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On inhomogeneous Strichartz estimates

for the Schrödinger equation

Sanghyuk Lee and Ihyeok Seo

Abstract. In this paper we consider inhomogeneous Strichartz estimates
in the mixed norm spaces which are given by taking temporal integration
before spatial integration. We obtain some new estimates, and discuss the
necessary conditions.

1. Introduction

To begin, we consider the Cauchy problem{
iut +Δu = F (x, t), (x, t) ∈ R

n × R,

u(x, 0) = f(x).

By Duhamel’s principle we have the solution

u(x, t) = eitΔf(x)− i

∫ t

0

ei(t−s)Δ F (s) ds.

Here eitΔ is the free propagator given by

eitΔf(x) = (2π)−n

∫
Rn

ei(x·ξ−t|ξ|2) f̂(ξ) dξ.

The estimates for the solution in terms of f and F play important roles in the study
of nonlinear Schrödinger equations (see [5] and [23]). Estimating the solution u
consists in two parts, the homogeneous (F = 0) and the inhomogeneous (f = 0)
part.

It is well known that the homogeneous Strichartz estimate

(1.1)
∥∥eitΔf∥∥

Lq
tL

r
x
≤ C ‖f‖2

holds if and only if 2/q = n(1/2−1/r), q ≥ 2, and (q, r, n) �= (2,∞, 2) (see [11], [13]
and the references therein).
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However, the determination of optimal range of (q, r) and (q̃ ′, r̃ ′) for which the
inhomogeneous Strichartz estimate

(1.2)
∥∥∥ ∫ t

0

ei(t−s)Δ F (s) ds
∥∥∥
Lq

tL
r
x

≤ C ‖F‖
Lq̃ ′

t Lr̃ ′
x

holds is not yet completed. By duality the homogeneous estimates imply some
inhomogeneous estimates but it was observed that the estimate (1.2) is valid on a
wider range than that given by admissible pairs (q, r) and (q̃ ′, r̃ ′) for the homo-
geneous estimates (1.1) (see [6] and [12]). Foschi and Vilela in their independent
works ([10] and [25]) obtained the currently best known range of (q, r) and (q̃ ′, r̃ ′)
for which (1.2) holds. However, there still remain some gaps between their range
and the known necessary conditions. See also [19] for a new necessary condition
and some weak endpoint estimates.

1.1. Time-space estimates

We now consider estimates in different mixed norms which are given by taking time
integration before spatial integration. We call (1.1) and (1.2) space-time estimates,
and by a time-space estimate we mean an estimate given in Lr

xL
q
t norms; e.g.(1.3)

or (1.4). Besides the estimate (1.3) the homogeneous time-space estimates

(1.3)
∥∥eitΔf∥∥

Lr
xL

q
t
≤ C‖f‖Ḣs , s = n/2− 2/q − n/r,

have been of interest. Here Ḣs denotes the homogeneous Sobolev space of order s.
Even though (1.1) and (1.3) have the same scaling, they are of different natures.
In particular, for the time-space estimate Galilean invariance is no longer valid.
The condition 1/q + (n + 1)/r ≤ n/2 is necessary for (1.3) even with a frequency
localized initial datum f as is easily seen by using Knapp’s example. It is currently
conjectured that (1.3) holds whenever 1/q + (n + 1)/r ≤ n/2, 2 ≤ q < ∞. When
n = 1, this is known to be true [14]. In higher dimensions (1.3) is known for q and
r satisfying 1/q + (n + 1)/r ≤ n/2, and additionally r > 16/5 when n = 2 and
for r > 2(n + 3)/(n + 1) when n ≥ 3 ([17]). The estimate (1.3) is closely related
to the maximal Schrödinger estimate which has been studied to obtain almost
everywhere convergence to the initial data. See [4], [8], [21], [24], [14], [17], [20]
and references therein for further discussions and related issues. Also see [15], [1]
for recent results.

In this paper we seek the optimal range of (r̃ ′, r) for which the time-space
inhomogeneous Strichartz estimate

(1.4)
∥∥∥ ∫ t

0

ei(t−s)ΔF (s) ds
∥∥∥
Lr

xL
q
t

≤ C‖F‖
Lr̃ ′

x Lq̃ ′
t

holds for some q and q̃ ′. Obviously, this is weaker than (1.2) if q ≤ r and q̃ ′ ≥ r̃ ′

since one can get (1.4) from (1.2) via Minkowski’s inequality. However, it turns
out that the range for (1.4) is quite different from that of (1.2). The currently
known range of (1/r̃ ′, 1/r) for which (1.2) is valid for some q and q̃ ′ is contained in
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Figure 1. The points B, C, P , Q, R and S, and the dual points B′, C′, P ′, Q′, R′

and S′, when n ≥ 3.

the closed pentagon with vertices (1/2, 1/2), C′, S′, S, and C (see Figure 1) and
it is known that (1.2) fails unless (1/r̃ ′, 1/r) is contained in the closed pentagon
with vertices (1/2, 1/2), C′, R′, R, and C. We will show that (1.4) is possible
only if (1/r̃ ′, 1/r) is contained in the closed trapezoid B, R, R′, B′ from which the
points R and R′ are removed. In [9] it was shown that if 1 ≤ r̃ ′ ≤ 2 ≤ r ≤ ∞ and
|1/r + 1/r̃ ′ − 1| < 1/n, there are q and q̃ ′ which allow the time delayed estimates
in time-space norm. But in contrast to the space-time estimate (1.2) the above
discussion shows that mere existence of such q and q̃ ′ for time delayed estimate is
not enough to obtain (1.4) and accurate information on possible range of q and q̃ ′

is important.
To show (1.4) we work on the Fourier transform side by making use of the fact

that the Duhamel part is similar to a multiplier of negative order (see [7], [18]).
This allows us to take advantage of localization on the Fourier transform side. This
plays important roles in our argument. We believe that this method is more flexible
than the conventional argument which relies heavily on the dispersive estimate.

Necessary conditions. We now discuss the conditions on (q, r) and (q̃ ′, r̃ ′) which
are necessary for (1.4). By scaling, the condition

(1.5)
1

q̃ ′
− 1

q
+
n

2

(
1

r̃ ′
− 1

r

)
= 1

should be satisfied.
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Using the examples in [10], [25], we see that the conditions which are needed
for (1.2) are also necessary for (1.4):

r̃ ′ < 2 < r,
1

r̃ ′
− 1

r
≤ 2

n
, 1− 1

n
≤ 1

r̃ ′
+

1

r
≤ 1 +

1

n
,(1.6)

q̃ ′ ≤ q,
1

q
< n

(1
2
− 1

r

)
,

1

q̃ ′
> 1− n

( 1

r̃ ′
− 1

2

)
.(1.7)

By considering additional test functions, we get the following conditions which will
be shown later (see Section 4):

1

q̃ ′
− 1

q
+ (n+ 1)

( 1

r̃ ′
− 1

r

)
≥ 2,(1.8)

1

q̃ ′
− 1

q
≥ 2n

r
− n+ 1,

1

q̃ ′
− 1

q
≥ n+ 1− 2n

r̃ ′
.(1.9)

To facilitate the statement of our results, for n ≥ 3, we define points B, C, P,
Q, R, and S which are contained in [1/2, 1]× [0, 1/2] by setting

B =
( n+ 3

2(n+ 2)
,
n− 1

2(n+ 2)

)
, C =

(1
2
,
n− 2

2n

)
, P =

( n+ 2

2(n+ 1)
,

n2

2(n+ 1)(n+ 2)

)
,

Q =
( n+ 2

2(n+ 1)
,
n− 2

2(n+ 1)

)
, R =

(n+ 1

2n
,
n− 3

2n

)
, S =

( n

2(n− 1)
,
(n− 2)2

2n(n− 1)

)
,

and we also define the dual points B′, C′, P ′, Q′, R′, and S′ by setting X ′ =
(1 − b, 1 − a) when X = (a, b). (See Figure 1.) Let N (n) be the closed trapezoid
with vertices B, B′, R, and R′ from which the points R and R′ are removed.
Combined with (1.5), (1.8) gives

(1.10)
1

r̃ ′
− 1

r
≥ 2

n+ 2
,

and the first and second conditions in (1.9) give

(1.11) n
(
1− 1

2r̃ ′
)
≥ 3n

2r
,

3n

2r̃ ′
≥ n

(
1− 1

2r

)
,

respectively. Also, by (1.5) and (1.7), we see that (1/r̃ ′, 1/r) �= R and (1/r̃ ′, 1/r) �=
R′. Hence, from this, (1.6), (1.10) and (1.11), it follows that (1.4) holds only if
(1/r̃ ′, 1/r) ∈ N (n).

Sufficiency part. We will show the stronger estimate

(1.12)
∥∥∥ ∫ t

−∞
ei(t−s)ΔF (s) ds

∥∥∥
Lr

xL
q
t

≤ C‖F‖
Lr̃ ′

x Lq̃ ′
t

,

which implies (1.4) and ‖ ∫∞
−∞ ei(t−s)ΔF (s) ds‖Lr

xL
q
t
≤ C‖F‖

Lr̃ ′
x Lq̃ ′

t

. As mentioned

above, if q ≤ r and q̃ ′ ≥ r̃ ′, from the known range of the space-time esti-
mate ([10], [24]), one can get (1.12) for (1/r̃ ′, 1/r) contained in the closed hexagonH
with vertices P , Q, S, P ′, Q′ and S′, from which the line segments [P,Q] and [P ′, Q′]
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and the points S, S′ are removed 1. We extend the range further to include the
triangular region ΔQRS and ΔQ′R′S′. It should be noted that no inhomoge-
neous space-time estimate (1.2) is known for (1/r̃ ′, 1/r) contained in the interior
of ΔQRS and ΔQ′R′S′.

Theorem 1.1. Let n ≥ 3 and S(n) be the open hexagon with vertices P, Q,
R, P ′, Q′, and R′ to which the line segments (P, P ′) and (R,R′) are added. If
(1/r̃ ′, 1/r) ∈ S(n), then (1.12) holds for some q and q̃ ′.

For (1/r̃ ′, 1/r) contained in the region ΔQRS \ [Q,R], the estimate (1.12) is
available if (q̃ ′, q) satisfies (1.5) and (1.7) and additionally 1/q < n(1/r̃ ′ − 1/2),
1/q̃ ′ > 1−n(1/2−1/r).With (1.5), these additional conditions are due to the third
inequality of (3.2) and its dual. By duality the same holds for (1/r̃ ′, 1/r) contained
in the region ΔQ′R′S′ \ [Q′, R′]. Making use of the currently known time-space
homogeneous estimates (1.3) (see [16] and [17]) together with the argument of this
paper, it is possible to obtain further estimates on a larger range of q and q̃ ′ but
these estimates are not enough to extend the range of (r̃ ′, r).

When n = 2, (1.12) holds if (1/r̃ ′, 1/r) is contained in the open pentagon with
vertices P, Q, (1, 0), Q′ and P ′, to which the line segment (P, P ′) is added, but this
is not new; it follows from the known range of the space-time estimate ([10], [25]).
When n = 1, it is possible to obtain the full range except for some endpoint
estimates. In fact, from the necessary conditions, (1.4) is possible only if (1/r̃ ′, 1/r)
is contained in the closed triangle Δ with vertices (2/3, 0), (1, 0), and (1, 1/3).

Theorem 1.2. Let n = 1. Then (1.12) holds for some q and q̃ ′ provided that
(1/r̃ ′, 1/r) is contained in Δ \ ([(2/3, 0), (1, 0)] ∪ [(1, 1/3), (1, 0)]

)
. In fact, (1.12)

holds if q and q̃ ′ satisfy 1 < q̃ ′ < 2 < q <∞ and 1/r̃ ′ − 1/r + 1/2q̃ ′ − 1/2q ≥ 1.

The rest of this paper is organized as follows. In Section 2 we obtain some
frequency localized estimates which will be used in later sections. Then, using
these estimates and a summation method, we prove Theorem 1.1 and Theorem 1.2
in Section 3. Nextly, we show the necessary conditions (1.8) and (1.9) in Section 4.

Throughout the paper, the letter C stands for a constant which is possibly
different at each occurrence. In addition to the symbol ̂ , we use F(·) to denote
the Fourier transform, and F−1(·) to denote the inverse Fourier transform. Finally,
we denote by χE the characteristic function of a set E.

2. Preliminaries

In this section we prove several preliminary estimates which will be used for the
proof of Theorem 1.1, which is to be shown in Section 3.

We define the operator Tδ for dyadic numbers δ ∈ 2Z := {2z : z ∈ Z} by

(2.1) TδF =

∫
δ φ(δ(t − s)) ei(t−s)ΔF (s) ds ,

1 In fact, when q ≤ r and q̃ ′ ≥ r̃ ′, (1.5) and (1.7) are satisfied for (1/r̃ ′, 1/r) contained in H.
Hence, one can use the known space-time estimate.
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where φ is a smooth function supported in (1/2, 2) such that
∑∞

k=−∞ φ(2kt) = 1
for t > 0. Then we can write

(2.2) TF :=

∫ t

−∞
ei(t−s)ΔF (s) ds =

∑
δ∈2Z

δ−1 TδF.

By direct computation it is easy to see that

(2.3) T̂δF (ξ, τ) = φ̂
(τ + |ξ|2

δ

)
F̂ (ξ, τ).

By this dyadic decomposition in time, the boundedness problem for T is essentially
reduced to obtaining suitable bounds for Tδ in terms of δ. From this one may
view the operator F → ∫ t

−∞ ei(t−s)ΔF (s)ds as the multiplier operator of negative
order 1 which is associated to the paraboloid.

Proposition 2.1. Let n ≥ 2. Suppose that Fourier transform of F is supported
in {(ξ, τ) ∈ R

n × R : 1/2 ≤ |ξ| ≤ 2}. Then we have

‖TδF‖Lr
xL

2
t
≤ C δ−(n−1)/2+n/r̃ ′ ‖F‖Lr̃ ′

x L2
t

for r and r̃ ′ satisfying 1 ≤ r̃ ′ ≤ 2 and (n+ 1)/r ≤ (n− 1)(1− 1/r̃ ′).

Proof. By interpolation, it is enough to consider the cases (r̃ ′, r) = (2, 2(n+1)
n−1 ) and

(1,∞). This actually gives the estimates along the line (n+1)/r = (n−1)(1−1/r̃′).
The other estimates follow from Bernstein’s inequality because the spatial Fourier
transform of F is compactly supported.

The case (r̃ ′, r) = (2, 2(n+ 1)/(n− 1)). By duality it is enough to show that

‖TδF‖L2
xL

2
t
≤ C δ1/2 ‖F‖

L
(2n+2)/(n+3)
x L2

t
.

Since F̂ (·, τ) is supported in {|ξ| ∼ 1}, by (2.3) and Plancherel’s theorem we have

‖TδF‖2L2
xL

2
t
≤ C

∫∫
1/2≤|ξ|≤2

∣∣∣ φ̂(τ + |ξ|2
δ

)
F̂ (ξ, τ)

∣∣∣2 dξ dτ.
Thus, we are reduced to showing that

(2.4)

∫∫
1/2≤|ξ|≤2

∣∣∣ φ̂(τ + |ξ∣∣2
δ

)
F̂ (ξ, τ)

∣∣∣2 dξ dτ ≤ C δ ‖F‖2
L

(2n+2)/(n+3)
x L2

t

.

The left-hand side equals to∫∫ 2

1/2

∣∣∣ φ̂(τ + r2

δ

)∣∣∣2 ∫
Sn−1

|FxFtF (rθ, τ)|2dθ rn−1 dr dτ.

Using the Tomas–Stein theorem [22] (the L(2n+2)/(n+3)-L2-restriction estimate to
the sphere rSn−1, r ∼ 1), we see that∫

Sn−1

|FxFtF (rθ, τ)|2dθ ≤ C ‖FtF (·, τ)‖2L(2n+2)/(n+3)
x

.
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Integrating in r, it follows that∫∫
1/2≤|ξ|≤2

∣∣∣ φ̂(τ + |ξ|2
δ

)
F̂ (ξ, τ)

∣∣∣2 dξ dτ ≤ C δ ‖FtF (τ)‖2L2
τL

(2n+2)/(n+3)
x

.

By Minkowski’s inequality and Plancherel’s theorem, we get (2.4).

The case (r̃ ′, r) = (1,∞). Note that TδF can be written as

TδF (x, t) =

∫∫
Kδ(x− y, t− s)F (y, s) dy ds,

where

Kδ(y, s) = δφ(δs)

∫∫
ei(−sr2+ry·θ)ψ(r) dθ dr(2.5)

=

∫∫∫
φ̂
(τ + r2

δ

)
ei(sτ+ry·θ)ψ(r) dθ dr dτ

and ψ ∈ C∞
0 (1/2, 2). Since |Kδ(y, s)| ≤ C|δφ(δs)|, by Young’s inequality we have

‖TδF‖L∞
x L2

t
≤ C‖F‖L1

xL
2
t
. We may assume that δ � 1.

By the choice of φ, Kδ �= 0 for s ∼ δ−1. Hence, by integration by parts
we see that, for any large M and N , |Kδ(y, s)| ≤ CδM if |y| ≤ δ−1/100 and
|Kδ(y, s)| ≤ C(1 + |y|)−N if |y| ≥ 100δ−1. Set χδ(y) = χ{δ−1/100≤|y|≤100δ−1},
K̃δ(y, s) = Kδ(y, s)χδ(y), and

T̃δF (x, t) =

∫∫
K̃δ(x− y, t− s)F (y, s) dy ds.

Then it is enough to show that

(2.6) ‖T̃δF‖L∞
x L2

t
≤ C δ(n+1)/2 ‖F‖L1

xL
2
t
.

From (2.5), it follows that

Ft(T̃δF )(x, τ)

=

∫
FtF (y, τ)

∫
φ̂
(τ + r2

δ

)
χδ(x− y)ψ(r)

( ∫
Sn−1

eir(x−y)·θdθ
)
dr dy.

Hence by Plancherel’s theorem we see that ‖T̃δF (x, ·)‖2L2
t
is bounded by∫ [ ∫

|FtF (y, τ)|
∫ ∣∣∣ φ̂(τ + r2

δ

)
χδ(x− y)ψ(r)

∫
Sn−1

eir(x−y)·θdθ
∣∣∣ dr dy]2dτ.

Using the fact that
∫
eirx·θdθ = O(|x|−(n−1)/2) for large |x|, and integrating in r,

‖T̃δF (x, ·)‖2L2
t
≤ Cδn+1

∫ (∫
|FtF (y, τ)| dy

)2

dτ.

By Minkowski’s inequality and Plancherel’s theorem,

‖FtF‖L2
τL

1
x
≤ ‖FtF‖L1

xL
2
τ
= ‖F‖L1

xL
2
t
.

Hence we get (2.6). �
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Throughout this paper we use several times the following summation lemma
which is due to Bourgain [2] (see also [3] for a generalization). The lemma is a
version of Lemma 2.3 in [18] for Banach-valued functions. (For a proof we refer
the reader to [18].)

Lemma 2.2. Let ε1, ε2 > 0. Let 1 ≤ q ≤ ∞ and 1 ≤ r1, r2 < ∞. Suppose
that f1(y, z), f2(y, z), . . . are a sequence of functions defined on R

l ×R
m for which

‖fj‖Lr1
y Lq

z
≤M12

ε1j and ‖fj‖Lr2
y Lq

z
≤M22

−ε2j holds. Then∥∥∥∑ fj

∥∥∥
Lr,∞

y Lq
z

≤ CMθ
1 M

1−θ
2 ,

where θ = ε2/(ε1 + ε2) and 1/r = θ/r1 + (1 − θ)/r2. Here we denote by Lr,∞
y the

weak Lr space.

Using this lemma, we remove the assumption that the spatial Fourier transform
of F is supported in {|ξ| ∼ 1}.
Proposition 2.3. Let n ≥ 3. Suppose that the spatial Fourier transform of F is
supported in {(ξ, τ) ∈ R

n × R : |ξ| ≤ 2}. Then we have

‖TδF‖Lr
xL

2
t
≤ C δ−(n−1)/2+n/r̃ ′ ‖F‖Lr̃ ′

x L2
t

for r and r̃ ′ satisfying n/(n− 1) < r̃ ′ ≤ 2 and 1/r + 1/r̃ ′ ≤ (n− 1)/n.

Proof. Since we are assuming that F is supported in {(ξ, τ) : |ξ| ≤ 2}, we may
decompose Tδ so that

Tδ =
∑
j≥−1

T j
δ ,

where T j
δ is given by

T̂ j
δF (ξ, τ) = φ̂

(τ + |ξ|2
δ

)
φ(2j |ξ|) F̂ (ξ, τ).

By rescaling we have

T j
δ F (x, t) = T22jδ Fj(2

−jx, 2−2jt),

where Fj = φ(|D|)F (2j ·, 22j ·). Thus, by Proposition 2.1 we see that

(2.7) ‖T j
δF‖Lr

xL
2
t
≤ C δ−(n−1)/2+n/r̃ ′

2jn(1/r+1/r̃ ′−(n−1)/n) ‖F‖Lr̃ ′
x L2

t

for r and r̃ ′ satisfying 1 ≤ r̃ ′ ≤ 2 and (n+1)/r ≤ (n−1)(1−1/r̃ ′). If 1/r+1/r̃ ′ <
(n− 1)/n, we can sum to get the desired estimate. To obtain the estimates for the
endpoint cases 1/r + 1/r̃ ′ = (n− 1)/n, we use Lemma 2.2.

Fix r̃ ′ and r such that 1/r+1/r̃ ′ = (n− 1)/n and n/(n− 1) < r̃ ′ < 2. We now
choose r1 and r2, so that (n+ 1)/ri ≤ (n− 1)(1− 1/r̃ ′), i = 1, 2, and

1

r2
+

1

r̃ ′
<
n− 1

n
<

1

r1
+

1

r̃ ′
.
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Note that (1/r̃ ′, 1/r) is on the open segment joining (1/r̃ ′, 1/r1) and (1/r̃ ′, 1/r2).
From (2.7) we see

‖T j
δF‖Lri

x L2
t
≤ C δ−(n−1)/2+n/r̃ ′

2jn(1/ri+1/r̃ ′−(n−1)/n) ‖F‖Lr̃ ′
x L2

t

for i = 1, 2. Now we can apply Lemma 2.2 with εi = n|1/ri + 1/r̃ ′ − (n− 1)/n|.
We get

‖T j
δF‖Lr,∞

x L2
t
≤ C δ−(n−1)/2+n/r̃ ′ ‖F‖Lr̃ ′

x L2
t
.

This weak type estimate for 1/r + 1/r̃ ′ = (n − 1)/n and n/(n − 1) < r̃ ′ < 2
can be strengthened to strong type by real interpolation. Finally, the estimate for
(1/r̃ ′, 1/r) = (1/2, (n− 2)/(2n)) can be obtained directly from

(2.8) ‖TδF‖L2
tL

2n/(n−2)
x

≤ C δ1/2 ‖F‖L2
tL

2
x

via Minkowski’s inequality. This also follows from the endpoint space-time homo-
geneous estimate. Indeed, by Hölder’s inequality we see

|TδF (x, t)| ≤ C δ1/2
∥∥ei(t−s)ΔF (s)

∥∥
L2

s
,

and so
‖TδF‖L2

tL
2n/(n−2)
x

≤ C δ1/2
∥∥ei(t−s)ΔF (s)

∥∥
L2

sL
2
tL

2n/(n−2)
x

by Minkowski’s inequality. Applying (1.1) with (q, r) = (2, 2n/(n−2)), we get (2.8).
�

3. Sufficiency part: proofs of Theorems 1.1 and 1.2

In this section we will prove Theorems 1.1 and 1.2. We may assume that the space
time Fourier transform of F is supported in the set {(ξ, τ) : |ξ| ≤ 2, |τ | ≤ 2} since
this additional assumption can be simply removed by rescaling together with the
condition (1.5).

Proof of Theorem 1.1. Since we already have the estimates in the hexagon H,
to show (1.12) it suffices to show the estimates when (1/r̃ ′, 1/r) ∈ (

ΔQRS ∪
ΔQ′R′S′) \ ([Q,R]∪ [Q′, R′]

)
. By duality and complex interpolation, it is enough

to show the case where (1/r̃ ′, 1/r) ∈ ΔQRS \ ([Q,R] ∪ [Q,S]).
Let Ω = Ω(n) denote the closed triangle with vertices C, ((n− 1)/n, 0), and

(1, 0) from which the point ((n− 1)/n, 0) is removed. The proof is then based on
the following estimate. For (1/r̃ ′, 1/r) ∈ Ω,

(3.1) ‖TδF‖Lr
xL

q
t
≤ C δ1/q̃

′−1/q+n
2 (1/r̃ ′−1/r) ‖F‖

Lr̃ ′
x Lq̃ ′

t

holds provided that

−n
2

(1
r
+

1

r̃ ′
− 1

)
≤ 1

q
≤ 1

q̃ ′
≤ 1 +

n

2

(1
r
+

1

r̃ ′
− 1

)
.
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This can be shown by interpolating the case (1/r̃ ′, 1/r) = (1, 0) and the case
in which (1/r̃ ′, 1/r) is on the line segment joining C and ((n− 1)/n, 0). Since
Proposition 2.3 already gives the estimates on the line segment, we only need to
show that

‖TδF‖L∞
x Lq

t
≤ C δ1/q̃

′−1/q+n/2 ‖F‖
L1

xL
q̃ ′
t

for 1 ≤ q̃ ′ ≤ q ≤ ∞. By Minkowski’s inequality, it is enough to show that

‖TδF‖Lq
tL

∞
x

≤ δ1/q̃
′−1/q+n/2 ‖F‖

Lq̃ ′
t L1

x
.

Using the fact that
∥∥ei(t−s)Δg

∥∥
L∞

x
≤ C|t− s|−n/2‖g‖L1

x
(dispersive estimate), this

follows from (2.1) and Young’s inequality.

Now we fix r̃ ′ and r such that (1/r̃ ′, 1/r) ∈ ΔQRS \ ([Q,S]∪ [Q,R]). We claim
that there is (1/q̃′, 1/q) ∈ [0, 1]× [0, 1] which satisfies (1.5) and

(3.2) − n

2

(1
r
+

1

r̃ ′
− 1

)
<

1

q
≤ 1

q̃ ′
< 1 +

n

2

(1
r
+

1

r̃ ′
− 1

)
.

Indeed, since (1/r̃ ′, 1/r) ∈ ΔQRS \ ([Q,S] ∪ [Q,R]), it follows that

(3.3) 0 ≤ 1− n

2

( 1

r̃ ′
− 1

r

)
< 1− n

( 1

r̃ ′
− 1

2

)
< 1 +

n

2

(1
r
+

1

r̃ ′
− 1

)
< 1.

The third inequality in (3.3) says that (1/r̃ ′, 1/r) lies above the line joining Q
and R. Hence, there exists 1 < q̃ ′ <∞ such that

(3.4) 1− n
( 1

r̃ ′
− 1

2

)
<

1

q̃ ′
< 1 +

n

2

(1
r
+

1

r̃ ′
− 1

)
.

(Note that the first inequality is also one of the necessary conditions in (1.7).) Now
just set 1/q = 1/q̃ ′ + n/2 (1/r̃ ′ − 1/r) − 1 and (1.5) is obviously satisfied . Then
the first inequality in (3.3) gives the second in (3.2), and the first in (3.4) implies
the first in (3.2). From (3.2), we can find a small neighborhood V of (1/r̃ ′, 1/r),
contained in Ω, such that, for (1/a, 1/b) ∈ V ,

−n
2

(1
b
+

1

a
− 1

)
<

1

q
≤ 1

q̃ ′
< 1 +

n

2

(1
b
+

1

a
− 1

)
.

Therefore, by (3.1) we have, for (1/a, 1/b) ∈ V ,

(3.5) ‖δ−1 TδF‖Lb
xL

q
t
≤ C δ1/q̃

′−1/q+n
2 (1/a−1/b)−1 ‖F‖

La
xL

q̃ ′
t

.

Once this is obtained, we can prove the desired estimates by repeating the argu-
ment in the proof of Proposition 2.3. In fact, we consider a point (1/a0, 1/b0) ∈ V
on the line 1/a− 1/b = 1/r̃ ′ − 1/r and choose two points (1/a0, 1/bi) ∈ V, i = 1, 2,
such that

1

q̃ ′
− 1

q
+
n

2

( 1

a0
− 1

b1

)
− 1 < 0 <

1

q̃ ′
− 1

q
+
n

2

( 1

a0
− 1

b2

)
− 1.
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Replacing (a, b) with (a0, b1) and (a0, b2) in the inequality (3.5), we have two
estimates to which we can apply Lemma 2.2 with εi = |1/q̃ ′ − 1/q + n

2 (1/a0 −
1/bi)− 1|. Hence, we get∥∥∥ ∑

δ∈2Z

δ−1 TδF
∥∥∥
L

b0,∞
x Lq

t

≤ C‖F‖
L

a0
x Lq̃ ′

t

for all (1/a0, 1/b0) ∈ V if 1/a− 1/b = 1/r̃ ′ − 1/r. We now interpolate these esti-
mates to get the strong type estimate, in particular, at (1/r̃ ′, 1/r). This completes
the proof. �

Proof of Theorem 1.2. First we claim that, for 1 ≤ r̃ ′, q̃ ′ ≤ 2 ≤ r, q ≤ ∞, and
0 < δ � 1,

(3.6) ‖TδF‖Lr
xL

q
t
≤ C δ1/r̃

′−1/r+ 1
2 (1/q̃

′−1/q) ‖F‖
Lr̃ ′

x Lq̃ ′
t

whenever F̂ is supported in {(ξ, τ) ∈ R × R : |ξ| ≤ 1, |τ | ∼ 1}. From (2.3) we see
that the Fourier transform of Tδ is essentially supported in the δ-neighborhood
of {(ξ, τ) : τ = −|ξ|2, |τ | ∼ 1}. Hence it is sufficient to show (3.6) under the
assumption that the Fourier support of F is contained in {(ξ, τ) ∈ R×R : |ξ| ∼ 1,
|τ | � 1}. The contribution from the other region is negligible.

Under this assumption, by (2.3), Plancherel’s theorem in t, and Hölder’s in-
equality it follows that

‖TδF (x, ·)‖L2
t
≤ C

( ∫ ∣∣∣ ∫
1/2≤|ξ|≤2

eixξ φ̂
(τ + |ξ|2

δ

)
F̂ (ξ, τ) dξ

∣∣∣2dτ)1/2

≤ C δ1/2
( ∫ ∫

1/2≤|ξ|≤2

∣∣F̂ (ξ, τ)∣∣2dξ dτ)1/2

.

Plancherel’s theorem gives ‖TδF‖L∞
x L2

t
≤ C δ1/2 ‖F‖L2

xL
2
t
. By this and duality we

have ‖TδF‖L∞
x L2

t
≤ Cδ‖F‖L1

xL
2
t
, and from the dispersive estimate ‖TδF‖L∞

x L∞
t

≤
C δ3/2 ‖F‖L1

xL
1
t
. Interpolation between these two estimates gives, for 1 ≤ q̃ ′ ≤ 2 ≤

q ≤ ∞,
‖TδF‖L∞

x Lq
t
≤ C δ δ

1
2 (1/q̃

′−1/q) ‖F‖
L1

xL
q̃ ′
t

.

Let Q ⊂ R
1+1 be a cube of side length δ−1 and let Q̃ be the cube of side

length C δ−1 which has the same center as Q. Here C > 0 is a sufficiently large
constant. By Hölder’s inequality we have for 1 ≤ r̃ ′, q̃ ′ ≤ 2 ≤ r, q ≤ ∞, and
0 < δ � 1,

(3.7) ‖Tδ(χ ˜QF )‖Lr
xL

q
t (Q) ≤ C δ1/r̃

′−1/r+ 1
2 (1/q̃

′−1/q) ‖F‖
Lr̃ ′

x Lq̃ ′
t

.

Now we deduce (3.6) from this. First, from the assumption that the Fourier trans-
form of F is contained in {(ξ, τ) ∈ R×R : |ξ| ∼ 1}, we observe that Tδ is localized
at scale δ−1 in x. More precisely, the kernel Kδ of Tδ satisfies that

|Kδ(x, t)| ≤ C δM χ[1/2δ, 2/δ](|t|) (1 + |x|)−M

for any M if |x| ≥ Cδ−1. (See (2.5) and the paragraph following it).
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Hence it follows that if (x, t) ∈ Q, then

(3.8) |TδF (x, t)| ≤ C| Tδχ ˜QF (x, t)| + CδM (Eδ ∗ |F |)(x, t)

for some largeM > 0 where Eδ = χ[1/2δ, 2/δ](t)(1+ |x|)−M . Let {Q} be a collection
of (essentially disjoint) cubes of side length δ−1 which cover R1+1. Then by (3.8)
we have

‖TδF‖Lr
xL

q
t
≤ C

∥∥∥∑
Q

χQ

∣∣Tδ(χ ˜QF )
∣∣∥∥∥

Lr
xL

q
t

+ C δM‖F‖
Lr̃ ′

x Lq̃ ′
t

because r ≥ r̃ ′ and q ≥ q̃ ′. Hence, by Minkowski’s inequality and (3.7) we have

‖TδF‖Lr
xL

q
t
≤ C

(∑
Q

‖Tδ(χ ˜QF )‖pLr
xL

q
t (Q)

)1/p

+ C δM ‖F‖
Lr̃ ′

x Lq̃ ′
t

≤ C δ1/r̃
′−1/r+ 1

2 (1/q̃
′−1/q)

(∑
Q

‖χ
˜QF‖pLr̃ ′

x Lq̃ ′
t

)1/p

+ C δM ‖F‖
Lr̃ ′

x Lq̃ ′
t

,

where p = min(q, r). Since r ≥ r̃ ′ and q ≥ q̃ ′, using Minkowski’s inequality again,
we get the desired inequality (3.6).

For j ∈ Z, define the multiplier operators PjF by

P̂jF (ξ, τ) = φ(2jτ)F̂ (ξ, τ).

Using (2.2), (3.6), Lemma 2.2, and repeating the previous argument, one can show
that

(3.9)
∥∥∥P0

(∫ t

−∞
ei(t−s)ΔF (s) ds

)∥∥∥
Lr

xL
q
t

=
∥∥∥∑

δ∈Z

δ−1 Tδ(P0F )
∥∥∥
Lr

xL
q
t

≤ C‖P0F‖Lr̃ ′
x Lq̃ ′

t

provided that 1 < r̃ ′ < 2 < r <∞, 1 ≤ q̃ ′ < 2 < q ≤ ∞, and 1/r̃ ′−1/r+ 1
2 (1/q̃

′−
1/q) ≥ 1.

In fact, the case 1/r̃ ′ − 1/r + 1
2 (1/q̃

′ − 1/q) > 1 can be obtained by direct
summation because ‖TδF‖Lr

xL
q
t
≤ C‖F‖

Lr̃ ′
x Lq̃ ′

t
for δ ≥ 1. Now by rescaling it

follows that∥∥∥Pj

( ∫ t

−∞
ei(t−s)ΔF (s) ds

)∥∥∥
Lr

xL
q
t

≤ C 2j(1−
1
2 (1/r̃

′−1/r)−(1/q̃ ′−1/q)) ‖PjF‖Lr̃ ′
x Lq̃ ′

t

.

Hence we have uniform bounds if 1
2 (1/r̃

′− 1/r)+1/q̃ ′− 1/q = 1 and the condition
for (3.9) is satisfied. Now note that if 1/r̃ ′−1/r ≥ 2/3, there are q̃ ′ and q satisfying
1
2 (1/r̃

′ − 1/r) + 1/q̃ ′ − 1/q = 1 and 1/r̃ ′ − 1/r + 1
2 (1/q̃

′ − 1/q) ≥ 1. Therefore, if
1/r̃ ′ − 1/r ≥ 2/3 and 1 < r̃ ′ < 2 < r <∞, we have, for some 1 < q̃ ′ < 2 < q <∞,∥∥∥Pj

(∫ t

−∞
ei(t−s)ΔF (s) ds

)∥∥∥
Lr

xL
q
t

≤ C ‖PjF‖Lr̃ ′
x Lq̃ ′

t

.
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We put these estimates together using the Littlewood–Paley theorem in t. Since
1 < r̃ ′ < 2 < r < ∞ and 1 < q̃ ′ ≤ 2 ≤ q < ∞, by the Littlewood–Paley theorem
and Minkowski’s inequality∥∥∥∑

j

T (PjF )
∥∥∥
Lr

xL
q
t

�
∥∥∥(∑

j

‖T (PjF )‖2Lq
t

)1/2∥∥∥
Lr

x

�
(∑

j

‖T (PjF )‖2Lr
xL

q
t

)1/2

�
(∑

j

‖PjF‖2
Lr̃′

x Lq̃ ′
t

)1/2

�
∥∥∥(∑

j

‖PjF‖2
Lq̃ ′

t

)1/2∥∥∥
Lr̃′

x

� ‖F‖
Lr̃′

x Lq̃ ′
t
.

This completes the proof. �

4. Necessary conditions

By constructing some counterexamples, we show the conditions (1.8) and (1.9).

Proof of (1.9). Let M > 0 be a sufficiently large number and set

F̂ (ξ, τ) = ϕ(|ξ|)ψ(M1/2(τ + 1)),

where ψ ∈ S(R) with supp F−1(ψ) ∈ [0, 1] and ϕ is a smooth function supported
in (1/2, 2) with ϕ(1) = 1. Note that if |t| ∼M , then we write∫ t

0

ei(t−s)ΔF (s) ds =

∫
Rn

eix·ξ e−it|ξ|2 F̂ (ξ,−|ξ|2) dξ

because the support of F (y, ·) is contained in [0,M1/2] for all y. Since we have∫
Sn−1 e

ix·ξ dσ(ξ) = C|x|−(n−2)/2 J(n−2)/2(|x|), by the asymptotic behavior of the
Bessel function [22], we see that

∣∣∣ ∫ t

0

ei(t−s)ΔF (s) ds
∣∣∣ ∼ |x|−(n−1)/2 |I(x, t)|

for sufficiently large |x|, where

I(x, t) =

∫ ∞

0

r−(n−1)/2 ϕ(r)ψ
(
M1/2(r2 − 1)

)
e−itr2 cos

(
r|x| − π(n− 1)/4

)
dr.

We set ϕ̃ = r−(n−1)/2 ϕ(r). Then we have

I(x, t) =

∫
ϕ̃(1)ψ

(
M1/2(r2 − 1)

)
e−itr2 cos

(
r|x| − π(n− 1)/4

)
dr

+

∫ (
ϕ̃(r) − ϕ̃(1)

)
ψ
(
M1/2(r2 − 1)

)
e−itr2 cos

(
r|x| − π(n− 1)/4

)
dr.
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By the rapid decay of ψ, the support of ϕ̃, and the mean value theorem it is easy
to see that the second term on the right-hand side is O(M−1). Similarly, for a
large constant B > 0,

I(x, t) =

∫
|r−1|≤BM−1/2

ψ
(
M1/2(r2 − 1)

)
e−itr2 cos

(
r|x| − π(n− 1)/4

)
dr

+O(M−1/2/B100) +O(M−1).

Hence, we get

I(x, t) =
1

2

(
e−iπ(n−1)/4 I−(x, t) + eiπ(n−1)/4 I+(x, t)

)
+O(M−1/2/B100),

where

I±(x, t) =
∫
|r−1|≤BM−1/2

e−i(tr2±r|x|)ψ
(
M1/2(r2 − 1)

)
dr.

By changing variables r → r + 1 and r →M−1/2r, it follows that

I−(x, t) = e−i(t−|x|)M−1/2

∫
|r|≤B

e−i
(
tM−1r2+(2t−|x|)M−1/2r

)
ψ(2r +M−1/2r2)dr.

Thus, if |t| ∼ M/B2 and |2t− |x|| � M1/2/B, we get |I−(x, t)| � M−1/2. On the
other hand, we see that |I+(x, t)| � B2M−1 if |t| ∼M and |x| ∼M . Consequently,
if |t| ∼ M , |x| ∼ M , and |2t− |x|| �M1/2, then |I(x, t)| � M−1/2. Therefore, we
see that ∥∥∥ ∫ t

0

ei(t−s)ΔF (s) ds
∥∥∥
Lr

xL
q
t

�M−n/2M1/2qMn/r.

Also, it is easy to see that ‖F‖
Lr̃ ′

x Lq̃ ′
t

� M−1/2M1/2q̃′ . Hence, the estimate (1.4)

implies that
M−n/2M1/2qMn/r �M−1/2M1/2q̃′ .

By letting M → ∞, we get the first inequality in (1.9), and the second one follows
from duality. �

Proof of (1.8). Write

U(F )(x, t) =

∫ t

0

ei(t−s)ΔF (s) ds.

Then, using the kernel of eitΔ, we have

U(F )(x, t) =

∫ t

0

∫
Rn

(t− s)−n/2 exp
( i|x− y|2
4(t− s)

)
F (y, s) dy ds.

For 0 < δ � 1, we set

F (y, s) = Φ
(
δ1/2(y1 + 2s), δ1/2 y, δs

)
e−i(y1+s),

where Φ(y1, y, s) = χ(y1)χ(y2) · · · χ(yn)χ(s) and χ = χ[0,1].
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By the change of variables y1 → y1 − 2s, we see that

ei(x1+t)U(F )(x, t) =

∫ t

0

∫
Rn

(t− s)−n/2 eiP (x,y,t,s)Φ
(
δ1/2 y1, δ

1/2 y, δs
)
dy ds,

where

P (x, y, t, s) =
|x− y|2 + (x1 − y1 + 2t)2

4(t− s)
.

Note that |P (x, y, t, s)| � 1 if (x1 + 2t)2 ≤ δ−1, |x| ≤ δ−1/2, and 100δ−1 ≤ t ≤
200δ−1. We see

|U(F )(x, t)| � δn/2
∣∣∣ ∫ t

0

∫
Rn

Φ dy ds
∣∣∣ � δ−1,

provided that (x1 + 2t)2 ≤ δ−1, |x| ≤ δ−1/2 and 100δ−1 ≤ t ≤ 200δ−1. Hence

‖U(F )‖Lr
xL

q
t
� δ−1 δ−1/2q δ−(n+1)/2r.

On the other hand, ‖F‖
Lr̃′

x Lq̃′
t

≤ Cδ−1/2q̃′δ−(n+1)/2r̃′ . From (1.4) we get

δ−1 δ−1/2q δ−(n+1)/2r � δ−1/2q̃′ δ−(n+1)/2r̃′ .

By letting δ → 0, we get (1.8). �
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