blow-

up) X̃ (resp. F̃) of X (resp. F) vanishes identically over Δ0 (resp. leaves Δ0

invariant), as follows from the fact that the degree of X is strictly greater than 1
(resp. that X is not a multiple of the radial vector field).

Recalling also that C̃3 can be viewed as a line bundle over Δ0 = π−1(0), let P0

denote the bundle projection P0 : C̃3 → Δ0. This line bundle can be compactified
into a projective line bundle by adding the section at infinity Δ∞. Denoting
by M the total space of the resulting projective line bundle, it follows that M is
equipped with two bundle projections P0 and P∞ realizing it as a projective bundle
respectively over Δ0 and Δ∞. The manifold M is also isomorphic to the blow-up
of CP3 at the origin. The vector field X̃ can be extended to M as a meromorphic
vector field; in particular it induces a holomorphic foliation, still denoted by F̃ , on
all ofM . In addition, F̃ leaves both Δ0 and Δ∞ invariant since X is homogeneous
and it is not a multiple of the radial vector field. The foliation induced on Δ0

(resp. Δ∞) by restriction of F̃ is denoted by F̃0 (resp. F̃∞). Because F̃ comes

from a homogeneous vector field, these foliations coincide with the restrictions of F̃
to Δ0 and Δ∞. As to the vector field X̃, its pole divisor coincides with Δ∞ and
it has order d− 1 > 0. The zero divisor of X̃ is the union of Δ0 (a component of
order d− 1 > 0) with the transform of the zero divisor of X .

Naturally the singular set of F̃ has codimension at least 2. Furthermore this
singular set is saturated (i.e., invariant) by the fibers of P0 (resp. P∞) due to the
invariance of F under homotheties of the form (x, y, z) 	→ (λx, λy, λz), λ ∈ C∗. In
particular, the foliations F̃0 and F̃∞ automatically have singular sets of codimen-
sion at least 2 inside Δ0 and Δ∞ (in other words the intersections of the singular

set of F̃ with F̃0 and with F̃∞ yield a set of codimension at least 2 inside Δ0

and Δ∞).

Consider a nonalgebraic leaf L of F̃ not contained in Δ0 ∪ Δ∞. The projec-
tion of L onto Δ0 (resp. Δ∞), P0(L) = L0 (resp. P∞(L) = L∞), is clearly a

leaf of F̃0 (resp. F̃∞) since the initial vector field X is homogeneous. Further-
more one immediately checks that the restriction of P0 (resp. P∞) to L realizes L
as an Abelian covering of L0 (resp. L∞). It then follows that the noncompact
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leaves L, L0 and L∞ have all the same nature: either they are all covered by C or
they are all covered by the unit disc D. Furthermore L0 and L∞ are isomorphic
as Riemann surfaces while L is an Abelian covering of L0 or of L∞.

Therefore, we may focus on the behavior of X̃ near its pole divisor Δ∞ or
near Δ0, according to our convenience. Next, consider a leaf L∞ of F̃∞. By the
cone over L∞ is meant the 2-dimensional immersed singular surface P−1

∞ (L∞)

which is invariant under F̃ . In other words, if ψ(T ) = (x(T ), y(T ), 0), T ∈ Ω ⊆ C,
is a local parametrization of L∞, then the cone is parameterized by Φ(T, z) =
(x(T ), y(T ), z), z ∈ C. The singular points of P−1

∞ (L∞) belong to fibers sitting

over the singular set of F̃∞ which, we recall, may intersect L∞ nontrivially due to
the definition of regular leaf adopted in Section 2.2. Away from its singularities,
P−1∞ (L∞) can be viewed as a complex surface equipped with a singular holomorphic

foliation. We denote this surface by S and by F̃S the foliation on S obtained by
restricting F̃ to S. Note that S is invariant under the automorphism (x, y, z) 	→
(x, y, λz), λ ∈ C∗, and so is the foliation F̃S .

Since S is a 2-dimensional variety, F̃S is a codimension 1 singular foliation of S
and, hence, it has a transversely conformal structure. This yields good control of
the directions over which the leaves of F̃S cluster together with respect to a suitably
chosen auxiliary Hermitian metric. This idea is well known and can be found, for
instance, in [20]. In our case, however, we shall use an explicit parametrization.
For this, let M be equipped with affine coordinates (x, y, z) such that

(i) {z = 0} ⊂ Δ∞, (x, y) ∈ C2, z ∈ C;

(ii) the vector field X̃ is given by

(3.1) X̃ =
1

zd−1

[
F (x, y)

∂

∂x
+G(x, y)

∂

∂y
+ zH(x, y)

∂

∂z

]

where F and G are polynomials of degree either d or d + 1 and H is a
polynomial of degree d (the fact that F , G and H do not depend on the
variable z is a consequence of the homogeneous character of X);

(iii) The projection P∞ :M → Δ∞ in the above coordinates becomes (x, y, z) 	→
(x, y).

Affine coordinates with the above indicated properties can be obtained as fol-
lows. Recall that the blow-up C̃3 of C3 at the origin possesses affine coordinates
(x, y, w), (u, a, b), and (r, v, s) arising from the realization of C̃3 as the gluing of
three copies of C3 by means of the identification

b =
1

x
, u = xw (b �= 0, x �= 0)

a =
1

r
, u = rv (a �= 0, r �= 0)

s =
1

y
, v = yw (s �= 0, y �= 0) .
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In the affine coordinates (x, y, w), the vector field X̃ takes the form

X̃ = wd−1
[
F (x, y)

∂

∂x
+G(x, y)

∂

∂y
+ wH(x, y)

∂

∂w

]

for some polynomials F , G, andH depending only on the variables x and y (sinceX
is homogeneous). Now, to obtain the mentioned coordinates, it suffices to take
w = 1/z.

Note that Δ∞ is itself isomorphic to CP2. Thus the affine coordinates (x, y) 

(x, y, 0) on Δ∞ defines an affine copy of C2 inside Δ∞. Associated to the mentioned
affine C2 ⊂ Δ∞, there is a notion of line at infinity for Δ∞ itself. We shall denote

this line by Δ
(x,y)
∞ . In particular, it follows that the domain of definition of the

coordinates (x, y, z) coincides with the open setM \ (Δ0∪P−1
∞ (Δ

(x,y)
∞ )). Naturally

the choices of the affine coordinates (x, y) and of the line Δ
(x,y)
∞ are not canonical.

For a generic choice of these coordinates, Δ
(x,y)
∞ does not contain singular points

of the corresponding foliation on Δ∞ and Δ
(x,y)
∞ is not invariant by this foliation.

Now, we have:

Lemma 3.1. Suppose that the affine coordinates (x, y) are chosen so that the

resulting line at infinity Δ
(x,y)
∞ is not invariant under the corresponding foliation

on Δ∞. Then the top degree component of the vector field X̃ has the form

(3.2) z1−df(x, y)
[
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

]
for a certain homogeneous polynomial f having degree d.

Proof. Suppose that the initial homogeneous vector field X is given in the standard
coordinates (z1, z2, z3) on C3 by X = A(z1, z2, z3)∂/∂z1 + B(z1, z2, z3)∂/∂z2 +
C(z1, z2, z3)∂/∂z3. Then, with the change of coordinates

(x, y, z) 	→
(x
z
,
y

z
,
1

z

)
= (z1, z2, z3)

the vector field X̃ is given in a neighborhood of the hyperplane at infinity by

X̃ = z1−d
[
F (x, y)

∂

∂x
+G(x, y)

∂

∂y
+ zH(x, y)

∂

∂z

]

where F (x, y) = A(x, y, 1) − xC(x, y, 1), G(x, y) = B(x, y, 1) − yC(x, y, 1) and
H(x, y) = −C(x, y, 1). Now, the initial Euclidean coordinates (z1, z2, z3) for C3

can be chosen so that none of the functions A, B, or C is divisible by z3. This

assumption, combined with the noninvariance of the line at infinity Δ
(x,y)
∞ under

the foliation in question, implies that F and G (resp. H) have degree d+1 (resp. d).
Since A(x, y, 1) and B(x, y, 1) have degree at most d, it follows that the top-degree
homogeneous component of F (resp. G and H) is given by x (resp. y and z) times
the top degree homogeneous component of C. In other words, the top degree
homogeneous component of the vector field X̃ has the form (3.2) as desired. �
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A further comment concerning the difference between the foliation F̃∞ induced
by X̃ on Δ∞ and the corresponding foliation F̃ in 3-dimensional space is also
needed. To be more precise, consider the vector field X̃ given by the formula (3.1)
in the coordinates (x, y, z). If F and G have only trivial common factors, then

the foliation induced by X̃ on Δ∞ is given in (x, y, {z = 0}) coordinates by
F (x, y)∂/∂x+G(x, y)∂/∂y. Suppose now that F and G possess nontrivial common
factors. Set P = gcd. (F,G) so that F = P.a(x, y) and G = P.b(x, y) with a and b

having only trivial common factors. In this case, the foliation F̃∞ is represented
by the vector field a(x, y)∂/∂x + b(x, y)∂/∂y. With this observation in place, we
need to go one step further and consider also the common divisors of P and H .
When P and H have nontrivial common factors, then these common factors can be
(factored out and) eliminated without changing the foliations F̃ and F̃∞. Hence,

as far as the foliations F̃ and F̃∞ are concerned, we can suppose without loss of
generality that gcd (P, H) is invertible. Once this normalization has been made,
two distinguished cases may occur, namely:

• Suppose that P is invertible (after reducing to the case where gcd (P, H) is

invertible). Then the restriction of F̃ to Δ∞ coincides with F̃∞. Moreover,

in this case, the singular set of F̃ intersects Δ∞ in finitely many points.

• Suppose that P is not invertible (after reducing to the case where gcd (P, H)

is invertible). In this case, the foliation F̃∞ does not coincide with the

restriction of F̃ to Δ∞ since the latter contains a curve of singularities which
is induced in the above coordinates by P. In particular, the singular set of F̃
intersects Δ∞ in a curve plus, occasionally, finitely many isolated points.

Summarizing the preceding discussion, the foliation F̃ associated to X̃ can be
supposed to be given by a polynomial vector field of the form

(3.3) Y = P

[
a(x, y)

∂

∂x
+ b(x, y)

∂

∂y

]
+ zH(x, y)

∂

∂z
,

where gcd (P, H) is constant. Furthermore the previously defined vector field X̃ is
given in the same coordinates by

X̃ = z1−dQ(x, y)Y ,

where Q(x, y) is a polynomial. From this, it also follows that the projective curve

{P = 0} ⊂ Δ∞ (if not empty) is constituted by singularities of F̃ whereas its

“generic” point is regular for F̃∞. Furthermore there are two different possibilities
that need to be considered:

(a) {P = 0} ⊂ Δ∞ is invariant under F̃∞.

(b) {P = 0} ⊂ Δ∞ is not invariant under F̃∞.

Remark 3.2. It will be seen later (Propositions 4.1 and 4.2) that {P = 0}(⊆ Δ∞)

is not invariant under F̃∞ provided that the homogeneous polynomial vector field
of degree d ≥ 2 is supposed also to be semi-complete. For this reason the possibility
of having {P = 0} invariant under F̃∞ will be excluded from our discussion.
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Our purpose is now to equip the leaves of F̃ in Δ∞ with an Abelian form ω1

naturally related to the holonomy of the leaf in question. This will be done in the
affine copy of C3 inM corresponding to the domain of definition of the coordinates
(x, y, z). With the preceding notations, we fix a regular leaf L∞ ⊂ Δ∞ and a

point p ∈ L∞ regular for F̃ . Under this assumption, the leaf L∞ can locally be
parametrized in the form (x, y(x)) or in the form (x(y), y), with z = 0. It suffices
to consider a local parametrization of the form (x, y(x)) since the other possibility

is analogous. The vector field X̃ then yields

dz/dx = z H(x, y(x))/F (x, y(x)) .

Therefore

(3.4) z = z0 exp
[ ∫ x

x0

H(x, y(x))

F (x, y(x))
dx

]
.

Thus we define an Abelian form ω1 on L∞ by declaring that the coefficient of
ω1 at (x, y(x)) is nothing but −H(x, y(x))/F (x, y(x)) (the minus sign is only a
matter of convention). In particular we note that possible nontrivial common
factors of F and H are automatically canceled out in the definition of ω1. If the
leaf were parameterized in the form (x(y), y), the analogous result would yield for
the coefficient −H(x(y), y)/G(x(y), y). The form ω1 is the restriction of the form
dz/z to the leaf in question. This form can also be interpreted as the logarithmic

derivative of the holonomy for the foliation F̃S induced on the cone S over L∞.
This means the following: let L be a leaf of F̃S and consider a path c : [0, 1] 	→ L,
on L. Denoting by Hol(c) the holonomy associated to c, we have

(Hol(c))′(c(0)) = e−
∫
c
ω1 ,

where Hol(c) is identified with a map between open sets of C equipped with the
coordinate z.

Once a regular leaf L∞ ⊆ Δ∞ of F̃ is fixed, there are real trajectories, or
paths, contained in L∞ and possessing a contractive holonomy. To construct these
trajectories we proceed as follows. The Abelian form ω1 induces on L∞ a pair of
real 1-dimensional oriented singular foliations: the foliations given by {Im(ω1) = 0}
and by {Re(ω1) = 0}. Denote by H the oriented foliation defined by {Im(ω1) = 0},
the orientation being determined by the positivity of Re(ω1); i.e., if φ(t) is a
parametrization of a leaf of H then Re(ω1.φ

′(t)) = ω1.φ
′(t) > 0. Each oriented

trajectory of the foliation H will be called a real trajectory.
To make use of the foliation H, it is clearly important to have information

about its singular set. Since H depends only on the foliation associated to X̃
(rather than on X̃ itself), we identify four “critical regions” that can give rise to
singularities for H, namely:

(1) Singular points of F̃∞.

(2) Points in the curve {H = 0} (assuming as before that gcd (P, H) is a con-
stant).
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(3) Points in the curve {P = 0} (assuming as before that gcd (P, H) is a con-
stant).

(4) The line at infinity Δ
(x,y)
∞ ⊂ Δ∞ (defined by means of the affine coordinates

(x, y)).

In the sequel we shall determine the structure of the foliation H in cases (2), (3)

and (4) above. The discussion of singular points of F̃∞ will mostly be carried out
in Sections 4 and 5.

Let us begin to work out the local behavior of H at points in the above listed
“critical regions” without paying special attention to points that belong simulta-
neously to more than one of these regions. These latter points will be discussed in
Remark 3.7 later in this section. This said, let us first consider the curve {H = 0}
corresponding to zeros of ω1. In fact, for the time being, we shall restrict ourselves
to points in the curve {H = 0} that happens to be regular for the foliation F̃ .

Lemma 3.3. Let p ∈ Δ∞ be a regular point of F̃ . Assume that p lies in the curve
{H = 0}∩Δ∞ (but not in {P = 0} since p is regular for F̃). Then p is a singular

point for H. Furthermore the local structure of H restricted to the leaf of F̃ through
p is a saddle with 2m (real) separatrices (for a certain m ≥ 1).

Proof. Since p ∈ Δ∞ is a regular point for F̃ , it follows that P does not vanish
at p. Furthermore, at least one of the functions F and G does not vanish at p as
well. Assume, without loss of generality, that F (p) �= 0. We then conclude that
the restriction of ω1 to Lp is holomorphic in a neighborhood of p with a zero at p.
The structure of the real foliation induced near a zero of a holomorphic 1-form on
a Riemann surface is always a saddle as in the statement. Here the number m of
separatrices corresponds precisely to the order of p as zero of ω1. �

Let us now work out the behavior of H at points of {P = 0} (again, only

regular points for F̃ are considered here). Clearly it is sufficient to consider the
domain of definition of the coordinates (x, y, z). Similarly, if P = P

k1
1 · · ·Pkl

l is the
decomposition of P into irreducible components, then it suffices to consider the
curve {Pk1

1 = 0}.

Lemma 3.4. Suppose that {P1 = 0}∩Δ∞ is not invariant by F̃∞. If k1 ≥ 2 then
ω1 has a pole of order k1 ≥ 2 at a generic point p of this curve so that H has a
saddle-singularity at p. On the other hand, if k1 = 1, then ω1 has a simple pole at a
generic point p of this curve, whose residue equals H(p)/F ∗(p) where F ∗ = F/P1.

Proof. Suppose that the curve {P1 = 0} ∩Δ∞ is not invariant under F̃∞. Then,

at generic points in {P1 = 0}, the curve in question is transverse to F̃∞. The
point p can also be chosen sufficiently generic so that {P1 = 0} is smooth at p
and no other irreducible component of P vanishes at p. Under these genericity
assumptions, it follows that F ∗(0) �= 0. Moreover, since we are assuming that
gcd (P, H) is invertible, we can also assume that H(p) �= 0. The 1-form ω1 has
therefore a pole of order k1 whose coefficient is equal to H(p)/F ∗(p). �
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Now we consider points belonging to the line at infinity Δ
(x,y)
∞ ⊂ Δ∞. Here the

reader is reminded that we chose coordinates so that Δ
(x,y)
∞ contains no singular

point of the corresponding foliations.

Lemma 3.5. Points belonging to Δ
(x,y)
∞ yield source singularities for H provided

that the coordinates (x, y) are generically chosen.

Proof. As mentioned, our choice of coordinate is such that Δ
(x,y)
∞ neither contains

singular points of F̃∞ nor is invariant under F̃∞. It then follows that each point p

in Δ
(x,y)
∞ locally belongs to a unique leaf Lp of F̃∞. Thus the map that assigns

to p the residue at p of the 1-form ω1 is globally defined on Δ
(x,y)
∞ . To establish

the statement, it suffices to check this residue equals 1 at a generic point of Δ
(x,y)
∞ .

Indeed, by a continuity argument, this will imply that the residue must be real

(strictly positive) at every point p in Δ
(x,y)
∞ so that all these points constitute

source singularities for H. Alternatively, the reader may use the point of view
discussed in Remark 3.7.

We then consider those points where Δ
(x,y)
∞ is transverse to F̃∞. Let (u, v, w)

be new local affine coordinates for M where w is the coordinate transverse to Δ∞
and such that the line at infinity Δ

(x,y)
∞ is given by {u = w = 0}. The standard

associated change of coordinates is then given by (u, v, w) 	−→ (1/u, v/u, w) =

(x, y, z). In these new coordinates, the vector field X̃ becomes (up to multiplication
by w1−d)

−u2F (1/u, v/u) ∂
∂u

+ u(−vF (1/u, v/u) +G(1/u, v/u))
∂

∂v
+ wH(1/u, v/u)

∂

∂w
.

Recall that the polynomial vector field F (x, y)∂/∂x+G(x, y)∂/∂y has degree d+1.
Furthermore its component of degree d + 1 has the form f(x, y)[x∂/∂x + y∂/∂y]
where f is homogeneous of degree d (see Lemma 3.1). In particular, u2F (1/u, v/u)
has a pole of order d−1 over {u = 0}. Similarly the top degree homogeneous com-

ponent of −vF (1/u, v/u) + G(1/u, v/u) vanishes identically so that Δ
(x,y)
∞ repre-

sents a polar component of degree d−1 for the component of X̃ in the v-direction as

well. Finally, the order of poles of H(1/u, v/u) over Δ
(x,y)
∞ equals d. Formula (3.4)

then shows that ω1 has poles of order 1 over Δ
(x,y)
∞ . Indeed the principal part of ω1

is simply 1/u, since the top degree homogeneous component of X̃ is given by (3.2).
The statement follows at once. �

Before proceeding further, we summarize the information so far obtained about
the singular set of H in the “critical regions” (2), (3), and (4).

(a) The regular points of F̃∞ contained in {H = 0} ∩Δ∞ always provide singu-
lar points for H. Such singular points correspond to saddles with 2m (real)
separatrices, for m ≥ 1.

(b) The generic points in {P = 0}∩Δ∞ also provide singular points for H. These
points can provide either poles of order ≥ 2 for ω1 or poles of order 1 for ω1.
In the first case, the corresponding singular behavior of H corresponds to a
saddle.
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(c) The points belonging to the line at infinity always yield singular points for H.
More precisely, they provide simple poles with residue equal to 1 and therefore
yield source singularities for H.

Concerning item (b) above, in the case where ω1 has a simple pole at a generic
point, relevant information on the residue cannot be obtained without further
information on the vector field. In fact, the residue (which is given by H(p)/F ∗(p))
takes its values in C∗. Nonetheless, if the vector field X̃ is supposed to be semi-
complete, then the mentioned residue must belong to R∗. Therefore, the singular
point corresponds to a sink (resp. source) provided that the residue belongs to R−
(resp. R+). This is the content of the next lemma.

Lemma 3.6. Assume that {P1 = 0} ∩ Δ∞ is not invariant under F̃∞ and that
k1 = 1. Assume in addition that X is semi-complete. Then ω1 has a simple pole
at a generic point p of the curve {P1 = 0}∩Δ∞ and the residue of ω1 at p belongs
to R∗.

Proof. Suppose that the curve {P1 = 0} ∩ Δ∞ is not invariant by F̃∞. Then,

at generic points of {P1 = 0} this curve intersects F̃∞ transversely. Consider a
generic point p 
 (0, 0, 0) ∈ {P1 = 0} ∩Δ∞ and local coordinates (u, v, z) about

p where the foliation F̃∞ is locally represented by ∂/∂u and where P1(u, v) = u
(note that the point p can be chosen so that {P1 = 0} is smooth at p). Modulo
choosing p sufficiently generic to ensure that neither H nor any other irreducible
component of P vanishes at p, the vector field X̃ takes the local form

X̃ = z1−dQ(u, v)
[
uf(u, v)

∂

∂u
+ zh(u, v)

∂

∂z

]
where f(0, 0) �= 0 and h(0, 0) �= 0. Now the semi-complete character of X en-
sures that the quotient of the eigenvalues of the linear part of the vector field
uf(u, v)∂/∂u + zh(x, y)∂/∂z is a rational number. In other words, the quotient
h(0, 0)/f(0, 0) belongs to Q∗ ⊆ R∗. This quotient, however, also represents the
residue of ω1 at p 
 (0, 0, 0). The lemma is proved. �

Remark 3.7. (A comment about the local behavior of H about certain degenerate
intersection points). The purpose of this remark is to explain why certain more
degenerate points belonging to the intersection of different curves as above need
not be singled out in our discussion. Naturally, this discussion concerns only those
points that are also regular for F̃∞ since the singular points of this foliation will
carefully be discussed later.

First note that the intersection points of the curves {H = 0} and {P = 0} are
singular for the foliation since gcd (P, H) is a constant. Also, in Δ∞, all points of
the curve {P = 0} are singular for the foliation. Furthermore, the polynomial P
will be constant in most of our applications.

Nonetheless points belonging to the line at infinity Δ
(x,y)
∞ need additional com-

ment. First recall that our generic choice of generic affine coordinates (x, y) is

such that Δ
(x,y)
∞ neither contains singularities of F̃∞ nor is invariant under this
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foliation. Among points in Δ
(x,y)
∞ , there are three class of non-generic points that

may be regarded as more degenerate than generic points. Namely, we have inter-
section points with {H = 0}, with {P = 0} and those points where F̃∞ fails to

be transverse to Δ
(x,y)
∞ (i.e., tangency points). The reader is reminded that, while

intersection points of {H = 0} and {P = 0} are singular points of F̃ , they may

be regular points for F̃∞. Hence, in principle, some of the intersections points of

{H = 0} and {P = 0} may lie in Δ
(x,y)
∞ . In any event, the collection of all these

points form a finite set.

We claim that the exact nature of the singularity of H at a point belonging to
the above mentioned finite set need not be worked out. The reason for this is as
follows. Consider local coordinates (u, v, w) identifying the point in question with
the origin of C3 and such that the foliation is locally represented by the vector field
∂/∂u. In particular, the domain of definition of these local coordinates contains
a single point of the finite set in question, which is identified with the origin and
contained in the local leaf L0 = {v = w = 0}. In this sense, the trajectories
of H on the remaining leaves are well-defined, i.e., their local behavior is supposed
to have been determined. Next, consider a polydisc B(ε) of radius ε > 0 about
the origin. The behavior of H away from B(ε) is hence determined, including
for those trajectories contained in the leaf L0. The trajectories on H lying in
L0∩B(ε) can then be defined through the corresponding trajectories lying in leaves
different from L0. For example, consider a point (u0, 0, 0) lying in the boundary of
B(ε). To define the trajectory of H through (u0, 0, 0), we consider a sequence of
points (u0, δ1, δ2) converging to (u0, 0, 0) and the correspondingH-trajectories lδ1δ2
through these points. On the complement of B(ε), these trajectories converge to
(disconnected) segments of H-trajectories contained in L0. We can then use as the
trajectory through (u0, 0, 0) inside L0 ∩ B(ε) any segment joining two connected
components of the above mentioned segments of H-trajectories contained in L0. In
this way, the behavior of the H-trajectories in L0∩B(ε) is fully determined by the
behavior of H at the boundary of B(ε). For example, suppose that for every point
in the boundary of B(ε), the corresponding H-trajectory is oriented inward along
the polydisc B(ε). Then the trajectories of H inside L0 ∩B(ε) should be regarded
as exhibiting a sink singularity at the origin. In other words, we should consider
that these oriented trajectories have an endpoint where they meet the boundary
of B(ε); see Definition 3.8.

Alternatively, the reader may also consider the argument provided in the proof

of Lemma 3.5 pointing out a sort of dominant behavior of Δ
(x,y)
∞ over the other

critical regions.

To close this section, let us introduce the global notion of a trajectory of the
foliation H under the condition that the trajectory in question remains away from
the singular set of F̃ . For this, it is also convenient to consider the standard
Euclidean metric on the affine copy of C3 in which the affine coordinates (x, y, z)
are defined. In fact, the presence of an auxiliary metric will be necessary since
we shall want to define also the length of a global trajectory. Here, the notion of
endpoint of a trajectory will be needed; see Definition 3.8 below. We emphasize that
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all definitions provided in the sequel are only valid for (segments of) trajectories

avoiding some small neighborhood of the singular set of F̃∞. These definitions will
then be completed in Section 5 once the local behavior of H about these singular
points will have been determined.

To motivate the definition, we first given some geometric interpretation of the
foliated 1-form ω1. Fix a regular leaf L∞ ⊆ Δ∞ and a point p0 ∈ L∞ that is
regular for F̃ . Let l be the real trajectory of H through p and let S be the cone
over L∞. Consider a parametrization c : [0, 1] → l of the segment of this trajectory
joining p0 = c(0) to p1 = c(1). Then the holonomy map Hol(c) : Σ0 → Σ1, where
Σ0 and Σ1 are vertical complex lines equipped with the coordinates z, satisfies

(3.5) |(Hol(c))′| = e−Re(
∫
c
ω1) < 1 .

Clearly this formula means that the holonomy map in question is contractive. The
role played by these trajectories in our discussion can be summarized as follows.
Near a sink singularity p of H, all H-trajectories converge to p. The estimate (3.5)

guarantees that the distance of the leaves of F̃S to L∞ has a local minimum at p
(which may well be zero). On the other hand, near a source p, all real trajectories

go away from p. This means that the distance of the leaves of F̃S to L∞ reaches
a local maximum at p.

We can now give a global definition of the trajectories of H. The reader is
again reminded that, until Section 5, these definitions are only valid provided that
the trajectory in question remains away from the singular set of F̃∞. On the other
hand, recall that at regular points of F̃∞, the foliation H can have only three types
of singularities, namely sources, sinks, and saddles.

Definition 3.8. A point p regular for F̃∞ is a future endpoint (resp. past endpoint)
for a trajectory ofH if and only ifH has a sink singularity (resp. source singularity)
at p.

Thus, by definition, only sink or source singularities of H (corresponding to
maxima or minima for the distance function to Δ∞ restricted to the leaf) can
be endpoints for a trajectory of H. Hence, to have a global definition of H-
trajectories it only remains to say how they are defined on a neighborhood of
a saddle singularity of H. For this, recall that a saddle singularity has an even
number (2m) of separatrices, m of them converging to the singular point and m
of them emanating from the singular point. We now have:

Definition 3.9. Suppose that l is a segment of trajectory of H converging, as
a separatrix, to a saddle singularity of H. This segment of trajectory l is then
continued from this singular point by following any of the local separatrices that
emanate from the singular point.

The reader will not fail to observe that a trajectory of H passing through
saddle singularities of H keeps giving rise to holonomy maps having a contractive
behavior; this observation explains why saddle singular points are not considered
as endpoints for the trajectories of H.
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The length of anH-trajectory is then defined by summing up its lengths (for the
Euclidean metric fixed above) over foliated coordinates and this procedure is con-
ducted simply by locally following the orientation. More precisely, consider a
point p and denote by l+p the (oriented) semi-trajectory of H starting at p. The
length of l+p is obtained by adding lengths of its (local) segments provided that
this trajectory can locally be continued (and regardless of whether or not we pass
several times over the same points of M). The definition of length for an entire
trajectory l of H (as opposed to a semi-trajectory) naturally follows. As a con-
sequence of the preceding, the length of l+p is finite if and only if l+p has a future
endpoint (i.e., l+p meets a sink singularity). In particular, if l+p becomes periodic,
then its length is automatically infinite.

We can now extend the previous definitions to trajectories of H defined on all
of M and not only on Δ∞. In fact, the real oriented foliation H or, equivalently,
the 1-form ω1 has been introduced for leaves contained in Δ∞. As soon as a leaf
L∞ ⊆ Δ∞ is fixed, the definition can naturally be adapted to every leaf on S.
Going back to our specific case in which ω1 is characterized by the formula (3.4),
it follows that the local trajectories of H on L ⊆ S are determined as the lifts in
T(x,y(x))L∞ of the vector v where v is such that v.H(x, y(x))/F (x, y(x)) belongs
to R−. Also, note that the corresponding Abelian form ω1 is independent of the
leaf in the same cone S. In fact, the equation (3.4) shows that it depends solely
on L∞. These remarks can be summarized as follows.

1. The trajectory of H through a point (p1, p2, p3) projects on the trajectory
of H through the point (p1, p2, 0) which, in addition, is globally contained in
the plane {z = 0}.

2. Since the absolute value of the coordinate “z” is always decreasing over a
trajectory of H, it follows that the trajectory of H through (p1, p2, p3) has
infinite length if and only if the the trajectory of H through (p1, p2, 0) has
infinite length.

The following simple lemma will also be important later. For this lemma we

should take into account that, whereas Δ
(x,y)
∞ can be chosen to be generic, it always

possesses points of tangency with the foliation F̃∞.

Lemma 3.10. For a generic choice of the affine coordinates (x, y) an oriented

trajectory of H never intersects Δ
(x,y)
∞ . Moreover there is a compact set K ⊂ C3

and a constant CK so that the following holds: every segment of a trajectory l of H
whose total length is greater than CK satisfies the condition that the part of l lying
in C3 \K is less than, say, 1/10 of the total length of the segment in question.

Proof. Let q1, . . . , qr be the points where Δ
(x,y)
∞ is tangent to F̃∞ and fix a small

neighborhood Wi of qi, i = 1, . . . , r. Then there is a (collar) neighborhood V of

Δ
(x,y)
∞ \

⋃r
i=1Wi so that the following holds: for every point p ∈ ∂V \

⋃r
i=1Wi the

trajectory of H through p is transverse to ∂V and oriented outwards along V . In
other words, no trajectory of H may enter V without first entering some Wi.

On the other hand the structure of H trajectories on Wi is easy to describe.

If Δ
(x,y)
∞ is generic, then the tangency of Δ

(x,y)
∞ at F̃∞ at qi is quadratic (for all
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i ∈ {1, . . . , r}). In particular if Li is the local leaf of F̃∞ through qi, the point
qi is itself a source singularity for the trajectories of H. Thus no trajectory of H
intersects Δ

(x,y)
∞ . Finally, if V and the neighborhoods Wi are sufficiently small,

then the length of a segment of a trajectory lying in V ∪
⋃r

i=1Wi is less than,
say, 1/30 the length of the segment of same trajectory in K = C3 \ V ∪

⋃r
i=1Wi

which is determined by two successive passes of the trajectory in question through
V ∪

⋃r
i=1Wi. The statement then follows. �

Remark 3.11. In certain cases it may be useful to make a nongeneric choice

of affine coordinates (x, y) so as to have a line at infinity Δ
(x,y)
∞ passing through

certain singular points of F̃∞. We shall briefly mention one situation of this type
later on; see Remark 6.8.

4. Renormalization in the exceptional divisor

Our fundamental tool to derive Theorem A is a procedure of renormalization for the
complex time near the divisor of poles of X̃, i.e., near Δ∞. This construction will
play a major role in the rest of the paper. We begin by describing this procedure.
We shall continue to use the notation of Section 3, emphasizing the 3-dimensional
case, though all the results presented below are valid in arbitrary dimensions.

As before, let X stand for a homogeneous polynomial vector field of degree
d ≥ 2 and assume that X is not a multiple of the radial vector field. Denote by F
the foliation associated with X . The reader is also reminded that leaves for the
foliation F are defined as in Section 2.2. In particular, the restriction of X to a
leaf L of F may contain zeros, poles, and essential singularities of X . All these
nonregular points of X form, however, a discrete subset of L with respect to the
intrinsic topology of the leaf L as Riemann surface (unless the leaf in question is
fully contained in the divisor of zeros and poles of X). The presence of the vector
field X allows us to endow every (regular) leaf L as before with the foliated time-
form dT defined, as in Section 2.2, by imposing dT.X = 1. The time-form will also
be denoted by dTL when we want to emphasize the leaf L under consideration.
As observed, the time-form is well-defined provided that L is not contained in the
divisor of zeros and poles of X . If the vector field X is supposed to be semi-
complete, then its restriction to L is everywhere holomorphic and the orders of its
zeros cannot exceed 2; see Lemma 2.4. It follows at once that dT is meromorphic
on all of L and it has no zeros. Furthermore, the poles of dT have order bounded
by 2. Finally, recall also that given a curve c : [0, 1] → L joining two points c(0)
and c(1) in L satisfying X(c(0)) �= 0 and X(c(1)) �= 0, the integral

∫
c dT measures

the time needed to traverse c from c(0) to c(1) following the flow of X as long as X
is semi-complete. In fact, when a vector field is semi-complete the notion of time
arising from its semi-global flow is well-defined.

Consider now X̃ , the vector field induced by X onM . Throughout this section,

generic affine coordinates (x, y, z) as in Section 3 are fixed. In particular, Δ
(x,y)
∞

neither contains singular points of F̃∞ nor is invariant under this foliation. Since X̃
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has poles over Δ∞, the time-form is not defined for the regular leaves of F̃∞. It is,
however, possible to define a renormalized time-form on a neighborhood of each
regular point p of a leaf L∞ ⊆ Δ∞. This goes as follows. Let L∞ ⊆ Δ∞ be a
regular leaf of F̃ and let p ∈ L∞ be a regular point of this leaf L∞ which is not
singular for F̃ . Choose local coordinates (u, v, w), {w = 0} ⊂ Δ∞ around p where
the foliation is given by the vector field ∂/∂u. In these coordinates, the vector

field X̃ is given by w1−df(u, v, w)∂/∂u. The renormalized time-form on L∞ is

then defined as du/f(u, 0, 0). In other words, it is obtained from X̃ by eliminating
its pole component. Naturally there is no canonical choice for the coordinate w
and this prevents us from having a global definition for the renormalized time-
form. In accurate terms, the local form du/f(u, 0, 0) is not globally defined on L∞
because, when a change of coordinates is performed, two local definitions of this
renormalized time-form will agree only up to a multiplicative constant. Therefore,
whereas the previous construction does not define an Abelian form on L∞, it
endows L∞ with an affine structure (for further details we refer to [29]). The
purpose of this section is to exploit this affine structure to estimate the domain
of definition of the solutions of X̃. As will be seen, accurate estimates can be
obtained in this way as long as the evolution of the coordinate z is well controlled
(where z refers to the affine coordinates (x, y, z)).

Although we have defined the renormalized time-form only at regular points
of F̃ , this form admits a natural asymptotic extension to the singularities of F̃
lying in Δ∞. Details on these extensions will be given as they become necessary.

Now let us return to homogeneous polynomial vector fields on C3. Fix a point
p0 contained in the singular set of F̃∞. Suppose that the restriction of F̃ to a
neighborhood of p0 is given by the equation (3.1) so that

(4.1) X̃ =
1

zd−1

[
F (x, y)

∂

∂x
+G(x, y)

∂

∂y
+ zH(x, y)

∂

∂z

]
.

With the notations of Section 3, let P = gcd (F,G) so that F = P.a(x, y) and
G = P.b(x, y). Denoting by P the greatest common divisor of P and H , we can
set P = PP

∗ and H = PH∗. It follows that

(4.2) X̃ =
P

zd−1

[
P

∗(x, y)
(
a(x, y)

∂

∂x
+ b(x, y)

∂

∂y

)
+ zH∗(x, y)

∂

∂z

]

where p0 
 (0, 0, 0). If P∗ is not constant, the curve in Δ∞ induced by {P∗ = 0}
is singular for F̃ , though its generic points are regular for F̃∞. From this point of
view {P∗ = 0} ∩Δ∞ may or may not be invariant under F̃∞. Nonetheless, when
dealing with semi-complete vector fields, the following holds.

Proposition 4.1. Assume that X is a homogeneous semi-complete vector field
with degree greater than or equal to 3. Suppose that X̃ is as in (4.2). Then no

irreducible component of {P∗ = 0} ∩Δ∞ is invariant under F̃∞. In other words,

a regular leaf of F̃∞ can intersect the singular set of F̃ only in a discrete set (for
the intrinsic topology on the leaf in question).
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Proof. Without loss of generality, denote by P1 an irreducible component of P∗

giving rise to an (irreducible) curve C = {P1 = 0} ∩ Δ∞ that happens to be

invariant under F̃∞. We are going to conclude from this condition that X cannot
be semi-complete.

To do this, denote by m ≥ 1 the multiplicity of P1 as a component of P∗. At a
generic point of C, local coordinates (u, v, w) can be found so that {w = 0} ⊂ Δ∞
and C is identified with {v = 0, w = 0}. In these coordinates, we naturally have
P1(u, v) = v. Moreover, since the chosen point is generic, we also have H(0, 0) �= 0
and a(0, 0) �= 0. On the other hand, b must be divisible by v since C is invariant

under F̃∞.

By means of the above defined local coordinates, X̃ can be identified with
a vector field defined around the origin of C3. Since m ≥ 1, the first nonzero
homogeneous component of X̃ at the origin is given by

X̃H = w1−dvk
[
αv

∂

∂u
+ λw

∂

∂w

]

for some constants λ = H(0, 0) ∈ C∗, k ≥ 0 and α ∈ C. Note that α �= 0 if and
only if m = 1. Furthermore, k is the greatest (nonnegative) integer such that vk

divides P. The hyperplanes {v = cte} are invariant under the foliation associated

with X̃H . For each sufficiently small nonzero constant (cte), the differential equa-

tion associated with X̃H is such that ẇ = ctekλw2−d. Since d ≥ 3, the vector
field X̃H has a pole at w = 0. In turn, the existence of this pole ensures that
the corresponding solution is multivalued contradicting the assumption that X is
semi-complete. The proof of the lemma is finished. �

Concerning the case of quadratic homogeneous vector fields, the preceding
lemma can be complemented nicely under the additional assumption that the sin-
gular set of X has codimension greater than or equal to 2. Namely, we have:

Proposition 4.2. Assume that X is a quadratic homogeneous semi-complete vec-
tor field whose singular set has codimension greater than or equal to 2. Suppose
that X̃ is as in (4.2). Then no irreducible component of {P∗ = 0}∩Δ∞ is invariant

under F̃∞.

Proof. Let P1 denote a nontrivial irreducible component of P∗ and assume, aiming
at a contradiction, that {P1 = 0} ∩Δ∞ is invariant under F̃∞. Denote by L the

intersection {P1 = 0} ∩ Δ∞ and note that L is contained in a leaf of F̃∞. Fix

p ∈ L such that F̃∞ is regular at p. The point p can be chosen so that neither
H nor any other irreducible component of P∗ vanishes at p. Next, consider local
coordinates (u, v, w) about p, {w = 0} ⊂ Δ∞, so that

(a) p 
 (0, 0, 0);

(b) P(u, v) = v;

(c) the foliation F̃∞ is horizontal, i.e., is represented by the vector field ∂/∂u.
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Denote by α the order of P1 as a component of P∗ and note that α cannot exceed 3
since X has degree 2. In these coordinates the vector field X̃ becomes

X̃ =
1

w

[
vαf(u, v)

∂

∂u
+ wg(u, v)

∂

∂w

]
.

Furthermore, modulo taking p sufficiently generic, it can also be assumed that
both f(0, 0) and g(0, 0) are different from zero.

Let F̃ denote the foliation associated with X̃ . To complete the proof of the
proposition, we are going to show that the local holonomy of F̃ with respect to
the invariant axis {u = v = 0} does not coincide with the identity map. This

contradicts the assumption that X̃ is semi-complete since the restriction of X̃ to
the mentioned axis is the regular (constant) vector field g(0, 0)∂/∂x (the reader is
reminded that g(0, 0) �= 0). In fact, being regular, the integral of the time-form over
a loop encircling the origin is zero. If the local holonomy of the mentioned invariant
axis is not trivial, then this loop lifts to an open path in a nearby leaf L. Since
the intrinsic distance in L between the endpoints of this open path is bounded
below by a positive constant, there follows easily the existence of an open path
c ⊂ L over which the integral of the corresponding time-form dTL vanishes which
is impossible for a semi-complete vector field; see Section 2.2.

To compute the local holonomy map associated to {u = v = 0} with re-

spect to the foliation F̃ , consider the loop given by w(t) = e2πit. Set h(u, v) =
f(u, v)/g(u, v) and note that h is holomorphic about (0, 0) with h(0, 0) �= 0 since
both f(0, 0) and g(0, 0) are assumed to be nonzero. Now, there follows that
(u(t), v(t)) satisfies the differential equation⎧⎪⎨

⎪⎩
du

dt
=
du

dw

dw

dt
= 2πivαh(u, v) ,

dv

dt
=
dv

dw

dw

dt
= 0 .

Next, by setting

u(t) =
∑
j,k

ajk(t)u
j
0v

k
0 and v(t) =

∑
j,k

bjk(t)u
j
0v

k
0 ,

the equation dv/dt = 0 implies that b01(t) is constant equal to 1 and that bjk(t)
vanishes identically for every pair (j, k) �= (0, 1). This is equivalent to saying
that v(t) = v0 for all t.

Consider now the second equation. Let h(u, v) =
∑

n,m hnmu
nvm. From the

equation du/dt = 2πivαh(u, v), we conclude that∑
j,k

a′jk(t)u
j
0 v

k
0 = 2πi vα0

∑
n,m

hnm

(∑
ajk(t)u

j
0 v

k
0

)n

ym0

which, in turn, is equivalent to∑
j,k

a′jk(t)u
j
0 v

k
0 =

∑
n,m

2πi hnm

(∑
j,k

ajk(t)u
j
0 v

k
0

)n

vm+α
0 .
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Comparing the coefficient of the monomial vα0 in both the right and left sides of
the preceding equation, it follows that

a′0α(t) = 2πi h00 ,

where h00 = h(0, 0) �= 0. Since a0α(0) equals zero, we obtain that a0α(t) = 2πih00t
and, therefore,

a0α(1) = 2πi h00 �= 0 .

Hence the holonomy map (u0, v0) 	→ (u(1), v(1)) does not coincide with the identity
since u(1) is not independent of v0. This yields the desired contradiction and ends
the proof of Proposition 4.2. �

Unlike the time-form, the renormalized time-form is defined for every regular
leaf of the foliation whether or not the leaf is contained in the zero/pole divisor
of X . Propositions 4.1 and 4.2 then imply that the “renormalized time-form” can
be defined over every leaf L∞ ⊆ Δ∞ provided that X satisfies the conditions in
the preceding statements. In view of this, and unless otherwise stated, throughout
the rest of this paper we shall assume the following.

General assumption: No irreducible component of the curve {P∗ = 0} ∩Δ∞ is

invariant under F̃∞.

As pointed out above, under the semi-completeness assumption, {P∗ = 0}∩Δ∞
is not invariant for the foliation induced by the vector field X . Nonetheless, for
semi-complete vector fields, a lot more can be said about this (non-F̃∞-invariant)
curve. In particular, when X is a homogeneous semi-complete vector field with
degree at least 3, the proof of Proposition 4.1 also yields:

Proposition 4.3. Assume that X is a homogeneous polynomial semi-complete
vector field with degree d ≥ 3. Let X̃ be as in (4.2) and assume also that P

∗

is not invertible. Then every nontrivial irreducible component of P∗ has order 1.
Furthermore, every nontrivial irreducible component of P∗ must also appear as an
irreducible component of P.

Proof. Assume that P
∗ is not invertible. Let P1 be a nontrivial irreducible com-

ponent of P∗ and denote by m ≥ 1 the order of P1 with respect to P
∗. Since

{P1 = 0} ∩Δ∞ is not invariant under F̃∞, at a generic point of {P1 = 0} ∩Δ∞
this curve is transverse to F̃∞. A generic point p can be chosen so that, in addition,
neither H nor any other irreducible component of P∗ vanishes at p. Finally, we
can also suppose that {P1 = 0} is smooth at p. Next, consider local coordinates
(u, v, w) around p, {w = 0} ⊂ Δ∞, satisfying the following conditions:

• p 
 (0, 0, 0);

• P1(u, v) = v;

• The foliation F̃∞ is locally represented by the vector field ∂/∂v.
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In other words, we have chosen coordinates (u, v, w) where X̃ takes the form

X̃ = w1−d
P(u, v)

[
vmg(u, v)

∂

∂v
+ wh(u, v)

∂

∂w

]
,

where both g(0, 0) and h(0, 0) are different from zero.

Suppose that m > 1. Then, the first nonzero homogeneous component of X̃ at
the origin (identified with p) is given by

X̃H = λ vk w2−d ∂

∂w
,

where λ = H(0, 0) and k is the order of P1(u, v) = v with respect to P. Since

d ≥ 3, the restriction of X̃H to the invariant planes {v = cte} is not semi-complete
provided that cte is different from zero. This contradicts the assumption that X
is semi-complete; see Section 2.2. It then follows that m = 1.

From now on, we have m = 1. It remains to prove that k must be strictly
positive. Thus, let us suppose for the sake of a contradiction that k = 0. The first
nonzero homogeneous component of X̃ at the origin (identified with p) is hence
given by

X̃H = w1−d
[
αv

∂

∂v
+ λw

∂

∂w

]
for some constant α ∈ C∗ and where λ equals H(0, 0). Now, the restriction of

the foliation associated with X̃H to the invariant hyperplane {v = 0} is given by
w2−d∂/∂z which is not semi-complete provided that d ≥ 3; see Section 2.2. The
proposition is proved. �

As an immediate consequence, we have the following:

Corollary 4.4. Assume that X is a homogeneous polynomial semi-complete vector
field with degree at least 3. Suppose also that the singular set of X has codimension
at least 2. Then P

∗ is invertible, i.e., P∗ is a constant.

Proof. Assume that P∗ is not invertible and consider a nontrivial irreducible com-
ponent P1 of P∗. According to Proposition 4.3, P1 must also be an irreducible
component of P. This immediately implies that the singular set of X has codi-
mension 1 and the statement follows. �

Concerning the case of homogeneous polynomial vector fields of degree d = 2,
the following holds:

Proposition 4.5. Suppose that X is a homogeneous quadratic semi-complete vec-
tor field. Suppose that P

∗ is not invertible. Then every nontrivial irreducible
component of P

∗ has order 1.

Proof. Let P1 be a nontrivial irreducible component of P∗ and denote by m the
order of P1 with respect to P

∗. Owing to the general assumption, the algebraic
curve {P1 = 0}∩Δ∞ is not invariant under F̃∞ (cf. Proposition 4.2). This means
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that this algebraic curve is transverse to F̃∞ at a generic point of it. Moreover, on
a neighborhood of a sufficiently generic point of {P1 = 0} ∩Δ∞, there are local

coordinates (u, v, w) where X̃ becomes

X̃ = w1−d
P(u, v)

[
vmg(u, v)

∂

∂v
+ wh(u, v)

∂

∂w

]
with both g(0, 0) and h(0, 0) different from zero. In particular, for fixed u, the 2-
dimensional vector field vmg(u, v)∂/∂v+wh(u, v)∂/∂w has exactly one eigenvalue
different from zero at the origin provided that m ≥ 2. By means of an elementary
and well-known calculation, this fact ensures that the local holonomy arising from
the axis {v = 0} cannot coincide with the identity. Therefore the corresponding
vector field cannot be semi-complete since its restriction to the mentioned axis is
regular at {v = w = 0} (the details are as in the proof of Proposition 4.2). �

Unlike the case of homogeneous polynomial semi-complete vector fields with
degree ≥ 3, the set of homogeneous polynomial semi-complete vector fields of
degree 2 admitting an irreducible component (not invariant under F and) contained
in its singular set is not empty, even when the singular set of X is supposed to
have codimension at least 2. Indeed, the homogenous vector field

X = xz
∂

∂x
+ (2yz + y2)

∂

∂y
+ z2

∂

∂z

is a semi-complete vector field and induces a foliation on the hyperplane at infinity
admitting a noninvariant curve contained in the singular set of the foliation asso-
ciated to X . In fact, in the standard affine coordinates (x, y, z) of Section 3, X̃ is
given by

X̃ =
1

z

[
y(1 + y)

∂

∂y
− z

∂

∂z

]
.

Although the set of homogeneous polynomial semi-complete vector fields of
degree d = 2 admitting a nontrivial irreducible component (not invariant under F
and) contained in the singular set of F is not empty, the corresponding vector fields
will be excluded from our discussion. In fact, as far as the main results presented
in the introduction are concerned, whenever the singular set of a foliation plays
a specific role, this singular set is assumed to consist only of simple singularities
(in the sense described in the introduction). However, simple singularities in this
sense are not compatible with the presence of curves of singular points contained
in the hyperplane of infinity for the foliation in question. Alternatively, it should
be noted that the foliations associated to the above nonempty set of homogeneous
polynomial vector fields can easily be described. In fact, we have:

Lemma 4.6. Let X be a homogeneous quadratic vector field and let P
∗ be as

above. If P
∗ is not invertible, then the foliation F̃∞ is induced by a vector field of

degree 0 or 1. �

After Lemma 4.6, the case where d = 2 and P
∗ is not constant can be treated

directly and the details can be left to the reader.
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After this long detour, we return to the real 1-dimensional foliation H. The
rest of this section is devoted to establishing Theorem 4.7 below which, in fact,
makes no assumption as to whether or not the corresponding vector field X is
semi-complete. This theorem will be extended further in the next section and
the final result, when combined with the preceding material about semi-complete
vector fields, will provide us with the required quantitative information to prove
the main results stated in the introduction.

Consider then a homogeneous polynomial vector field X of degree d ≥ 2 that
is not a multiple of the radial vector field. Whether or not X is semi-complete,
we can consider the vector field X̃ on M along with its associated foliation F̃ and
the induced foliation F̃∞ on Δ∞. Next, fix a regular leaf L∞ ⊆ Δ∞ of F̃ and let
S = P−1∞ (L∞) be the cone over L∞. Denote by H the oriented 1-dimensional real
foliation induced by the Abelian form ω1 (see Section 3). It is also useful to consider
other foliations similar to H. For this let us consider an angle θ ∈ (−π/2, π/2).
Denote by Hθ the oriented foliation whose (oriented) trajectories make an angle θ
with the (oriented) trajectories ofH. It is clear that these foliations are well defined

under the same conditions as H. It is also clear that the holonomy maps of F̃S

along the trajectories of Hθ are still contractions as in (3.5) (up to multiplicative
constants). In the sequel we denote by lθ an oriented trajectory of Hθ.

Given (a segment of) a trajectory lp of H (resp. lθp of Hθ), we are interested in
the value of the integral

∫
lp
dT (resp.

∫
lθp
dT ). In the investigation of the behavior

of this integral, it is clear that the singularities of F̃ on Δ∞ will pose further diffi-
culties. Thus it is natural to begin with (segments of) trajectories of H (resp. Hθ)
that avoid a fixed neighborhood of the corresponding singular set. In order to
do this, let W be a sufficiently small open neighborhood of the singular set of F̃
on Δ∞. Let lp (resp. lθp) be (a segment of) a trajectory of H (resp. Hθ). We can
now state one of our main results. Despite our 3-dimensional setting, the reader
can immediately check that this result holds in arbitrary dimensions (as is always
the case in the present section).

Theorem 4.7. Suppose that lp (resp. lθp) is contained in Δ∞ \W . Then
∫
lq
dT

(resp.
∫
lθq
dT ) converges for all q = (p, z0) ∈ P−1

∞ (p, 0), where lq (resp. lθq) denotes

the lift of lp (resp. lθp) to the leaf of F̃ through q and where dT stands for the

time-form associated to X̃. More precisely, assuming W fixed, and assuming that
the trajectory lθq of Hθ does not intersect W , there exists a constant C (depending
continuously on θ) such that for every path c : [0, 1] → L, c(0) = q, with image
contained in lθq , we have∣∣∣ ∫

c

dT
∣∣∣ ≤ ∫

c

|dT | ≤
∫
lθq

|dT | < C |z0|d−1 ,

where d ≥ 2 stands for the degree of the initial homogeneous vector field X.

Proof. It suffices to prove the statement for the case of a trajectory lp ofH since the
adaptations needed for trajectories of Hθ are clear. Also, we can suppose without
loss of generality that the length of lp is infinite. Finally, we recall that the affine
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coordinates (x, y) are as in Section 3, namely Δ
(x,y)
∞ is not invariant under F̃∞

and Δ
(x,y)
∞ contains no singularities of F̃∞.

Let W be the previously chosen open neighborhood of the intersection of Δ∞
with the singular set of F̃ . Assume that lp is connected and contained in Δ∞ \W .

Since the intersection of Δ∞\W with the singular set of F̃ is empty and the length
of lp is infinite, the only singularities of H that may be met by the trajectory lp are

saddle singularities of H (occurring at regular points of F̃). However, according
to Definition 3.9, the corresponding trajectories of H are continued by following
separatrices that emanate from the saddle in question. Moreover, with this global
definition of H-trajectory, the uniform contractive character of the corresponding
holonomy maps is still valid.

Recall from Section 3 that, away fromW , the polar divisor of ω1 consists of the

line at infinity Δ
(x,y)
∞ ⊂ Δ∞. Moreover, the singularities of H at points in Δ

(x,y)
∞

are source-like so that an oriented trajectory of H cannot intersect Δ
(x,y)
∞ . Though

these trajectories of H may come close to Δ
(x,y)
∞ , owing to Lemma 3.10 we know

that every sufficiently long segment of lp has most of its length contained in a
fixed compact subset of the affine C2 associated with the coordinates (x, y). Let
then a compact set K ⊂ C2 possessing the mentioned property be fixed. Since F is
clearly bounded onK, the estimates of Lemma 3.10 allow us to conclude that every
sufficiently long segment cp of lp can be split into a concatenation c1 ∗ c2 ∗ · · · ∗ ck
such that:

1. The image of ci, for i odd, is contained in the compact set K. Moreover at
points belonging to these segments the absolute value of ω1 is bounded from
below, i.e., |ω1| ≥ α > 0.

2. If i0 is odd, then the sum of the lengths of all even i, i < i0, is less than, say,
2/3 the sum of the lengths of c1, . . . , ci0 .

3. The absolute value of the coordinate z decreases monotonically along the
segment cp.

Fix q ∈ P−1
∞ (p) and let L be the leaf through q. Consider the lift of lp to L

and denote it by lq. Note that lq is an oriented trajectory of H over L. We want
to express lq in the corresponding affine coordinates (x, y, z). More precisely, our
goal will be to compute the value of its last coordinate z. For this, consider a
connected oriented path c contained in lp and joining p to another point of lp.
Consider also a lift of c contained in lq. The z-coordinate of the mentioned lift is
given by z = z0 exp[−

∫
c
ω1] where z0 is the z-coordinate of q. In other words, z0

is the height of q relative to L∞. In particular

|z| =
∣∣∣z0e− ∫

c
ω1

∣∣∣ = |z0|e−Re
∫
c
ω1 = |z0|e−

∫
1
0
Re(ω1(c(t)).c

′(t))dt

= |z0|e−
∫ 1
0
|(ω1(c(t)).c

′(t)|dt ≤ |z0|e−
∫ 1
0
α|c′(t)|dt/3 = |z0|e−αlength(c)/3

This estimate shows the following: whenever a segment of lp having length equal

to 3 ln(2)/2α is lifted to a regular leaf of F̃ projecting to L∞, the height of the
final point of the lift in question is at most 1/2 of the height of its initial point.
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Now the integral
∫
lq
dT can be estimated as follows. The time-form on L is

given in local coordinates by dT = zd−1dx/F (x, y). Since lp, the image of lq
by P∞, is contained in a compact set not intersecting the singular set of F̃∞, the
absolute value of F (x, y) is bounded from below, i.e., |F (x, y)| ≥ β > 0 for all
(x, y) ∈ Δ∞ \W . Otherwise we replace F by G (recall that we are dealing only

with regular points of F̃ on Δ∞). Hence, considering lq as the concatenation of
segments having length equal to 3 ln(2)/2α, lq =

∑∞
i=0 li,q, it follows that∣∣∣ ∫

lq

dT
∣∣∣ = ∣∣∣ ∞∑

i=0

∫
li,q

zd−1

F (x, y)
dx

∣∣∣ ≤ ∞∑
i=0

∣∣∣ ∫ 1

0

zd−1
i,q (t)

F (xi,q(t), yi,q(t))
x′i,q(t) dt

∣∣∣
≤

∞∑
i=0

∫ 1

0

|zi,q(t)|d−1

|F (xi,q(t), yi,q(t))|
|x′i,q(t)| dt ≤

∞∑
i=0

∫ 1

0

|z0|d−1(1/2)i(d−1)

β
|l′i,p(t)| dt

≤ |z0|d−1

β
length(li,p)

∞∑
i=0

( 1

2d−1

)i

=
3 |z0|d−1 ln(2)

2αβ

1

1− (1/2)d−1
<∞ ,

where li,q(t) = (xi,q(t), yi,q(t), zi,q(t)), t ∈ [0, 1], is such that lq =
∑∞

i=0 li,q and
P∞(li,q) = li,p. The theorem follows. �

What precedes shows that the above mentioned integral is, indeed, bounded
on Δ∞ \W . Our next goal is to remove the condition on W ; i.e., we want to allow

the trajectory lp (resp. lθp) to accumulate on the singular set of F̃ in Δ∞. This will
lead us to study the behavior of this integral over segments of trajectories of H
(resp.Hθ) that are close to the singularities of F̃ . This local analysis will be the ob-
ject of Section 5. Nonetheless, to finish the current section, we give an elementary
general result concerning trajectories of H and of Hθ that are contained in a local
separatrix for a singularity of F̃ or F̃∞ in the particular case where F̃ is associated
with a semi-complete vector field X̃ satisfying also the preceding conditions. This
goes as follows.

Consider again a vector field X̃ as in (4.1). Let p ∈ Δ∞ be a singular point of F̃
and consider an (germ of) analytic curve Sep ⊂ Δ∞ passing through p, invariant

under F̃∞ and not entirely contained in the singular set of F̃ . Let γ(t) denote
a local, irreducible, Puiseaux parametrization of Sep defined on a neighborhood
of 0 ∈ C. Denote by f(t) ∂

∂t the pullback under γ of the restriction of the vector
field F (x, y)∂/∂x + G(x, y)∂/∂y to Sep. Denote also by h = h(t) the function

t 	→ H ◦ γ(t). Then, the pullback of the restriction of X̃ to the cone over Sep is
given by

X̃S = z1−d
[
f(t)

∂

∂t
+ zh(t)

∂

∂z

]
.

Denote by k (resp. l) the order of f (resp. h) at 0 ∈ C. Now we have:

Lemma 4.8. Assume that X̃, as in Equation (4.1), is semi-complete and consider

the vector field X̃S along with integers k and l as above. Then l ≥ k − 1 and the
nature of ω1 (restricted to Sep) at p is determined by the relation between k and l.
More precisely, the following hold:
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• If l > k then ω1 is holomorphic and the restriction of H to Sep has a saddle
singularity at p with 2m separatrices (for a certain m ≥ 1).

• If l = k then ω1 is regular at p (and, in particular, holomorphic).

• If l = k−1 then ω1 has a simple pole at p. The residue of this pole is equal to
α = −(h/f ′)(0). Then the restriction of H to Sep has a sink (resp. source)
at p provided that α ∈ R+ (resp. α ∈ R−).

According to [29], see also the beginning of the present section, the vector

field X̃S induces an affine structure on {z = 0}. In addition, this affine structure
can be compared with the standard Euclidean structure to yield a 1-form β called
the affine defect of the former affine structure (see Section 3 of [29]). In the present
case, the 1-form β is simply

(4.3) β =
(−f ′

f
+ (d− 1)

h

f

)
dt .

Proof of Lemma 4.8. The argument given here relies on part of the theory devel-
oped in [29]. Keep the preceding notations and suppose that X is semi-complete.
Since X is semi-complete, the affine structure induced by X on {z = 0} is uni-
formizable, cf. [29]. In turn, according to Proposition 6 of [29], the fact that the
affine structure in question is uniform ensures that β has at most a simple pole
at t = 0. Furthermore the residue associated to this simple pole has the form
−1+1/n where n ∈ Z∗∪{∞}. We also point out here that, when n ∈ Z∗, the Fun-
damental Lemma proven in [29] ensures that the local holonomy map associated
to the invariant axis {z = 0} has finite order dividing n.

Now assume that β has only simple poles. Since the poles of f ′/f are necessarily
simple as well, we conclude that also h/f can have at worst simple poles. In other
words, we have proved that l ≥ k − 1 provided that X is semi-complete.

Assume now that l = k − 1 and denote by α �= 0 the residue of the (simple)
pole of h/f at t = 0. It was seen that the residue of β at t = 0, if not zero, has the
form −1+ 1/n and from this it follows that α is rational, and hence real, provided
that X is semi-complete. On the other hand, α is also the residue of ω1 at t = 0.
In particular, if α > 0 (resp. α < 0) then H has a sink (resp. source) at t = 0.

To complete the proof of the lemma, suppose that l ≥ k. It follows at once from
the definition of ω1 that this form is holomorphic and nonzero at t = 0 provided
that l = k. Similarly, if l > k, then ω1 is still holomorphic at t = 0. However,
in this case, t = 0 constitutes a zero of ω1. The corresponding consequences for
the local behavior of H having already been known, the proof of the lemma is
completed. �

Remark 4.9. In the preceding argument, it should be emphasized that only the
quotient h/f ′ at 0 must belong to R (in fact, to Q∗) because X is assumed to
be semi-complete. Indeed, the residue of a simple pole for the 1-form β need not
be −1 + 1/n, with n ∈ Z∗ ∪ {∞} unless the affine structure giving rise to β is
uniformizable.
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If the assumption that X is semi-complete is dropped, then the foliations H
and Hθ may also admit singular points that behave as centers at the points corre-
sponding to t = z = 0 in the previous local coordinates (t, z). This would add to
the list of sink, source, and saddle singularities.

In closing we observe again that the preceding statements hold in arbitrary
dimensions despite the fact that we have chosen to emphasize the 3-dimensional
case. Details are left to the reader.

5. The structure of H near singular points of F̃∞

This section is devoted to establishing an extension of Theorem 4.7 allowing the
trajectories of H and Hθ to accumulate on singularities of F̃ and F̃∞. These
singularities, however, will be supposed to be simple in the sense explained in the
introduction. Here, it should be noted that the assumptions made on the structure
of the singularities in question are not superfluous since certain saddle node sin-
gularities of a nature different from those considered in the introduction give rise
to new complications preventing us from generalizing Theorem 4.7 without fur-
ther information. On the other hand, the main result of this section, Theorem 5.1
below, remains valid for a large class of singular points; see the comments at the
end of the section. As in Sections 3 and 4, we focus on the 3-dimensional case.
The extensions of the arguments to higher dimensions, however, pose no further
difficulty.

Throughout this section we shall deal with a homogeneous semi-complete vector
field X on C3 which, in addition, is assumed to have a singular set of codimension
at least 2. Also the degree d of X is assumed to satisfy d ≥ 2.

We consider again the foliation F̃ associated to a homogeneous (polynomial)

semi-complete vector field X on C3 and assume that the singularities of F̃ lying in
Δ∞ are simple in the sense stated in the introduction. Recall that the foliation F̃
is tangent to the vector field X̃ obtained from the initial vector field X and given
in the affine coordinates (x, y, z) of Section 3 by (4.1). Namely, we have

(5.1) X̃ =
1

zd−1

[
F (x, y)

∂

∂x
+G(x, y)

∂

∂y
+ zH(x, y)

∂

∂z

]
.

Suppose that p ∈ Δ∞ is a singular point of F̃ and consider local coordinates
(u, v, w) about p, with w locally equal to z. In these coordinates, a local represen-

tative for the foliation F̃ is provided by a vector field Y having the form

(5.2) Y = F (u, v)
∂

∂u
+G(u, v)

∂

∂v
+ wH(u, v)

∂

∂w

for certain holomorphic functions F , G, and H with no nontrivial common factors,
where p is identified with the origin of C3. The singular point p is then said
to be simple (in the sense described in the introduction) if the linear part of
Z = F∂/∂u+G∂/∂v at (0, 0) ∈ C2 possesses two eigenvalues different from zero.
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Moreover, when the quotient of these eigenvalues happens to be a positive integer,
the induced foliation on Δ∞ is linearizable (in other words, it is not conjugate to
its Poincaré–Dulac normal form; see, for example, [4]). With these assumptions,
Theorem 4.7 admits the following extension:

Theorem 5.1. Let X be a homogenous polynomial semi-complete vector field
whose singular set has codimension ≥ 2. Assume that all the singularities of F̃
are simple (in the sense indicated in the introduction). Suppose that there is
θ ∈ (−π/2, π/2) and a point P ∈ Δ∞ such that the trajectory lθ

P
of Hθ through P

has infinite length. Then
∫
lq
dT converges for all q ∈ P−1∞ (P), where lq denotes the

lift of lP to the leaf through q and dT is the time form associated to X̃.

This section is devoted to the proof of Theorem 5.1. Applications of Theo-
rem 5.1, along with Theorem 4.7, will be worked out in Sections 6 and 7. Before
proceeding, let us first revisit the statement of Theorem 5.1 to make its assump-
tions clear.

First, the singular set of X has codimension ≥ 2. This implies that P as in (4.2)
is invertible. Therefore it can be assumed to be constant, equal to 1. Thus, in
the case where X has degree d ≥ 3, P ∗ is invertible as well (see Corollary 4.4).
The same does not necessarily occur for homogeneous (polynomial) vector fields

of degree d = 2. Nonetheless, since we are assuming that the singular points of F̃
on Δ∞ are simple, P ∗ can also be supposed invertible (and therefore constant)
even for d = 2. So, from now on, the greatest common divisor of F and G in (5.1)
is assumed to be 1, i.e., P and Q are relatively prime.

To begin, fix a point p ∈ Δ∞ contained in the singular set of F̃ . Recall that the
two eigenvalues of F̃∞ at p are assumed to be different from zero (and, when they

are of the form 1, N with N ∈ Z+, it is also assumed that F̃∞ is not conjugate to its
Poincaré–Dulac normal form). To be more precise, let Y be the vector field in (5.2)

with singular set of codimension at least 2 and tangent to F̃ . The conditions on
the singularities of F̃ and F̃∞ imply that gcd (F ,G) = 1. They also imply that
the vector field Z = F∂/∂u+G∂/∂v has eigenvalues λ1 and λ2 at (0, 0) 
 p with
λ1λ2 �= 0. Furthermore if the pair λ1, λ2 has the form 1, N with N ∈ Z+, then Z
is linearizable (recalling that a nonlinearizable vector field satisfying the preceding
conditions must be conjugate to (Nx + yN)∂/∂x+ y∂/∂y). This summarizes the
assumption of Theorem 5.1.

Comparing the expressions for the vector fields X̃ and Y , given respectively
in (5.1) and (5.2), it immediately follows that H(p) = H(0, 0).

Now we state the following:

Lemma 5.2. Fix a separatrix Sep for F̃∞ at a (simple) singular point p0 ∈ Δ∞.
Assume that H(p) = H(0, 0) = 0. Then the Abelian form ω1 on the cone over Sep
is holomorphic.

Proof. Note that the above mentioned vector field Z representing F̃∞ on a neigh-
borhood of p has, by assumption, a linear part with two eigenvalues λ1 and λ2
different from zero. Suppose that Sep is a (possibly singular) irreducible local
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separatrix for F̃∞ at p and denote by γ an irreducible Puiseaux parametriza-
tion for Sep. Since λ1λ2 �= 0, it is immediate that the order k at 0 ∈ C of the
one-dimensional vector field obtained by pulling-back the restriction of the vector
field Z to Sep by γ equals 1. The statement then follows from Lemma 4.8. �

It follows from Lemma 5.2 that p is either a regular point or a saddle singularity
for H provided that H(p) = 0. In view of the discussion at the end of Section 3
(about the global definition of H-trajectories), singular points of saddle-type for H
do not yield endpoints for any trajectory of H. Indeed, every trajectory of H
entering a small neighborhood of the singular point in question will eventually
leave this same neighborhood. Moreover, as already shown, from a global point
of view every trajectory of H gives rise to a contracting holonomy map in the
appropriate sense.

Whereas Lemma 5.2 does not require the vector field X to be semi-complete,
this assumption definitely plays a role in our next lemma concerning the case
H(p) = H(0, 0) �= 0. Note that this lemma already appears in [25].

Lemma 5.3. Suppose that the initial homogeneous polynomial vector field X, with
degree d ≥ 2, is semi-complete. Suppose also that H(p) = H(0, 0) �= 0. Then
d = 2. Furthermore the ratios λ1/H(0, 0) and λ2/H(0, 0) are both integers (and
hence real).

Proof. Consider the restriction of X̃ to the invariant manifold {u = 0, v = 0}.
This restriction is a semi-complete vector field that does not vanish identically,
since H(0, 0) �= 0. By noting that this restricted vector field is nothing but
H(0, 0)w2−d∂/∂w, the semi-complete assumption implies that d = 2.

Since the singular points of F̃ in Δ∞ are supposed to be simple, the foliation F̃∞
has at least two smooth separatrices through (0, 0) 
 p. Without loss of generality,
these separatrices may be supposed to coincide with the axes u and v. To prove
that λ1/H(0, 0) ∈ Z∗, consider the restriction of F̃ to the 2-plane sitting over

the separatrix Sep = {v = w = 0} of F̃∞. Clearly this 2-plane is invariant

under F̃ and locally parameterized by the coordinates u and w. The restriction X̃|
of X̃ to the 2-plane in question expressed in (u,w)-coordinates is given simply by

X̃| = w1−d[f(u)∂/∂u+ wh(u)∂/∂w] = w−1[f()∂/∂u+ wh(u)∂/∂w], since d = 2

On the other hand, the vector field X̃| is semi-complete on a neighborhood of

the origin. Furthermore h(0) = H(0, 0) �= 0 while f(u) = λ1u+ · · · . In particular

f(0) = 0. From this it follows that the axis {u = 0} is invariant under X̃| and
that the restriction of X̃| to this axis is a regular one-dimensional vector field.

Since this restriction is regular and X̃| is semi-complete, it follows that the local
holonomy map associated to the axis in question must coincide with the identity
(cf. the discussion in the proof of Proposition 4.2). Since f(u) = λ1u + · · · an
elementary calculation shows that the above mentioned holonomy map cannot
coincide with the identity unless λ1/H(0, 0) is an integer. The case of λ2/H(0, 0)
being analogous, the proof of the lemma is complete. �
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Summarizing, both quotients λ1/H(0, 0) and λ2/H(0, 0) are nonzero integers

when X is semi-complete. In particular, the quotient of the eigenvalues of F̃∞ at
the singular point p0 is a rational number since it is given by λ1/λ2. Because we
are treating the case H(0, 0) �= 0 where the 1-form ω1 has a simple pole at the
origin (
 p), there follows the existence of two different cases according to whether
λ1/λ2 ∈ Q+ or λ1/λ2 ∈ Q−. The first possibility can easily be treated.

Lemma 5.4. Let X be as in the statement of Lemma 5.3. With the preceding
notations suppose that λ1/λ2 ∈ Q+. Then p is a sink (resp. source) singularity
for H provided that λ1/H(0, 0) > 0 (resp. λ2/H(0, 0) < 0). In both cases, p yields
an endpoint for the trajectories of H.

Proof. It suffices to consider the case λ1/H(0, 0) > 0. Clearly the structure of H
over the two (smooth) separatrices of F̃∞ at p corresponds to sinks. As to the
remaining leaves, recall that they all accumulate at the origin. Furthermore the
structure of H at regular points of these leaves has to have the same nature as the
corresponding structure over the smooth separatrices. Thus all these trajectories
point inward at the singularity p 
 (0, 0). The lemma is proved. �

The next step is to consider the case in which λ1/λ2 ∈ Q−. The restriction

of F̃∞ to a neighborhood of p admits exactly 2 separatrices. These separatrices are
the unique leaves (of the restriction of F̃∞ to a neighborhood of p) accumulating
radially at the singular point p. In vague terms, the separatrices are the only
leaves of F̃∞ accumulating at p if we ignore the effect of the local holonomy of
this foliation. Denote by Sep one of the separatrices, for example the separatrix
associated to the eigenvalue λ1. The restriction of H to Sep can have a singular
point at p ∈ Sep. The nature of this singular point depends also on the sign of
the quotient λ1/H(0, 0). If λ1/H(0, 0) > 0 then p corresponds to a sink of H
(or of ω1 by a minor abuse of notation) over Sep. Conversely, in the case where
λ1/H(0, 0) < 0, the singular point corresponds to a source. We note, however,
that λ1/H(0, 0) and λ2/H(0, 0) have opposite signs. This implies that if p is a sink
of ω1 for one of the separatrices then p is a source for the other.

The above indicated issue about source and sink singularities appearing on the
two separatrices of a singularity p as before deserves further comment. First, if we
consider real trajectories of H in the separatrix admitting p as a sink, then these
trajectories will reach a future endpoint at p. Somehow compensating the existence
of this future endpoint, newH-trajectories are issued in the other separatrix. These
phenomena can, however, occur for only finitely many leaves of our foliation since
each separatrix of a singularity as above can give rise to only one global leaf
of F̃ or F̃∞. In particular this will play no significant role in the proof of any
of the theorems stated in the introduction. In this regard, a far more important
observation concerns those H-trajectories whose projection on Δ∞ enters a small
neighborhood of p but that are not contained in the corresponding separatrix of p.
In fact, these trajectories can naturally be continued through the saddle associated
with the singularity of F̃∞ so as to eventually leave a fixed neighborhood of p.
Indeed, the foliation H is regular over all leaves of F̃∞ different from the two
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separatrices on a neighborhood of p. Furthermore, as we are going to see next, the
continued trajectory keeps the contractive character of its holonomy.

Suppose then that the eigenvalues λ1 and λ2 at p satisfy λ1/λ2 ∈ Q−. We
continue to assume that H(0, 0) �= 0 so that it can be normalized to be 1. Let
Uε = {(x, y, z) : |x|, |y| ≤ ε} be a small neighborhood of the origin (0, 0) 
 p, not

containing other singular points of F̃∞. Fix a regular leaf L∞ ⊆ Δ∞ (distinct from
the separatrices through p) intersecting Uε and consider a real trajectory l ⊆ L∞
for H. For these singularities we have:

Proposition 5.5. Let X be as in the statement of Lemma 5.3 and assume that
λ1/λ2 ∈ R−. Let Uε be a small neighborhood of the (simple) singular point p 
 0
as above. Then the integral

∫
lq∩Uε

dT is uniformly bounded for every P ∈ l and

q ∈ P−1
∞ (P).

Remark 5.6. It should be emphasized that the trajectory lq in the statement
is viewed as a global trajectory of H. In other words, the intersection lq ∩ U
has, in general, infinitely many connected components. Proposition 5.5, indeed,
claims that the sum of the integrals of dT over all these connected components is
uniformly bounded.

Proof of Proposition 5.5. Let X be as in the statement of Lemma 5.3. Since
H(0, 0) �= 0, we can assume that H(0, 0) = 1. Also, it follows that the degree d
of X is 2 (Lemma 5.3). Nonetheless to help the reader with the discussion con-
ducted immediately after the end of the proof of Proposition 5.5 (see the appendix
to Section 5), we shall denote this degree by d and only make the substitution
d = 2 at the very end of the proof.

According to Lemma 5.3, both eigenvalues λ1 and λ2 must be integers so that
λ1/λ2 belongs to Q. By assumption, this quotient must, in fact, belong to Q−, i.e.,
λ1 and λ2 have opposite signs. Next consider the foliation F̃∞ induced on Δ∞.
Since λ1/λ2 ∈ Q−, the corresponding singular point p admits two (smooth) sep-
aratrices. In local coordinates (u, v, w) centered at p as before, these separatrices
can be identified with the axes {u = 0} and {v = 0}. Thus, if (u, v, w) are suitably
chosen, the vector field X̃ takes the (local) form

X̃ = w1−d
[
F (u, v)

∂

∂u
+G(u, v)

∂

∂v
+ wH(u, v)

∂

∂w

]

where F (u, v)=u(λ1+h.o.t.), G(u, v) = v(λ2+h.o.t.), λ1/λ2 ∈ Q− andH(0, 0)=1.
Assume, without loss of generality, that λ1 ∈ R+ (resp. λ2 ∈ R−) and consider

the restriction of ω1 to the u-axis (resp. v-axis). The residue of ω1 at 0 
 p with
respect to this axis is equal to −H(0, 0)/λ1 (resp. −H(0, 0)/λ2). Therefore the
restriction of H to the u-axis (resp. v-axis) has a sink singularity (resp. source sin-
gularity) at p 
 0. Hence, the real trajectories contained in the u-axis approach p.
Similarly, those trajectories contained in the v-axis move away from p. It is easy to
describe the behavior of H on the regular leaves of U not accumulating at p: over
a real trajectory of H|U the absolute value of u decreases while the absolute value
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of v increases. In other words, a real trajectory moves away from the invariant
plane {v = 0} while it approaches the plane {u = 0}. In particular, whenever a
(global) real trajectory l enters the open set Uε it necessarily leaves Uε as well.

The preceding discussion shows that the only possibility for an H-trajectory
(not contained in the global leaves arising from the axes {v = w = 0} and {u =
w = 0}) to accumulate at the singular point p is when this trajectory enters the
open set Uε infinitely many times. The sequence of points defined by the moment
in which the trajectory enters Uε must also contain a subsequence that converges
to a point in the u-axis. Also, in this case, it is immediate to check that the length
of each connected component of l∩Uε is bounded above by some uniform constant.

For each leaf of F̃ ∩ Uε not contained in the invariant plane {u = 0}, the
time-form is given by

(5.3) dT =
wd−1

F (u, v)
du .

The leaf can be parameterized locally by the variable u by means of the map
u 	→ (u, v(u), w(u)) where w is given by (3.4). The expressions for F and G allow
us to see that v(u) = v0(u/u0)

λ2/λ1g(u) for some bounded holomorphic function g
on C \ R∗− satisfying limu→u0 g(u) = 1. In turn, the coordinate w is given by

w = w0e
− ∫ u

u0
ω1 , where ω1 coincides with −H(u, v(u))/F (u, v(u))du. Therefore,

substituting v and w in (5.3), we obtain

(5.4) dT = wd−1
0

1

F (u, v(u))
e
−(d−1)

∫
u
u0

ω1 du .

Since we need to estimate the integral of the time-form over oriented real tra-
jectories of H, let us start by controlling the exponential term. Since H(0, 0) = 1,
it follows that

−H(u, v)

F (u, v)
= − 1

λ1u
(1 +R(u, v))

for some holomorphic function R(u, v) satisfying R(0, 0) = 0 and defined on a
neighborhood of the origin. In particular, if ε is sufficiently small, the absolute
value of R(u, v) is bounded above on Uε by a small constant 0 < δ << 1. If l is a
trajectory of H then

∫
l ω1 is a positive real number. Therefore

∣∣e−(d−1)
∫
l
ω1
∣∣ = e−(d−1)Re

∫
l
ω1 = e−(d−1)

∫
l
ω1 .

Consider a (connected) segment of the real trajectory l joining u0 to u where
both points are contained in the neighborhood in question. Denote by φ : [0, 1] → L
a parametrization of this segment satisfying φ(0) = u0 and φ(1) = u. Up to a
change of coordinates, close to a rotation, we can assume that the (connected)
segment φ([0, 1]) is contained in the real axis. In fact, we can assume that it is
contained in the positive component of the real axis. In particular, we can take
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φ(t) = u0 + t(u− u0). It then follows that∫
l

ω1 =

∫ 1

0

ω1.φ =

∫ 1

0

− φ′(t)
λ1φ(t)

(1 +R(φ(t), v(φ(t))) dt

=
1

λ1

∫ 1

0

− u− u0
u0 + t(u− u0)

(1 +R(φ(t), v(φ(t))) dt

≥ 1− δ

λ1

∫ 1

0

− u− u0
u0 + t(u− u0)

dt =
1− δ

λ1
ln
(u0
u

)
.

Therefore we obtain

(5.5)
∣∣e−(d−1)

∫
l
ω1
∣∣ ≤ C u(d−1)(1−δ)/λ1

where C is a constant depending on d, λ1, δ, and u0(= ε). More accurately,
C = ε(1−d)(1−δ)/λ1 . In fact, this estimate should be multiplied by a constant rep-
resenting the supremum of the absolute value of the determinant of the change
of coordinates. However we can, basically, include this quantity in C since the
absolute value of the determinant is bounded above on Uε. Actually, the value of
the determinant in question is very close to 1 since the change of coordinates is
close to a rotation. In this sense, the constant C does not depend on the segment
of the real trajectory.

Now recall that F (u, v) = λ1u(1 + r(u, v)), for some holomorphic function r
on Uε satisfying r(0, 0) = 0. Up to reducing ε, we can assume that |r(u, v)| is bound-
ed above by a small constant 0 < τ << 1. Therefore, the coefficient of the time-
form satisfies

|dT | ≤ |w0|d−1 C

λ1(1− τ)
u(d−1)(1−δ)/λ1−1 .

Since the exponent of u is greater than −1, the primitive of the coefficient of the
time-form, up to the term wd−1

0 , is a bounded holomorphic function. It follows
that the integral of the time-form, up the same term wd−1

0 , is bounded above on
on each connected component li of l ∩ Uε. In fact, there is a positive constant K,
not depending on the trajectory of H, such that∣∣∣ ∫

li

w1−d
0 dT

∣∣∣ < K.

Finally the integral of the time form along li is now bounded by K times
the absolute value of a positive power of the variable w at the moment that the
trajectory l enters the open set Uε or, equivalently, at the starting point of li.
We denote by wi the value w at the starting point of li. As already mentioned,
the holonomy of F̃ is contractive. Therefore, since the length of the real trajectory
between two consecutive starting points of l ∩ Uε is bounded from below, the
sequence wi is such that |wi+1|/|wi| ≤ k, for some constant 0 < k < 1, since the
trajectories of H have contractive holonomy. Thus

∣∣∣ ∫
l∩Uε

dT
∣∣∣ ≤ ∑∣∣∣ ∫

li

dT
∣∣∣ ≤ ∑

K |wi|d−1 ≤
∑

K |w0|d−1 ki(d−1) =
K |w0|d−1

1− kd−1
.
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Since d = 2, the last estimate ensures that the corresponding integral is uniformly
bounded as desired. �

Proof of Theorem 5.1. The proof follows immediately upon combining Theorem 4.7
with Proposition 5.5. �

Appendix to Section 5: a natural relaxation of the condition imposed
on the singularities of F̃
To close this section, we indicate a much weaker assumption on the singularities
of F̃ that is still enough to yield Proposition 5.5, and hence Theorem 5.1. In fact,
Proposition 5.5 can be extended to almost all of the class of singularities named
absolutely isolated; see [12].

To explain this generalization, consider the vector field X̃ given in local coor-
dinates (u, v, w) around a singular point of F̃ in Δ∞ by

(5.6) X̃ = un vm w1−d
[
F (u, v)

∂

∂u
+G(u, v)

∂

∂v
+ wH(u, v)

∂

∂w

]
where d ≥ 2 and n, m ∈ Z. Assume also that the singularity of the vector field
F (u, v)∂/∂u + G(u, v)∂/∂v at (0, 0) ∈ C2 is simple and that H(0, 0) �= 0. As

stated, Proposition 5.5 no longer holds for all X̃ as above. However, it still holds
for X̃ as above under the additional assumption that max{m,n} ≤ 0, as can
straightforwardly be checked from the above given proof of Proposition 5.5 (this
explains why we made the substitution d = 2 only at the end of the corresponding
proof).

The preceding observation is the key to adapting Theorem 5.1 and, by means
of it, also Theorem B) to a much larger class of vector fields having absolutely
isolated singularities, as opposed to simple singularities, on the hyperplane at in-
finity Δ∞. This goes as follows. Denote again byX a polynomial vector field whose
associated foliation D has only absolutely isolated singularities on Δ∞. Suppose
also that the singular set of X has codimension at least 2. According to the main
result of [12], these singularities can be reduced by applying to them successive
pointwise blow-ups. Furthermore, if the very generic assumption that the absence
of singularities of saddle-node type in the reduction procedure is added, then the
final (reduced) singularities will be of the type appearing in (5.6). Moreover, in
the vast majority of cases, the corresponding integers m and n are nonpositive.
Thus, for the corresponding vector fields, Theorem 5.1 will still hold.

Summarizing what precedes:

1. Proposition 5.5, and hence Theorem 5.1, cannot be extended to arbitrary
singular points without additional information on the global dynamics of
the foliation F̃∞ on Δ∞.

2. This proposition, however, can be extended to a vast class of singular points
that is generic among singular points for any priori fixed order. In particular,
in the class of singular points for which Proposition 5.5 (and Theorem 5.1)
still holds, there can be found singularities exhibiting some very complicated
dynamical behavior.
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6. Applications to complete vector fields

6.1. Ends of solutions of complete polynomial vector fields on Cn

This first application concerns Theorem 4.7. Consider a complete polynomial
vector field X defined on Cn. Set X =

∑d
i=0Xi where Xi stands for the homoge-

neous component of degree i of X . To maintain as much as possible the notation
used in previous sections, the foliation associated with X will be denoted by D
whereas F will stand for the foliation associated to the top degree homogeneous
component Xd. Throughout what follows, the degree d is assumed to be at least 2.

Recall that both foliations D and F admit holomorphic extensions to CPn and
these extensions are also denoted by D and F .

Lemma 6.1. The homogeneous vector field Xd is not a multiple of the radial
vector field

R = x1∂/∂x1 + · · ·+ xn∂/∂xn .

Proof. First note that the vector field Xd is semi-complete on all of Cn since
it is the top degree homogeneous component of a complete vector field. More
precisely, let Λn denote the map (x1, . . . , xn) 	→ (2nx1, . . . , 2

nxn). Next let Yn be
the vector field defined by 2(1−d)n.Λ∗

nX . For every fixed n, Yn is clearly a complete
vector field on Cn so that its restriction to every open set of Cn is semi-complete.
Furthermore the sequence {Yn} converges uniformly on compact sets to the vector
field Xd. Since the set of semi-complete vector fields is closed in the topology of
uniform convergence on compact sets, it follows that Xd is semi-complete on all
of Cn.

Suppose now that Xd is a multiple fR of R. In view of Lemma 2.6, it follows
that f is a linear form, i.e., a homogeneous degree 1 polynomial. To obtain a
contradiction with this last possibility, we proceed as follows. First, note that the
generic leaf L of D intersects the hyperplane at infinity of CPn transversely at a
regular point p of D. Moreover the point p is regular for the restriction of X
to L. In other words, the flow of X reaches the hyperplane at infinity in finite
time. This is impossible since X is complete on Cn. This concludes the proof of
the lemma. �

Again let Δ∞ denote the hyperplane at infinity in CPn. It follows from the
preceding that Δ∞ is invariant under both D and F . In addition, the foliations
induced on Δ∞ by D and F coincide. The foliation induced by F on Δ∞ will be
denoted by F∞. Also Δ∞ corresponds to the divisor of poles for both X and Xd.
Since the methods developed in the previous sections apply to foliations associated
to homogeneous vector fields, they are in principle not applicable to D but only
to F . However, near Δ∞, the foliation D becomes very close to F . In the sequel
we are going to combine these two observations in order to establish Theorem A.

We begin by choosing affine coordinates (x1, . . . , xn−1, z) analogous to those
used in Sections 3 and 4. Namely the hyperplane {z = 0} is contained in Δ∞
and the plane at infinity Δ1,...,n−1∞ , defined by the affine coordinates x1, . . . , xn−1,
where z = 0 is fixed, is not invariant under the restrictions of either D or F to Δ∞.
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Then we can apply the results of Section 4 to the foliation F . In particular, the
leaves of F are equipped with the (singular) real foliations Hθ where θ is chosen
in the interval (−π/2, π/2). For the rest of this section, these foliations will be
denoted by HF (resp. Hθ

F ). To define a suitable version of these real trajectories
in the leaves of D we proceed as follows. Given a point p = (x01, . . . , x

0
n−1, z

0) with
z0 �= 0, let Lp denote the leaf of D through p. To define the foliation HD at p, we
consider the function (x1, . . . , xn−1, z) 	→ |z| restricted to Lp. The tangent vector
to HD at p is simply the negative of the gradient of this function. Once HD is
defined the foliations Hθ

D have an obvious definition since the leaves of D have
natural conformal structures.

The next step in our construction consists of investigating the basic proper-
ties of HD in analogy with the properties of HF considered in Sections 3 and 4.
Recalling that D and F induce the same foliation F∞ on Δ∞, consider a point
(x01, . . . , x

0
n−1, 0) ∈ Δ∞ that is regular for the restrictions of both D and F to Δ∞.

Then we have:

Lemma 6.2. The direction of HD at the point (x01, . . . , x
0
n−1, z) converges uni-

formly to the direction of HF at (x01, . . . , x
0
n−1, 0). In particular the foliation HD

can be extended to the regular part of D in Δ∞ and this extended foliation coincides
with HF on Δ∞.

Proof. Since the behavior of D near (x01, . . . , x
0
n−1, 0) is dominated by the compo-

nent Xd of X , it suffices to check that the trajectories of HF admit a definition
analogous to the one given above for the trajectories of HD. In other words, it
suffices to prove that the direction of HF at (x01, . . . , x

0
n−1, z) coincides with the

gradient of the function (x1, . . . , xn−1, z) 	→ |z| restricted to the leaf of F through
(x01, . . . , x

0
n−1, z). This is, however, an immediate consequence of the formula (3.4).

The lemma is proved. �

Remark 6.3 (The trajectories HF and HD as geodesics for a foliated flat struc-
ture). By building on the proof of Lemma 6.2, we can provide further and more
accurate information about separating curves and flat structure with bounded ge-
ometry as discussed in the introduction (after the statement of Theorem A’). In
the case of homogeneous foliations, such as F , every leaf L of F is equipped with
the 1-form ω1 defined in Section 3. These include the leaves of F contained in Δ∞
(or Δ0) so that ω1 is a foliated 1-form on the compact manifold M which, in turn,
ensures ω1 has bounded geometry. Since the leaves of F are Riemann surfaces, the
restriction of ω1 to one of these leaves L can equally well be seen as a singular flat
structure on L. It is an elementary fact that, in suitable local coordinates adapted
to this flat structure, the trajectories of Hθ

F (including HF and H⊥
F) are straight

lines and hence geodesics for the flat structure itself. In particular, a trajectory
of, say, H⊥

F , satisfies all the conditions in the statement of Theorem A’ for it to be
a separating curve. In view of the preceding, it also follows that the flat structure
for which these curves are geodesics has bounded geometry on the corresponding
leaf of F .

To extend the construction of the 1-form ω1 to nonhomogeneous foliations
such as D, we proceed as follows. Consider a leaf L of D. We want to construct
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a 1-form ω1,D on L for whichHD is the real foliation. For this, suppose that L is not
contained in Δ∞ and consider a regular point p ∈ L along with a vector v ∈ TpL
the oriented in the direction of HD. In particular, all directions for Hθ

D and H⊥
D

are immediately defined through the conformal structure of L. To define ω1,D
at p, we just need to associate a complex number with these real foliations. The
complex number in question is simply the derivative of the holomorphic function
(x1, . . . , xn−1, z) 	→ z restricted to L. This construction equips every leaf L of D
not contained in Δ∞ with an Abelian form ω1,D and hence with a singular flat
structure. Finally, if L is contained in Δ∞, then we set ω1,D = ω1 since the
foliation D and F coincide on Δ∞. The previous discussion show that ω1,D is a
foliated 1-form for D defined on all of the compact manifold M . In this sense, the
argument used in the case of ω1 can be repeated here to show that the foliated
flat structure arising from ω1,D has bounded geometry. Moreover, the trajectories
of H⊥

D define separating curves in the sense of Theorem A’.

To help us explain how to derive properties of X and D from properties of Xd

and F , it is convenient to consider a small neighborhood V (in the n-dimensional
ambient space) of (Sing (D) ∩ Δ∞) ∪ Sing (X), where Sing (D) (resp. Sing (X))
stands for the singular set of D (resp. X). Next, denote by U a neighborhood of
Δ∞ \ V (not intersecting (Sing (D) ∩Δ∞) ∪ Sing (X)). Also, in order to preserve
the uniform contractive character along trajectories of Hθ

F , we fix some (small)
ε > 0 and consider θ in (−π/2 + ε, π/2− ε).

It follows from our general construction that the endpoints belonging to U for
trajectories of Hθ

F are situated over Δ1,...,n−1
∞ . In particular, a trajectory of Hθ

F
through an affine point (x01, . . . , x

0
n−1, 0) ∈ U ∩Δ∞ never meets Δ1,...,n−1∞ , though

it can pass arbitrarily close to Δ1,...,n−1
∞ as already discussed in Section 3; cf.

however Lemma 3.10. Modulo choosing the neighborhood U sufficiently narrow,
the restriction to U of the foliation D is very close to the (restriction to U of the)
foliation F . A similar statement holds for the foliations HD and HF thanks to
Lemma 6.2. In particular, we obtain the following:

Lemma 6.4. Let ε > 0 be fixed. Consider a point p = (x01, . . . , x
0
n−1, z

0) ∈ U and
denote by l+,θ

p the semi-trajectory of Hθ
D started at p for θ ∈ [−π/2 + ε, π/2 − ε].

Consider a path c : [0, 1] → l+,θ
p ∩U , with c(0) = p, and set c(1) = (x11, . . . , x

1
n−1, z

1).
Then there is a constant Cte depending solely on ε such that the following con-
dition is satisfied: whenever the length of c exceeds Cte, we have the estimate
|z1| < |z0|/2.

Proof. This follows immediately from the proof of Theorem 4.7 concerning the
foliation F . More precisely, the statement was shown for HF but the adaptations
needed for the foliations Hθ

F are clear. The present statement follows from the fact
that inside U the foliation Hθ

D is very close to Hθ
F . �

One last ingredient is still needed for the proof of Theorem A. Let l+,θ
p be a

trajectory as in Lemma 6.4 and denote by Lp the leaf of D containing l+,θ
p . The

idea behind of Theorem A consists of estimating the integral of dTL over l+,θ
p
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where dTL stands for the time-form induced by X on Lp. In Section 4 suitable
estimates for this type of integral were obtained in the case of homogeneous vector
fields. The estimate is based on the renormalized time-form induced on Δ∞ by the
vector field and on the evolution of the distance of the points to Δ∞ (the height of
the points). As to the heights of points, the preceding lemma provides a suitable
control of their evolutions along trajectories of Hθ

D in the case of nonhomogeneous
polynomial vector fields. Finally we recall that the foliations induced by X and
by Xd on Δ∞ turn out to coincide and the same holds for the renormalized time-
forms induced on Δ∞ by X and by Xd.

We are now ready to prove Theorem A.

Proof of Theorem A. Consider the foliation D induced by X on CPn and let Δ∞
be as above. Let V denote the given neighborhood of (Sing (D) ∩Δ∞) ∪ Sing (X)
and fix ε > 0. Next, choose a neighborhood U of Δ∞ \ V so that the statement of
Lemma 6.4 holds. It is sufficient to prove the theorem for the foliation HD since the
adaptations needed for the general case of the foliationsHθ

D, θ ∈ (−π/2+ε, π/2−ε),
are clear.

Consider a point p = (x01, . . . , x
0
n−1, z

0) ∈ U \ V . Denote by l+p (resp. Lp) the
semi-trajectory of HD initiated at p (resp. the leaf of D through p). Suppose first
that l+p is contained in U . To explain the structure of the proof of our theorem,
we shall first prove that the preceding assumption contradicts the completeness
of X . For this, we are going to show that the integral of the time-form dTL
induced by X on Lp over l+p converges. Since it clearly accumulates onto Δ∞
(in particular l+p leaves every compact set contained in Lp) the convergence of the
mentioned integral contradicts the completeness of X . We also note that our claim
reduces to Theorem 4.7 in the case of homogeneous vector fields.

To adapt the proof of Theorem 4.7 to the present case where X is not homo-
geneous we proceed as follows. The choice of the coordinates (x1, . . . , xn−1, z) =
(x, z) allows us to write Xd in the form

Xd = z1−d
[
F1(x)∂/∂x1 + · · ·+ Fn−1(x)∂/∂xn−1 + zH(x)∂/∂z

]
,

while the vector field X becomes

X = z1−d
[
F ∗
1 (x, z)∂/∂x1 + · · ·+ F ∗

n−1(x, z)∂/∂xn−1 + zH∗(x, z)∂/∂z
]
.

The coefficients Fi and F
∗
i , i = 1, . . . , n− 1, (resp. Hi and H

∗
i ) are related by the

formulas

F ∗
i (x1, . . . , xn−1, z)− Fi(x1, . . . , xn−1) = zPi(x1, . . . , xn−1, z)

(resp.H∗(x1, . . . , xn−1, z)−H(x1, . . . , xn−1) = zQ(x1, . . . , xn−1, z)) whereQ and Pi

are polynomials in the variables in question. Next note that the time-form dTL is
given by

dTL =
zd−1

F ∗
1 (x1, . . . , xn−1, z)

dx1 = · · · = zd−1

F ∗
n−1(x1, . . . , xn−1, z)

dxn−1 .
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Now since U does not intersect the singular set ofX (or D), we can suppose without
loss of generality that F ∗

1 (x1, . . . , xn−1, z) is bounded from below by a positive
constant β in U , otherwise we replace F ∗

1 by a suitable F ∗
i . This last estimate

combined with Lemma 6.4 then shows that the integral of dTL over l+p is bounded
by simply repeating the calculations performed in the proof of Theorem 4.7.

We are then led to conclude that the semi-trajectory l+p must intersect the
neighborhood V of (Sing (D) ∩ Δ∞) ∪ Sing (X) regardless of how small is V . In
particular, it may happen that l+p accumulates at singular points of D lying in Δ∞.
In this case the integral of dTL over l+p cannot be bounded without additional
conditions. Fortunately, in order to establish Theorem A, we do not need to keep
track of the amount of time that l+p spends inside V but rather of the amount of
time that l+p spends away from V . To be more precise, let us prove the following:

Claim. The distance between the trajectory l+p and the hyperplane Δ∞ cannot
have a minimum unless this minimum is zero. Furthermore, when this minimum
is zero, the intersection point l+p ∩Δ∞ is never reached by the flow of X .

Before starting the proof of the claim, it is convenient to make some general
comments regarding the possibility of having a point q in l+p ∩Δ∞. A first case
where this may happen arises from the definition of “leaf” given in Section 2 and
borrowed from [6]. According to this definition, the leaf Lp of D may contain a
singular point of D lying in Δ∞. In fact, in this case, a local branch of Lp about q
defines an irreducible separatrix for D at q. It is then natural to think of q as
belonging to l+p . More generally, it can happen that l+p converges to a point q
lying in Δ∞ whether or not q belongs to Lp. With a minor abuse of notation, the
point q may be thought of as belonging to l+p . In all these cases the statement of
Theorem A is clear: the completeness of X implies that the integral of dTL over a
local branch of l+p converging to q is infinite. So l+p enters every given neighborhood
of q and remains inside forever. The statement then follows from observing that q
must be a singular point of D since Δ∞ is invariant by D.

A further reduction in the proof of Theorem A is possible even though not
strictly needed. Namely, with the above notation, we can suppose that (a local
branch of) l+p never converges to a point q that is singular for X (and in particular
for D). In fact, if this point belongs Δ∞ then the theorem results immediately
as already seen. Similarly, if q ∈ Sing (X) \ Δ∞, then the theorem follows from
the standard results on existence and uniqueness of solutions for regular ordinary
differential equations.

Proof of the Claim. Given what precedes, we suppose, aiming at a contradic-
tion, that q is a point of minimum for the mentioned distance and that q lies in
CPn \Δ∞. First, we are going to prove that q must belong to the domain of
definition of the coordinates (x1, . . . , xn−1, z). Since X is not homogeneous and q
is not in Δ∞, this assertion is not an immediate consequence of Lemma 3.5. In
order to prove it, suppose that c : [0, 1) → l+p is a local parametrization of l+p with
limt→1− c(t) = q. Setting c(t) = (x1(t), . . . , xn−1(t), z(t)), it follows that z(t) is
locally bounded at q. Suppose, in addition, that (x1(t), . . . , xn−1(t)) leaves the
domain of definition of coordinates (x1, . . . , xn−1, z). then, by using the standard
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coordinates of CPn whose domain contains Δ∞, the boundedness of z(t) implies
that limt→1− c(t) = q belongs to Δ∞. As already shown, the statement of the
theorem holds in this situation.

Summarizing the above discussion, we can suppose that q = (q1, . . . , qn) is a
regular point for X and D belonging to the domain of definition of the coordinates
(x1, . . . , xn−1, z) and satisfying qn �= 0. A final contradiction can now be obtained
as follows. Let Φ(T ) = (Φ1(T ), . . . ,Φn(T )) be a local parametrization of Lp in a
neighborhood of q (Φ(0) = q). Since q is a regular point for X , the holomorphic
map T 	→ Φn(T ) ∈ C is not constant and hence it must be open which, in turn,
contradicts the assumption that |Φn| has a (positive) local minimum at T = 0.
The claim is proved. �

To finish the proof of Theorem A consider now the semi-trajectory l+p . The
above discussion shows that l+p accumulates on Δ∞, in particular l+p leaves compact
sets of Lp. The completeness of X then implies∫

l+p

dTL = ∞ .

Consider a decomposition l+p = c1 ∗ c2 ∗ · · · of l+p into finitely or infinitely many
paths such that ck is contained in U for k odd and ck is contained in V for k even.
The statement is now reduced to proving that

∞∑
k=0

[ ∫
c2k+1

dTL

]
<∞ .

The last estimate however follows from the same argument employed above in the
case where l+p was contained in U . It suffices to observe that the claim guarantees
that |πz(c2(k+1)+1(0))| ≤ |πz(c2k+1(1))| where πz denotes the projection in the
coordinate z. The theorem is proved. �

We can now prove Theorem A’.

Proof of Theorem A’. Consider again a fixed point p and let Φp : C → Lp be given
by Φp(T ) = Φ(T, p) where Lp stands for the leaf of D through p. In the affine
coordinates (x1, . . . , xn−1, z), the map Φp becomes (Φ1(T ), . . . ,Φn(T )). In partic-

ular, this allows us to define the Abelian form η on C by setting η = −Φ
′
ndT/Φn.

Next, if the oriented foliation H (= HD) is restricted to Lp, we can consider the
corresponding pulled-back oriented foliation Φ∗

pH on C.

Claim 1: The oriented foliation Φ∗
pH coincides with the real (positive) foliation

induced by η.

Proof of Claim 1. Consider a point q = Φp(T0) ∈ Lp that is regular for H. The
direction of H at q is determined by the negative of the gradient of the “height”
function (x1, . . . , xn−1, z) 	→ ‖z‖ restricted to Lp. In the coordinate T this function
is simply T 	→ ‖Φn(T )‖. The gradient direction of this function is determined by
the condition that Φ

′
n(T0)(T −T0) must be aligned with Φn(T0). This amounts to

saying that the direction of Φ∗
pH at T0 is nothing but the positive real direction

of η. �
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To simplify notation the foliation Φ∗
pH will be denoted by {Arg η = 0}. More

generally, the pullback by Φp of the foliations Hθ coincide with {Arg η = θ}, in
particular {Arg η = π/2} is the foliation orthogonal to {Arg η = 0} = Φ∗

pH.

The separating curve c0 to be chosen is given by the trajectory of {Arg η = π/2}
through T0 i.e., a trajectory of H⊥. Geometrically, Φp(c0) is the curve determined
in Lp by the intersection of Lp itself with the real hypersurface {‖z‖ = |Φn(T0)|}.
This curve may be closed. Next, we choose the component U+ of C \ c0 that
corresponds to the saturate of T0 by the spray of trajectories of {Arg η = θ} is-
suing from T0 with θ ∈ (−π/2, π/2). To check that U+ is unbounded just notice
that a trajectory l+,θ

p ⊂ Lp, θ ∈ (−π/2, π/2), issuing from p will, by construc-
tion, accumulate on Δ∞ unless it accumulates at a singularity of X lying in Cn.
The statement being clear in the second case, we consider the case where lp accu-
mulates on Δ∞ so that it leaves every compact set contained in Lp. Since X is
complete, there follows that the integral of the corresponding time-form along l+,θ

p

is unbounded. Next, note that the preimage of l+,θ
p under Φp is the trajectory of

{Arg η = θ} issuing from T0. Furthermore, the preimage under Φp of the time-form
induced on Lp is nothing but the canonical form dT on C. Thus the integral of
the time-form along a segment of l+,θ

p is equal to the integral of the form dT along
the corresponding segment of the trajectory in question. It then follows that this
trajectory must leave every compact set contained in C. This shows that U+ is
unbounded.

In summary, to show that U+ satisfies all the conditions in the statement of
the theorem, there only remains to check that

(6.1) lim
r→∞

Meas (TV ∩Br)

Meas (U+ ∩Br)
= 1 .

To begin with, note that η is holomorphic in U+ since Φn(T ) never reaches
0 ∈ C. Furthermore the trajectories of Hθ, θ ∈ (−π/2, π/2), approach {z = 0}.
These trajectories, in fact, remain in a compact part of the domain of definition of
the coordinates (x1, . . . , xn−1, z) since the infinity of {z = 0} consists of poles with
residue equal to 1 for the Abelian form ω1 in Section 3; see Lemma 3.5. Hence the
same thing happens for ω1,D since these forms coincide on Δ∞. In other words, on
a neighborhood of Δ1,...,n−1∞ , the trajectories of {Arg η = π/2} are closed curves
while the trajectories of Hθ for θ ∈ (−π/2, π/2) point outward along these closed
curves. The preceding claim is then clear. As a consequence of this, we conclude
that the absolute value of the coefficient of η is uniformly bounded in U+ \ TV
since away from TV the form ω1,D is bounded from below by a positive constant.
As already explained in Remark 6.3, η defines a singular flat structure on U+ for
which the trajectories of {Arg η = θ} are geodesics. This leads us to:

Claim 2: Given ε > 0, there is δ > 0 such that the saturate U+
δ of T0 by trajectories

of {Arg η = θ} for θ ∈ (−π/2 + δ, π/2− δ) verifies

lim inf
r→∞

Meas [(U+
δ ∩Br) ∪ (TV ∩ (U+ \ U+

δ ))]

Meas (U+ ∩Br)
> 1− ε .
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Proof of Claim 2. The statement would be clear if the flat structure induced by η
were the standard flat structure of C. More generally, suppose that η has no sin-
gular points and consider an arc of circle Sr0 (centered at T0) of radius r0 whose
interior contains no singular points of η. Consider also two trajectories lθ1 and lθ2
issuing from T0. Since X is complete these trajectories intersect Sr0 at points T1
and T2. Now consider the triangle whose sides are the segments of lθ1 and lθ2 delim-
ited by T0 and by T1 and T2 together with the corresponding arc of Sr0 determined
by T1 and T2. Because η is closed, the integral of η along the boundary of this
triangle equals zero. Finally, since the coefficient of η is uniformly bounded (and
bounded from below if we avoid a fixed small neighborhood of its singular points),
we conclude that the length of the arc of Sr0 determined by T1, T2 is bounded
by C r0|θ1 − θ2| for every pair θ1 and θ2 and for some constant C. The desired
estimate follows from this since Sr0 contains no singularities of η in its interior.

To finish the proof of the claim, we need to consider the effect of the singularities
of η. These singularities are of saddle type since η is holomorphic on U+. For every
singular point of η, we consider a disc of uniform radius around the corresponding
point in Lp. In the complement of the union of these discs, the form ω1,D, and
hence η in the coordinate T , is bounded from below by a positive constant. The
claim will be proved if the union of these discs in the coordinate T has area less
than εr/2 for r large. In fact, in the complement of this union η is bounded from
below by a positive constant and from above by the previous constant so that the
preceding argument can be applied in finitely many regions of a ball Br. Finally, to
justify the previous claim note that, in order to prove the desired estimate, we only
need to consider those discs centered at points in Lp that lie in the complement
of V . Therefore the norm of X is bounded from below by a positive constant in
these discs which, in turn, ensures that their size in the coordinate T is uniformly
bounded. Furthermore, the distance in the leaf Lp between every two discs as
before is bounded from below by a positive constant. Though this property is
not directly reflected in the coordinate T since the norm of X increases (i.e., X
becomes faster), the size of the corresponding neighborhoods reduces in the same
proportion as the norm of X increases. This quickly leads to the desired conclusion
and establishes the claim. �

In view of Claim 2 to finish the proof of Theorem A’ it suffices to show that

lim
r→∞

Meas (TV ∩Br ∩ U+
δ )

Meas (U+
δ ∩Br)

= 1 ,

for fixed positive δ. To do this, consider r given. Next, note that every for θ ∈
(−π/2+ δ, π/2− δ) the corresponding trajectory lθ of {Arg η = θ} issuing from T0
intersects the boundary ∂Br of Br sinceX is complete. Let Tθ,r be this intersection
point and denote by lθ,r the segment of lθ delimited by T0 and Tθ,r. According to
Theorem A, there is uniform constant Cte (depending neither on θ nor on r) such
that the length of the segments of lθ,r corresponding to those instants where Φ(T )
remains away from V is bounded by Cte whereas the length of lθ,r goes to infinity
as r → ∞. The conclusion of Theorem A’ now results from a standard application
of Fubini’s theorem. �
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6.2. Complete polynomial vector fields on Cn with simple singularities
at infinity

In this section we give an application of Theorem 5.1 that cannot be obtained
from Theorem 4.7 alone. Let X be a complete polynomial vector field on Cn and
denote by D its associated foliation. Recall that we make no distinction between D
viewed as a foliation of Cn and D viewed as a foliation of CPn. Again Xd denotes
the homogeneous component of X of highest degree where d stands for this degree
and d ≥ 2. The foliation associated with Xd is denoted by F and can also be
viewed as a foliation of either Cn or CPn. Recall that the singularities of D in the
hyperplane at infinity Δ∞ are assumed to be simple in the sense of Conditions (1)
and (2) given in the introduction, just before the statement of Theorem B. It follows
that these singularities are isolated in Δ∞ (but maybe not in CPn). Furthermore,
if Xd is divisible by a nonconstant polynomial P , then P must also divide X .
Otherwise, the curve induced on Δ∞ by {P = 0} would contain singularities ofD
whose linear part is degenerate; this is impossible since these singularities are
simple by assumption. In turn, the last observation implies that the singular sets
in Δ∞ of D and of F coincide. Finally, Xd must have a singular set of codimension
at least 2 since the singular set of X has codimension at least 2.

The reader is reminded that the restriction of D to Δ∞ coincides with the
foliation F∞ induced by F on Δ∞. Moreover, if q ∈ Δ∞ is a (necessarily common)
singular point of D and F , then the corresponding linear parts of these foliations
at q coincide as well.

Lemma 6.5. With the definition of leaf from Section 2, the leaves of F∞ are either
rational curves or quotients of C.

Proof. We need to show that the leaves of F∞ cannot be hyperbolic Riemann
surfaces. Since CPn has a Kähler structure, it follows from the main result of [6]
that the set of parabolic leaves of D is a pluripolar set unless it coincides with
the whole space. Since the leaves of D contained in Cn are clearly parabolic, we
conclude that the leaves of D contained in Δ∞ must also be parabolic (or rational).
These leaves, however, are nothing but the leaves of F∞. �

The next step is to consider the foliation F̃ induced on the manifold M by F .
In particular, the foliation F̃∞ is naturally identified with F∞. We return to using
the notation of Section 5 and denote by X̃d the transform of Xd on M . In view
of the existence of the projections P0 and P∞ introduced in Section 3, Lemma 6.5
implies that no leaf of F̃ is hyperbolic. Note that this conclusion cannot be derived
directly from the vector field Xd since Xd need not be complete (it is only semi-
complete).

The next proposition relies heavily on Theorem 5.1 and it will play a crucial
role in the proof of Theorem B.

Proposition 6.6. Assuming d ≥ 2, there exists a singularity of F̃∞ providing a

sink singularity for H (resp. Hθ) restricted to a generic leaf of F̃∞.



856 J. C. Rebelo and H. Reis

In the sequel, we shall prove Theorem B assuming that Proposition 6.6 holds.
To this end, Proposition 6.6 can be summarized by saying that there is a singular-
ity q ∈ Δ∞ of F̃ all of whose eigenvalues λq1, . . . , λ

q
n belong to R∗

+. This assertion,
in turn, can slightly be improved. Indeed, consider the vector field Xd and local co-
ordinates as in Section 3, where q 
 0 and {xn = 0} is contained in the hyperplane
at infinity of M (and hence identified with the coordinate z used in Section 3). In

these local coordinates, the vector field X̃d has the form

X̃d = QY1 + h.o.t

where Q is a rational function and Y1 is a linear vector field with real positive eigen-
values λq1, . . . , λ

q
n. Since we have seen that Xd has a singular set of codimension at

least 2, Q is a rational function having a (unique) polar component of degree d− 1
passing through q (and coinciding with Δ∞) and empty zero divisor. Thus the fo-
liation associated to QY1 must have a smooth separatrix transverse to Δ∞. Upon
restricting QY1 to this separatrix the semi-complete condition implies that d must
be equal to 2. Furthermore, the local holonomy of the separatrix in question must
be trivial (see, for example, [23]). Therefore each of the eigenvalues λq1, . . . , λ

q
n−1 is

a multiple of the eigenvalue λqn. Hence we can set λqn = 1 and λq1, . . . , λ
q
n−1 ∈ Z+.

This refined statement leads us to:

Lemma 6.7. The set formed by the separatrices of D at q contains nontrivial open
sets of Cn.

Proof. Consider the vector field X (resp. foliation D) on a neighborhood of the
singularity q ∈ Δ∞. The reader is reminded that the foliations D and F have the
same singularities in Δ∞ and each of these (common) singularities have the same
eigenvalues. Thus what precedes implies that D has n eigenvalues λq1, . . . , λ

q
n at q

and these eigenvalues are strictly positive integers. Therefore they belong to the
Poincaré domain so that the corresponding local vector field is either linearizable
or it admits a Poincaré–Dulac normal form. Since the latter possibility was ruled
out by assumption, our local vector field must be linearizable at q. The statement
follows now from the fact that {λq1, . . . , λqn} ⊂ Z+. �

Proof of Theorem B. Lemma 6.7 ensures the existence of a singular point q ∈ Δ∞,
where all the eigenvalues λq1, . . . , λ

q
n of D belong to Z∗

+. Furthermore D is locally
linearizable about q. Consider now a generic leaf L of D defining a (local) sep-
aratrix S for D at q. Having fixed S, consider also a local irreducible Puiseux
parametrization γ(t) for S defined on a neighborhood of 0 ∈ C and satisfying
γ(0)= q. Next, in suitable local coordinates (u1, . . . , un−1, z) centered at q, with
{z = 0} ⊂ Δ∞, the vector field X has the form f(u1, . . . , un−1, z).Y where Y is
a linear vector field with eigenvalues λq1, . . . , λ

q
n and f is a meromorphic function

whose zero divisor is empty and whose pole divisor is contained in {z = 0} ⊂ Δ∞.
Consider the restriction XS of X to S pulled-back by γ. With respect to the

coordinate t the vector field γ∗XS has the form

γ∗XS = f ◦ γ(t) (γ∗YS)
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where γ∗YS stands for the pullback by γ of the restriction of Y to S. It is immediate
to check that the order of the one-dimensional vector field γ∗YS at t = 0 equals 1.
Thus the order of γ∗XS at t = 0 is simply 1+ordt=0(f ◦γ(t)) where ordt=0(f ◦γ(t))
is the order at t = 0 of the function t 	→ f ◦ γ(t). Since the zero divisor of f is
empty, the order of this function is strictly negative provided that X has, in fact,
poles on Δ∞.

To finish the proof of Theorem B we proceed as follows. Since the restriction
of X to XS is semi-complete, the order at t = 0 of the vector field γ∗XS belongs
to the set {0, 1, 2}; see Section 2.2. However, if the degree of the vector field X
exceeds 1, then X does have poles on Δ∞. Hence the above discussion implies that
the order of γ∗XS at t = 0 must be zero, i.e., γ∗XS is regular at t = 0. Therefore
the flow of XS reaches the point t = 0 
 q ∈ Δ∞ in finite time. This is however
impossible since X is semi-complete. The resulting contradiction shows that the
degree of X is bounded by 1 and the statement of the theorem follows. �

Let us close this section with the proof of Proposition 6.6. The argument goes
by contradiction so that we assume from now on that no singularity of F̃∞ yields
a sink singularity for H (resp. Hθ) restricted to a generic leaf of F̃∞. A rather
direct way to obtain a contradiction out of this assumption is as follows. Recall
that in Section 6.1, Theorem 4.7 was adapted to apply to the (nonhomogeneous)
vector field X , along with its associated foliation D. The same adaptation can
straightforwardly be made for Theorem 5.1. Thus, assuming that the trajectories
of H have no future endpoints, we conclude that the flow of X is not defined at a
certain point t0 ∈ C. This is clearly impossible since X is complete.

We shall, however, provide a less direct argument that will also enable us to
quickly derive Theorem C. Namely, by building on the semi-complete character
of the (homogeneous) vector field Xd, we are going to show that the leaves of
the foliation F∞ are hyperbolic Riemann surfaces provided that no singular point
of F̃∞ yields a sink singularity for H restricted to a generic leaf of F̃∞. The
statement of Proposition 6.6 will then follow from Lemma 6.5.

Proof of Proposition 6.6. In what follows we assume d ≥ 2. Aiming at a contra-
diction, we suppose that no singular point of F̃∞ satisfies the condition in the
statement of the proposition. In view of the material in Section 5, and given that
the singularities of D are isolated inside Δ∞, we conclude that a trajectory of H
has no future endpoint once it is contained in a generic leaf of D. In particular, all
the corresponding trajectories have infinite length. This condition will be exploited
in the sequel.

Recall that X̃d stands for the transform of Xd on M where F̃ denotes the folia-
tion associated with X̃d. As mentioned, our strategy for obtaining a contradiction
consists of showing that a generic leaf of F̃∞ cannot be a parabolic Riemann sur-
face. For this, consider a leaf L∞ ⊆ Δ∞ and points p ∈ L∞ and q ∈ P−1

∞ (p) as

in the statement of Theorem 5.1. Denote by Lq the leaf of F̃ through q so that

P∞(Lq) = L∞. Note that the leaf Lq can be assumed to be a generic leaf of F̃ in

the above sense. The vector field X̃d is regular at a generic point of Lq. Indeed,

since Lq is a parabolic Riemann surface, X̃d is holomorphic on Lq and contains
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at most two zeros as follows from the classification of semi-complete vector fields
on parabolic Riemann surfaces; see Section 2.2. The set of possible zeros for the
restriction of X to Lq will be denoted by {X|Lq=0}. Next consider the maximal

domain of definition U ⊆ C where the semi-global flow φ associated to X̃d with
initial condition φ(0) = q is defined. The map φ yields a covering map from U
to Lq \ {X|Lq=0}.

The structure of the set {X|Lq=0} can be described more accurately. In fact,

since X̃d is homogeneous, a point in {X|Lq=0} must correspond to a singular point

of F̃ that was added to Lq due to our definition of leaf in Section 2.2. In particu-

lar, Lq defines a (local) separatrix for F̃ at some of its singular points. Next note
that the singularity in question can be supposed to lie away from Δ∞. In fact,
since we are assuming that our proposition is not verified, none of the singulari-
ties of F̃∞ in Δ∞ is dicritical. Thus, the saturate of the set formed by all their
local separatrices has empty interior. Hence it suffices to choose Lq sufficiently
generic to ensure it does not define a local separatrix for any of the singularities
of F̃∞ in Δ∞. It follows that the singular point in question lies in the affine Cn.
Since d ≥ 2 and X̃d comes from a homogeneous (degree d) vector field, there also
follows that the order of X at a point in {X|Lq=0} must be strictly greater than 1.
Therefore it must be equal to 2.

The preceding discussion shows that the order of every zero of X|Lq=0 equals 2.
Considering again the covering map φ : U → Lq \ {X|Lq=0}, it follows that every
point in {X|Lq=0} induces in the coordinate t a neighborhood of t = ∞ ∈ C∪{∞}.
Since the flow is semi-complete, it follows that the set {X|Lq=0} can actually
contain at most a single point of Lq. Therefore, when {X|Lq=0} is not empty, it is
natural to consider the map φ extended to U ∪ {∞} where φ(∞) is the (unique)
zero of X|Lq=0.

We return to U ⊂ C. Owing to Theorem 5.1, the integral of the corresponding
time-form over the H-trajectory lq converges. This convergence implies that the
lift of lq in U has finite length for the Euclidean metric on C since the length in
question is nothing but the mentioned integral. We conclude that the lift of lq
to U converges to a point t0 in the boundary of U.

Note that Lq cannot be contained in either a rational or elliptic curve, otherwise

it would induce a separatrix for some singular point in of F̃ in Δ∞. Thus Lq is
not contained in any compact Riemann surface contained in M . Suppose now
that Lq is a parabolic Riemann surface. It then follows that either U = C\{t0} or
U = C\{t0, t1} where, in the latter case, the point t = ∞ must belong to Lq. Now,
let the plane C be equipped with the (time) coordinate t so that the canonical form
dt coincides with the pullback by φ of the time-form induced on Lq by X . Also,
denote by Ht the lift of the foliation H (restricted to Lq) to the C-plane. The
foliation Ht is naturally a foliation defined on U which, in turn, is isomorphic to
either C \ {t0} or to C \ {t0, t1} where t1 ∈ C is some point distinct from t0.

Consider the case U = C \ {t0}. As the reader will observe, the case where
U = C \ {t0, t1} can be treated analogously. First, we need to determine the
local behavior of H, or of Ht, in a neighborhood of t0. For this, recall that Ht
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is the foliation induced on the plane C by the 1-form φ∗ω1 which is meromorphic
on U = C \ {t0} but may have an essential singular point at t0. In our previous
discussion, the behavior ofH on a neighborhood of points that are zeros or poles for
the 1-form in question was determined and this led to the singular points of types
sink, source and saddle. However, nothing was said about the behavior of H near
an essential singular point for the corresponding 1-form. To deal with this case,
we shall need to introduce a new type of singular point for Ht which can appear at
an essential singularity of the corresponding 1-form. This type of singular point is
going to be called an improper sink for Ht (or for H). By definition, a point T ∈ C
is an improper sink if all the Ht-trajectories through points close to T converge
to T . Thus, in the time coordinate t, the topological behavior of Ht near an
improper sink is the same as near a sink (in the usual sense). However the reader
should also note that, in this improper sink situation, whereas the H-trajectories
viewed in the coordinate t appear to converge to the singular point, when these
trajectories are viewed as they were defined in the actual leaf Lq, they turn out to
have infinite length.

With the assumption that U = C \ {t0}, we have the following claim.

Claim. The point t0 is an improper sink for Ht.

Proof of the Claim. Clearly Lq has a cylindrical end since it is parametrized
by a punctured neighborhood of t0 in the C-plane. In other words, the map φ
allows us to realize a punctured neighborhood of t0 ∈ C as an end of Lq. Next
consider a point q′ = φ(t′) for t′ near t0. The trajectory of H through q′ is infinite
and thus the integral of the corresponding time-form over this trajectory must
converge again to a point lying on the boundary of U. We then conclude that the
mentioned integral converges to t0. In the C-plane equipped with the coordinate t,
the preceding translates into the fact that the integral of the canonical form dt
along the lift (via φ) of the H-trajectory through q′ converges to t0. This lift,
however, is nothing but the trajectory of Ht through t′. It then follows that the
trajectory in question converges to t0 and this is the content of the claim. �

The reader will observe that in, the case U = C \ {t0, t1}, all the trajectories
mentioned in the above proof must converge either to t0 or to t1 so that the
statement of the claim must be adapted by saying that the set {t0, t1} yields an
improper sink singularity for Ht.

Summarizing what precedes, the foliation Ht on the plane C has a unique
improper sink singularity, corresponding to t = t0, and no (ordinary) sink singu-
larity. Furthermore all trajectories of Ht converge to t0. Indeed, the integral of
the time-form over every trajectory of H converges to a point in the boundary of
U = C \ {t0} and hence to t0 itself.

Here is a good place to observe that the preceding conclusions still have natural
analogues in the case where U = C \ {t0, t1}. Indeed, the preceding discussion
ensures that all trajectories of Ht will converge to either t0 or to t1.

To finish the proof of the proposition, we are going to show that the situation
described above cannot happen. In fact, let t∗1 be a source singularity of Ht.
Note that t∗1 exists since this of type singularity is produced by the intersections
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of P∞(Lq) with the hyperplane at infinity Δ
(x,y)
∞ in the coordinates (x, y) (i.e., the

hyperplane at infinity corresponding to affine coordinates for Δ∞). Since Δ
(x,y)
∞

neither is invariant under F̃∞ nor are there singularities of F̃∞ lying in Δ
(x,y)
∞ ,

it follows that every leaf of F̃∞ intersects Δ
(x,y)
∞ nontrivially. Furthermore these

intersections then produce source singularities for Ht. These source singularities
also have residue equal to 1.

Next, note that away from saddle-singularities of Ht, this foliation can be given
a structure of a transverse Riemannian foliation; just parameterize the trajectories
of the orthogonal foliation by the integral of φ∗ω1. Thus there is a region I∗1 on a
small loop c around t0 such that the integral of φ∗ω1 over I

∗
1 equals −1 (the negative

of the residue of φ∗ω1 at t∗1). In fact, I∗1 is obtained by the intersections with c of
the trajectories emanating from t∗1 (recall that they all converge to t0). However, c
can be chosen so that φ∗ω1 is bounded on a neighborhood of c and hence the
integral of φ∗ω1 over c is well defined. To derive a final contradiction, it suffices to
observe that in the complement of the small disc bounded by c, there are infinitely
many source singularities t∗1, t

∗
2, . . . for Ht. In fact, in the above construction, each

of these singularities determines as above a region I∗k over which the integral of
φ∗ω1 equals −1. Finally all these regions I∗1 , I

∗
2 , · · · are clearly pairwise disjoint

which immediately leads to a contradiction with the existence of a bound for φ∗ω1

on a neighborhood of c.

Once again we note that c must be thought of as the union of two curves
bounding two (small) discs around t0 and t1 when we have the caseU = C\{t0, t1}.

Finally, there remains only to check the existence of infinitely many source
singularities t∗1, t∗2, . . . in the complement of the disc bounded by c (and contain-
ing t0). For this, note first that t0 must be an essential singularity of φ so that the
image under φ of a small neighborhood of t0, viewed in (x, y) coordinates, cannot

be bounded. Thus the image of this neighborhood must accumulate on Δ
(x,y)
∞ .

However, since F̃∞ is transverse to Δ
(x,y)
∞ , whenever this image gets close enough

to Δ
(x,y)
∞ , it is forced to intersect this curve. Therefore we can assume that in

the complement of the curve c there are already a certain number (at least 3) of
source singularities for Ht. A similar argument applies for t = ∞. Thus, if in the
complement of c there are only finitely many source singularities, then φ(t) must
be bounded on a neighborhood of t = ∞. This case actually means that t = ∞ is
a singularity of F̃ where the vector field X|Lq=0 has a zero of order 2.

To obtain a contradiction, we proceed as follows. Consider T ∈ C with |T | very
large. The semi-global flow φT induces an automorphism of Lq in a sense adapted
to the domain of definition of this semi-global flow. Because there are already
(more than 3) points in this domain whose image by φ lies in Δ∞, there must also

exist q′ ∈ Lq such that φT (q′) is well defined and lies in Δ
(x,y)
∞ . To conclude the

statement, we just need to show that arbitrarily close to t0, there is a point t̃ �= t0
such that φt̃(q) is close to q′. In fact, in this case φ(T + t̃) is close to Δ

(x,y)
∞ . The

reader will note that φ(T + t̃) is well defined for |T | very large since φ is defined on
a neighborhood of t = ∞. Finally the existence of t̃ is an immediate application
of the elementary Casorati–Weierstrass theorem. The proposition is proved. �
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Remark 6.8. Throughout this paper, the affine coordinates (x, y, z) (as well as
their higher dimensional versions) used in the construction of M where chosen

generic in the sense that Δ
(x,y)
∞ remained away from the singularities of F̃∞. In

particular, in the context of Theorem B, this was useful to establish Proposition 6.6
guaranteeing the existence of a singular point all of whose eigenvalues are strictly
positive. This argument will be repeated in the context of Theorem C to be proved
in Section 7.1. The point we want to make here is that further information, such
as the existence of a second singularity with a similar property, may be obtained

by choosing the coordinates (x, y, z) so as to make Δ
(x,y)
∞ pass through the first

singularity having only strictly positive eigenvalues. In other words, specific (i.e.,
nongeneric) choices of coordinates may also yield useful information.

The choice of coordinates where Δ
(x,y)
∞ contains a singular point all of whose

eigenvalues are strictly positive is particularly useful because these singular points
have a tendency to produce sink singularities for H. This is however compensated

by the tendency of Δ
(x,y)
∞ to produce source singularities. In fact, under rather

general conditions, this singular point lying in Δ
(x,y)
∞ no longer yields future end-

points for the trajectories of H. In particular, if the leaves of F̃∞ are known to be
parabolic Riemann surfaces, the trajectories of H must have a future endpoint and

this endpoint cannot be the initial singular point belonging to Δ
(x,y)
∞ . Hence there

must exist another singular point of F̃∞ yielding a sink singularity for H and this
establishes our claim on the existence of another singularity of F̃∞ with positive
eigenvalues.

7. Theorem C and Halphen vector fields

This section contains the proofs of Theorems C and C’ along with new proofs for
some results obtained in [26] concerning Halphen vector fields. Since the results
given here about Halphen vector fields are not original, our discussion can be
regarded simply as a further illustration of our techniques. Nonetheless, the setting
introduced here makes sense for much more general vector fields transverse to
singular fibrations and conceivably similar ideas can be applied to certain Painlevé
equations as well as to other classical equations including several Chazy equations.

7.1. Painlevé–Guillot’s lattices of quadratic vector fields: examples and
results

This paragraph concerns an application of our techniques to the work of A. Guillot
in [25] and [26] (see also [23] for an introduction to both papers). We put ourselves
in the context of [25]. HenceX2 stands for a semi-complete homogeneous quadratic

vector field on Cn with isolated singularities. The foliation F̃ associated to X2

on M is assumed to leave Δ∞ (resp. Δ0) invariant. The pole divisor (resp. zero
divisor) of the lift to M of X2 consists of Δ∞ (resp. Δ0) with multiplicity 1.

Finally, the singularities of F̃ in Δ∞ (resp. Δ0) have three eigenvalues different



862 J. C. Rebelo and H. Reis

from zero since X2 has isolated singularities. From this, it also follows that F̃ has
exactly 2n − 1 singularities on Δ∞ (resp. Δ0).

We denote by p1, . . . , p2n−1 (resp. q1, . . . , q2n−1) the singularities of F̃ in Δ0

(resp. their dual singularities in Δ∞). Following the convention of [25], the eigen-

values of F̃ at pi are 1, ui1, . . . , u
i
n−1 where 1 is the eigenvalue corresponding to

the radial direction. According to Guillot, for a semi-complete vector field X2 as
above, ui1, . . . , u

i
n are all integers. Moreover, by setting ξi = ui1 × · · · × uin−1, the

vector field X2 yields a solution for the equation

(7.1)

2n−1∑
i=1

1

ξi
= (−1)n+1 .

Thus the problem of classifying vector fields as above is related to the problem of
finding all these Egyptian fractions. This problem is however quite intricate as is
attested by the multitude of interesting examples presented in the above mentioned
works. Our contribution to it begins with the following lemma:

Lemma 7.1. The leaves of a vector field in the Painlevé–Guillot lattice having no
dicritical singularity at infinity are hyperbolic Riemann surfaces.

Proof. If there is no dicritical singularity in Δ∞, there cannot exist a future end-
point for the trajectories of H and Hθ, θ ∈ (−π/2, π/2) for a generic leaf. In other
words, the trajectories of the foliations Hθ must be infinite. Thus we can apply
Theorem 5.1 and the argument of Proposition 6.6 to conclude the statement. �

The converse of Lemma 7.1 does not hold and, again, a counterexample is
provided by Halphen vector fields (defined on C3) since they do have dicritical
singularities at infinity and, still, possess hyperbolic leaves; see [26] or Section 7.2.
For the time being, however, we finish this section by establishing Theorems C
and C’.

Proof of Theorems C and C’. The proofs of both theorems begin with the following
useful remark. Suppose that X is a vector field defined on a compact Kähler
manifold N and let p denote a singular point of X . Consider then the blow-up
π : N̂ → N of N at p along with the corresponding transform X̂ of X . Finally,
denote by D̂ (resp. D) the foliation associated to X̂ (resp. X).

Since X is complete, the regular leaves of D are quotients of C. Owing to
Brunella’s theorem [6], the same applies to all the leaves of D̂, including those

contained in the exceptional divisor π−1(p). The foliation induced by D̂ on π−1(p),
however, depends only on the first nonzero homogeneous component X2 of X
at p which, in addition, has an isolated singularity at the origin. Thus, in local
coordinates, we can apply Lemma 7.1 to X2 to conclude that the leaves of its
associated foliation are hyperbolic provided that it contains no dicritical singularity
at infinity. This establishes the first item of Theorem C. As to Theorem C’, note
that the argument of Lemma 7.1, see also Theorem 5.1 and Proposition 6.6, applies
to ensure that every leaf not passing through a dicritical singularity at infinity must
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be hyperbolic. Since all the leaves of the foliation associated to X2 are known to
be parabolic, Theorem C follows at once.

Finally, for the second item of Theorem C, just note that the same argument
applies to the case of (hyperbolic) Halphen vector fields since these vector fields
are known to have leaves that are isomorphic to the unit disc; see [26] or Section 7.2.

�

Remark 7.2 (A complement to Theorems C and C’). The purpose of this remark
is to justify some of the additional claims made in the introduction and Section 2.1
concerning the statements of Theorems C and C’ For this, we keep the preceding
notation with X = Xk + · · · and denote by F̂k

π−1(p) the foliation induced on the

exceptional divisor π−1(p) by Xk. When Xk has a singular set of codimension 1,
we also set Xk = P.Y cd2 as above.

The first claim made was that Theorem C and C’ also hold when Xk is a multi-
ple of a semi-complete vector field Y cd2 belonging to the Painlevé–Guillot lattice.
To check this claim, we note that it ultimately concerns the leaves of F̂k

π−1(p).

In this sense, we can replace Xk by Y cd2 provided that the latter vector field still
is semi-complete.

The other previously made claim also concerns quadratic vector fields X2 in
the Painlevé–Guillot lattice. Denoting by F the foliation on Cn associated to X2,
assume that F has a dicritical singularity at infinity. Then, in Section 2.1, the
following was stated:

Claim. The restriction of the vector field X2 to a generic leaf L of its associated
foliation is either complete or conjugate to the vector field x2∂/∂x on all of C.
In the second case, the blow-up of X at the origin has a dicritical singularity on
the exceptional divisor and, moreover, the saturate of these dicritical singularities
defines an open set where the vector field X admits nonconstant first integrals.

To establish this claim, we proceed as follows. Consider the semi-complete
vector field X defined on L. Naturally we can assume X is not complete otherwise
the statement is immediate. Since L is known to be a parabolic Riemann surface,
if the restriction X|L of X to L is not complete, then the classification of semi-
complete vector fields on C (see Section 2.2) ensures that X|L is conjugate to the
vector field x2∂/∂x defined on C. In turn, when a generic leaf of F has a singularity

of type x2∂/∂x, it must define a local separatrix for a singularity of F̃ on Δ0. The
discussion in Section 6.2 about generic leaves of a foliation yielding separatrices
for singular points applies here to ensure the existence of a dicritical singularity
p ∈ Δ0 for F̃ . Finally, a singularity of type x2∂/∂x defines a neighborhood of ∞
for the domain of C where the time of X|L is defined. Since X is semi-complete,
it follows that L can pass through p only once. On the other hand, it is also
known that F̃ is locally linearizable at p and has integral eigenvalues. Therefore,
around p, we can find a pair of meromorphic first integrals for F̃ . These local first
integrals can then be globalized by the foliation F̃ itself; the resulting global first
integrals are well defined since the leaves of F̃ can intersect a small neighborhood
of p only once. The claim is proved.
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7.2. Poincaré-type series and Halphen vector fields

As a matter of fact, Halphen vector fields constitute a particularly remarkable
example of semi-complete vector fields belonging to the Painlevé–Guillot lattice.
Their associated geometry and dynamics is nicely described in [26]. These vector
fields possess dicritical singularities in Δ∞ (as well as in Δ0) together with leaves
isomorphic (as Riemann surfaces) to the unit disc. As mentioned, this section is
intended to discussing some aspects of these vector fields from the point of view
emphasized in this paper. Inasmuch as the trajectories of H are finite for Halphen
vector fields, the fact that they admit a suitable singular transverse foliation will
still enable us to apply our renormalization techniques to these vector fields so
as to derive additional information on them and, in particular, to show that the
corresponding leaves are hyperbolic Riemann surfaces. The argument is therefore
a bit different from the original proof of Guillot [26] which exploits the intimate
connection between Halphen vector fields and the Lie algebra sl (2,C) of PSL (2,C).
Although we can hardly improve on [26], we believe it is interesting to present
here our point of view in these questions. The reader is referred to [26] for a
full discussion.

In the sequel, we shall work on C3. Let E denote the radial vector field E =
x∂/∂x+y∂/∂y+z∂/∂z and set Y = ∂/∂x+∂/∂y+∂/∂z. A quadratic homogeneous
vector field X is said to be a Halphen vector field if it satisfies [Y,X ] = 2E . It then
follows that the triplet Y, E , X forms a Lie algebra isomorphic to sl (2,C). With
the terminology of Sections 3 and 4, if Y , X , and E are identified with the vector
fields they induce on M and expressed in the corresponding coordinates (x, y, z),
then E becomes z−1∂/∂z. In other wordsX and Y commute up to a vertical vector
field. Thus X preserves the projection on Δ∞ of the foliation induced by Y . This
means that the foliation FX

∞ induced by X on Δ∞ is transverse to the foliation
induced by Y on Δ∞. Since Y is a constant vector field, the foliation it induces
on Δ∞ is simply a linear pencil of rational curves. Summarizing FX

∞ is transverse
to a linear pencil of rational curves.

Once the above observation is made, it is easy to work out the structure of FX
∞.

It leaves exactly 3 projective lines C1, C2 and C3 invariant and these 3 lines intersect
mutually at a radial singularity P ∈ Δ∞. Indeed, the eigenvalues of FX

∞ at P are 1
and 1 while the eigenvalues of FX (the foliation induced by X on all of M) at P
are 1, 1, and −1 (the −1 eigenvalue is associated with the direction transverse
to Δ∞). Also, if P ′ ∈ Δ0 is the singularity of FX whose fiber P−1

0 (P ′) coincides
with the fiber P−1∞ (P ), then the eigenvalues of FX at P ′ are 1, 1, and 1. For
i = 1, 2, 3, let pi and qi denote the remaining two singularities of FX over Ci. We
assume that X is semi-complete though this is not indispensable in what follows.
This ensures that the eigenvalues of FX at pi (resp. qi) have the form −1, −1,
and mi (resp. −1, −1, and −mi), with mi ∈ N∗. The converse also holds and is
Halphen’s main result, which is revisited by Guillot in [26]. This last point will be
taken for granted in our discussion. Note that it is also easy to check that FX is
locally linearizable about pi (resp. qi). Finally, note that the convention used above
concerning the order of the eigenvalues of FX at pi (resp. qi) is such that the first
eigenvalue corresponds to the vertical direction z, the second to the curve Ci and
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the third to a direction contained in Δ∞ and transverse to Ci. This convention is
slightly different from that in [26] since the eigenvalue associated with the direction
z is −1 rather than 1. This change of sign is due to the fact that we consider
singularities in Δ∞ whereas Guillot considers singularities in Δ0.

The dynamics of FX∞ is fully encoded in its global holonomy group with respect
to a fixed line C in the above mentioned linear pencil that is transverse to FX

∞.
The preceding also shows that this holonomy group coincides with the subgroup of
PSL (2,C) generated by three elements ξ1, ξ2, and ξ3 which are associated with the
local holonomy maps arising from each of the three invariant lines. In particular,
we have

ξ1ξ2ξ3 = ξm1
1 = ξm2

2 = ξm3
3 = id .

In other words, this is a triangle group whose dynamics on S2 is well known.
Provided that

(7.2)
1

m1
+

1

m2
+

1

m3
< 1 ,

this group is conjugate to a subgroup of PSL (2,C) and thus it leaves a circle Λ∞ ⊂
S2 
 C invariant. Furthermore each connected component of C \ Λ∞ is invariant
under the action. In fact, on these components the action is properly discontinuous
whereas it is minimal when restricted to the circle Λ∞ itself. Similarly, in the case
where 1/m1 + 1/m2 + 1/m3 = 1, the resulting groups are well-known groups of
affine diffeomorphisms associated to special tilings of the plane. When 1/m1 +
1/m2 + 1/m3 > 1 the resulting group is, indeed, finite and thus it is easy to see
that all leaves are compact.

Remark 7.3. A motive for caution with respect to the preceding concerns the
fact that the quasi-isometric type of the holonomy group does not priori determine
the quasi-isometric type of the leaves of FX since the latter are not everywhere
transverse to the associated fibration. In addition to the existence of singularities,
there are 3 fibers of this fibration that are invariant under FX . Therefore it is not
clear that the leaves of FX must be hyperbolic once the estimate (7.2) has been
verified.

A similar picture is valid for the foliation FX of M associated with X . Clearly
FX is transverse to the codimension 1 foliation defined by the cone over the leaves
of FY∞ and its dynamics is again encoded in the corresponding holonomy group.
This group is still generated by the local holonomy with respect to M of each of
the three mentioned invariant lines. However, each of the three generators is now
realized as an automorphism Ξi of F1, the line bundle over CP1 with Chern num-
ber 1. In our context, this line bundle is the cone over C ⊂ Δ∞. Moreover, F1 can
be obtained by gluing together two copies of C × C with coordinates (w, z) and
(w′, z′) according to the equation (w′, z′) = (1/w,wz). The second coordinate of
the first copy can be identified with the previous affine coordinate z for C3. The
automorphism Ξi fixes the zero section and thus it can be expressed in these coor-
dinates as Ξi(w, z) = (ξi(w), Bi(w)z) where ξi(w) is a projective transformation.
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Furthermore, it is also known that Ξmi

i = id on F1 and ξmi

i = id on C. Thus

(7.3) Bi(w) ×Bi(ξi(w)) × · · · ×Bi(ξ
mi−1
i (w)) = 1 .

Next, recall that the action of an element of the Möbius group has a natural
extension to F1 given by the multiplication in the fibers by the square root of its
derivative. In other words, if ξ is a projective transformation, then its extended
action on a pair (w, z) ∈ F1 is

ξ.(w, z) = (ξ(w),
√
ξ′(w) z) .

Note that the square root of the derivative of a projective transformation is well
defined so that the claim follows from observing that F1 ⊗ F1 is isomorphic to
the tangent bundle of C. In particular, a more explicit expression for Ξi can be
derived as follows. Let qi, qi+1 (�= 0,∞) denote the two fixed points of ξi in C.
The transformation

σi(w) =
w − qi
w − qi+1

; σ−1
i (w) =

qi+1w − qi
w − 1

conjugates ξi to a projective transformation fixing 0 and ∞. In the coordinate w,
ξi must take on the form w 	→ k2iw where k2i = e2π

√−1/mi since ξmi

i = id on C.
Furthermore, in the coordinate w, it is clear that Bi(w) must be constant so as
to allow Ξi to have a holomorphic extension to a fibered neighborhood of ∞.
Setting Bi(w) = Bi for this particular choice of coordinates, we conclude that the
expression of Ξi in the initial coordinate w is given by

Ξi(w,z) = (ξi(w), Bi(w)z)

=
(
σ−1
i (k2i σi(w)),

√
(σ−1

i )′|k2
i σi(w)Bi

√
σ′
i(w)z

)

=
( (k−1

i qi − kiqi+1)w + qiqi+1(ki − k−1
i )

(k−1
i − ki)w + (kiqi − k−1

i qi+1)
,

k−1
i Bi(qi − qi+1)z

(k−1
i − ki)w + (kiqi − k−1

i qi+1)

)

= (ξi(w), k
−1
i Bi

√
ξ′i(w)z) .

The above formulas are going to enable us to understand the solutions of Halphen
vector fields from the point of view developed in this article. We first consider
the special case where 1/m1 + 1/m2 + 1/m3 = 1. In this case the three projec-
tive transformations ξ1, ξ2, and ξ3 share a common fixed point. Choosing coor-
dinates (w, z) where this point is ∞ it follows that ξ′(w) is constant and thus
Ξi(w, z) = (ξi(w), Aiz) for certain constants Ai, i = 1, 2, 3. As a sort of converse
to Theorem 5.1, we obtain the following:

Proposition 7.4. Suppose that 1/m1 + 1/m2 + 1/m3 = 1. Then all the leaves
of FX are uniformized by C as Riemann surfaces.

Proof. The proof is simple. Let L be a generic leaf of FX and let F1 be as above.
Because all the Ai’s are constant, the intersection points p1, p2 . . . of L with F1
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have their distance to Δ∞ bounded from below by a positive constant. Thus the
time-form dTL induced by X on L is uniformly bounded on a neighborhood W
of {p1, p2 . . .}. Consider now the maximal domain U ⊆ C of a solution φ of X .
Suppose for the sake of a contradiction that C \U �= ∅ and choose a point T ∈ C
lying on the boundary ∂U of U. Finally let t1, t2, . . . be a sequence of points in U
converging to T . Since FX is transverse to a fibration, we can assume without loss
of generality that φ(tj) lies in W . Since dTL is uniformly bounded onW , it follows
that, for every j fixed, φ is defined on a disc centered at tj and having a uniform
(positive) radius. This is however impossible since tj → T ∈ ∂U. The proposition
is proved. �

Henceforth we focus on the more interesting case where ξ1, ξ2, and ξ3 generate
a hyperbolic triangle group, i.e., on the case where 1/m1+1/m2+1/m3 < 1. The
fixed points of ξ1, ξ2, and ξ3 are three (pairwise distinct) points q1, q2, q3 ∈ C.
This means that for each i ∈ {1, 2, 3}, the projective transformation ξi fixes the
points qi and qi+1 (where q3+1 = q1). In the present case, there is no coordinate
w where all the ξi become affine maps. Thus we shall need to work with the full
information provided by the action of the group generated by Ξ1, Ξ2, and Ξ3 on F1.
We will show that the geometry of the leaves is related to the Poincaré series with
exponent 1/2. Next, denote by Γ the group generated by ξ1, ξ2, ξ3 and consider
its Cayley graph with respect to the generating set given by ξ1, ξ2, ξ3, and their
inverses. Choose a geodesic ray γ0 = id, γ1, γ2, . . . in the Cayley graph going from
the identity to an end of the graph. We have:

Proposition 7.5. Suppose the the holonomy group is a hyperbolic triangle group.
Let L denote a leaf of FX passing through a point (w0, z0). As a Riemann surface L
is hyperbolic provided that the series

(7.4) S(w0) =

∞∑
j=0

‖γj(w0)‖1/2

converges for more than one geodesic ray. If this series diverges for all geodesic
rays as above then L is a quotient of C.

Proof. The proof consists in elaborating on the argument used in Proposition 7.4.
Again denote by U the maximal domain of definition of the solution φ of X sat-
isfying φ(0) = (w0, z0), z0 �= 0. Denote by L∞ the projection of L on Δ∞. By
virtue of the structure of the foliation FX

∞ on Δ∞, we know that L∞ is a ramified
covering of CP1 where the ramification points lie over three points of CP1 (identi-
fied with the three invariant fibers of FX

∞). We can then think of L∞ as being the
universal covering of CP (1) minus 3 points modulo adding to it the ramification
points. In particular, there is natural sense in considering fundamental domains
in L∞. The leaf L∞ can then be considered as the union of the corresponding fun-

damental domains L
(0)
∞ , L

(1)
∞ , . . . such that L

(j)
∞ = γj(L

(0)
∞ ). These domains have

natural lifts to the leaf L ⊂ M \ (Δ0 ∪ Δ∞) which, modulo relabeling, will be
denoted by L(0), L(1), . . . so that L(j) = Γj(L

(0)) where Γj is the automorphism
of F1 corresponding to the action of γj on C.
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On L (or on its universal covering if necessary), we define the map

DL(p) =

∫ p

(w0,z0)

dTL

where dTL stands for the time-form induced on L. Since X is semi-complete, DL

provides a diffeomorphism from the (universal covering of) L to U. Let U(j)

be the image of L(j) under DL. The above assertion implies that the sets U(j)

tile U without overlapping and modulo adding the images of ramification points

(involved in the preceding definition of the fundamental domains L
(0)
∞ , L

(1)
∞ , . . .).

Next, recall that the affine structure on L∞ is uniformly bounded (from below and
from above). Combining this fact with the expression for dTL arising from 3.1,
with d = 2, there follows the existence of sequences {rj} and {Rj}, 0 < rj < Rj ,
j = 1, 2, . . ., satisfying the conditions below.

1. There are constants 0 < c < C, independent of j, such that

c‖π2(Ξj(w0, z0))‖rj < Rj < C‖π2(Ξj(w0, z0))‖rj ,

where π2 stands for the projection on the second coordinate (i.e., the fiber
of F1).

2. The image of U(j) under DL contains a ball of radius rj centered at the
point DL(Ξj(w0, z0)). Similarly this image is contained in a ball of radius Rj

centered at DL(Ξj(w0, z0)).

It then becomes clear that U must be all of C provided that the series

∞∑
j=0

‖π2(Ξj(w0, z0)‖

diverges for every geodesic ray. Conversely, if this series converges, then we can
easily construct a small piece of a continuum contained in the boundary of U ⊂ C.
Thus U must be a hyperbolic domain so that L itself must be a Riemann surface
covered by the unit disc. To conclude the proof of the proposition it is therefore
sufficient to check that the series

∑∞
j=0 ‖π2(Ξj(w0, z0))‖ converges (resp. diverges)

if and only if so does the reduced Poincaré series in the statement. This is however
clear since |k−1

i Bi| = 1 as an immediate consequence of (7.3). The proof of the
proposition is finished. �

Next we show that the series (7.4) always converges provided that w0 ∈ C \
Λ∞. Some indications concerning the behavior of this series in the case w0 ∈ Λ∞
will also be provided. As mentioned the series in question differs from the usual
Poincaré series since the summation does not run over the entire group but only
over those elements belonging to a chosen geodesic ray. Indeed the full Poincaré
series of Γ with exponent 1/2 diverges as follows from well-known results due
mainly to Sullivan (see [36] for an overview of the standard theory).

Lemma 7.6. The series (7.4) converges provided that w0 ∈ C \ Λ∞.
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Proof. The argument is simple. Consider the action of Γ in the w-plane. This
action preserves a circle identified with Λ∞ so that Γ is identified with a Fuchsian
group, i.e., a discrete group of automorphisms of the hyperbolic disc. Next, since Γ
acts on the hyperbolic disc, it is easy to see that the convergence of this series
does not depend on w0. In other words, the series (7.4) converges for w0 if and
only if it converges at 0. It is then sufficient to check that the series converges
for w0 = 0 (identified with the origin). For this consider again the geodesic ray
γ0 = id, γ1, γ2, . . . in the Cayley graph of Γ and set aj = γj(0). In the Cayley graph
the distance between the identity and γj is obviously j. The existence of a quasi-
isometry between this graph and the hyperbolic disc implies that the hyperbolic
distance dH(0, γj(0)) between 0 and γj(0) satisfies c.j < dH(0, γj(0)) < C.j for
appropriate uniform constants C > c > 0. The standard formula for the length of
a minimizing geodesic in the hyperbolic unit disc joining 0 to a point a of this disc
(naturally satisfying ‖a‖ < 1) yields

ec.j − 1

ec.j + 1
≤ ‖aj‖ ≤ eC.j − 1

eC.j + 1
.

On the other hand the coefficients of the hyperbolic metric at 0 and at aj allow
us to obtain a formula for the derivative of γj at 0. Combined with the above
estimates this formula gives

‖γ′j(0)‖ ≤ 4 eC.j

(1 + eC.j)2

and thus ‖γ′j(0)‖1/2 ≤ 2eC.j/2/(eC.j+1). The convergence of the series (7.4) follows
immediately. �

To close this discussion we briefly indicate the behavior of the series (7.4) for
points w0 lying in Λ∞. Since γj takes 0 to aj , it follows that γj(w) = e2πiθ(w +
aj)/(1 + ajw) for some θ ∈ [0, 1). In particular

‖γ′j(w)‖ =
1− ‖aj‖2
(1 + ajw)2

.

Because Γ is discrete, it follows that ‖aj‖ → 1 as j → +∞. Set aj = ‖aj‖eiθj and
w0 = e−iθj−π+αj so that

(7.5) ‖γ′j(w0)‖ =
1− ‖aj‖2

1 + ‖aj‖2 − 2‖aj‖ cos(αj)
.

Next note that ‖γ′j(w0)‖ > 1/2 as long as cos(αj) > ‖aj‖. In particular, if there are
infinitely many indices j satisfying this condition the corresponding series diverges.
In this case there is a subsequence of {aj} converging almost radially to −w0.
Conversely if the denominator in (7.5) is bounded from below by some positive
constant, then the argument used in Lemma 7.6 ensures again the convergence
of the series (7.4). In general we are led to a finer analysis taking into account
the conic approximation of −z0 by the sequence aj = γj(0). Not surprisingly the
behavior of series (7.4) on Λ∞ depends on the initial point w0; for some values of
w0 it diverges whereas for others it converges.
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Most properties of Halphen vector fields are encoded in the extended dynamics
of the group generated by Ξ1, Ξ2, and Ξ3 on F1. For example the study of first
integrals for Halphen vector fields amounts to searching for functions that are
invariant under this action. Hence, on each connected component of C \ Λ∞
it is not hard to construct automorphic functions for this group so that on the
corresponding open sets of M the Halphen vector field admits a holomorphic first
integral. It is also not very hard to check that the Halphen vector field does
not admit a holomorphic (or meromorphic) first integral on the set corresponding
to Λ∞ (which has real dimension 5). However, on the latter set, there is a real-
valued first integral for the equation that is actually globally defined on M . We
shall not pursue this discussion here not only because Halphen vector fields were
studied in detail in [26] but also because the relevant issues do not fit in the general
context of the main ideas of this paper.

8. Appendix: some problems

In closing, we suggest some problems for which the method developed in this work
might provide some insight.

Equations with the Painlevé property. It is clear that our methods are well
designed for investigating these equations, specially if meromorphic solutions de-
fined on all of C are targeted. Since Nevanlinna theory has become an important
tool for studying these questions, it would be interesting to compare both ap-
proaches which, as suggested by Theorem A’, may have some nontrivial points
of contact. Here, we remind the reader that our methods apply equally well to
rational, besides polynomial, vector fields.

Also many special equations including Painlevé equations admit a formulation
involving associated transverse fibrations. The domains of definition of their solu-
tions can then be studied by adapting the argument used in Section 7.2 for handling
the case of Halphen equations. For example, consider the Painlevé-VI (P-VI) case
which contains the remaining Painlevé equations as particular cases. The standard
Hamiltonian formulation of P-VI allows one to consider its holonomy group at in-
finity, as in [30], where this holonomy group is shown to be virtually Abelian. By
construction, this group consists of holomorphic diffeomorphisms of C2. The study
of the corresponding dynamics should then recover, in particular, the domain of
definition of the equations in question as well as yielding new insight into the way
they bifurcate as the parameters vary. This certainly relates to several other as-
pects of the Painlevé equations such as global linearization and Riemann–Hilbert
correspondence.

Confinement questions for real equations. These problems were brought to
our attention by F. Cano and C. Roche. Let us consider the case of singular points
of real analytic vector fields as in [13] and [14]. Several important issues appearing
in the study of these singular points, such as the existence of iterated tangents,
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depend strongly on having suitable estimates on the speed with which a solution
converges to the origin. Though these problems are real rather than complex, our
method can provide information in certain cases. We explain the main changes
needed for this.

The central issue is that the exceptional divisor in this context is obtained by
a real blow-up and the foliation induced on it has real dimension 1 as opposed to
complex dimension 1. Thus there is no freedom to choose any steepest descent
direction, indeed, we can only follow the given trajectory in a chosen orientation.
However, under some assumptions concerning the first nonzero homogeneous com-
ponent of the vector field, it is possible to guarantee a normal contractive holonomy
such as that considered in Section 3.

Once this contraction is established, the fact that we are dealing with real solu-
tions, rather than with complex ones, becomes an advantage for two main reasons
which are more easily understood in dimension 3. The first one has to do with

Lemma 3.5. Recall that Δ
(x,y)
∞ consists of source singularities for H whereas Δ

(x,y)
0

is constituted by sink singular points of H. This is the main reason why we have

worked with Δ
(x,y)
∞ rather than with Δ

(x,y)
0 ; the fact that H has source singularities

at Δ
(x,y)
∞ is fundamental for the proof of Lemma 3.10 and hence for Theorem 4.7.

Nonetheless, in the real case, it often occurs that these trajectories remain in a
compact part of the complement of the line at infinity inside Δ0. Therefore, modulo
appropriate assumptions satisfied by many foliations, the statement of Theorem 4.7
remains valid in the present setting. When working in dimension 3, the situation
becomes much better; dealing with real equations, the divisor playing the role
of Δ0 is no longer the complex projective plane but the real projective plane. The
asymptotic behavior of the real foliation induced on the analogue of Δ0 is therefore
easily described by the standard Poincaré–Bendixson theory. It is then reasonable
to expect it to provide detailed information on the structure of the singular point in
question. It would be nice to know if the theory proposed by F. Cano, R. Moussu,
and their collaborators can be furthered by this type of analysis.

We mention that the study of complete real vector fields on R3 may be ap-
proached from this point of view as was pointed out to us by A. Guillot. In par-
ticular, this type of idea applies to Lorenz equation where the presence of a very
special saddle node singularity in Δ∞ seems to organize much of the information
concerning the corresponding dynamics. Similar ideas concerning Lorenz systems
were also considered by X. Gómez-Mont and, independently, by J.-P. Ramis.

Actions of SL (2,C). In [26], A. Guillot classified compact complex manifolds of
dimension 3 that are quasihomogeneous under an action of SL (2,C). This means
that the action of SL (2,C) fails to be locally free in the complement of a Zariski
open set. The starting point of Guillot’s work is precisely to study homogeneous
vector fields X satisfying the equation [Y,X ] = 2E where E = x∂/∂x + y∂/∂y +
z∂/∂z and Y = ∂/∂x + ∂/∂y + ∂/∂z. These vector fields X are by definition
Halphen vector fields. The same equation can be considered in every dimension
to yield higher dimensional analogues of Halphen vector fields that are naturally
related to SL (2,C)-actions.
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Let E and Y continue to denote the constant and the radial vector fields in
dimension n. The previous discussion shows that X still induces a foliation on Δ∞
transverse to the linear pencil obtained from Y . The interesting novelty appearing
in dimensions ≥ 4 is that the basis of this pencil is isomorphic to CPn−2 which
inherits a nontrivial foliation induced by X since n ≥ 4. We do not know how
wild this foliation can be, but an understanding of its dynamics would allow us to
generalize the arguments given in Section 7.2 and extend the results of Halphen
and Guillot.

Singular points of vector fields on complex Kähler 3-folds. Let X be a
holomorphic vector field defined on a compact Kähler manifold M of dimension 3
and consider a singular point p ∈M of X . Denote by Xd the first nonzero homoge-
neous component of X at p. It is known that Xd is a (homogeneous) semi-complete
vector field on all of C3. The problem is then to classify all possible models for Xd.
It turns out that this problem is equivalent to finding all possible normal forms
for the top degree homogeneous component of a complete polynomial vector field
on C3.

Consider the foliation F̃∞ induced on Δ∞ by Xd and assume once and for all
that F̃∞ possesses some Zariski dense leaf. Since all leaves of F̃∞ are parabolic
Riemann surfaces, we can apply the McQuillan theorem, as formulated in [8], to

conclude that F̃∞ is transverse to a pencil of genus 0 or 1. The idea is then to
resort again to arguments similar to those developed in Section 7.2 to work out
the structure of F̃∞. The first thing to be proved is that the global holonomy
arising from F̃∞ is conjugate to a subgroup of the affine group of C. In particular
it has a fixed point corresponding to an algebraic curve C invariant under F̃∞.
Next we should consider the extended holonomy of F̃ taking values on the group
of automorphisms of F1 as was done previously. The resulting group will still
be elementary and it must be compatible with the affine structure induced on C
which is necessary uniformizable. Finally the cases in which the genus of C is 0 or 1
must be considered separately. The more interesting case corresponds to genus 0
since there are more possibilities for the affine structure on C. Besides rational
orbits, we must expect to find the elliptic orbifolds associated with the triangle
groups (2, 2,∞), (2, 3, 6), (2, 4, 4) and (3, 3, 3) in addition to the orbifold (2, 2, 2, 2)
which appear in connection with the classical integrable equations of the Euler
spinning top.
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[26] Guillot, A.: Sur les équations d’Halphen et les actions de SL2(C). Publ. Math.
Inst. Hautes Etudes Sci. 105 (2007), no. 1, 221–294.

[27] Guillot, A.: Some generalizations of Halphen’s equations. Osaka J. Math. 48
(2011), no. 4, 1085–1094.

[28] Guillot, A.: The geometry of Chazy’s homogeneous third-order differential equa-
tions. Funkcial. Ekvac. 55 (2012), no. 1, 67–87.

[29] Guillot, A. and Rebelo, J. C.: Semicomplete meromorphic vector fields on com-
plex surfaces. J. Reine Angew. Math. 667 (2012), 27–65.

[30] Ben Hamed, B., Gavrilov, L. and Klughertz, M.: The holonomy group at
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Julio C. Rebelo: Institut de Mathématiques de Toulouse, 118 Route de Narbonne,
31062 Toulouse, France.

E-mail: rebelo@math.univ-toulouse.fr

Helena Reis: Centro de Matemática da Universidade do Porto, Faculdade de Econo-
mia, Universidade do Porto, 4200-464 Porto, Portugal.

E-mail: hreis@fep.up.pt

The second author is partially supported by the Fundação para a Ciência e Tecnologia (FCT)
through CMUP, through the postdoctoral grant SFRH/BPD/34596/2007 and through the grant
PTDC/MAT/103319/2008.

mailto:rebelo@math.univ-toulouse.fr
mailto:hreis@fep.up.pt

	Introduction
	Overview of methods, further results, and background material
	Methods and results
	A brief review of semi-complete vector fields and additional background material

	Homogeneous vector fields and their foliations
	Renormalization in the exceptional divisor
	The structure of H near singular points of F"0365F
	Applications to complete vector fields
	Ends of solutions of complete polynomial vector fields on Cn
	Complete polynomial vector fields on Cn with simple singularities at infinity

	Theorem C and Halphen vector fields
	Painlevé–Guillot's lattices of quadratic vector fields: examples and results
	Poincaré-type series and Halphen vector fields

	Appendix: some problems

