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Stochastic variational formulas for solutions

to linear diffusion equations

Joseph G. Conlon and Mohar Guha

Abstract. This paper is concerned with solutions to a one-dimensional
linear diffusion equation and their relation to some problems in stochastic
control theory. A stochastic variational formula is obtained for the loga-
rithm of the solution to the diffusion equation, with terminal data which is
the characteristic function of a set. In this case the terminal data for the
control problem is singular, and hence standard theory does not apply.
The variational formula is used to prove convergence, in the zero noise
limit, of the cost function for the stochastic control problem and its first
derivatives, to the corresponding quantities for a classical control problem.

1. Introduction

In this paper we shall be concerned with solutions to a linear diffusion equation
and their relation to some problems in stochastic control theory. For T > 0 let
b(y, t), y ∈ R, t ≤ T , be a function with a partial derivative in y that is continuous
in (y, t) and satisfies the uniform bound

(1.1) sup
{|∂b(y, t)/∂y| : y ∈ R, t ≤ T

} ≤ A,

for some constant A ≥ 0. We shall be interested in solutions uε(x, y, t) to the
partial differential equation (PDE)

(1.2)
∂uε
∂t

+ b(y, t)
∂uε
∂y

+
ε

2

∂2uε
∂y2

= 0, y ∈ R, t < T,

with terminal condition

lim
t→T

uε(x, y, t) = 0 for y < x,

lim
t→T

uε(x, y, t) = 1 for y > x.
(1.3)
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It follows from standard methods [7] that uε(x, y, t) is a continuous function of
(x, y, t) for x, y ∈ R, t < T , and that also the first derivative uε(x, y, t) in t and
second derivatives in (x, y) exist and are continuous in (x, y, t). Evidently uε(x, y, t)
is given in terms of the fundamental solution Gε(y, y

′, t, T ) for (1.2) by the formula

(1.4) uε(x, y, t) =

∫ ∞

x

Gε(y, y
′, t, T ) dy′.

It is well known [12] that if b(·, ·) satisfies (1.1) then the stochastic differential
equation (SDE)

(1.5) dYε(s) = b (Yε(s), s) ds+
√
ε dW (s),

where W (·) is Brownian motion, has a unique solution in the interval t ≤ s ≤ T
with given initial condition Yε(t) = y. Furthermore, uε(x, y, t) is related to solu-
tions of (1.5) by the identity

(1.6) uε(x, y, t) = P
(
Yε(T ) > x | Yε(t) = y

)
, t < T.

The connection between solutions of (1.2)–(1.3) and control theory comes via
the function qε(x, y, t) defined by

(1.7) uε(x, y, t) = exp
[− qε(x, y, t)/ε

]
.

In view of (1.6) the function qε is positive, and by virtue of (1.2) and (1.3) it
satisfies the PDE

(1.8)
∂qε
∂t

+ b (y, t)
∂qε
∂y

− 1

2

(∂qε
∂y

)2

+
ε

2

∂2qε
∂y2

= 0, y ∈ R, t < T,

with terminal condition

lim
t→T

qε(x, y, t) = ∞ for y < x,

lim
t→T

qε(x, y, t) = 0 for y > x.
(1.9)

If we let ε → 0 in (1.8) we obtain a Hamilton–Jacobi equation, and therefore
should expect that the limit of qε(x, y, t) as ε → 0 is given by the solution of a
variational problem. This turns out to be the case. Let q(x, y, t) be defined by

(1.10) q (x, y, t) = min
{ 1

2

∫ T

t

[dy(s)
ds

− b (y(s), s)
]2
ds

∣∣ y(t) = y, y(T ) > x
}
.

The functional in (1.10) is minimized over all paths y(s), t ≤ s ≤ T , with
initial point y(t) = y and terminal point y(T ) > x. For x ∈ R and t ≤ T , define
the function F (x, t) by F (x, t) = y(t), where y(·) is the solution to the terminal
value problem

(1.11)
dy(s)

ds
= b (y(s), s), s ≤ T, y(T ) = x.

Then one easily sees that q(x, y, t) = 0 if y ≥ F (x, t), whence the function q(x, y, t)
is nontrivial only for sufficiently large negative values of y. In Section 3 we prove
the following theorem showing that qε converges to q as ε→ 0.
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Theorem 1.1. Assume b(·, ·) satisfies (1.1). Then for x, y ∈ R, t < T and
0 < ε < 1, there is a constant C depending only on x, y, t, T and A, such that

(1.12)
∣∣ qε(x, y, t)− q (x, y, t)

∣∣ ≤ C
√
ε.

The inequality (1.12) implies, via (1.6), the large deviation result for solutions
to the stochastic equation (1.5),

(1.13) lim
ε→0

ε log
[
P
(
Yε(T ) > x

∣∣ Yε(t) = y
)]

= −q(x, y, t),

a result which also follows from Theorem 1.2 of Chapter 4 of [8].
Inequalities of the type (1.12) for terminal data which is not singular, unlike

in the case of (1.9), have been known for many years [2], [4], [5]. Theorem 5.1 of
Crandall–Lions [2] implies that, in the case of constant b(·, ·), the inequality (1.12)
holds for qε(x, y, t) satisfying (1.8) with terminal data qε(x, ·, T ) that is bounded
and uniformly Lipschitz. A short elegant proof of the Crandall–Lions theorem
has recently been given by Evans [3]. The techniques used in [2] and [3] are
pure PDE methods. The approach of Fleming [4] is closer to the one we use in the
present paper since it combines methods of stochastic analysis with PDE methods.
However as in [2], terminal data is assumed to be Lipschitz, and his result applies
for the PDE (1.8) only in the case when the function b(·, ·) is constant.

In proving Theorem 1.1 we take the approach of showing that in some sense
qε(x, y, t) is the cost function of a stochastic control problem. The formal limit
as ε→ 0 of this stochastic control problem is a classical control problem with cost
function q(x, y, t) given by (1.10). The stochastic control problem can be described
as follows: Let yε(·) be the solution to the stochastic differential equation,

(1.14) dyε(s) = λε(·, s) ds+
√
ε dW (s),

where λε(·, s) is a nonanticipating function. The cost function for the problem is
given by the formula,
(1.15)

qε(x, y, t) = min
λε

E
[1
2

∫ T

t

[
λε(·, s)− b (yε(s), s)

]2
ds

∣∣ yε(t) = y, yε(T ) > x
]
.

Thus the minimum in (1.15) is to be taken over all nonanticipating λε(·, s), t ≤
s < T , which have the property that the solutions of (1.14) with initial condition
yε(t) = y satisfy the terminal condition yε(T ) > x with probability 1. One expects
that the function qε(x, y, t) of (1.15) is identical to the function qε(x, y, t) of (1.7),
and the optimal controller λε(·, s) is given by the formula

(1.16) λε(·, s) = λ∗ε
(
x, yε(s), s

)
= b

(
yε(s), s

)− ∂qε
∂y

(
x, yε(s), s

)
.

This is not so easy to prove. An immediate question that arises is how to define
a suitable space of nonanticipating functions λε(·, s), t ≤ s < T , which have the
property that solutions of (1.14) with initial condition yε(t) = y satisfy yε(T ) > x
with probability 1.
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For the purposes of proving Theorem 1.1, it is actually only necessary to show
that equality in (1.15) holds in the approximate sense

(1.17) qε(x, y, t) = E
[ 1

2

∫ T−√
ε

t

[
λε(·, s)− b (yε(s), s)

]2
ds

∣∣ yε(t) = y
]
+O(

√
ε),

where λε(·, s) is a controller chosen suitably close to the formal optimizer (1.16).
The identity (1.17) turns out to be much easier to establish than the equality
in (1.15) when λε(·, s), t ≤ s < T , is given by (1.16). The reason is that the func-
tion qε(x, ·, T −√

ε) can be shown to have good Lipschitz properties by using PDE
methods. The original stochastic control problem on the time interval t < s < T is
then replaced by a stochastic control problem on the interval t < s < T −√

ε, and
hence becomes closer to the situation studied in [2], [3], [4]. In Section 3 we obtain
upper and lower bounds on qε(x, y, t) of the form q(x, y, t) + O(

√
ε) by exploit-

ing the variational formulation of the stochastic control problem on the interval
t < s < T −√

ε. To get the upper bound for qε(x, y, t) we choose λε(·, s) to be the
optimal controller for the corresponding classical control problem (1.10). To get
the lower bound on qε(x, y, t) we choose λε(·, s) to be given by (1.16).

In Section 4 and Section 6 we address the issue of understanding in what
sense (1.15) holds when qε(x, y, t) is given by (1.7). Instead of attempting to
establish the formula (1.15) we shall confine ourselves to the simpler problem of
showing that the expectation on the right-hand side of (1.15) is greater than or
equal to qε(x, y, t) for certain nonanticipating functions λε(·, s), t ≤ s < T , and
that there is equality when the controller λε is taken to be the formal optimal
controller λ∗ε of (1.16).

In Section 4 we show that the solution yε(s), t ≤ s < T , of (1.14) with initial
condition yε(t) = y and λε(·, s) given by the optimal controller (1.16), has the
property that

(1.18) lim inf
t→T

yε(t) > x with probability 1.

The proof of (1.18) depends crucially on obtaining a lower bound on the deriva-
tive of the function qε of (1.7),

(1.19) − ∂qε
∂y

(x, y, t) ≥ x− y

T − t
[1− η(δ)], 0 < T − t < δ, x− y < γ,

where γ is independent of δ and limδ→0 η(δ) = 0. Observe that the inequality (1.19)
is only nontrivial for y < x since −∂qε(x, y, t)/∂y ≥ 0, y ∈ R, by the maximum
principle. The proof of (1.19) relies on the use of the Cameron–Martin formula [21]
applied to the diffusion Yε(·) of (1.5). One can see from (1.4) that the inequali-
ty (1.19) gives some information about the short time asymptotics of fundamental
solutions to diffusion equations. Over several decades there has been much re-
search [11], [17], [18], [22] devoted to this subject. In particular, Molchanov [18]
has obtained short time asymptotic formulas for diffusions with bounded drift.
These results have been used by Fleming and Sheu [6] to prove a representation
formula analogous to (1.15) for the logarithm of the fundamental solution.
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In order to establish that the expectation on the right-hand side of (1.15) with
λε(·, s), t ≤ s < T , given by (1.16) is equal to the left-hand side, one needs to
prove that the inequality (1.19) holds uniformly for y ∈ R, i.e., γ = ∞. This turns
out to be a considerably more difficult task than proving (1.19) for some γ > 0.
It is not possible to obtain estimates by means of the Cameron–Martin formula,
and instead one uses an induction argument. The problem of obtaining a uniform
lower bound (1.19) is closely related to the problem of estimating probabilities for
the diffusion Yε(·) of (1.5) tied at 2 different times. In Section 5 we prove the
following:

Theorem 1.2. Suppose b(·, s), 0 ≤ s ≤ T , satisfies (1.1) and suppose, in addition,
b(0, s) = 0, 0 ≤ s ≤ T . Then there exist positive universal constants η, C1, C2, γ1
and γ2, such that

(1.20) P
(
Yε(t) <

C1(T − t)y

T

∣∣ Yε(0) = y, Yε(T ) = 0
)

≤ exp
[
− γ1(T − t)y2

εT 2

]
, y < −T

√
ε/(T − t),

(1.21) P
(
Yε(t) >

C2(T − t)y

T

∣∣ Yε(0) = y, Yε(T ) = 0
)

≤ exp
[
− γ2(T − t)y2

εT 2

]
, y < −T

√
ε/(T − t),

provided AT < η and T − t < T/2.

In Section 6 we not only show that the expectation on the right-hand side
of (1.15) with λε(·, s) given by (1.16) equals the left-hand side. We also obtain
corresponding formulas for the first derivatives of qε(x, y, t) in x and y. An im-
mediate consequence of this, Corollary 6.3, is that the fundamental solution Gε

for (1.2) satisfies the inequality

(1.22) Gε(y, x, t, T ) ≤
[
1 + (T − t)A

]
uε(x, y, t)

[−2 loguε(x, y, t)

ε (T − t)

]1/2
,

where A is the constant in (1.1) and uε(x, y, t) is given by (1.4). The inequal-
ity (1.22) appears to be nontrivial even in the case b ≡ 0, where it states that the
cumulative distribution function N(·) for the standard normal variable,

(1.23) N(z) =
1√
2π

∫ z

−∞
exp(−ρ2/2) dρ = 1

2
+

1

2
sign(z) erf

( |z|√
2

)
,

satisfies the inequality

(1.24) exp (−z2/2) ≤ 2
√
πN(z)

[− logN(z)
]1/2

, z ∈ R.

Let us assume now that the function b(y, t), in addition to satisfying (1.1), is
also concave in y for each t ≤ T . In Section 2 we show that in this case the function
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q(x, y, t) of (1.10) is C1 in (x, y, t) and is a classical solution of the ε = 0 Hamilton–
Jacobi equation (1.8). Furthermore, for any t < T the function q(x, y, t) is convex
in (x, y) and its second derivatives in (x, y) exist and are continuous on the set
{(x, y, t) : x, y ∈ R, t < T, y 	= F (x, t)}, where F (x, t) is the function defined
by (1.11). In the appendix we prove, using the method of Korevaar [9], [10], [14],
that the function qε(x, y, t) defined by (1.7) is also convex in (x, y) for any t < T .
Although Korevaar’s method is simple in concept, considerable difficulty arises here
in its implementation due to the fact that we need to approximate solutions of the
linear equation (1.2) by solutions of a quasi-linear equation (A.34). Hence we need
regularity theory, Proposition A.4, for solutions to quasi-linear equations [7], [15].
Alternative approaches [1], [16] to Korevaar’s method seem to also give rise to
comparable technical difficulties in the implementation.

The proof that for fixed (x, t) the function qε(x, y, t) is convex in y, Theo-
rem A.2, is much easier to establish than the joint convexity in (x, y). Using this
fact and the representation theorem of Section 6 we prove in Section 7 convergence
of first derivatives of qε(x, y, t) in (x, y) to first derivatives of q(x, y, t) as ε→ 0.

Theorem 1.3. Assume b(·, ·) satisfies (1.1) and in addition that b(y, t) is concave
in y for each t ≤ T . Then q(x, y, t) is C1 in (x, y, t) for t < T and

lim
ε→0

∂qε
∂x

(x, y, t) =
∂q

∂x
(x, y, t), x, y ∈ R, t < T,

lim
ε→0

∂qε
∂y

(x, y, t) =
∂q

∂y
(x, y, t), x, y ∈ R, t < T.

(1.25)

Theorem 1.3 gives no rate of convergence as ε → 0 like in Theorem 1.1, but
if one assumes some Hölder continuity of ∂b(y, t)/∂y in y, then the proof of the
theorem yields a rate of convergence which is a power of ε. It is of some interest to
compare Theorem 1.3 to the results of Kifer [13] on the asymptotics of the funda-
mental solution Gε(y, x, t, T ) defined by (1.4) as ε→ 0. In that paper asymptotic
formulas are established by using the fact that Gε(y, ·, t, T ) is the probability den-
sity function for the random variable Yε(T ) conditioned on Yε(t) = y. Estimates on
the probability density are then obtained by using large deviation techniques [8].
Emphasis in the paper is placed on the local nature of the result. Thus the behav-
ior of the drift b(·, ·) far from the minimizing trajectory in (1.10) is shown to be
largely irrelevant.

2. A classical control problem

Let b(y, s), y ∈ R, and s ≤ T satisfy (1.1) and consider the control dynamics

(2.1)
dy

ds
= λ(s), t ≤ s ≤ T, y(t) = y,

where the controller λ(s), t ≤ s ≤ T , is assumed to be piecewise continuous.
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We shall be interested in the optimal control problem with cost function q(x, y, t),
x, y ∈ R, t < T , defined by

(2.2) q(x, y, t) = min
λ(·)

{ 1

2

∫ T

t

[
λ(s)− b(y(s), s)

]2
ds

∣∣ y(t) = y, y(T ) > x
}
.

Formally the function q(x, y, t) of (2.2) satisfies the Hamilton–Jacobi equation

(2.3)
∂q

∂t
+ b (y, t)

∂q

∂y
− 1

2

(∂q
∂y

)2

= 0.

Since the minimum in (2.2) is over paths y(s), t ≤ s ≤ T , satisfying y(T ) > x,
the terminal condition on the PDE (2.3) is given by

lim
t→T

q(x, y, t) = ∞, y < x,

lim
t→T

q(x, y, t) = 0, y > x.
(2.4)

The optimal controller λ(s) for (2.2) is given by the formula

(2.5) λ(s) = λ∗(x, y(s), s) = b
(
y(s), s

)− ∂q
(
x, y(s), s

)
/∂y, t ≤ s ≤ T,

and the Euler–Lagrange equation for the minimizing trajectory is given by

(2.6)
d

ds

[ dy
ds

− b(y(s), s)
]
+
∂b

∂y
(y(s), s)

[ dy
ds

− b(y(s), s)
]
= 0, t ≤ s ≤ T.

Our first goal is to prove that there exists a minimizer for the variational prob-
lem. We have already observed that if F (·, ·) is the function defined by (1.11),
then q(x, y, t) = 0 if y ≥ F (x, t). Evidently in this case there is a unique mini-
mizer y(·) for (2.2), which is the solution to the differential equation (1.11) with
initial condition y(t) = y. For y < F (x, t) we need to define a space of func-
tions y(s), t ≤ s ≤ T , over which to minimize the expression in (2.2). For any
f ∈ L2[t, T ], let y(·) be determined from f by

(2.7) y(s) = y +

∫ s

t

f(s′) ds′.

Thus y(·) is Hölder continuous of order 1/2 on [t, T ] and y(t) = y. We define
Ex,y,t to be the space of all such functions y(s), t ≤ s ≤ T, with f ∈ L2[t, T ] and
y(T ) ≥ x. The distance between two functions y1, y2 ∈ Ex,y,t is given by the norm
‖y1−y2‖ = ‖f1−f2‖2, where y1 corresponds to f1 and y2 to f2 in (2.7). Evidently
the space Ex,y,t is complete under this distance function. Now (2.6) indicates that
on a minimizer y(s), t ≤ s ≤ T , for (2.2) the expression y′(s)− b(y(s), s) does not
change sign for s in the interval [t, T ]. We shall show that if y < F (x, t) the sign
is in fact positive.

Proposition 2.1. Assume the function b(·, ·) satisfies (1.1). Then there exists a
minimizer y(·) ∈ Ex,y,t of the variational problem (2.2). Any minimizer y(·) has
the property that y(·) is C1 in [t, T ]. If y < F (x, t) then y′(s) > b(y(s), s), for
t ≤ s ≤ T , and y(T ) = x. The function q(x, y, t) of (2.2) is continuous for
(x, y) ∈ R

2, and t < T .
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Proof. We define a functional F [y(·)] on Ex,y,t by

(2.8) F [y(·)] = 1

2

∫ T

t

[ dy
ds

− b(y(s), s)
]2
ds.

Following the standard method [20] we show that F [·] is weakly lower semicon-
tinuous on Ex,y,t. To this end let yN (·), N ≥ 1, be a sequence in Ex,y,t converging
weakly to y∞(·) ∈ Ex,y,t. Hence if fN , N ≥ 1, f∞ in L2[t, T ] are associated with
yN (·), N ≥ 1, and y∞(·) respectively, we have that

(2.9) lim
N→∞

〈f, fN 〉 = 〈f, f∞〉 , f ∈ L2[t, T ].

From the uniform boundedness principle [20] it follows that supN≥1‖fN‖2 <∞.
It also follows from (2.9) that limN→∞yN(s) = y∞(s), t ≤ s ≤ T , and that
sup{|yN(s)| : N ≥ 1, t ≤ s ≤ T } < ∞. Hence by the dominated convergence
theorem one has that

(2.10) lim
N→∞

∫ T

t

b (yN(s), s)2 ds =

∫ T

t

b (y∞(s), s)2 ds.

Using the uniform boundedness of the fN , N ≥ 1, we also have that

lim
N→∞

∫ T

t

[
b (yN(s), s)− b (y∞(s), s)

]
fN(s) ds = 0.

Hence using (2.9) again we conclude that

(2.11) lim
N→∞

∫ T

t

b (yN (s), s) fN (s) ds =

∫ T

t

b (y∞(s), s) f∞(s) ds.

Now (2.10) and (2.11) imply that

lim inf
N→∞

F [yN (·)] = 1

2
lim inf
N→∞

∫ T

t

[dyN (s)

ds

]2
ds

−
∫ T

t

b (y∞(s), s)
dy∞(s)

ds
ds+

1

2

∫ T

t

b (y∞(s), s)2 ds.

The lower semicontinuity of F [·] on Ex,y,t follows from the inequality

1

2

∫ T

t

[dy∞(s)

ds

]2
ds ≤ 1

2
lim inf
N→∞

∫ T

t

[dyN (s)

ds

]2
ds,

which is a consequence of the convexity of the Dirichlet form [20]. One eas-
ily concludes from the lower semicontinuity of F [·] the existence of a minimizer
y(·) ∈ Ex,y,t.

Suppose now y(·) ∈ Ex,y,t is a minimizer for F [·]. Then the first variation
of F [·] about y(·) must be 0, whence

(2.12)

∫ T

t

[ dϕ(s)
ds

− ∂b

∂y

(
y(s), s

)
ϕ(s)

][ dy(s)
ds

− b
(
y(s), s

)]
ds = 0,
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provided ϕ(·) is a C1 function satisfying ϕ(t) = 0 and ϕ(T ) = 0. Setting

ϕ(s) = ψ(s) exp
[ ∫ s

t

∂b

∂y

(
y(s′), s′

)
ds′

]
= ψ(s)V (s),

it follows from (2.12) that

(2.13)

∫ T

t

dψ

ds

[ dy
ds

− b (y(s), s)
]
V (s) ds = 0,

for all C1 functions ψ : [t, T ] → R with ψ(t) = ψ(T ) = 0. Equation (2.13) implies
that

(2.14)
[ dy
ds

− b (y(s), s)
]
V (s) = constant, t ≤ s ≤ T,

from which we can conclude that if y < F (x, t) then y′(s) > b(y(s), s) for all s,
t ≤ s ≤ T, and y(·) is C1. It also follows that y(T ) = x, for if y(T ) > x then there
exists t1 < T such that if y1(s), t1 ≤ s ≤ T , satisfies y1(t1) = y(t1) and y′1(s) =
b(y1(s), s), t1 ≤ s ≤ T , then y1(T ) > x. Evidently the function y∗(s), t ≤ s ≤ T ,
defined by y∗(s) = y(s), t ≤ s ≤ t1 and y∗(s) = y1(s), t1 ≤ s ≤ T , is in Ex,y,t and
satisfies F [y∗(·)] < F [y(·)], yielding a contradiction. One can argue in a similar
way to prove the continuity of the function q(x, y, t), (x, y) ∈ R

2, t < T . �

We have already observed that for y ≥ F (x, t) there is a unique minimizer
y(·) ∈ Ex,y,t for the variational expression (2.2) and it is given by the solution
y(·) of equation (1.11) with initial condition y(t) = y. For y < F (x, t) we need to
impose some condition on the function b(·, ·) beyond (1.1) to guarantee a unique
minimizer. To see what such a condition should be, suppose that y(s), t ≤ s ≤ T ,
is a solution of the Euler–Lagrange equation (2.6) with initial conditions satisfying

(2.15) y(t) = y, y′(t) > b(y, t).

Hence (2.6) implies that y′(s) > b(y(s), s), t ≤ s ≤ T . Suppose now that
y(s) + ϕ(s), t ≤ s ≤ T , is also a solution to (2.6) with ϕ(t) = 0 and ϕ′(t) = ε.
Then, to first order in ε, the function ϕ(s), t ≤ s ≤ T , satisfies the linear equation

d2ϕ

ds2
− d

ds

[ ∂b
∂y

(y(s), s)ϕ(s)
]
+
∂b

∂y
(y(s), s)

dϕ(s)

ds

−
[ ∂b
∂y

(y(s), s)
]2
ϕ(s) +

∂2b

∂y2
(y(s), s)

[ dy
ds

− b (y(s), s)
]
ϕ(s) = 0.(2.16)

Suppose now that ϕ(τ) = 0 for some τ, t < τ ≤ T . Then, on multiplying (2.16)
by ϕ(s) and integrating over the interval t ≤ s ≤ τ , we get

−
∫ τ

t

[ dϕ(s)
ds

]2
ds+ 2

∫ τ

t

∂b

∂y
(y(s), s)ϕ(s)

dϕ(s)

ds
ds

−
∫ τ

t

[ ∂b
∂y

(y(s), s)
]2
ϕ(s)2 ds−

∫ τ

t

V (s)ϕ(s)2 ds = 0,(2.17)
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where V (s) is given by the formula

(2.18) V (s) = − ∂2b

∂y2
(y(s), s)

[ dy
ds

− b (y(s), s)
]
.

Observe that by the Schwarz inequality we have

2

∫ τ

t

∂b

∂y
(y(s), s)ϕ(s)

dϕ(s)

ds
ds ≤

∫ τ

t

(dϕ(s)
ds

)2

+

∫ τ

t

[ ∂b
∂y

(y(s), s)
]2
ϕ(s)2 ds,

with strict inequality in general. Thus if V (·) in (2.18) is nonnegative the ex-
pression (2.17) is strictly negative in general. Since V (·) is nonnegative if the
function b(y, s) is concave in y, it appears that one gets a contradiction to the fact
that (2.17) is zero when one assumes that b(y, s) is concave in y, t ≤ s ≤ T . We
conclude therefore that the trajectories y(·) of the Euler–Lagrange equation (2.6)
which satisfy (2.15) are nonintersecting. In particular, for y < F (x, t) there is
exactly one which has the property that y(t) = y and y(T ) = x . We make this
argument rigorous in the following proposition.

Proposition 2.2. Assume the function b(·, ·) satisfies (1.1) and that b(y, s) is
concave in y for y ∈ R and s ∈ [t, T ]. Then the minimizer y(·) ∈ Ex,y,t of the
variational problem (2.2) is unique for all (x, y) ∈ R

2. Furthermore the function
q(x, y, t) of (2.2) is C1 for (x, y) ∈ R

2 and t < T .

Proof. Since the minimizer is clearly unique for y ≥ F (x, t) we assume y < F (x, t).
We show that the functional F [·] of (2.8) has a convexity property provided b(y, s)
is concave in y, t ≤ s ≤ T . Let E be the set of C1 functions y(·) on [t, T ] which
satisfy y′(s) ≥ b(y(s), s), t ≤ s ≤ T . It is evident that E is convex in y(·) for
t ≤ s ≤ T , in the sense that

(2.19) y1(·), y2(·), λy1(·) + (1− λ)y2(·) ∈ E, 0 ≤ λ ≤ 1,

implies
F[
λ y1(·) + (1− λ) y2(·)

] ≤ λF [ y1(·)] + (1− λ)F [ y2(·)] .
To prove (2.19) we write

F[
λ y1(·) + (1− λ)y2(·)

]

=
1

2

∫ T

t

[
λ
{dy1
ds

− b (y1(s), s)
}
+ (1− λ)

{dy2
ds

− b (y2(s), s)
}

− {
b (λy1(s) + (1− λ) y2(s), s)− λ b (y1(s), s)− (1− λ) b (y2(s), s)

}]2
ds.

Since y1(·), y2(·) ∈ E and b(y, s) is concave in y, t ≤ s ≤ T , each term in the
last expression inside curly braces is nonnegative. Assuming also that λ y1(·) +
(1− λ) y2(·) ∈ E, we have that

0 ≤ b
(
λ y1(s) + (1− λ) y2(s), s

)− λ b (y1(s), s)− (1− λ) b (y2(s), s)

≤ 2
[
λ
{dy1
ds

− b (y1(s), s)
}
+ (1 − λ)

{dy2
ds

− b (y2(s), s)
}]
, t ≤ s ≤ T.
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We conclude therefore that

F[
λ y1(·) + (1− λ) y2(·)

]

≤ 1

2

∫ T

t

[
λ
{dy1
ds

− b (y(s), s)
}
+ (1− λ)

{dy2
ds

− b (y(s), s)
}]2

ds

≤ λ F [ y1(·)] + (1 − λ)F [ y2(·)],

and hence (2.19) holds.
The uniqueness of the minimizer y(·) ∈ Ex,y,t follows from the strict convexity

of F [·] in the sense of (2.19). Let us assume y1(·), y2(·) ∈ Ex,y,t are two minimizers
where y < F (x, t). Then by Proposition 2.1 the functions y1(·) and y2(·) are in
the set E and for sufficiently small λ > 0 the function λy1(·) + (1− λ)y2(·) is also
in E, whence (2.19) implies that λy1(·) + (1 − λ)y2(·) is a minimizer. From the
strict convexity of F [·] we have then that

dy1
ds

− b (y1(s), s) =
dy2
ds

− b (y2(s), s), t ≤ s ≤ T.

Since y1(t) = y2(t) = y, we conclude from this last identity that y1(s) =
y2(s), t ≤ s ≤ T , and so obtain the uniqueness of the minimizer.

To show that the function q(x, y, t) is C1 we consider the optimal control
λ∗(x, y, t) = y′(t) where y(·) ∈ Ex,y,t is the unique minimizer for the varia-
tional problem (2.2). Evidently λ∗(x, y, t) = b(y, t) if y ≥ F (x, t). We first prove
that λ∗(x, y, t) is continuous in (x, y, t) for (x, y) ∈ R

2, t < T . To do this let
Dx,y(δ) ⊂ R

2 be the disc of radius δ > 0 centered at (x, y). Then there exists a
constant K(δ) > 0 depending only on δ such that

(2.20)

∫ T

t

[ dz(s)
ds

]2
≤ K(δ), z(·) ∈ Ex′,y′,t , (x′, y′) ∈ Dx,y(δ),

where z(·) is the minimizer of the variational problem. To see (2.20), observe that

F [z(·)] ≥ 1

4

∫ T

t

[ dz(s)
ds

]2
ds− 1

2

∫ T

t

b (z(s), s)2ds.

Now from (1.1) one has that

∣∣ b (z(s), s)∣∣ ≤ ∣∣ b (z(t), s)∣∣+A

∫ T

t

∣∣∣ dz
ds′

∣∣∣ ds′, t ≤ s ≤ T.

Hence from the Schwarz inequality we have that

F [z(·)] ≥ 1

8

∫ T

t

[ dz(s)
ds

]2
ds−K ′(δ),

where K ′(δ) is a constant depending on δ. Now (2.20) follows from this last
inequality and the continuity of the function q(·, ·, t) on Dx,y(δ).
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Next we show that for any ε > 0 there exists δ > 0 such that

(2.21)

∫ T

t

[ dy
ds

− dz

ds

]2
ds < ε, z(·) ∈ Ex′,y′,t, (x′, y′) ∈ Dx,y(δ),

where y(·) ∈ Ex,y,t is the minimizer for (2.2) and z(·) ∈ Ex′,y′,t is also the mini-
mizer. The inequality (2.21) follows from the convexity (2.19) of the functional F [·].
We first consider the situation y ≥ F (x, t), where the minimizer y(·) ∈ Ex,y,t sat-
isfies y′(s) = b(y(s), s) and q(x, y, t) = 0. Thus for ε1 > 0 there exists δ1 > 0 such
that

(2.22) F [z(·)] < ε1, z(·) ∈ Ex′,y′,t, (x′, y′) ∈ Dx,y(δ1).

We can restate (2.22) as z(·) satisfies the initial value problem

dz

ds
= b (z(s), s) + f(s), t ≤ s ≤ T, z(t) = y′ ,

where ‖f‖2 <
√
2ε1. Putting now ϕ(s) = z(s) − y(s) it follows from (1.1) that

ϕ(s) satisfies the initial value problem

(2.23)
dϕ

ds
= a(s)ϕ(s) + f(s), t ≤ s ≤ T, ϕ(t) = y′ − y ,

where supt≤s≤T |a(s)| ≤ A. It follows that there are positive constants C1 and C2

such that

(2.24) sup
t≤s≤T

|z(s)− y(s)| ≤ C1|y′ − y|+ C2
√
ε1.

We write the left-hand side of (2.21) as

∫ T

t

{[
b (y(s), s)− b (z(s), s)

]
+
[
b (z(s), s)− dz

ds

]}2

ds

≤ 2

∫ T

t

[
b (y(s), s)− b (z(s), s)

]2
+ 4F [z(·)].

The inequality (2.21) follows from this last inequality, (2.22) and (2.24).
We prove (2.21) for y < F (x, t). First let δ1 > 0 be such that closure ofDx,y(δ1)

lies in the set {(x′, y′) ∈ R
2 : y′ < F (x′, t)}. Then it follows from (2.20) that there

exists λ0, 0 < λ0 < 1, such that

λ0z(·) + (1− λ0) y(·) ∈ E, z(·) ∈ Ex′,y′,t, (x′, y′) ∈ Dx,y(δ1),

where y(·) ∈ Ex,y,t and z(·) ∈ Ex′,y′,t are the minimizers for (2.2). Since z(·)
and y(·) are also in E we may use the convexity (2.19) of the functional F [·]. In
particular we have that

F [λ0 z(·) + (1− λ0) y(·)] ≤ λ0 F [z(·)] + (1− λ0)F [y(·)]

− λ0(1 − λ0)

2

∫ T

t

{
dy

ds
− dz

ds
+ b(z(s), s)− b(y(s), s)

}2

ds.
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Using the continuity of the function q(·, ·, t) at (x, y) we conclude from the last
inequality that there exists δ2, 0 < δ2 < δ1, such that

1

2

∫ T

t

{dy
ds

− dz

ds
+ b (z(s), s)− b (y(s), s)

}2

ds < ε2,(2.25)

z(·) ∈ Ex′,y′,t , (x′, y′) ∈ Dx,y(δ2),

where again y(·) ∈ Ex,y,t and z(·) ∈ Ex′,y′,t are the minimizers for (2.2). Here
ε2 > 0 can be chosen arbitrarily and δ2 depends on ε2. Now we may argue as
for the case when y ≥ F (x, t). Thus letting ϕ(s) = z(s) − y(s) we have that ϕ(s)
satisfies the equation (2.23) with ‖f‖2 <

√
2ε2. Hence we obtain an inequality

analogous to (2.24), which together with (2.25) implies (2.21).
The continuity of λ∗(x, y, t) in (x, y) follows easily from (2.21) upon using (2.14).

Thus for a minimizer of (2.2), z(·) ∈ Ex′,y′,t one has

(2.26)
dz

ds
− b (z(s), s) = A(x′, y′, t) exp

[
−
∫ s

t

∂b

∂y
(z(s′), s′) ds′

]
, t ≤ s ≤ T,

where λ∗(x′, y′, t) = b(y′, t)+A(x′, y′, t). Evidently (2.21) implies that the function
A(·, ·, t) is continuous at (x, y). Finally we observe that the continuity of λ∗(x, y, t)
as a function of (x, y, t) for (x, y) ∈ R

2 and t < T follows from (2.26). In fact
if y(·) ∈ Ex,y,t is the minimizer for (2.2) then (2.26) implies that for fixed x the
function s → λ∗(x, y(s), s) is continuous for t ≤ s < T . Hence if we combine this
with the previous argument on the continuity of λ∗(·, ·, t) for fixed t we obtain the
continuity of λ∗(·, ·, ·) in all three variables.

We prove the C1 property of the function q(x, y, t) for (x, y) ∈ R
2 and t < T .

First we observe that the function q is differentiable in at least one direction. Thus

(2.27) − d

ds
q
(
x, y(s), s

)∣∣∣
s=t

=
1

2

[
λ∗(x, y, t)− b (y, t)

]2
,

where y(·) ∈ Ex,y,t is the minimizer for (2.2). We use the continuity of the function
λ∗(·, ·, ·) to show differentiability in the other directions. Let us assume that y <
F (x, t) and Δy are small enough so that |Δy| < F (x, t)− y. Then

q
(
x, y +Δy, t

)− q
(
x, y, t

) ≤ −1

2

∫ T

t

[
λ∗(s)− b (y(s), s)

]2
ds(2.28)

+
1

2

∫ T

t

[
λ∗(s)−Δy/(T − t)− b (y(s) + (T − s)Δy/(T − t), s)

]2
ds,

where y(·) ∈ Ex,y,t is the minimizer for (2.2) and λ∗(s) = y′(s) for t ≤ s ≤ T .
Letting Δy → 0 in (2.28) we conclude that

lim sup
Δy→0

q (x, y +Δy, t)− q (x, y, t)

Δy
(2.29)

≤ − 1

T − t

∫ T

t

[
1 + (T − s)

∂b

∂y
(y(s), s)

][
λ∗(s)− b (y(s), s)

]
ds.
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Alternatively let yΔ(·) ∈ Ex,y+Δy,t be the minimizer for (2.2) and suppose
λ∗Δ(s) = y′Δ(s) for t ≤ s ≤ T . Then one also has

q
(
x, y +Δy, t

)− q
(
x, y, t

) ≥ 1

2

∫ T

t

[
λ∗Δ(s)− b (yΔ(s), s)

]2
ds(2.30)

− 1

2

∫ T

t

[
λ∗Δ(s) + Δy/(T − t)− b (yΔ(s)− (T − s)Δy/(T − t), s)

]2
ds.

It follows from (2.30) by using (2.21), (2.26), and the continuity of the function
λ∗(·, ·, ·) that

lim inf
Δy→0

q(x, y +Δy, t)− q(x, y, t)

Δy
(2.31)

≥ − 1

T − t

∫ T

t

[
1 + (T − s)

∂b

∂y
(y(s), s)

][
λ∗(s)− b (y(s), s)

]
ds.

The differentiability of q(x, y, t) with respect to y follows from (2.29) and (2.31).
Using (2.21), (2.26) again we also see from the formula on the right-hand side
of (2.29) that ∂q(x, y, t)/∂y is continuous in (x, y, t) for y < F (x, t) and t < T . It
is easy to extend this argument to show that ∂q(x, y, t)/∂y exists for all y ∈ R and
the derivative is continuous in (x, y, t) for (x, y) ∈ R

2 and t < T . This follows from
the fact that the formula on the right-hand side of (2.29) is zero if y = F (x, t).

One can see by a similar argument that q(x, y, t) is differentiable with respect to
x and that ∂q(x, y, t)/∂x is continuous for (x, y) ∈ R

2 and t < T . Finally (2.27) and
the fact that ∂q(x, y, t)/∂y is continuous shows that q(x, y, t) is differentiable with
respect to t and ∂q(x, y, t)/∂t is continuous in (x, y, t) for (x, y) ∈ R

2 and t < T .
We have shown that the function q(x, y, t) is C1 for (x, y) ∈ R

2 and t < T . �

Corollary 2.3. Assume b(·, ·) satisfies the conditions of Proposition 2.2, q(x, y, t)
is the function defined by (2.2), and λ∗(x, y, t) is the corresponding optimal control
for (x, y) ∈ R

2 and t < T . Then there are the identities

∂q (x, y, t)/∂y = b (y, t)− λ∗(x, y, t),

∂q (x, y, t)/∂t =
1

2

[
λ∗(x, y, t)2 − b (y, t)2

]
.

(2.32)

Furthermore, for y < F (x, t) there are the inequalities

(2.33)
∂q (x, y, t)

∂y
< 0,

∂q (x, y, t)

∂x
> 0.

Proof. We first show the identity (2.32) for ∂q(x, y, t)/∂y. We assume y < F (x, t)
since it is obvious otherwise. Using the fact that q(x, y, t) is the minimizer for the
variational problem (2.2) we have that, for λ ∈ R,

q(x, y, t) ≤ 1

2

[
λ− b (y, t)

]2
Δt+ q

(
x, y + λΔt, t+Δt

)
+O

[
(Δt)2

]
.
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Since q is C1 this implies that

(2.34)
1

2

[
λ∗(x, y, t)2 − b (y, t)

]2 ≤ 1

2

[
λ− b (y, t)

]2
+
[
λ− λ∗(x, y, t)

] ∂q
∂y

(x, y, t),

λ ∈ R, where we have used (2.27). The inequality (2.34) implies the first identity
of (2.32). The second identity follows from the first identity and (2.27).

The first inequality of (2.33) follows from Proposition 2.1. To show that
∂q(x, y, t)/∂x>0 we derive a formula for ∂q(x, y, t)/∂x similar to the formula (2.32)
for ∂q(x, y, t)/∂y. We have already seen that ∂q(x, y, t)/∂x is given by the expres-
sion

(2.35)
∂q

∂x
(x, y, t) =

1

T − t

∫ T

t

[
1− (s− t)

∂b

∂y
(y(s), s)

][
λ∗(s)− b (y(s), s)

]
ds,

similar to the right-hand side of (2.29). Adding (2.29) and (2.35) we conclude that

(2.36)
∂q

∂y
(x, y, t) +

∂q

∂x
(x, y, t) = −

∫ T

t

∂b

∂y
(y(s), s)

[
λ∗(s)− b (y(s), s)

]
ds.

If we use now the identity (2.26) we conclude from the previous expression that

(2.37)
∂q

∂x
(x, y, t) =

[
λ∗(x, y, t)− b (y, t)

]
exp

[
−
∫ T

t

∂b

∂y
(y(s), s) ds

]
,

where y(·) ∈ Ex,y,t is the minimizer for (2.2). Proposition 2.1 and (2.37) now imply
∂q(x, y, t)/∂x > 0. �

Remark 2.4. Observe that Proposition 2.2 and Corollary 2.3 imply that q(x, y, t)
is a classical solution to the ε = 0 Hamilton–Jacobi equation (1.8).

Next we show that q(x, y, t) is twice differentiable in (x, y). Since this is obvious
for y > F (x, t) we consider y < F (x, t). Let ϕ(s), t ≤ s ≤ T , be the solution of
the first variation equation (2.16) with terminal data ϕ(T ) = 0 and ϕ′(T ) = −1.
Then one should have the identity

(2.38) ∂λ∗(x, y, t)/∂y = ϕ′(t)/ϕ(t).

We have already given an argument to show ϕ(s) > 0 for t ≤ s ≤ T , if we
assume b(·, s) is concave for t ≤ s ≤ T . Hence in this case the right-hand side
of (2.38) makes sense. Note also that we may write (2.16) in the form

(2.39)
[ d

ds
+
∂b

∂y
(y(s), s)

][ dϕ
ds

− ∂b

∂y
(y(s), s)ϕ(s)

]
− V (s)ϕ(s) = 0,

where V (s) ≥ 0 if b(·, s) is concave for all s, t ≤ s ≤ T . Hence it follows from (2.39)
that if we assume the concavity of b(·, s) t ≤ s ≤ T , then ϕ′(t)− ∂b/∂y(y(t), t)ϕ(t)
< 0. Thus from (2.32) and (2.38) we conclude that ∂2q(x, y, t)/∂y2 > 0. We make
this argument rigorous in the following proposition.
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Proposition 2.5. Assume the function b(·, ·) satisfies (1.1) and that b(y, s) is
concave in y for y ∈ R and s ≤ T . Then the function q(x, y, t) of (2.2) is convex
in (x, y) for (x, y) ∈ R

2 and t < T . Suppose in addition that b(y, s) is twice differ-
entiable in y for y ∈ R and s ≤ T , and ∂2b(y, s)/∂y2 is continuous in (y, s). Then
q(x, y, t) is twice differentiable in (x, y) for (x, y, t) ∈ UT = {(x, y, t) : (x, y) ∈ R

2,
t < T, y < F (x, t)}. The second derivatives of q(x, y, t) with respect to (x, y)
are continuous in UT and satisfy ∂2q(x, y, t)/∂x2 > 0, ∂2q(x, y, t)/∂y2 > 0, and
∂2q(x, y, t)/∂x∂y < 0. Furthermore, if (x0, y0, t0) ∈ ∂UT and t0 < T then

(2.40) lim
(x,y,t)→(x0,y0,t0)

∂2q(x, y, t)/∂x2 > 0, lim
(x,y,t)→(x0,y0,t0)

∂2q(x, y, t)/∂y2 > 0.

Proof. Observe that the function F (x, t), x ∈ R, t < T , defined by (1.11) is a
convex function of x. In fact one has

(2.41)
∂F

∂x
(x, t) = exp

[
−
∫ T

t

∂b

∂y
(y(s), s) ds

]
,

where y(s), s ≤ T , is the solution to (1.11). Hence, by the concavity of b(·, s) for
t ≤ s ≤ T , one has that ∂F (x, t)/∂x is an increasing function of x. It follows that
the set Vt = {(x, y) ∈ R

2 : y ≥ F (x, t)} on which q(·, ·, t) vanishes is convex. We
also have from the argument of Proposition 2.2 that q(x, y, t) is locally convex on
the not necessarily convex open set R2\Vt. Hence q(x, y, t) is convex in (x, y) for
all (x, y) ∈ R

2.
We assume now b(y, s) is twice continuously differentiable in y for y ∈ R and

s ≤ T . We can write (2.39) as a system

dϕ

ds
− ∂b

∂y

(
y(s), s

)
ϕ(s) = −ψ(s), t ≤ s ≤ T,

dψ

ds
+
∂b

∂y

(
y(s), s

)
ψ(s) = −V (s)ϕ(s), t ≤ s ≤ T,

(2.42)

where y(·) ∈ Ex,y,t is the minimizer for (2.2). Evidently (2.42) has a unique
solution [ϕ(s), ψ(s)] defined for t ≤ s ≤ T , with terminal data ϕ(T ) = 0 and
ψ(T ) = 1. Multiplying the first equation in (2.42) by ψ(s) and the second by ϕ(s)
we see, upon integrating, that

(2.43) ψ(s)ϕ(s) =

∫ T

s

ψ(s′)2 + V (s′)ϕ(s′)2 ds′, t ≤ s ≤ T.

From the terminal conditions on [ϕ(s), ψ(s)] we have that ϕ(s) > 0 and ψ(s) > 0
for s close to T . It follows then from (2.43) that ϕ(s) > 0 and ψ(s) > 0 for
t ≤ s ≤ T .

Next we use (2.26) to write the equation for the minimizer y(·) ∈ Ex,y,t of (2.2)
in a form similar to (2.42). Thus we have

(2.44)

dy

ds
− b(y(s), s) = −p(s), t ≤ s ≤ T,

dp

ds
+
∂b

∂y
(y(s), s)p(s) = 0, t ≤ s ≤ T.
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In (2.44) the first equation is the definition of the Hamiltonian momentum p(s)
while the second equation is equivalent to (2.26). Suppose now z(·) ∈ Ex′,y′,t is
also a minimizer for (2.2) and define Φ(s) = z(s) − y(s) and Ψ(s) = P (s) − p(s),
where P (s) is the momentum corresponding to z(·). Then since z(·) satisfies an
equation similar to (2.44) we have that

dΦ

ds
− Φ(s)

∫ 1

0

∂b

∂y

(
μy(s) + (1− μ) z(s), s

)
dμ = −Ψ(s), t ≤ s ≤ T,

dΨ

ds
+
∂b

∂y
(z(s), s)Ψ(s)=−Φ(s) p(s)

∫ 1

0

∂2b

∂y2
(
μy(s) + (1 − μ) z(s), s

)
dμ, t ≤ s ≤ T.

(2.45)

We consider now the situation where x′ = x so Φ(T ) = 0. Then if y′ = y+Δy
we may write

(2.46) Φ(t) = α(Δy)Ψ(T ), Ψ(t) = β(Δy)Ψ(T ),

where the functions α(·) and β(·) satisfy
(2.47) lim

Δy→0
α(Δy) = ϕ(t), lim

Δy→0
β(Δy) = ψ(t)

since the coefficients in the equations (2.45) converge as Δy → 0 to the coefficients
in the equations (2.42). Now we have that

λ∗(x, y +Δy, t)− λ∗(x, y, t)
Δy

=
1

Δy

[
Φ(t)

∫ 1

0

∂b

∂y

(
μy(s)+(1−μ)z(s), s) dμ−Ψ(t)

]
,

and Φ(t) = Δy. Hence it follows from (2.46), (2.47) that λ∗(x, y, t) is differentiable
with respect to y and

(2.48) ∂λ∗(x, y, t)/∂y = ∂b (y, t)/∂y− ψ(t)/ϕ(t).

One also sees easily from the representation (2.48) that ∂λ∗(x, y, t)/∂y is con-
tinuous in UT and that the limit exists as (x, y, t) → (x0, y0, t0) ∈ ∂UT provided
t0 < T . The fact that ∂2q(x, y, t)/∂y2 > 0 follows now from (2.32) and the fact
that ψ(t) > 0 and ϕ(t) > 0.

We can similarly see that λ∗(x, y, t) is differentiable with respect to x, that
∂λ∗(x, y, t)/∂x is continuous in UT , and that the limit exists as (x, y, t) → (x0, y0, t0)
∈ ∂UT provided t0 < T . To see that ∂2q(x, y, t)/∂x∂y < 0 we note that

∂2q(x, y, t)/∂x∂y = ψ(t)/ϕ(T ),

where [ϕ(s), ψ(s)], defined for t ≤ s ≤ T , is the solution of (2.42) with initial data
ϕ(t) = 0 and ψ(t) = 1. We have in this case

ψ(s)ϕ(s) = −
∫ s

t

ψ(s′)2 + V (s′)ϕ(s′)2 ds′,

whence ϕ(T ) < 0 and so ∂2q(x, y, t)/∂x∂y is negative.
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To prove the twice differentiability of q(x, y, t) with respect to x we use the
representation

(2.49) ∂q(x, y, t)/∂x = p(T ),

where p(s) is given by (2.44) for the minimizer y(·) ∈ Ex,y,t of (2.2). The differen-
tiability of ∂q(x, y, t)/∂x and the positivity of ∂2q(x, y, t)/∂x2 proceeds as before
by representing ∂2q(x, y, t)/∂x2 in terms of a solution to (2.42). Finally we observe
that (2.49) follows from (2.26), (2.32), and (2.36). �

Remark 2.6. Proposition 2.5 shows that all second derivatives of q(x, y, t) with
respect to (x, y) have jump discontinuities across the boundary y = F (x, t). Hence
q(x, y, t) is not C2 in (x, y) for all (x, y) ∈ R

2.

3. Proof of Theorem 1.1

Our main goal in this section is to show that the function qε(x, y, t) defined by (1.7)
converges as ε→ 0 to the function q(x, y, t) defined by (1.10). The formula (1.15)
for qε(x, y, t) makes this intuitively clear, but it is not obvious under what cir-
cumstances the function defined by (1.7) has the representation (1.15). As part of
our proof of convergence we shall make use of various situations in which (1.15) is
valid. First we regularize the terminal data (1.9).

Lemma 3.1. Suppose b(·, ·) satisfies (1.1) and qε(x, y, t) is given by (1.7). Then
there exists δ > 0 and universal positive constants C1 and C2 such that, if T−t < δ
and ε < 1, the inequality

(3.1) C1 (x− y)2/(T − t) < qε(x, y, t) < C2 (x− y)2/(T − t),

holds for y in the region

(3.2) x− y > 2

∫ T

t

|b(x, s)| ds+
√
ε (T − t).

Proof. Since b(·, ·) satisfies (1.1) one can uniquely solve the stochastic equation (1.5)
with given initial data. The solution uε(x, y, t) of the terminal value problem given
by (1.2) and (1.3) is then the probability (1.6). Letting Zε(s) = Yε(s)− y, we have
then that

Zε(s) =

∫ s

t

[ ∫ 1

0

dμ
∂b

∂y

(
μYε(s

′) + (1 − μ) y, s′
)]
Zε(s

′) ds′(3.3)

+

∫ s

t

b (y, s′) ds′ +
√
ε
[
W (s)−W (t)

]
, s > t.

Now applying Gronwall’s inequality to (3.3) we conclude that

(3.4) sup
t≤s≤T

|Zε(s)| ≤ A(t, T ) sup
t≤s≤T

∣∣∣
∫ s

t

b (y, s′) ds′ +
√
ε
[
W (s)−W (t)

]∣∣∣,
where A(t, T ) is a constant depending only on t and T . The lower bound in
inequality (3.1) follows from (3.4), (1.6) and (1.7).
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To obtain the upper bound we consider the stochastic process Z ′
ε(s), s ≥ t,

defined by the equation

(3.5) dZ ′
ε(s) =

[
AZ ′

ε(s)− b (x, s)
]
ds+

√
ε dW (s), Z ′

ε(t) = x− y,

where A is the constant in (1.1). If τ is the first hitting time at x for the process
Yε(s) of (1.5) with Yε(t) = y, then it is evident that Z ′

ε(s) ≥ x−Yε(s) for t ≤ s ≤ τ .
It follows that

(3.6) P (τ < T ) ≥ P
(
Z ′
ε(T ) < 0

∣∣ Z ′
ε(t) = x− y

)
.

Since the stochastic equation (3.5) is exactly solvable, we can estimate the
right-hand side of (3.6). Assuming x− y satisfies (3.2) we conclude that

(3.7) P
(
Z ′
ε(T ) < 0

∣∣ Z ′
ε(t) = x− y

) ≥ exp
[− C(x − y)2/ε(T − t)

]
,

for a constant C depending only on the parameter A in (3.5). The upper bound
in (3.1) follows now from (3.6), (3.7), and the inequality

(3.8) P
(
Yε(T ) > x

∣∣ Yε(t) = y
) ≥ P (τ < T ) inf

t≤s≤T
P
(
Yε(T ) > x

∣∣ Yε(s) = x
)
,

since it is clear that for δ small enough the infimum in (3.8) is larger than 1/4. �

We consider a controller λε(y, s) for y ∈ R and s < T , which is uniformly
Lipschitz in y for t ≤ s ≤ T − δ. Thus there is a constant C such that

(3.9) |λε(y, s)− λε(y
′, s)| ≤ C|y − y′|, y, y′ ∈ R, t ≤ s ≤ T − δ.

Hence we may solve the stochastic differential equation (1.14) for t ≤ s ≤ T −δ.
We show that in this case the the expectation on the right-hand side of (1.15) is
bounded below by the left-hand side.

Lemma 3.2. Suppose λε(·, ·) satisfies (3.9) and b(·, ·) satisfies (1.1). Then if
qε(x, y, t) is given by (1.7) the inequality

qε(x, y, t) ≤ E
{ 1

2

∫ T−δ

t

[
λε(yε(s), s)− b (yε(s), s)

]2
ds(3.10)

+ qε
(
x, yε(T − δ), T − δ

) ∣∣∣ yε(t) = y
}

holds, where yε(·) is the solution to the SDE (1.14).

Proof. Let Vε(y, s) for y ∈ R and s ≤ T − δ, denote the right-hand side of (3.10).
Arguing as in the proof of Lemma 3.1, one sees that

(3.11) 0 < Vε(y, s) ≤ Ay2 +B, y ∈ R, t ≤ s ≤ T − δ,

for some constants A and B. In addition Vε, ∂Vε/∂s, ∂Vε/∂y, and ∂
2Vε/∂y

2 are all
continuous functions of (y, s) for y ∈ R and t ≤ s < T − δ, and satisfy the equation

(3.12)
∂Vε
∂s

+ λε(y, s)
∂Vε
∂y

+
ε

2

∂2Vε
∂y2

+
1

2

[
λε(y, s)− b(y, s)

]2
= 0,
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for y ∈ R, t ≤ s < T − δ, with terminal condition

(3.13) Vε(y, T − δ) = qε(x, y, T − δ), y ∈ R.

Note that the twice differentiability of Vε(y, s) with respect to y uses the fact
that the function λε(·, s) − b(·, s) is Lipschitz continuous for t ≤ s ≤ T − δ (see
Theorem 9 in Chapter 1 of [7]). From (1.8) and (3.12) we conclude that the
function Wε(y, s) = Vε(y, s)− qε(x, y, s) satisfies the PDE

∂Wε

∂s
+ λε(y, s)

∂Wε

∂y
+
ε

2

∂2Wε

∂y2
+

1

2

[
λε(y, s)− b (y, s) +

∂qε
∂y

]2
= 0,

for y ∈ R, t ≤ s ≤ T − δ, and all the derivatives ∂Wε/∂s, ∂Wε/∂y, and ∂
2Wε/∂y

2

are continuous. Furthermore by (3.13) the terminal condition for Wε is Wε(y, T −
δ) = 0, y ∈ R. It follows then from Lemma 3.1, (3.11), and the maximum principle
(see Theorem 9 in Chapter 2 of [7]) that Wε(y, t) ≥ 0, y ∈ R, whence the result
follows. �

Lemma 3.3. Suppose b(·, ·) satisfies (1.1). Then for x, y ∈ R, t < T , and ε < 1,
the inequality

(3.14) qε(x, y, t) ≤ q(x, y, t) + C(x, y, t, T )
√
ε

holds, where q(x, y, t) is given by (1.10) and C(x, y, t, T ) is a constant independent
of ε.

Proof. Let y(s), defined for t ≤ s ≤ T , be a minimizer for (1.10), whose existence
has been established by Proposition 2.1. We set λε(y, s) = λ(s) = y′(s) for y ∈ R

and t ≤ s ≤ T , and apply Lemma 3.2, taking δ =
√
ε. We consider first the case

y ≤ F (x, t) so y(T ) = x. Hence x − y(T − δ) < C
√
ε for some constant C. It

follows then from Lemma 3.1 that

(3.15) E
{
qε(x, yε(T − δ), T − δ)

∣∣ yε(t) = y
} ≤ C1

√
ε

for some constant C1. Here we are using the fact that yε(s)− y(s) =
√
ε [W (s)−

W (t)] and that qε(x, y, T − δ) is a decreasing positive function of y ∈ R. We can
similarly see that

(3.16) E
{ 1

2

∫ T−δ

t

[
λ(s)− b (yε(s), s)

]2
ds

∣∣ yε(t) = y
}
≤ q (x, y, t) + C2

√
ε.

for some constant C2. Thus (3.14) follows from (3.15) and (3.16) in the case y ≤
F (x, t). For y > F (x, t) we may use the same argument, noting that qε(x, ·, T − δ)
is a decreasing positive function. �

To obtain a lower bound for qε(x, y, t) corresponding to the upper bound estab-
lished in Lemma 3.3 we shall need to use the fact that the function ∂qε(x, y, s)/∂y
is uniformly Lipschitz continuous in y for (y, s) in any region {(y, s) : y ≥ y0, t ≤
s ≤ T − δ}, where δ > 0, y0 ∈ R can be chosen arbitrarily.
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Lemma 3.4. Suppose b(·, ·) satisfies (1.1) and uε(x, y, t) for t < T and y ∈ R, is
the unique bounded solution to (1.2) and (1.3). Then for any δ > 0, y0 ∈ R, and
t < T , there is a positive constant C(δ, y0, t) such that

(3.17)
uε(x, y, s) ≥ 1/C(δ, y0, t), y ≥ y0, t ≤ s ≤ T − δ,

|∂uε(x, y, s)/∂y|+|∂2uε(x, y, s)/∂y2| ≤ C(δ, y0, t), y ≥ y0, t ≤ s ≤ T−δ.
Proof. To prove the first inequality in (3.17) we proceed as in the proof of Lem-
ma 3.1, using the representation (1.6). Since the solution Yε(s) of (1.5) which has
initial condition Yε(t) = y satisfies the inequality (3.4), it follows that there exists
y1 > x with the property that uε(x, y1, s) ≥ 1/2 for t ≤ s ≤ T . We consider now y
in the interval y0 < y < y1. Let α be defined by

α = inf
{
b(y′, s) : y0 − 1 ≤ y′ ≤ y1, t ≤ s ≤ T

}
,

and Zε(s) satisfy the stochastic equation

dZε(s) = αds+
√
ε dW (s), Zε(t) = y.

Then Yε(s) ≥ Zε(s) for t ≤ s ≤ τ , where τ is the first exit time of Zε(s) from
the interval [y0− 1, y1]. We can easily estimate from below P (τ < T, Zε(τ) = y1).
Combining this with (3.4) we see that the first inequality in (3.17) holds for
y0 < y < y1.

We turn to the problem of estimating the derivatives in (3.17). Let y1 ∈ R

and T1 ≤ T . We shall be interested in constructing the solution to the terminal-
boundary value problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂w

∂t
+ b(y, t)

∂w

∂y
+
ε

2

∂2w

∂y2
= 0, y1 − η < y < y1 + η, t < T1,

w(y, T1) = w0(y), y ∈ [y1 − η, y1 + η],

w(y1 − η, s) = w−(s), w(y1 + η, s) = w+(s), s ≤ T1,

(3.18)

where η > 0 and the functions w0(·), w−(·) and w+(·) are assumed to be continuous
on their domains. The solution to (3.18) can be represented in terms of the Dirchlet
Green’s function G(y, y′, t, T1) for the problem. Thus

w(y, t) =

∫ y1+η

y1−η

G(y, y′, t, T1) w0(y
′) dy′ + ε

∫ T1

t

dsw−(s)
∂G

∂y′
(y, y1 − η, t, s)

− ε

∫ T1

t

ds w+(s)
∂G

∂y′
(y, y1 + η, t, s).(3.19)

We shall show that the Green’s function may be constructed by perturbation
expansion provided t < T1 lies in an interval t ∈ [T1−Δ, T1] where Δ and η satisfy
the inequalities

(3.20) Δ ≤ η2

ε
, Δ ≤ νε[

sup
{|b (y, s)| : y1 − η ≤ y ≤ y1 + η, T1 −Δ ≤ s ≤ T1

}]2 ,
for some ν < 1 independent of b(·, ·) and ε.
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We construct the Green’s function by the standard method [7]. Thus let
GD(y, y′, t) be the Green’s function for the heat equation on the interval [−1, 1]
with Dirichlet boundary conditions. The function GD is given from the method of
images as an infinite series:

(3.21) GD(y, y′, t) =
∞∑

m=0

(−1)p(m) G(y − y′m, t),

where y′0 = y′ and y′m, m ≥ 1, are the multiple reflections of y′ in the boundaries
y = −1 and y = 1, with p(m) being the parity of the reflection, p(0) = 0. The
function G(y, t) is a Gaussian with mean 0 and variance t. We now set K(y, y′, t, s)
to be

(3.22) K(y, y′, t, s) = η−1GD

(y − y1
η

,
y′ − y1
η

,
ε(s− t)

η2

)
,

for y, y′ ∈ [y1 − η, y1 + η], t < s.

The Green’s function G(y, y′, t, T1) is formally given by an expansion in terms
of the function K. et Lt,y denote the operator on the left-hand side of (3.18),
so (3.18) is Lt,yw = 0. Then

G(y, y′, t, T1) = K(y, y′, t, T1)−
∞∑
n=0

vn(y, y
′, t, T1),

vn(y, y
′, t, T1) = −

∫ T1

t

ds

∫ y1+η

y1−η

dz K(y, z, t, s) gn (z, y
′, s, T1),

g0(y, y
′, t, T1) = Lt,yK(y, y′, t, T1),

gn+1(y, y
′, t, T1) =

∫ T1

t

ds

∫ y1+η

y1−η

dz Lt,yK(y, z, t, s) gn (z, y
′, s, T1).

(3.23)

One easily obtains from (3.23) the estimate

∣∣gn(y, y′, t, T1)∣∣ ≤ Cn
[
sup

{
|b(z, s)| : y1 − η ≤ z ≤ y1 + η, t ≤ s ≤ T1

}]n+1

· (T1 − t)n/2 − 1/2

ε(n+1)/2
G
(
y − y′, 2ε(T1 − t)

)
, n = 0, 1, 2 . . . ,(3.24)

for some universal constant C, provided η ≥ √
ε(T1 − t). It follows from (3.24) that

the series expansion (3.23) for the function G converges provided t ∈ [T1 −Δ, T ],
where Δ and η satisfy (3.20) for some sufficiently small universal ν > 0. In that
case one has for the Green’s function the estimate

(3.25) G(y, y′, t, T1) ≤ C G
(
y − y′, 2 ε (T1 − t)

)
,

for a universal constant C > 0.
We can obtain estimates for the derivatives of G analogous to (3.25) by differ-

entiating the expansion (3.23) term by term. We first consider ∂G(y, y′, t, T1)/∂y′
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for t ∈ [T1 −Δ, T1] and Δ and η satisfying (3.20). We have from (3.23) that

(3.26)
∣∣∣∂g0
∂y′

(y, y′, t, T1)
∣∣∣ ≤ C

T1 − t

√
ν

εΔ
G
(
y − y′, 2 ε (T1 − t)

)

for some universal constant C.
The integral representation in (3.23) for ∂v0(y, y

′, t, T1)/∂y′ gives rise to a non-
integrable singularity in the integration with respect to s, t ≤ s < T1, if we
use (3.26). We therefore need to use the fact that

g0(z, y
′, s, T1) = b(z, s) ∂K(z, y′, s, T1)/∂z

and integrate by parts with respect to z in the representation (3.23) for v0(y, y
′, t, T1).

We conclude that

(3.27)
∣∣∣∂v0
∂y′

(y, y′, t, T1)
∣∣∣ ≤ [

A
(T1 − t

ε

)1/2

+
( ν

εΔ

)1/2]
C G

(
y − y′, 2 ε (T1 − t)

)

for some universal constant C, whereA is the upper bound in (1.1) on the derivative
of b(·, ·). We can use a similar method to obtain a bound on the derivative of g1.
Thus we have

(3.28)
∣∣∣∂g1
∂y′

(y, y′, t, T1)
∣∣∣ ≤ [

A
( ν

εΔ

)1/2

+
ν

Δ
√
ε(T1 − t)

]
C G

(
y − y′, 2 ε (T1 − t)

)

for some universal constant C. Choosing Δ now to satisfy also Δ <
√
ν/A we

conclude from (3.28) and the representation (3.23) for gn that

(3.29)
∣∣∣∂gn
∂y′

(y, y′, t, T1)
∣∣∣ ≤ ν(n+1)/2(T1 − t)n/2 − 1

√
ε Δ(n+1)/2

CnG
(
y − y′, 2 ε (T1 − t)

)
,

for n = 1, 2, . . . , where C is a universal constant. The estimate (3.29) gives an
estimate on the derivatives of vn, n ≥ 1,

(3.30)
∣∣∣∂vn
∂y′

(y, y′, t, T1)
∣∣∣ ≤ ν(n+1)/2(T1 − t)n/2√

ε Δ(n+1)/2
CnG

(
y − y′, 2 ε (T1 − t)

)
,

for a universal constant C. We conclude then from (3.27) and (3.30) that upon
choosing ν > 0 sufficiently small in a universal way, the function G(y, y′, t, T1) is
differentiable with respect to y′ for t ∈ [T1 −Δ, T1] and

(3.31)
∣∣∣∂G(y, y′, t, T1)

∂y′

∣∣∣ ≤ C√
ε(T1 − t)

G
(
y − y′, 2 ε (T1 − t)

)
,

for some universal constant C. Hence the integral representation (3.19) is well
defined for Δ and η satisfying (3.20) and t ∈ [T1 −Δ, T1].

We can obtain estimates on other derivatives ofG by a similar method. Observe
that from (3.24) we may conclude that G(y, y′, t, T1) is differentiable with respect
to y for t ∈ [T1 −Δ, T1] and

(3.32)
∣∣∣∂G(y, y′, t, T1)

∂y

∣∣∣ ≤ C√
ε(T1 − t)

G
(
y − y′, 2 ε (T1 − t)

)
,



604 J.G. Conlon and M. Guha

for some universal constant C. To obtain an estimate on ∂2G(y, y′, t, T1)/∂y2 we
must first obtain estimates on ∂gn(y, y

′, t, T1)/∂y. Evidently we have that

(3.33)
∣∣∣∂g0
∂y

(y, y′, t, T1)
∣∣∣ ≤ [ A√

ε(T1 − t)
+

√
ν

(T1 − t)
√
εΔ

]
C G

(
y− y′, 2 ε (T1 − t)

)

for some universal constant C. To estimate ∂g1(y, y
′, t, T1)/∂y we write the integral

representation (3.23) as an integral over t < s < (T1 + t)/2 plus an integral
over (T1 + t)/2 < s < T1. Since the integral over (T1 + t)/2 < s < T1 can be
estimated using (3.24) we concentrate on the integral over t < s < (T1 + t)/2.
Now the kernel Lt,yK(y, z, t, s) which appears in the integral representation (3.23)
for g1 is a sum of terms generated by the boundary reflections which occur in the
representation (3.21) for GD. We consider the principle term in this series, which
makes a contribution to the representation for g1 given by

f(y, y′, t, T1) =
∫ (T1+t)/2

t

ds

∫ y1+η

y1−η

dz b (y, t)
∂

∂y
G
(
y − z, ε(s− t)

)
g0 (z, y

′, s, T1)

=

∫ (T1+t)/2

t

ds

∫ y1+η

y1−η

dz b (y, t)G
(
y − z, ε(s− t)

)∂g0
∂z

(z, y′, s, T1)(3.34)

+

∫ (T1+t)/2

t

ds b (y, t)G
(
y − y1 + η, ε(s− t)

)
g0 (y1 − η, y′, s, T1)

−
∫ (T1+t)/2

t

ds b (y, t)G
(
y − y1 − η, ε(s− t)

)
g0 (y1 + η, y′, s, T1).

Denoting the first integral on the right-hand side of (3.34) by I1(y) we see
from (3.33) that I1(y) is differentiable with respect to y and

∣∣∣dI1
dy

(y)
∣∣∣ ≤ A (T1 − t) +

√
ν (T1 − t)1/2√
Δ

(3.35)

·
[ A√

ε(T1 − t)
+

√
ν

(T1 − t)
√
εΔ

]
C G

(
y − y′, 2 ε (T1 − t)

)
,

for some universal constant C. Let I2(y) denote the second integral on the right-
hand side of (3.34). Using the fact that

∫ δ

0

ds
ξ

(εs)3/2
exp

[
− ξ2

2εs

]
=

∫ ∞

ξ2/(εδ)

dz
e−z/2

εz1/2
,

we see that I2(y) is differentiable with respect to y and

(3.36)
∣∣∣dI2(y)
dy

∣∣∣ ≤ ( ν

εΔ

)1/2[
A+

{ ν

Δ(T1 − t)

}1/2 ]
C G

(
y − y′, 2 ε (T1 − t)

)
,

for some universal constant C. We get an estimate similar to (3.36) for the third
integral on the right-hand side of (3.34). It is clear that the higher terms in the
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series (3.21) for Lt,y K(y, z, t, s) make smaller contributions to ∂g1/∂y than the
right-hand sides of (3.35) and (3.36). We conclude that

∣∣∣∂g1
∂y

(y, y′, t, T1)
∣∣∣

≤
(T1 − t

ε

)1/2[
A+

{ ν

Δ(T1 − t)

}1/2 ]2
C G

(
y − y′, 2 ε (T1 − t)

)
,(3.37)

for some universal constant C. Using the representation (3.23) for gn+1 we can
now see by induction that, for n ≥ 0,

∣∣∣ ∂gn
∂y

(y, y′, t, T1)
∣∣∣

≤ (T1 − t)n − 1/2

√
ε

[
A+

{ ν

Δ(T1 − t)

}1/2 ]n+1

CnG
(
y − y′, 2 ε (T1 − t)

)
,(3.38)

for some universal constant C. We can use (3.24) and (3.38) to estimate the second
derivative of the function vn(y, y

′, t, T1) in (3.23) with respect to y. Thus we have,
for n ≥ 0,

∣∣∣ ∂2vn
∂y2

(y, y′, t, T1)
∣∣∣

≤ (T1 − t)n

ε

[
A+

{ ν

Δ(T1 − t)

}1/2 ]n+1

CnG
(
y − y′, 2 ε (T1 − t)

)
,(3.39)

for some universal constant C. We conclude then from (3.39) that G(y, y′, t, T1) is
twice differentiable with respect to y for t ∈ [T1 −Δ, T1] and

(3.40)
∣∣∣∂2G(y, y′, t, T1)

∂y2

∣∣∣ ≤ C

ε (T1 − t)
G
(
y − y′, 2 ε (T1 − t)

)

for some universal constant C.
Next we wish to estimate ∂2G(y, y′, t, T1)/∂y∂y′. We can easily obtain this from

the representation (3.23) for vn and (3.29). Thus from (3.29) we can estimate
∂2vn(y, y

′, t, T1)/∂y∂y′ for n ≥ 1. We need to integrate by parts to estimate
∂2v0(y, y

′, t, T1)/∂y∂y′ just as was the case for the estimate (3.27). We conclude
that

(3.41)
∣∣∣∂2G(y, y′, t, T1)

∂y∂y′

∣∣∣ ≤ C

ε (T1 − t)
G
(
y − y′, 2 ε (T1 − t)

)

for some universal constant C, provided t ∈ [T1 − Δ, T1]. Finally we need to
estimate the derivative ∂3G(y, y′, t, T1)/∂2y∂y′. To do this we must first obtain
estimates on ∂2gn(y, y

′, t, T1)/∂y∂y′. Evidently we have that

(3.42)
∣∣∣∂2g0(y, y′, t, T1)

∂y∂y′

∣∣∣ ≤ 1

ε (T1−t)
[
A+

{ ν

Δ(T1−t)
}1/2 ]

C G
(
y−y′, 2 ε (T1− t)

)
,
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for some universal constant C. To estimate ∂2g1(y, y
′, t, T1)/∂y∂y′ we write the

integral representation (3.23) for g1 as an integral over t < s < (T1 + t)/2 plus
an integral over (T1 + t)/2 < s < T1. The second integral cannot be bounded
by using (3.26) so we need to resort to integration by parts as we did for the
estimate (3.27). To bound the contribution to g1 from the integral over t < s <
(T1 + t)/2 we use the representation (3.34). We conclude that

(3.43)
∣∣∣ ∂2g1
∂y∂y′

(y, y′, t, T1)
∣∣∣ ≤ 1

ε

[
A+

{ ν

Δ(T1 − t)

}1/2 ]2
C G

(
y − y′, 2 ε (T1 − t)

)
,

for some universal constant C. Now by induction we see from the representa-
tion (3.23) for gn that, for n ≥ 0,

∣∣∣ ∂2gn
∂y∂y′

(y, y′, t, T1)
∣∣∣

≤ (T1 − t)n−1

ε

[
A+

{ ν

Δ(T1 − t)

}1/2 ]n+1

CnG
(
y − y′, 2 ε (T1 − t)

)
,(3.44)

for some universal constant C. Similarly to how we obtained (3.39) from (3.38) we
conclude from (3.44) that, for n ≥ 0,

∣∣∣ ∂3vn
∂y2∂y′

(y, y′, t, T1)
∣∣∣

≤ (T1 − t)n − 1/2

ε3/2

[
A+

{ ν

Δ(T1 − t)

}1/2 ]n+1

CnG
(
y − y′, 2 ε (T1 − t)

)
,(3.45)

for some universal constant C. We conclude then from (3.45) that provided t ∈
[T1 −Δ, T1], there is a universal constant C such that

(3.46)
∣∣∣∂3G(y, y′, t, T1)

∂y2∂y′

∣∣∣ ≤ C

[ε (T1 − t)]3/2
G
(
y − y′, 2 ε (T1 − t)

)
.

We use the estimates (3.32), (3.40), (3.41), and (3.46) to obtain bounds on the
derivatives in (3.17). In (3.19) we set w(y, t) = 1− uε(x, y, t), where the boundary
functions w0, w− and w+ are all bounded by 1. Then we estimate the derivatives
of uε(x, y, t) with respect to y by setting y = y1 and estimating ∂w(y, t)/∂y and
∂2w(y, t)/∂2y at y = y1 using the Green’s functions estimates. It is clear then that
by choosing Δ to be given by its maximum value in (3.20) that we get an estimate

(3.47) |∂uε(x, y, s)/∂y|+ |∂2uε(x, y, s)/∂y2| ≤ C(δ, y0, y∞, t)

for (y, s) in any rectangle y0 ≤ y ≤ y∞, t ≤ s ≤ T − δ. Our final task is to show
that the constant C(δ, y0, y∞, t) can be chosen independently of y∞ as y∞ → ∞.
To see this we use the fact that the boundary functions w0, w− and w+ converge
to 0 as y1 → ∞.

Let Yε(s) for t ≤ s ≤ T , be the solution of the stochastic equation (1.5) with
Yε(t) = y, where y > x. We need to estimate P

(
Yε(T ) < x | Yε(t) = y

)
as y → ∞.

To do this we let Zε(s) be the solution to the equation

(3.48) dZε(s) =
[−A Zε(s) + b(x, s)

]
ds+

√
ε dW (s), s > t, Zε(t) = y − x,
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where A is the upper bound in (1.1) for the derivative of b(·, ·). Then Yε(s) ≥
Zε(s) + x for t ≤ s ≤ τ , where τ > t is the first hitting time at 0 for the diffusion
Zε(s) with Zε(t) = y − x. The solution to (3.48) is given by

(3.49) Zε(s) = (y − x)e−A(s−t) +

∫ s

t

e−A(s−s′) b (x, s′) ds′ + ξε(s), s > t,

where ξε(s) satisfies the stochastic integral equation

(3.50) ξε(s) = −A
∫ s

t

ξε(s
′) ds′ +

√
εW (s), s > t.

Applying Gronwall’s inequality to (3.50) we have that

(3.51) sup
t≤s≤T

|ξε(s)| ≤ eA(T−t)
√
ε sup

t≤s≤T
|W (s)|.

We can estimate the probability that inft≤s≤T Zε(s) < 0 by using the inequality

(3.52) P
(

sup
t≤s≤T

|W (s)| > a
)
≤

[8(T − t)

πa2

]1/2
exp

[
− a2

2(T − t)

]
.

Let us assume that the second term on the right-hand side of (3.49) is smaller
in absolute value than half the first term for t ≤ s ≤ T . This can evidently be
accomplished by choosing y− x sufficiently large. Then from (3.51) and (3.52) we
conclude that

P
(

inf
t≤s≤T

Zε(s) < 0
)

≤
[ 8 (T − t)

π

]1/2 2
√
ε e2A(T−t)

(y − x)
exp

[
− (y − x)2

8 ε (T − t)
e−4A(T−t)

]
.(3.53)

Using the inequality

P
(
Yε(T ) < x

∣∣ Yε(t) = y
) ≤ P

(
inf

t≤s≤T
Zε(s) < 0

)
,

we obtain from (3.53) bounds on the boundary functions w0, w− and w+ in (3.19).
Evidently these decay exponentially in y1 as y1 → ∞, whereas it follows from (3.20)
and the Lipschitz condition (1.1) on b(·, ·) that we may take Δ ∼ 1/y21 as y1 → ∞.
We conclude that (3.47) holds uniformly as y∞ → ∞. �

Lemma 3.5. Suppose b(·, ·) satisfies (1.1). Then for x, y ∈ R, t < T , and ε < 1
the inequality

(3.54) qε(x, y, t) ≥ q(x, y, t)− C(x, y, t, T )
√
ε

holds, where q(x, y, t) is given by (1.10) and C(x, y, t, T ) is a constant independent
of ε.



608 J.G. Conlon and M. Guha

Proof. Suppose y0 < x and y > y0. Then by Lemma 3.4 we have the representation

qε(x, y, t) = E
{ 1

2

∫ (T−δ)∧τ

t

[
λε(yε(s), s)− b (yε(s), s)

]2
ds(3.55)

+ qε
(
x, yε((T − δ) ∧ τ), (T − δ) ∧ τ) ∣∣ yε(t) = y

}
.

Here λε(y, s) is given by the formula

(3.56) λε(y, s) = b (y, s)− ∂qε(x, y, s)/∂y, y ∈ R, s < T.

By Lemma 3.4 the function λε(y, s) is uniformly Lipschitz in y for y ≥ y0 and
t ≤ s ≤ T − δ. Hence (1.14) has a unique solution yε(s) for t ≤ s ≤ (T − δ) ∧ τ ,
where τ is the first hitting time at y0.

We consider a random path yε(s) for t ≤ s ≤ T − δ, for which τ > T − δ,
and associate with it a classical path yε,c(s) for t ≤ s ≤ T . To do this let k be
defined by

(3.57) k = max
[
x− δ − y −

∫ T−δ

t

λε(yε(s), s) ds, 0
]
.

Then yε,c(s) for t ≤ s ≤ T is the solution to the initial value problem⎧⎪⎨
⎪⎩
dyε,c(s)

ds
= λε(yε(s), s) + k/(T − t− δ), t ≤ s ≤ T − δ,

dyε,c(s)

ds
= 2− b (x, s) + b (yε,c(s), s), T − δ ≤ s ≤ T, yε,c(t) = y.

(3.58)

Since from (3.57) one has that yε,c(T − δ) ≥ x − δ, it follows that yε,c(T ) ≥ x
provided δ is sufficiently small. Hence from (1.10) we conclude that

(3.59)
1

2

∫ T

t

[dyε,c(s)
ds

− b (yε,c(s), s)
]2
ds ≥ q (x, y, t).

From (1.14) and (3.58) we see that

(3.60) yε,c(s)− yε(s) =
k(s− t)

(T − t− δ)
+
√
ε [W (s)−W (t)], t ≤ s ≤ T − δ.

We may also rewrite the parameter k in (3.57) as

(3.61) k = max
[
x− δ − yε(T − δ) +

√
ε [W (T − δ)−W (t)], 0

]
.

Observe now that

1

2

∫ (T−δ)

t

[
λε(yε(s), s)− b (yε(s), s)

]2
ds

≥ 1

2

∫ (T−δ)

t

[dyε,c(s)
ds

− b (yε,c(s), s)
]2
ds(3.62)

−
∫ (T−δ)

t

∣∣∣dyε,c(s)
ds

− b(yε,c(s), s)
∣∣∣

· ∣∣ b (yε,c(s), s)− b (yε(s), s)− k/(T − t− δ)
∣∣ ds.
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Evidently from (3.59) the first term on the right-hand side of (3.62) is bounded
below by q(x, y, t)−Cδ for some constant C. Using (3.61) and Lemma 3.1 we may
bound the second term on the right-hand side of (3.62). First observe that this
second term is bounded in absolute value by

η

2

∫ (T−δ)

t

[
λε(yε(s), s)− b (yε(s), s)

]2
ds(3.63)

+
[
1 +

1

2η

] ∫ (T−δ)

t

[
b (yε,c(s), s)− b (yε(s), s)− k/(T − t− δ)

]2
ds,

for any η > 0. From (3.60) and the Lipschitz condition (1.1) on b(·, ·), the second
term in (3.63) is bounded from above as

∫ (T−δ)

t

[
b (yε,c(s), s)− b (yε(s), s)− k/(T − t− δ)

]2
ds

≤ C1 ε

∫ T−δ

t

[W (s)−W (t)]2 ds+ C2 k
2,(3.64)

where the constants C1 and C2 depend only on T − t, assuming δ < (T − t)/2.
Hence from (3.61), (3.63), and (3.64) we conclude that the second term on the
right-hand side of (3.62) is bounded by

(3.65)
η

2

∫ (T−δ)

t

[
λε(yε(s), s)− b (yε(s), s)

]2
ds+

C1ε

η

∫ (T−δ)

t

[
W (s)−W (t)

]2
ds

+
C2ε

η

[
W (T − δ)−W (t)

]2
+
C3

η

{
max

[
x− δ − yε(T − δ), 0

]}2
,

for any η, 0 < η < 1, and constants C1, C2, and C3 depending only on T − t. It
follows then on taking η ∼ δ in (3.65) and using Lemma 3.1 that

qε
(
x, yε(T − δ), T − δ

)
+

1

2

∫ (T−δ)

t

[
λε(yε(s), s)− b (yε(s), s)

]2
ds

≥ q(x, y, t)− C1δ − C2ε

δ

∫ (T−δ)

t

[
W (s)−W (t)

]2
ds+O(ε)(3.66)

− C3ε

δ

[
W (T − δ)−W (t)

]2 − C4δ

∫ (T−δ)

t

[
λε(yε(s), s)− b (yε(s), s)

]2
ds,

for constants C1, C2, C3, and C4 depending only on T − t.
To conclude the proof we take the expectation of (3.66) on a set of paths

yε(s), t ≤ s ≤ T − δ, for which τ > T − δ. To find a suitable set of paths
note that ∂qε(x, y, s)/∂y ≤ 0 for y ∈ R and s < T , whence (3.56) implies that
λε(y, s) ≥ b(y, s), y ∈ R, s < T . Thus yε(s) ≥ Yε(s) for t ≤ s ≤ T − δ, where Yε(s)
is the solution to (1.5) with Yε(t) = y. We have already estimated the fluctuation
of Yε(s) for t ≤ s ≤ T , from y by (3.4). We therefore conclude that for given y we
may choose y0 < y such that

(3.67) sup
t≤s≤T

∣∣W (s)−W (t)
∣∣ < 1/

√
ε implies τ > T − δ.
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The inequality (3.54) follows now upon taking δ =
√
ε in (3.66) and taking the

expectation on the paths for which (3.67) holds. �

Proof of Theorem 1.1. Evidently (1.12) follows from Lemmas 3.3 and 3.5. �

4. The optimally controlled process

In Lemma 3.5 we already used the optimally controlled process yε(s) of (1.14)
with controller (1.16) to obtain a lower bound on qε(x, y, t). The main goal of this
section is to prove that lim infs→T yε(s) > x with probability 1. To do this we
need to prove some short time asymptotic results for the cost function qε(x, y, t).

Lemma 4.1. Suppose that 0 < T − t < δ ≤ ε < 1. Then the function qε(x, y, t)
satisfies the inequalities

0 < qε(x, y, t) ≤ Cε+ (x− y)2/(T − t)

+ C(x, δ)
[
(y − x)2 + |y − x|+

√
ε (T − t)

]
, y < x,

0 < qε(x, y, t) ≤ C ε exp
[− (x− y)2/2 ε (T − t)

]
+ C(x, δ)

[
(y − x)2 + |y − x|+

√
ε (T − t)

]
, y > x,

(4.1)

where C is a universal constant and C(x, δ) depends only on x and δ. The function
∂qε(x, y, t)/∂y satisfies the inequality

−∂qε
∂y

(x, y, t) ≥
(x− y

T − t

)
· exp

[
− C(x, δ)

{
(T − t) | log(T − t)|(4.2)

+ [(T − t)/ε]1/2 + (y − x)2/ε+ |y − x|/ε
}]
,

for a constant C(x, δ) depending only on x and δ.

Proof. We apply the Schwarz inequality to the PDE (1.8) for qε(x, y, t). Thus for
any α > 0,

(4.3)
∂qε
∂t

+ b (x, t)
∂qε
∂y

− 1

2
(1−α)

(∂qε
∂y

)2

+
ε

2

∂2qε
∂y2

+
1

2α

[
b (y, t)− b (x, t)

]2 ≥ 0.

Setting vα(y, t) = exp[−(1− α)qε(x, y, t)/ε], we see from (4.3) that

(4.4)
∂vα
∂t

+ b (x, t)
∂vα
∂y

+
ε

2

∂2vα
∂y2

≤ (1− α)

2α ε

[
b (y, t)− b (x, t)

]2
vα,

provided α < 1. It follows now from (4.4) that vα is bounded below by

(4.5) vα(y, t) ≥ E
[
vα

(
y + g(T ) +

√
ε W (T − t), T

)

· exp
{
−
∫ T

t

(1− α)
[
b(y + g(s) +

√
ε W (s− t), s)− b (x, s)

]2
ds/2αε

}]
,
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where W (·) is Brownian motion and g(·) is given by

(4.6) g(s) =

∫ s

t

b (x, s′) ds′, t ≤ s ≤ T.

Observing that vα has terminal data vα(y, T ) = 0 for y < x, and vα(y, T ) = 1
for y > x, we conclude from (4.5) that

(4.7) vα(y, t) ≥
∫ ∞

x−g(T )

1√
2πε(T − t)

exp
[
− (y − z)2

2 ε (T − t)

]
F (y, z) dz,

where F (y, z) is given by the formula

(4.8) F (y, z) = E
[
exp

{
−
∫ T

t

(1− α)
[
b
(
[(T − s)y + (s− t)z]/(T − t)

+
√
ε
[
W (s− t)− (s− t)W (T − t)/(T − t)

]
+ g(s), s

)
− b (x, s)

]2
ds
/
2αε

}]
.

In (4.7) we have used the Brownian bridge representation for Brownian motion
conditioned at times t and T . Using Jensen’s inequality in (4.8) and the Lipschitz
bound (1.1) on b(·, ·), we conclude that

− logF (y, z) ≤ A2(1− α)

2α ε

∫ T

t

dsE
[{

(T − s)(y − x) + (s− t)(z − x)]/(T − t)

+ g(s) +
√
ε
[
W (s− t)− (s− t)W (T − t)/(T − t)

]}2]

=
A2(1− α)

2α ε

∫ T

t

ds
{[
(T − s)(y − x)+(s− t)(z − x)

]
/(T − t)+g(s)

}2

(4.9)

+
A2(1− α)

2α

∫ T

t

ds (s− t)(T − s)/(T − t).

It follows now from (4.6) and (4.9) that for any δ > 0 there is a constant C(x, δ)
depending only on x and δ such that

(4.10) − logF (y, z) ≤ A2(1 − α)

2α ε

[
(z − x)2(T − t) + (y − x)2(T − t)

+ C(x, δ)(T − t)3 + ε(T − t)2/6
]
, T − t < δ.

We may combine (4.7) and (4.10) to obtain an upper bound on qε(x, y, t). Thus
on using the inequality (z − x)2 ≤ 2(z − y)2 + 2(y − x)2 in (4.10), we conclude
from (4.7) that for T − t < δ,

vα(y, t) ≥ exp
[
− A2(1− α)

2α ε

{
3(y − x)2(T − t) + C(x, δ)(T − t)3 + ε (T − t)2/6

}]

·
∫ ∞

x−y−g(T )

1√
2πε(T−t) exp

[
− z′2

{ 1

2 ε (T−t) +
A2(1 − α)

α ε
(T − t)

}]
dz′.(4.11)
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Let us recall the inequality

(4.12)
1

a

(
1− 1

a2

)
e−a2/2 <

∫ ∞

a

e−z2/2 dz <
1

a
e−a2/2, a > 0.

We shall use it to show that there is a universal constant C such that

(4.13)

∫ ∞

a+η

e−z2/2 dz ≥ exp
[−η2/2−Cηmax{a, 1}]

∫ ∞

a

e−z2/2 dz, η > 0, a ∈ R.

To see this observe that, by Jensen’s inequality,

∫ ∞

a+η

e−z2/2 dz ≥ exp
[− η2/2− η 〈Z〉 ]

∫ ∞

a

e−z2/2 dz,

where Z is the standard normal variable conditioned on Z > a. Evidently if a ≤ 2
then | 〈Z〉 | ≤ C1 for some universal constant C1. If a ≥ 2 we see from (4.12) that

〈Z〉 ≤ a
(
1− 1

a2

)−1

≤ 4

3
a,

whence (4.13) holds for all a ∈ R.
We shall apply the inequality (4.13) in (4.11) to obtain an upper bound on

qε(x, y, t) in terms of the cumulative distribution function Φ for the standard nor-
mal variable. Now the integral with respect to z′ on the right-hand side of (4.11)
is given by

(4.14)
1[

1 + 2A2(1 − α) (T − t)
]1/2 Φ

(y − x+ g(T )√
ε (T − t)

[
1 + 2A2(1− α) (T − t)

]1/2)

if we set α = T − t. We write the argument of Φ in (4.14) as −[a + η] with
a = (x − y)/

√
ε (T − t) and apply (4.13). Thus for T − t < δ ≤ ε, we obtain the

inequality

Φ
(y − x+ g(T )√

ε (T − t)

[
1 + 2A2(1− α) (T − t)

]1/2)

≥ Φ
( y − x√

ε (T − t)

)
exp

[
− C(x, δ)

ε

{
(y − x)2 + |y − x|+

√
ε(T − t)

}]
,(4.15)

for some constant C(x, δ) depending only on x and δ. If we combine (4.15)
with (4.11), taking α = T − t, we obtain for qε the upper bound

qε(x, y, t) ≤ −ε logΦ
(
[y − x]/

√
ε (T − t)

)
(4.16)

+ C(x, δ)
[
(y − x)2 + |y − x|+

√
ε (T − t)

]
, T − t < δ ≤ ε,

for a constant C(x, δ) depending only on x and δ. The inequality (4.1) follows
from (4.16) upon using (4.12). Note that (4.12) for y < x follows from (4.16) upon
using the fact that log a ≤ a2/2 for a > 1.
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Next we turn to estimating ∂qε(x, y, t)/∂y. To do this we consider the Green’s
function G(y, y′, t, T ) of (1.4). It follows from (1.4) that

−∂uε(x, y, t)/∂x = G (y, x, t, T ).

If we differentiate (1.2) with respect to y and use the maximum principle, we
see also that

(4.17) ∂uε(x, y, t)/∂y ≥ e−A(T−t)G (y, x, t, T ),

where A is the Lipschitz constant in (1.1). Since

−∂qε(x, y, t)/∂y = ε [∂uε(x, y, t)/∂y]/uε(x, y, t) ,

we may obtain the lower bound (4.2) by finding a lower bound for G(y, x, t, T ) and
a lower bound for qε(x, y, t) which is complimentary to (4.16).

We turn to the problem of obtaining a lower bound for qε. Instead of (4.3) we
use the differential inequality

(4.18)
∂qε
∂t

+b (x, t)
∂qε
∂y

− 1

2
(1+α)

(∂qε
∂y

)2

+
ε

2

∂2qε
∂y2

−[
b (y, t)−b (x, t)]2/2α ≤ 0,

for any α > 0. Setting vα(y, t) = exp[−(1+α)qε(x, y, t)/ε] we see from (4.18) that

(4.19) vα(y, t) ≤
∫ ∞

x−g(T )

1√
2 π ε (T − t)

exp
[
− (y − z)2

2 ε (T − t)

]
F (y, z) dz,

where F (y, z) is given by the formula

F (y, z) = E
[
exp

{∫ T

t

A2(1 + α)

2α ε
ds
(
[T − s)(y − x) + (s− t)(z − x)]

/
(T − t)

+ g(s) +
√
ε
[
W (s− t)− (s− t)W (T − t)/(T − t)

])2}]
.(4.20)

The expectation in (4.20) cannot be evaluated exactly as was the case with (4.9),
but it may be estimated using the fact that one knows the probability density
function of supt≤s≤TW (s− t). Taking α = T − t in (4.20), we see from this that,
for T − t < δ,

(4.21) logF (y, z) ≤ CA2

ε

[
(z − x)2 + (y − x)2 + C(x, δ) (T − t)2 + ε (T − t)

]
,

for a universal constant C and a constant C(x, δ) depending on only x and δ. Note
here that we require δ < 1/A2 for the expectation (4.20) to be finite. To obtain
the lower bound on qε we combine (4.21) and (4.19) with the inequality (4.13).
Since we are obtaining an upper bound on the function vα(y, t), we apply (4.13)
with a+ η = (x − y)/

√
ε(T − t). Hence we get an inequality

qε(x, y, t) ≥ − ε logΦ
( y − x√

ε(T − t)

)
(4.22)

− C(x, δ)
[
(y − x)2 + |y − x|+

√
ε(T − t)

]
, T − t < δ ≤ ε,

complimentary to (4.16), for a constant C(x, δ) depending only on x and δ.
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The lower bound for G(y, x, t, T ) may be obtained in a similar way to the upper
bound on qε(x, y, t). Let 0 < Δ < T − t and 0 < α < 1. Then, just as in (4.5), we
have that

G(y, x, t, T )1−α ≥
∫ ∞

−∞

1√
2 π ε (T − t−Δ)

· exp
[
− (y − z)2

2 ε (T − t−Δ)

]
FΔ(y, z)G

(
z + g(T −Δ), x, T −Δ, T

)1−α
dz,(4.23)

where FΔ is as in (4.8) but with T replaced by T − Δ. Observe that we cannot
take Δ → 0 on the right-hand side of (4.23) since the integrand would contain in
the limit δ(z + g(T − Δ) − x)1−α, which is identically zero. We shall choose Δ
so that 0 < Δ << T − t and α = T − t, in a way that the function z → G(z +
g(T −Δ), x, T −Δ, T )1−α is approximately a Dirac delta function concentrated at
x− g(T −Δ).

It is evident that the right-hand side of (4.23) is decreased upon replacing G
by the corresponding Dirichlet Green’s function GD for an interval centered at x.
As in Lemma 3.4 we choose this interval sufficiently small and Δ sufficiently small
so that GD may be expanded in a perturbation series. The condition for this has
already been given in (3.20). Thus the Green’s function GD(z, x, T −Δ, T ) on the
interval x − η ≤ z ≤ x + η has a convergent perturbation expansion provided η
and Δ satisfy the inequalities

(4.24) εΔ ≤ η2, Δ ≤ νε

[Aη + C(x, δ)]2
, Δ ≤ δ,

where A is the Lipschitz constant from (1.1) and C(x, δ) is a constant depending
only on x and δ. In this case there are universal constants C1 and C2 such that∫ x+η

x−η

GD(z, x, T −Δ, T ) dz ≥ 1− C2 exp [−η2/4 εΔ](4.25)

− C2 [Aη + C(x, δ)](Δ/ε)1/2, 0 < Δ < δ.

Observe that if we take Δ = (T − t)3 and η = (T − t)
√
ε then the right-hand

side of (4.25) is bounded below by 1−C(x, δ)(T − t) for 0 < T − t < δ ≤ ε, where
C(x, δ) depends only on x and δ. Taking α = T − t we may see further that with
the same values for Δ and η the inequality

(4.26)

∫ x+η

x−η

GD(z, x, T −Δ, T )1−α dz ≥ 1− C(x, δ) (T − t) | log(T − t)|,

0 < T − t < δ ≤ ε, holds for a constant C(x, δ) depending only on x and δ. It
follows then from (4.10), (4.23), and (4.26) that

G(y, x, t, T ) ≥ 1√
2 π ε (T − t)

exp
[
− (y − x)2

2 ε (T − t)
− C(x, δ)

{
(T − t) | log(T − t)|

+ (y − x)2/ε+ |y − x|/ε}], 0 < T − t < δ ≤ ε,(4.27)

for a constant C(x, δ) depending only on x and δ.
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To obtain the lower bound (4.2) we combine (4.22) and (4.27) using (4.17).
The inequality (4.2) now follows from (4.12). �

Remark 4.2. There is a vast literature on short time asymptotics of solutions
to diffusive equations. See in particular the classical papers of Kannai [11], Mi-
nakshisundaram [17], Molchanov [18], and Varadhan [22].

Lemma 4.1 shows that for y < x and s < T with T − s small, the optimal
controller λ∗(x, y, s), given by (1.16) for the stochastic control problem (1.15), is
approximately λ∗(x, y, s) = (x − y)/(T − s). This will enable us to show that
the solution yε(s) of the corresponding stochastic differential equation (1.14) sat-
isfies lim infs→T yε(s) > x with probability 1. First we show this for the linear
approximation which we have just established.

Lemma 4.3. Suppose μ > 0 and ε > 0, and that Zε(s), for t ≤ s < T , is a
solution to the SDE

(4.28) dZε(s) =
−μZ(s)
T − s

ds+
√
ε dW (s),

with initial condition Zε(t) = z ∈ R. Then lims→TZε(s) = 0 with probability 1,
and if μ > 1/2 then lim infs→TZε(s)/

√
T − s = −∞ with probability 1.

Proof. The SDE (4.28) is explicitly solvable, whence we find

(4.29) Zε(s) =
(T − s

T − t

)μ

z +
√
ε

∫ s

t

( T − s

T − s′
)μ

dW (s′), t ≤ s < T.

Thus Zε(s) is a Gaussian variable with mean of order (T − s)μ as s → T . We
shall assume without loss of generality that μ > 1/2, in which case the variance of
Zε(s) has order T − s as s→ T . Hence the standard deviation of Zε(s) dominates
the mean for s→ T . For n = 0, 1, 2, . . . , let sn = T − (T − t)/2n, so t = s0 < s1 <
s2 < · · · < T . For t < s < T we consider the martingale M(s) defined by

M(s) =

∫ s

t

(T − s′)−μ dW (s′),

which by Doob’s inequality satisfies

P
(

sup
t≤s≤sn

|M(s)| > a
)
≤ 2(2μ−1)n

a2(2μ− 1) (T − t)2μ−1
, a > 0.

It follows that

∞∑
n=1

P
(

sup
t≤s≤sn

|M(s)| > 2(μ−1/4)n
)
<∞.

Hence, by the Borel–Cantelli lemma, lim sups→T (T − s)μ |M(s)| = 0 with
probability 1. We conclude from (4.29) that lims→T Zε(s) = 0 with probability 1.
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We turn to showing that lim infs→T Zε(s)
/√

T − s = −∞ with probability 1.
For a positive integer n we define variables Yn by

Yn = (T − sn)
μ−1/2

[
M(sn)−M(sn−1)

]
.

We may write the Zε(sn) in terms of the Yn as

(4.30) Zε(sn) =
(T − sn
T − t

)μ

z +
√
ε(T − sn)

n∑
m=1

Ym/2
(n−m)(μ−1/2), n = 1, 2, . . .

Evidently the Yn, n ≥ 1, are independent and Gaussian with zero mean and
variance var(Yn) =

[
1 − 21−2μ

]
/(2μ − 1). By the Borel–Cantelli lemma, for any

K > 0 one has Yn < −K for infinitely many n, with probability 1. Thus if in (4.30)
we were to replace the sum over 1 ≤ m ≤ n by its dominant term m = n, we would
have shown that lim infn→∞ Zε(s)

/√
T − sn = −∞ with probability 1.

To take account of the sum in (4.30) we need to make a more elaborate argu-
ment. Denoting the sum in (4.30) by ξn it is easy to see that

(4.31) ξn = Yn + ξn−1

/
2(μ−1/2), n ≥ 1,

where ξ0 = 0. For ξ ∈ R and n ≥ 1, we put

u(ξ, n) = P
[
ξm > a, 1 ≤ m ≤ n

∣∣ ξ0 = ξ
]
,

where the ξn are defined by the recurrence (4.31). Setting δ = 1/2(μ−1/2) < 1, it
is easy to see that the u(ξ, n) satisfy the recurrence equation

(4.32) u(ξ, n) =
1√
2πσ2

∫ ∞

a

dξ′ u (ξ′, n− 1) exp
[− (

ξ′ − δξ
)2/

2σ2
]
, n ≥ 1,

where we define u(ξ, 0) = 1, ξ ∈ R, and σ2 =
[
1 − 21−2μ

]
/(2μ − 1). If, for

z > 0, û(ξ, z) is the Laplace transform of u(ξ, n),

û(ξ, z) =

∞∑
n=0

u(ξ, n) e−nz, ξ ∈ R, z > 0,

then we see from (4.32) that

(4.33) û(ξ, z) = 1+
e−z

√
2πσ2

∫ ∞

a

dξ′ û(ξ′, z) exp
[−(ξ′−δξ)2/2σ2

]
, ξ ∈ R, z > 0.

It follows from (4.33) that for η > 0,

(4.34) sup
ξ>a

[
û(ξ, z) e−ηξ

] ≤ e−ηa + e−z sup
ξ>a

[
û(ξ, z) e−ηξ

]
sup
ξ>a

hη(ξ),

where hη(ξ) is given by the expression

hη(ξ) =
1√

2 π σ2

∫ ∞

a

dξ′ exp
[
η(ξ′ − ξ)− (ξ′ − δξ)2

/
2σ2

]
.
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Evidently supξ>a hη(ξ) = 1 if η = 0. We shall show that there is an η > 0 such
that supξ>a hη(ξ) < 1.

To see this we shall assume without loss of generality that a < 0 and 0 < η < 1.
We choose α to satisfy δ < α < 1, and for ξ > 0 consider the integral∫ ∞

αξ

dξ′ exp
[
η (ξ′ − ξ)− (ξ′ − δξ)2/2σ2

]

= σ exp
[− η (1 − δ) ξ

] ∫ ∞

K

exp
[
η σ ζ − ζ2/2

]
dζ,

where K = [α− δ]ξ/σ. We have now that

∫ ∞

K

exp
[
η σ ζ − ζ2/2

]
dζ = eη

2σ2/2

∫ ∞

K−ησ

e−ζ2/2 dζ

≤ exp
[
η2σ2 + C(K − η σ)η σ

] ∫ ∞

K

e−ζ2/2 dζ,

where we have used (4.13) and assumed K−ησ > 1. Taking C > 1 and choosing α
so that (1 − δ) > C(α − δ), we conclude from the last two inequalities that there
exists ξ0 > 0 depending only on σ and α, such that∫ ∞

αξ

dξ′ exp
[
η (ξ′ − ξ)− (ξ′ − δξ)2/2σ2

]

≤ exp
[− η ξ {(1− δ)− C(α− δ)}]

∫ ∞

αξ

dξ′ exp
[− (ξ′ − δξ)2/2σ2

]

provided ξ > ξ0. It follows easily that

(4.35) hη(ξ) ≤ exp [−ρ η ξ], ξ > ξ0, 0 < η < 1,

where ρ = min
[
(1 − δ)− C(α − δ), 1− α

]
. One can also see that we may choose

η > 0 sufficiently small such that supa<ξ<ξ0 hη(ξ) < 1. Combining this with (4.35),
we conclude that supξ>a hη(ξ) < 1 for sufficiently small η > 0. Now, on letting
z → 0 in (4.34), we see that

∞∑
n=1

P
(
ξm > a, 1 ≤ m ≤ n

∣∣ ξ0 = ξ
)
<∞.

Hence, by the Borel–Cantelli lemma, lim infn→∞ ξn ≤ a with probability 1. Now
(4.30) implies that lim infn→∞ Zε(sn)

/√
T − sn = −∞ with probability 1. �

Theorem 4.4. Let λε(·, ·) be the optimal controller defined by (3.56). Then the
SDE (1.14) has a unique strong solution yε(s) for t ≤ s < T , with initial condition
yε(t) = y. Furthermore lim infs→T yε(s) > x with probability 1.

Proof. To show the existence and uniqueness of a solution to (1.14) we argue as
in Lemma 3.5. Thus for y0 < y let τ(y0) = inf{s ≥ t : s < T, yε(s) = y0}. Since
λε(y

′, s) ≥ b(y′, s) for y′ ∈ R and s < T , it follows that limy0→−∞ P (τ(y0)< T ) = 0.
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Hence by the Lipschitz property of λε(y
′, s) for y′ ≥ y0 and t ≤ s ≤ T − δ, we

obtain for any δ > 0 a unique strong solution to (1.14) up to time T − δ. Letting
δ → 0 we get existence and uniqueness in the interval t ≤ s < T .

To show that lim infs→T yε(s) > x we consider for y0 < y and t ≤ s < T ,
solutions yε(s) of (1.14) with yε(t) = y such that τ(y0) = T . From (4.2) and the
fact that b(·, s) is uniformly Lipschitz for t ≤ s ≤ T , we see that there exists s0
with t ≤ s0 < T , and μ0 > 0, such that such that

(4.36) dyε(s) ≥
(
b(x, s) +

μ0[x− yε(s)]

T − s

)
ds+

√
ε dW (s), s0 ≤ s < T,

on paths yε(·) for which τ(y0) = T . It follows then from (4.36) and Lemma 4.3
that on paths yε(·) for which τ(y0) = T one has in fact lim infs→T yε(s) ≥ x with
probability 1. Letting y0 → −∞, we conclude that lim infs→T yε(s) ≥ x with
probability 1 on all paths yε(·) for which yε(t) = y.

Next, for η > 0 and s0 < T , let Uη,s0 =
{
yε(·) : yε(t) = y, yε(s) ≥ x− η, s0 ≤

s < T
}
. If η and T − s0 are sufficiently small it follows from (4.2) that we

can take μ0 > 1/2 for a path yε(·) ∈ Uη,s0 . Hence by Lemma 4.3 we have that
lim sups→T [yε(s)−x]

/√
T − s = +∞ with probability 1 for all paths yε(·) ∈ Uη,s0 .

Since lims0→T P (Uη,s0) = 1, we conclude that lim sups→T [yε(s) − x]
/√

T − s =
+∞ with probability 1 on all solutions to (1.14) with yε(t) = y.

For K > 0 we define a stopping time τK by

τK = inf
{
s ≥ t : s < T, yε(s)− x = K

√
T − s

}
.

We have just shown that P (τK < T ) = 1. Consider now a solution yε(s) to (1.14)
for s1 ≤ s < T , with initial condition yε(s1) = y1. Now yε(s) ≥ Yε(s) for
s1 ≤ s < T , where Yε(s) is the solution to (1.5) with Yε(s1) = y1. From (3.4)
we conclude that

(4.37) inf
s1≤s<T

yε(s) ≥ y1 − C sup
s1≤s<T

∣∣∣
∫ s

s1

b (y1, s
′) ds′ +

√
ε
[
W (s)−W (s1)

]∣∣∣,

for some constant C. We take now s1 ≥ t and y1 = x+K
√
T − s1 in (4.37). It is

clear that there is a constant K0 > 0 such that, for K > K0,

P
(

inf
s1≤s<T

yε(s) ≤ x
)
≤ P

(√
ε sup

s1≤s<T
|W (s)−W (s1)| > K

√
T − s1

/
2
)

(4.38)

≤ 4ε/K2.

Taking s1 = τK in (4.38) we conclude that, for K > K0, one has

P
(
lim inf
s→T

yε(s) ≤ x
)
≤ 4ε/K2.

Letting K → ∞ yields the result. �



Stochastic variational formulas 619

Corollary 4.5. Let λε(·, ·) be the optimal controller defined by (3.56), and let
yε(s) be the corresponding solution to (1.14) with initial condition yε(t) = y. Then
one has

(4.39) lim
δ→0

qε
(
x, yε(T − δ), T − δ

)
= 0 with probability 1.

Proof. We use the second inequality of (4.1) to obtain an estimate on qε(x, y, T−δ)
when y > x. Since qε

(
x, ·, T − δ) is a positive decreasing function we have that

qε(x, y, T − δ) ≤ C ε exp
[
− (x− y)2

2 ε δ

]
+ C1(ε δ)

1/4, x < y < x+(ε δ)1/4,

qε(x, y, T − δ) ≤ C1(ε δ)
1/4, y > x+ (ε δ)1/4,

(4.40)

for some constants C and C1. Now (4.39) follows from (4.40) and Theorem 4.4. �

5. Proof of Theorem 1.2

The problem of estimating ∂qε(x, y, t)/∂y is closely related to the problem of es-
timating certain conditional probabilities. For 0 < δ < T/2 we shall consider the
conditional probability P

(
Yε(T − δ) ∈ U | Yε(0) = y, Yε(T ) = 0

)
, where Yε(s), de-

fined for 0 ≤ s ≤ T , satisfies the SDE (1.5) and U is an arbitrary open set. In the
linear approximation b(y, s) = A(s)y the variable Yε(T ) conditioned on Yε(0) = y
is Gaussian with mean Λ(T )y and variance εσ2(T ), where Λ(T ) and σ2(T ) are
given by the formulas

(5.1) Λ(T ) = exp
[ ∫ T

0

A(s) ds
]
, σ2(T ) =

∫ T

0

exp
[
2

∫ T

s

A(s′) ds′
]
ds.

The variable Yε(T − δ) conditioned on Yε(0) = y, Yε(T ) = 0, is also Gaussian
with mean and variance given by the formulas
(5.2)

E
[
Yε(T − δ)

∣∣Yε(0) = y, Yε(T ) = 0
]
=
Λ(T − δ)

σ2(T )
y

∫ T

T−δ

exp
[
2

∫ T

s

A(s′) ds′
]
ds,

Var
[
Yε(T − δ) | Yε(0) = y, Yε(T ) = 0

]
=
εσ2(T − δ)

σ2(T )

∫ T

T−δ

exp
[
2

∫ T

s

A(s′) ds′
]
ds.

The mean in (5.2) is equal to ymin(T − δ), where ymin(s), defined for 0 ≤
s ≤ T , is the unique minimizer for the functional F [y(·)] of (2.8) conditioned on
y(0) = y and y(T ) = 0. One sees easily from (5.2) that there are positive universal
constants C1 and C2 such that

C2δ y

T
≤ E

[
Yε(T − δ)

∣∣ Yε(0) = y, Yε(T ) = 0
] ≤ C1δ y

T
,

C1ε δ ≤ Var
[
Yε(T − δ)

∣∣ Yε(0) = y, Yε(T ) = 0
] ≤ C2ε δ,

(5.3)
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for y < 0 provided 0 < δ < T/2 and AT < 1. It follows from (5.3) that there are
positive universal constants C3, γ3, C4, and γ4 such that
(5.4)

P
(
Yε(T − δ) <

C3 δ y

T

∣∣∣ Yε(0) = y, Yε(T ) = 0
)
≤ exp

[
− γ3 δ y

2

ε T 2

]
, y<−T

√
ε/δ,

P
(
Yε(T − δ) >

C4 δ y

T

∣∣∣ Yε(0) = y, Yε(T ) = 0
)
≤ exp

[
− γ4 δ y

2

ε T 2

]
, y<−T

√
ε/δ,

provided 0 < δ < T/2 and AT < 1.
Evidently (5.4) proves Theorem 1.2 in the case of b(y, ·) linear in y ∈ R. There-

fore we need to show that (5.4) continues to hold for nonlinear b(·, ·) satisfying (1.1)
and b(0, ·) ≡ 0. Towards this goal we first observe that in the linear case there are
positive universal constants C3, γ3, C4, and γ4 such that if Fmin = F [ymin(·)] then

F [y(·)]−Fmin ≥ γ3 δ y
2/T 2 if y (T − δ) < C3 δ y/T,

F [y(·)]−Fmin ≥ γ4 δ y
2/T 2 if y (T − δ) > C4 δ y/T,

(5.5)

provided 0 < δ < T/2, AT < 1, and y < 0. For nonlinear b(·, ·) there is not
necessarily a unique minimizer of the functional F [y(·)] subject to y(0) = y < 0
and y(T ) = 0. Nevertheless, if Fmin denotes now the minimum of F [y(·)] then (5.5)
continues to hold.

Lemma 5.1. Let b(·, ·) satisfy (1.1) and b(0, ·) ≡ 0. Assume further that y < 0,
δ < T/2, and AT < 1, and that Fmin is the minimum of the functional F [y(·)]
of (2.8) subject to y(0) = y and y(T ) = 0. Then (5.5) holds for some positive
universal constants C3, γ3, C4, and γ4, on any path y(s), defined for 0 ≤ s ≤ T ,
satisfying y(0) = y and y(T ) = 0.

Proof. We first show that there are positive universal constants C1 and C2 such
that

(5.6) C1y
2/T ≤ Fmin ≤ C2y

2/T.

The upper bound in (5.6) can be obtained by estimating F [y(·)] for the linear path
y(s) = (T − s)y/T , defined for 0 ≤ s ≤ T . To get the lower bound we consider a
path y(s), defined for 0 ≤ s ≤ T , satisfying y(0) = y and y(T ) = 0, and write

(5.7)
dy

ds
= b (y(s), s) + f(s) = A(s) y(s) + f(s),

where |A(s)| ≤ A for 0 ≤ s ≤ T . Evidently we see from (5.7) that

y = y(0) = −
∫ T

0

exp
[
−
∫ s

0

A(s′) ds′
]
f(s) ds.

Since AT < 1 we conclude that

|y| ≤ e

∫ T

0

|f(s)| ds ≤ e
√
T
[ ∫ T

0

|f(s)|2 ds
]1/2

,

whence we obtain the lower bound in (5.6) with C1 = 1/2e2.
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To prove the first inequality in (5.5) we consider for λ > 1 a path yλ(s), defined
for 0 ≤ s ≤ T , satisfying yλ(0) = y, yλ(T ) = 0, and yλ(T − δ) = λδy/T . We
derive a second path y∗λ from yλ by setting y∗λ(s) = 0 for T − δ < s < T, and
y∗λ(s) = yλ(s) − sλδy/T (T − δ) for 0 < s < T − δ. Thus y∗λ(·) is continuous and
y∗λ(0) = y and y∗λ(T ) = 0, whence we must have F [y∗λ(·)] ≥ Fmin. We also have
that

F [yλ(·)] = 1

2

∫ T−δ

0

[ dy∗λ(s)
ds

+
λ δ y

T (T − δ)
− b

(
y∗λ(s) + s λ δ y/T (T − δ), s

)]2
ds(5.8)

+
1

2

∫ T

T−δ

[ dyλ
ds

− b(yλ(s), s)
]2
ds.

Arguing as we did to get the lower bound in (5.6) we see that

(5.9)
1

2

∫ T

T−δ

[ dyλ(s)
ds

− b (yλ(s), s)
]2
ds ≥ λ2δ y2

2 e2T 2
.

The first term on the right-hand side of (5.8) is bounded below by

(5.10) F [y∗λ(·)]−
2λ δ |y|
T (T − δ)

∫ T−δ

0

∣∣∣ dy∗λ(s)
ds

− b (y∗λ(s), s)
∣∣∣ ds,

where we have used the fact that AT < 1. It follows then from (5.9) and (5.10)
that

(5.11) F [yλ(·)] ≥ F [y∗λ(·)] −
2
√
2λ δ |y|

T
√
T − δ

F [y∗λ(·)]1/2 +
λ2δ y2

2 e2T 2
.

Observe now from (5.6), (5.8), and (5.9) that there is a universal constant
C3 such that if λδ/T > C3 then F [yλ(·)] − Fmin ≥ λ2δy2/2e2T 2. Suppose now
that λδ/T < C3. If F [y∗λ(·)] ≥ [2C2 + 64C2

3 ]y
2/T it follows from (5.11) that

F [yλ(·)]−Fmin ≥ λ2δy2/2e2T 2. On the other hand if F [y∗λ(·)] ≤ [2C2+64C2
3 ]y

2/T
we see again from (5.11) that F [yλ(·)] − Fmin ≥ λ2δy2/4e2T 2 if λ > λ0 ≥ 1 for
some universal λ0. We have proven the first inequality of (5.5).

We turn to the proof of the second inequality in (5.5). Let y1(·) be a trajectory
satisfying y1(0) = y and y1(T ) = 0, and set τ = inf{s ≥ 0 : y1(s) = 0}. Suppose
now that τ ≤ T − δ. From (5.6) one has that F [y1(·)] ≥ C1y

2/τ , and so the second
inequality of (5.5) follows if τ < C1T/2C2. We assume therefore that C1T/2C2 <
τ ≤ T − δ. Let ymin(·) be a minimizing path for the functional F [y(·)] subject to
the conditions y(0) = y and y(s) = 0 for τ ≤ s ≤ T . Then F [y1(·)] ≥ F [ymin(·)].
From (2.14) we see that there are positive universal constants C3 and C4 such that

(5.12)
C3|y|
T

≤ dymin(s)

ds
− b (ymin(s), s) ≤ C4|y|

T
, 0 ≤ s ≤ τ.

Since AT < 1 we conclude from (5.12) that

(5.13) eC4(τ − s) y/T ≤ ymin(s) ≤ C3(τ − s) y/e T , 0 ≤ s ≤ τ.
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It is clear that there is a positive universal constant ε0 such that for 0 < ε < ε0
we may define a path yε(·) as follows: yε(s) = ymin(s) for 0 ≤ s ≤ τ − εδ, and
yε(s) = (T − s)ymin(τ − εδ)/(T − τ + εδ) for τ − εδ ≤ s ≤ T . Since yε(·) is
continuous, yε(0) = y and yε(T ) = 0, we have that F [yε(·)] ≥ Fmin. From (5.12)
and (5.13) we also have that

(5.14) F [ ymin(·)]−F [ yε(·)] ≥ ε δ C2
3y

2/2T 2 − e2C2
4ε

2δ y2/2 (1 + ε)T 2 ,

where we have used the fact that τ ≤ T − δ. Evidently the second inequality
of (5.5) follows from (5.14) by choosing ε = min[1, C3/2eC4]

2.
To complete the proof of the second inequality of (5.5) we need to consider the

case T − δ ≤ τ ≤ T . It is evident that if Cδy/T < y1(T − δ) ≤ 0 for sufficiently
small universal C > 0 we may repeat the argument of the previous paragraph.
Hence the result follows in all cases. �

We begin the proof of (5.4) by sharpening the estimate (4.27) on the Green’s
function G(y, x, t, T ) defined by (1.4).

Lemma 5.2. Suppose b(·, ·) satisfies (1.1) and, in addition, b(0, ·) ≡ 0. Then there
are universal positive constants C and δ such that the Green’s function G defined
by (1.4) satisfies the inequalities

G(y, 0, 0, T ) ≤ 1√
2 π ε T

exp
[ −y2
2 ε T (1 + CAT )

+ CAT
]
,(5.15)

G(y, 0, 0, T ) ≥ 1√
2 π ε T

exp
[−y2(1 + CAT )

2 ε T
− CAT

]
,(5.16)

provided AT ≤ δ.

Proof. We shall first prove (5.16). Suppose that we have shown that

(5.17) G(y, 0, t, T ) ≥ 1√
2 π ε (T−t) exp

[ −y2
2 ε (T−t)

{
1 + CA(T−t)}− CA(T−t)

]
,

for T − t = T/2N , where N is some integer N ≥ 1. We shall show that for a
sufficiently large universal constant C > 0, (5.17) also holds for T − t = T/2N−1.
The inequality (5.16) will then follow by induction if we can prove (5.17) holds as
T − t→ 0.

Defining tN by T − tN = T/2N , N ∈ N, we see in a similar way to how we
derived (4.23) that

G(y,0, tN−1, T )
1−α

≥
∫ ∞

−∞

1√
2 π ε T/2N

exp
[
− (y − z)2

2 ε T/2N

]
FN (y, z)G(z, 0, tN , T )

1−α dz,(5.18)

where FN (y, z) is given by the formula,

(5.19) FN (y, z) = exp
{
− A2(1 − α)

6α ε

T

2N
(y2 + zy + z2)− A2(1 − α)

12α

T 2

22N

}
.
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Assuming now that we may bound G(z, 0, tN , T ) according to (5.17), then the
right-hand side of (5.18) becomes a Gaussian integral which we can evaluate. Tak-
ing α = AT/2N in (5.18) and CN to be the constant C in (5.17) when t = tN , we
see that it is possible to take CN−1 = 5CN/8 + 2 provided N ≥ 1 and δ ≤ 1. We
conclude therefore that

(5.20) C0 =
16

3

[
1−

(5
8

)N]
+
(5
8

)N

CN , N ≥ 1

The inequality (5.16) follows from (5.20) if we can show that

lim
N→∞

5NCN/8
N = 0.

We can do this by the same method we used to derive (4.27).
We shall show that the inequality (5.16) holds with a constant C = C(AT )

which can diverge as T → 0, but in a mild, in fact logarithmic, way. As in (4.23)
we write

(5.21) G(y, 0, 0, T )1−α

≥
∫ η

−η

1√
2 π ε (T −Δ)

exp
[
− (y − z)2

2 ε (T −Δ)

]
F0(y, z)GD,η

(
z, 0, T −Δ, T

)1−α
dz,

where GD,η is the Dirichlet Green’s function for the equation (1.2) on the interval
[−η, η]. The function F0 is given by the formula (5.19) when N = 0, and we take
α = AT . As in Lemma 3.4 we use perturbation theory to estimate GD,η. In order
for the perturbation expansion to converge we need that

(5.22) η = K
√
εΔ, (Aη)2Δ = ν ε,

where K >> 1 and ν << 1. In this case the lower bound

GD,η(z, 0, T −Δ, T ) ≥ 1√
2 π εΔ

[
exp

{−z2
2εΔ

}
− C1 e

−K2/4(5.23)

− C2(ρ) ν
1/2 exp

{ −z2
2 ε (1 + ρ)Δ

}]
, |z| < η,

holds, where C1 is a universal constant, ρ > 0 can be arbitrary, and C2(ρ) is a
constant depending only on ρ. We shall substitute the right-hand side of (5.23)
into (5.21), choosing Δ/T, K, and ν to be powers of AT , in order to obtain a lower
bound as in (5.16).

Consider the situation when we approximate GD,η by the first term on the
right-hand side of (5.23). From (5.21) we have that

G(y, 0, 0, T )1−α ≥ inf
|z|<η

{
exp

[
− (y − z)2

2 ε (T −Δ)

]
F0(y, z)

}
(5.24)

· 1√
2 π ε (T −Δ)

∫ η

−η

GD,η

(
z, 0, T −Δ, T

)1−α
dz.
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Observe now that

{ 1√
2 π ε (T −Δ)

∫ η

−η

1

(2 π εΔ)
(1−α)/2

exp
[
− z2(1− α)

2 εΔ

]
dz

}1/(1−α)

≥ 1√
2 π ε T

[
1− e−K2/4

]
exp

[− Ck0AT | log(AT )|],(5.25)

for some universal constant C, provided we choose Δ/T = (AT )k0 with k0 > 1
and AT ≤ 1/2. From (5.25) it is clear that it is sufficient to choose K = (AT )−k1

for any k1 > 0, whence (5.22) implies that ν1/2 = (AT )k0+1−k1 . If we now use the
inequality

2 η| y|/ε T ≤ (AT )k0/2−k1
[
y2/ε T + 1

]
,

and choose k0 > 2k1 + 2, we conclude from (5.24) and (5.25) that (5.16) holds
with C = C′| log(AT )| for some universal constant C′. We may easily extend this
argument to apply to the actual lower bound (5.23) on GD,η by using the inequality

(5.26) max[a− b, 0]1−α ≥ (a− b), a, b > 0, a < 1.

Returning now to (5.20), it follows that we may take CN = O(N), and so we
conclude that limN→0 5

NCN/8
N = 0. We have therefore shown that (5.16) holds

for some universal constant C > 0 provided AT < δ where δ is also universal.
To prove (5.15) we use a method similar to that used in the proof of the lower

bound. Suppose we have shown that

(5.27) G(y, 0, t, T ) ≤ 1√
2 π ε (T−t) exp

[ −y2
2 ε (T−t) [1 + CA(T−t)] + CA(T−t)

]
,

for T − t = T/2N where N is some integer N ≥ 1. We shall show that for a
sufficiently large universal constant C > 0, the inequality (5.27) also holds for
T − t = T/2N−1. Analogously to (5.18) the inequality

G(y, 0, tN−1, T )
1+α

≤
∫ ∞

−∞

1√
2 π ε T/2N

exp
[
− (y − z)2

2 ε T/2N

]
FN (y, z)G

(
z, 0, tN , T

)1+α
dz(5.28)

holds, where FN (y, z) is given by (4.20) with g ≡ 0, x = 0, and t = tN−1, and T
is replaced by tN . Using the fact that one knows the probability density function
of supt≤s≤T W (s− t) we see that FN (y, z) is bounded above by

(5.29) FN (y, z) ≤ exp
{A2(1 + α)

3αε

T

2N
(y2 + zy + z2) +

K0A
2(1 + α)

α

T 2

22N

}

for a universal constant K0 > 0, where we are assuming α = AT/2N < δ and δ
is a sufficiently small universal constant. Letting CN be the constant C in (5.27)
when t = tN , we see from (5.28) and (5.29) that it is possible to take CN−1 =
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2CN/3 +K0 + 4, N ≥ 1, provided AT < δ and δ is sufficiently small. Arguing as
before, in order to complete the proof of (5.15) we need to show that

lim
N→∞

2NCN/3
N = 0.

To do this we show that (5.15) holds with a constant C = C(AT ) which can
diverge as T → 0, although only in a logarithmic way. We use the inequality

G(y, 0, 0, T )1+α(5.30)

≤
∫ ∞

−∞

1√
2 π ε (T−Δ)

exp
[
− (y − z)2

2 ε (T−Δ)

]
F0(y, z)G

(
z, 0, T−Δ, T )1+α

dz,

where F0 is given by the right-hand side of (5.29) when N = 0.
Choosing η and ν as in (5.22) we see by perturbation theory that there is an

upper bound

GD,η(z, 0, T −Δ, T )

≤ 1√
2 π εΔ

[
exp

{
− z2

2 εΔ

}
+ C2(ρ) ν

1/2 exp
{
− z2

2 ε (1 + ρ)Δ

}]
,(5.31)

for |z| < η, analogous to the lower bound (5.23). Suppose now that 0 < z < η/2.
Then

G(z, 0, T −Δ, T )

= GD,η(z, 0, T −Δ, T ) +

∫ T

T−Δ

dt
∑
σ=±1

ρ(σ, t)GD,η(σ η/2, 0, t, T ),(5.32)

where ρ(σ, t) is the density of the hitting time at ση/2 for paths of the diffusion
Yε(·) satisfying (1.5) with Yε(T − Δ) = z, which exit the interval [−η, η] before
time T and make their final returns through ση. Since |z| < η/2, it is evident that∫ T

T−Δ

∑
σ=±1

ρ(σ, t) dt ≤ 1−
∫ η

−η

GD,η(z, z
′, T −Δ, T ) dz′

≤ C1 e
−K2/16 + C2 ν

1/2,(5.33)

for universal constants C1 and C2. One can also see from (5.31) on replacing T −Δ
by t > T −Δ that

(5.34) GD,η(η/2, 0, t, T ) ≤ C3√
2 π εΔ

e−K2/16, T −Δ < t < T,

for some universal constant C3.
Substituting the right-hand sides of (5.33) and (5.34) into the right-hand side

of (5.32), we conclude from (5.31) that

G(z, 0, T −Δ, T ) ≤ 1√
2 π εΔ

[
exp

{
− z2

2 εΔ

}
+ C4 e

−K2/16(5.35)

+ C2(ρ) ν
1/2 exp

{
− z2

2ε(1 + ρ)Δ

}]
, |z| < η/2.
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We may estimate G(z, 0, T −Δ, T ) similarly for |z| > η/2. Thus we have

(5.36) G(z, 0, T −Δ, T ) =

∫ T

T−Δ

dt ρ(t)G(η/2, 0, t, T ), z > η/2,

where again ρ(·) is the hitting time density at η/2. Evidently we have that

(5.37)

∫ T

T−Δ

ρ(t) dt = P
(

inf
T−Δ<t<T

Yε(t) < η/2
∣∣ Yε(T −Δ) = z

)
.

It is easy to bound the right-hand side of (5.37) by using the inequality b(y, s) ≥
−Ay for y > 0 in (1.5), and estimating the probability on the right-hand side
of (5.37) for the corresponding Gaussian process. Assuming that AΔ < 1/10
and z > 2η we have that

(5.38)

∫ T

T−Δ

ρ(t) dt ≤ P
(

inf
0<t<Δ

∫ t

0

eAs dW (s) < −z/2√ε
)
,

where W (·) is Brownian motion. We may estimate the right-hand side of (5.38)
by using the fact that

exp
[
λ

∫ t

0

eAs dW (s)− λ2
[
e2At − 1

] /
4A

]

is a martingale for any λ ∈ R. We conclude that

(5.39)

∫ T

T−Δ

ρ(t) dt ≤ exp
[
− z2

16εΔ

]
, z > 2η.

From (5.35) and (5.39) applied to (5.36) we can see now that there is a universal
constant C5 such that

(5.40) G(z, 0, T −Δ, T ) ≤ C5√
2 π εΔ

exp
[ −z2
2C5 εΔ

]
, |z| > η/2.

The estimates (5.35) and (5.40) may be substituted into the right-hand side
of (5.30) to obtain the inequality

G(y, 0, 0, T )1+α ≤ sup
|z|<η/2

{
exp

[
− (y − z)2

2 ε (T −Δ)

]
F0(y, z)

} 1√
2 π ε (T −Δ)

·
∫ η/2

−η/2

G
(
z, 0, T −Δ, T

)1+α
dz

+ exp[−K2/C6]

∫ ∞

−∞

dz√
2 π ε (T −Δ)

exp
[
− (y − z)2

2 ε (T −Δ)

]

· F0(y, z)
C6

(2 π εΔ)
(1+α)/2

exp
[
− z2

2C6 εΔ

]
,(5.41)

where C6 is a universal constant. The second term on the right-hand side of (5.41)
is a Gaussian integral and so can be explicitly evaluated.
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To estimate the first term we use (5.35) and the inequality

(a+ b)1+α ≤ a1+α + 2α(1 + α) aαb+ 21+αb1+α, a, b > 0,

in the integration over the interval [−η/2, η/2]. From (5.41) one sees then that (5.15)
holds for a constant C = C′| log(AT )| where C′ is universal. Hence, as for the lower
bound, we may conclude that (5.15) holds for some universal C provided AT < δ
with δ > 0 also universal. �

We can use the methodology of Lemma 5.2 to obtain similar estimates on
G(y, ξ, 0, T ) for all ξ ∈ R. To motivate the estimates we shall obtain, consider the
linear case b (y, s) = A(s) y for which

G(y, ξ, 0, T ) =
1√

2 π ε σ2(T )
exp

[
− (ξ − Λ(T ) y)2

2 ε σ2(T )

]
,

where Λ(T ) and σ2(T ) are as in (5.1). Observe now that

y − ξ/Λ(T ) = y +

∫ T

0

b (ξ, s) ds− ξ +O[(AT )2] ξ.

It follows that, provided AT ≤ 1, there is a positive universal constant C such that

[
y − ξ/Λ(T )

]2 ≤
[
y +

∫ T

0

b (ξ, s) ds− ξ
]2
(1 + CAT ) + C(AT )3 ξ2.

Lemma 5.3. Suppose b(·, ·) satisfies (1.1) and, in addition, b(0, ·) ≡ 0. Then there
are universal positive constants δ and C such that the Green’s function G defined
by (1.4) satisfies the inequalities

G(y, ξ, 0, T )

≤ 1√
2 π ε T

exp
[
−

{
y +

∫ T

0
b (ξ, s) ds− ξ

}2

2 ε T (1 + CAT )
+
C(AT )3ξ2

2 ε T
+ CAT

]
,(5.42)

and

(5.43) G(y, ξ, 0, T )

≥ 1√
2 π ε T

exp
[
−

{
y +

∫ T

0
b (ξ, s) ds− ξ

}2

2 ε T
(1 + CAT )− C(AT )3ξ2

2 ε T
− CAT

]
,

provided AT ≤ δ.

Proof. We proceed as in Lemma 5.2. To establish (5.43) we suppose we have
already shown that

G(y, ξ, t, T ) ≥ 1√
2 π ε (T − t)

exp
[
−

{
y +

∫ T

t
b (ξ, s) ds− ξ

}2

2 ε (T − t)
{1 + CA (T − t)}

− C[A(T − t)]3ξ2

2 ε (T − t)
− CA (T − t)

]
(5.44)
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for T − t = T/2N , where N is some integer N ≥ 1. We shall show that for a
sufficiently large constant C > 0, (5.44) also holds for T − t = T/2N−1. Using (4.4)
with x = ξ we obtain an inequality analogous to (5.18). Thus on setting T − tN =
T/2N for N ∈ N, it follows from (4.5) that

G(y, ξ, tN−1, T )
1−α ≥

∫ ∞

−∞

1√
2 π ε T/2N

exp
[
− (y − z)2

2 ε T/2N

]
FN (y, z)(5.45)

·G
(
z +

∫ tN

tN−1

b (ξ, s) ds, ξ, tN , T
)1−α

dz,

where similarly to (5.19) one may take

− logFN (y, z) =
A2(1 − α)

3αε

T

2N
[
(y − ξ)2 + (y − ξ)(z − ξ) + (z − ξ)2

]

+
A2(1− α)

α ε

∫ tN

tN−1

ds
{∫ s

tN−1

b (ξ, s′) ds′
}2

+
A2(1− α)

12α

T 2

22N
.(5.46)

We change the variable z of integration in (5.45) to z′ where

(5.47) z′ = z +

∫ T

tN−1

b (ξ, s) ds− ξ.

From (5.46) we see that

− logFN (y, z) ≤ A2(1− α)

α ε

T

2N

[{
y +

∫ T

tN−1

b (ξ, s) ds− ξ
}2

+ z′2
]

+
3A2(1− α)

α ε

T

2N

[ATξ
2N

]2
+
A2(1− α)

12α

T 2

22N
.(5.48)

Using the variable z′ of (5.47) and (5.48) we may argue as in the proof of
Lemma 5.2 that (5.44) holds for t = tN−1 with constant CN−1 = 5CN/8 +K for
some universal constant K, where CN is the constant in (5.44) when t = tN . Thus
we have established (5.43) provided we can show that limN→∞ 5NCN/8

N = 0.
As in Lemma 5.2 we shall complete the proof of (5.43) by showing that it holds

with a constant C = C(AT ) which diverges logarithmically as T → 0. To see this
we observe, as in (5.45), that

G(y, ξ, 0, T )1−α ≥
∫ ∞

−∞

1√
2 π ε (T −Δ)

exp
[
−

{
y +

∫ T

0
b (ξ, s) ds− ξ − z

}2

2 ε (T −Δ)

]

· F (y, z)G
(
z + ξ −

∫ T

T−Δ

b (ξ, s) ds, ξ, T −Δ, T
)1−α

dz,(5.49)

where, as in (5.48), we may take F (y, z) to be given by

− logF (y, z) =
A2(1− α)

α ε
T
[{
y +

∫ T

0

b (ξ, s) ds− ξ
}2

+ z2
]

(5.50)

+
3A2(1 − α)

α ε
T [AT ξ]2 +

A2(1− α)

12α
T 2.
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Let F (·, ·) be the function defined from (1.11). Then the function

v(z, t) = G
(
z + F (ξ, t), ξ, t, T

)
, t < T,

satisfies the terminal value problem

0 =
∂v

∂t
+
[
b (z + F (ξ, t), t)− b (F (ξ, t), t)

] ∂v
∂z

+
ε

2

∂2v

∂z2
, t < T, z ∈ R,

δ(z − ξ) = lim
t→T

v(z, t), z ∈ R.
(5.51)

From(5.51) we see that we can proceed now exactly as in the proof of Lemma 5.2
by replacing the Green’s function on the right-hand side of (5.49) by the solution
to (5.51) on the interval |z| < η with Dirichlet boundary conditions on |z| = η.
Using the fact that

∣∣∣F (ξ, t)− {
ξ −

∫ T

t

b (ξ, s) ds
}∣∣∣ ≤ C

[
A(T − t)

]2 |ξ|,
for some universal constant C, we conclude that the inequality (5.43) holds. The
proof of the upper bound (5.42) on the Green’s function is obtained in a similar
way, following the argument of Lemma 5.2. �

Corollary 5.4. Suppose b(·, ·) satisfies (1.1) and b(0, ·) ≡ 0. Then there exist
positive universal constants η, C3, γ3, C4, and γ4 such that (5.4) holds provided
AT ≤ η and δ = T/2.

Proof. To show the first inequality in (5.4) we consider

P
(
Yε(T/2) < C3 y/2

∣∣ Yε(0) = y, Yε(T ) = 0
)

= G(y, 0, 0, T )−1

∫ C3y/2

−∞
dξ G(y, ξ, 0, T/2) G(ξ, 0, T/2, T ).

It is easy to see now by using Lemma 5.2 how to bound G(y, 0, 0, T ) from below
and G(ξ, 0, T/2, T ) from above. Using also Lemma 5.3 to bound G(y, ξ, 0, T/2)
from above, we conclude that the first inequality in (5.4) holds for δ = T/2 provided
η > 0 is sufficiently small. To show the second inequality of (5.4) we write

P
(
Yε(T/2) > C4 y/2

∣∣ Yε(0) = y, Yε(T ) = 0
)

= G(y, 0, 0, T )−1

∫ ∞

C4 y/2

G(y, ξ, 0, T/2) G(ξ, 0, T/2, T ),

and argue as in the previous paragraph. �

In order to show that (5.4) continues to hold when δ/T << 1/2 we need to ob-
tain some further estimates on Green’s functions. Towards that goal we strengthen
Corollary 5.4 as follows.
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Lemma 5.5. Suppose b(·, ·) satisfies (1.1) and b(0, ·) ≡ 0. Then there exist positive
universal constants η, C1, and C2 such that, if AT ≤ η,

(5.52) P
(

sup
0≤s≤T

|Yε(s)| > ρ
∣∣ Yε(0) = y, Yε(T ) = 0

)
≤ exp

[− C1ρ
2/2 ε T

]
,

provided |ρ| ≥ C2

[ |y|+√
ε T

]
.

Proof. We make a dyadic decomposition of the interval 0 ≤ s ≤ T . Thus for n ∈ N,
let Sn be defined by Sn = {jT/2n : 0 ≤ j ≤ 2n}. It is evident from the continuity
of Yε(·) that

P
(

sup
0≤s≤T

|Yε(s)| > ρ
∣∣ Yε(0) = y, Yε(T ) = 0

)
(5.53)

≤
∞∑

n=1

P
(

sup
s∈Sn−Sn−1

|Yε(s)| > ρ (1− μn+1),

sup
s∈Sn−1

|Yε(s) | ≤ ρ (1− μn)
∣∣∣ Yε(0) = y, Yε(T ) = 0

)
,

provided μ ∈ (0, 1) satisfies ρ(1− μ) > |y|. Observe next that

P
(

sup
s∈Sn−Sn−1

|Yε(s)|>ρ (1 − μn+1), sup
s∈Sn−1

|Yε(s)|≤ρ (1 − μn)
∣∣∣Yε(0)= y, Yε(T )= 0

)(5.54)

≤
∑

s∈Sn−Sn−1

P
( ∣∣Yε(s)− Yε(s+ T/2n)

∣∣ > ρμn(1− μ)
∣∣ Yε(0) = y, Yε(T ) = 0

)
.

The probability in the sum on the right-hand side of (5.54) can be expressed
in terms of the Green’s function (1.4) as

P
(
|Yε(s)− Yε(s+ T/2n)| > ρμn(1− μ)

∣∣∣ Yε(0) = y, Yε(T ) = 0
)

= G(y, 0, 0, T )−1

∫ ∞

−∞

∫ ∞

−∞
dξ dζ G(y, ξ, 0, s)H

(|ξ − ζ| − ρ μn(1− μ)
)

(5.55)

·G(ξ, ζ, s, s+ T/2N
)
G
(
ζ, 0, s+ T/2n, T

)
,

where H(z), z ∈ R, is the Heaviside function. We may estimate the integral on the
right-hand side of (5.55) by using Lemma 5.2 and Lemma 5.3. We first consider
the integral with respect to ξ in (5.55) for a fixed ξ ∈ R. From Lemma 5.3 we have
that

G(y, ξ, 0, s)G(ξ, ζ, s, s+ T/2n)

≤ 1

2 π ε
√
sT/2n

exp
[
−

{
y +

∫ s

0
b (ξ, s′) ds′ − ξ

}2

2 ε s
(1 − C As)

+
C(As)3ξ2

2 ε s
+ C As−

{
ξ +

∫ s+T/2n

s
b (ζ, s′) ds′ − ζ

}2

2 ε T/2n
(1− CAT/2n)

+
C(AT/2n)3

2 ε T/2n
ζ2 + CAT/2n

]
.(5.56)
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Setting z = y +
∫ s

0 b (ζ, s
′) ds′ − ζ we see from (5.56) that

G(y, ξ, 0, s) G(ξ, ζ, s, s+ T/2n)

≤ 1

2 π ε
√
sT/2n

exp
[
−

{
z2 + 2(ζ − ξ)z + (ζ − ξ)2

}
2 ε s

− (ζ − ξ)2

2 ε T/2n
(5.57)

+
CA

ε

[
(ζ − ξ)2 + z2 + ζ2

]
+ CAT

]
,

for some universal constant C. Integrating the right-hand side of (5.57) over the
region |ξ − ζ| > ρμn(1 − μ) we conclude that∫ ∞

−∞
dξ G(y, ξ, 0, s)H

(|ξ − ζ| − ρμn(1− μ)
)
G(ξ, ζ, s, s+ T/2n)

≤ exp
[
− ρ2μ2n(1− μ)2

4 ε T/2n

] 1√
2 π ε τn

(5.58)

· exp
[
− z2

2 ε τn

{ 1

2
− 2CAT

2n

}
+
CA

ε

{
z2 + ζ2

}
+ CAT

]
,

where τn = T/2n + s/2− 2CAsT/2n. Hence if we use the inequalities

(y − ζ)2[1−As]−Asζ2 ≤ z2 ≤ (y − ζ)2[1 +As] + 2Asζ2,

which are valid for AT ≤ 1, and substitute the right-hand side of (5.58) into the
right-hand side of (5.55), we may conclude from Lemma 5.2 that the left-hand side
of (5.55) is bounded by a Gaussian integral in ζ. Evaluating this integral we have
then that

P
( ∣∣Yε(s)− Yε(s+ T/2n)

∣∣ > ρμn(1− μ)
∣∣∣ Yε(0) = y, Yε(T ) = 0

)

≤ G(y, 0, 0, T )−1

√
2[

2 π ε (T + T/2n)
]1/2(5.59)

· exp
[
− ρ2μ2n(1− μ)2

4 ε T/2n
− y2

2 ε (T + T/2n)
+
CAy2

ε
+ CAT

]

for some universal constant C. Choosing now μ in (5.59) to satisfy 1/
√
2 < μ < 1

and using the lower bound for G(y, 0, 0, T ) in Lemma 5.2 we conclude from (5.59)
that

P
( ∣∣Yε(s)− Yε(s+T/2

n)
∣∣ > ρμn(1− μ)

∣∣∣ Yε(0) = y, Yε(T ) = 0
)

≤ exp
[−ρ2μ2n(1 − μ)2

8 ε T/2n

]
if ρ ≥ C2

[ |y|+√
ε T

]
,(5.60)

provided C2 is a sufficiently large universal constant. Hence (5.53) and (5.54) imply

P
(

sup
0≤s≤T

|Yε(s)| > ρ
∣∣∣ Yε(0) = y, Yε(T ) = 0

)

≤
∞∑
n=1

2n−1 exp
[−ρ2μ2n(1− μ)

8 ε T/2n

]
≤ exp

[
− C1ρ

2

2 ε T

]
,(5.61)

for some universal constant C1 > 0. �
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To prove (5.4) under the assumptions (1.1) and b(0, ·) ≡ 0 we actually need
versions of Lemma 5.3 and Lemma 5.5 which hold in the situation when b(0, ·) 	≡ 0.
A slight modification of the proof of Lemma 5.3 yields:

Corollary 5.6. Suppose b(·, ·) satisfies (1.1). Then there are universal positive
constants η and C such that the Green’s function G defined by (1.4) satisfies the
inequalities

G(y, ξ, 0, T ) ≤ 1√
2 π ε T

exp
[
−

{
y +

∫ T

0
b (ξ, s) ds− ξ

}2

2 ε T (1 + CAT )
(5.62)

+
C(AT )3ξ2

2 ε T
+ CAT +

CA

ε

{∫ T

0

|b (0, s)| ds
}2]

,

G(y, ξ, 0, T ) ≥ 1√
2 π ε T

exp
[
−

{
y +

∫ T

0 b (ξ, s) ds− ξ
}2

2 ε T
(1 + CAT )(5.63)

− C(AT )3ξ2

2 ε T
− CAT − CA

ε

{∫ T

0

|b (0, s)| ds
}2]

,

provided AT ≤ η.

We can also slightly modify the proof of Lemma 5.5 to obtain the following.

Corollary 5.7. Suppose b(·, ·) satisfies (1.1). Then for any y ∈ R which satisfies

(5.64) |y|+
√
ε T ≥

∫ T

0

|b (0, s)| ds,

the result of Lemma 5.5 holds.

Proof. We simply use the Green’s functions bounds of Corollary 5.6 in place of the
bounds of Lemma 5.3 in the argument proving Lemma 5.5. �

Lemma 5.8. Suppose b(·, ·) satisfies (1.1) and b(0, ·) ≡ 0. For λ ∈ R define bλ(·, ·)
by bλ(y, s) = b(y + λs, s) for y ∈ R and 0 ≤ s ≤ T , and let Gλ be the Green’s
function (1.4) associated with bλ. Then there are universal positive constants η
and C such that the following inequalities hold provided AT ≤ η:

Gλ(y, 0, 0, T )

G0(y, 0, 0, T )
≤ exp

[C|λ|AT
ε

{|y|+ |λ|AT 2
}
+ CAT

]
,(5.65)

Gλ(y, 0, 0, T )

G0(y, 0, 0, T )
≥ exp

[
− C|λ|AT

ε

{|y|+ |λ|AT 2
}− CAT

]
.(5.66)

Proof. Consider first the situation when |y| ≤ |λ|AT 2. The result follows from

Corollary 5.6 upon using the inequality
∫ T

0
|bλ(0, s)|ds ≤ |λ|AT 2/2, whence we need

only prove (5.65) and (5.66) for |y| ≥ |λ|AT 2. Observe now that if |y| = O(
√
εT )

then |λ|AT |y|/ε = O(y2/εT ) = O(1). Hence we might expect to prove (5.65)
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and (5.66) for |y| = O(
√
εT ) by perturbation methods. To implement this we

consider the function uλ(z, t), z ∈ R, t < T , defined by

(5.67) uλ(z, t) = Gλ

(
z −

∫ T

t

bλ(0, s) ds, 0, t, T
)
.

Evidently uλ is a solution to the terminal value problem

∂uλ
∂t

+ b̃λ(z, t)
∂uλ
∂z

+
ε

2

∂2uλ
∂z2

= 0, z ∈ R, t < T,

lim
t→T

uλ(z, t) = δ(z),
(5.68)

where b̃λ(z, t) is given by the formula

(5.69) b̃λ(z, t) = bλ

(
z −

∫ T

t

bλ(0, s) ds, t
)
− bλ(0, t).

Following the argument of Lemma 3.4 we see that the terminal value prob-
lem (5.68) on the interval |z| < η with Dirichlet boundary conditions can be solved
by perturbation expansion for times 0 ≤ t < T provided

sup{|b̃λ(z, t)| : |z| < η, 0 < t < T }(T/ε)1/2 << 1.

Assuming now that y and η satisfy the inequalities

(5.70) |λ|AT 2 ≤ |y| ≤
√
ε T/(AT )δ, η =

√
ε T

/
(AT )2δ,

it is clear that the perturbation expansion converges provided δ < 1/2 and AT is
smaller than some constant depending only on δ. In fact, letting G(z, t) for z ∈ R

and t > 0, be the probability density function for the normal variable with mean 0
and variance t we have that

∣∣∣ uλ(z, t)−G(z, ε (T − t))−
∫ T

t

ds

∫ η

−η

dξ G
(
z − ξ, ε(s− t)

)
b̃λ(ξ, s)

∂G
(
ξ, ε(T−s))
∂ξ

∣∣∣
≤ C(AT )2−4δ G(z, 2ε(T − t)),(5.71)

provided |z| ≤ √
εT

/
(AT )δ. Here AT needs to be smaller than some constant

depending only on δ, and the constant C on the right-hand side of (5.71) also
depends on δ. It is easy to see that

(5.72)
∣∣∣
∫ η

−η

dξ G(z − ξ, ε(s− t)) b̃λ(ξ, s)
∂

∂ξ
G(ξ, ε(T − s))

∣∣∣

≤ 1

2

∫ ∞

−∞
dξ G

(
z − ξ, ε(s− t)

) A

ε (T − s)

[
3 ξ2 +A2λ2T 2(T − s)2

]
G(ξ, ε (T − s))

=
1

2

{A3λ2T 2(T − s)

ε
+

3A(T − s)z2

ε (T − t)2
+

3A(s− t)

T − t

}
G(z, ε (T − t)).
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Substituting the inequality (5.72) into (5.71) we conclude that uλ(z, t) satisfies
the inequalities

uλ(z, t) ≤ G
(
z, ε (T − t)

)
+ C(AT )2−4δG

(
z, 2 ε (T − t)

)
(5.73)

+
{A3λ2T 2(T − t)2

4ε
+

3Az2

4ε
+

3A(T − t)

4

}
G
(
z, ε (T − t)

)
,

uλ(z, t) ≥ G
(
z, ε (T − t)

)− C(AT )2−4δ G
(
z, 2 ε (T − t)

)
(5.74)

−
{A3λ2T 2(T − t)2

4ε
+

3Az2

4ε
+

3A(T − t)

4

}
G
(
z, ε (T − t)

)
.

We have shown that (5.73) and (5.74) hold for the function uλ(z, t) which sat-
isfies (5.68) on the rectangle |z| < η, 0 < t < T , and with Dirichlet boundary
conditions on |z| = η. It follows that the function uλ(z, t) defined by (5.67), also
satisfies (5.74) for |z| ≤ √

εT/(AT )δ and 0 < t < T . From the argument of
Lemma 5.2 we see that the upper bound (5.73) continues to hold for the func-
tion (5.67) when |z| ≤ √

εT/(AT )δ.
The inequalities (5.65) and (5.66) can be deduced from (5.73) and (5.74) in the

case when y lies in the interval |λ|AT 2 ≤ |y| ≤ K
√
εT , where K ≥ 1 is a constant.

The constant C now in (5.65) and (5.66) depends on K, and AT must be chosen
sufficiently small depending only on K. To obtain the lower bound (5.66) we set

δ = 1/8, z = y+
∫ T

0 bλ(0, s) ds, and t = 0 in (5.74). Thus we obtain the inequality

(5.75) Gλ(y, 0, 0, T ) ≥ G
(
y+

∫ T

0

bλ(0, s) ds, εT
)
exp

[
−C

{λ2(AT )3T
ε

+AT eK
2
}]

for some universal constant C. Lemma 5.2 implies that G0(y, 0, 0, T ) satisfies the
upper bound

(5.76) G0(y, 0, 0, T ) ≤ G(y, εT ) exp
[
CAT (1 +K2)

]
for some universal constant C. Now (5.66) follows by estimating from below the
ratio of the right-hand side of (5.75) to (5.76). The upper bound (5.65) can be
similarly obtained from (5.73) and Lemma 5.2.

To complete the proof of the lemma we use induction as we did in the proof of
Lemma 5.2. We consider the lower bound (5.66). Observe first that the previous
arguments imply that the lower bound

(5.77)
Gλ(y, 0, t, T )

G0(y, 0, t, T )
≥ exp

[−C|λ|AT
ε

{|y|+ |λ|AT (T − t)
}− CA(T − t)

]

holds for 0 ≤ t < T if y lies in one of the regions |y| ≤ |λ|AT (T−t) or |λ|AT (T−t) ≤
|y| ≤ K

√
ε(T − t). For the former region the constant C in (5.77) can be chosen

in a universal way provided AT is smaller than some universal constant. For the
latter region C depends on K and AT , and must be taken to be sufficiently small
in a way depending only on K.

Suppose now we have proved (5.77) for T − t = T/2N and y ∈ R, where N is
some integer N ≥ 1 with constant C = CN . We show that (5.77) also holds for
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T − t = T/2N−1, y ∈ R, with a constant CN−1 given in terms of CN . To do this
we use the inequality

Gλ

(
y, 0, tN−1, T

)1−α

≥
∫ ∞

−∞
G0

(
y, z, tN−1, tN

)
exp

[
− (1− α)

2αε

A2λ2T 3

2N

]
Gλ

(
z, 0, tN , T

)1−α
dz,(5.78)

where T − tn = T/2n, n = 0, 1, 2, . . . , and 0 < α < 1. The inequality (5.78) is
derived similarly to (5.18).

We assume y in (5.78) satisfies |y| ≥ max
[|λ|AT (T−tN−1),K

√
ε(T − tN )

]
and

set α = |λ|AT 2/|y|2N ≤ 1/2. Then, on substituting (5.77) for t = tN into (5.78)
we obtain the inequality

Gλ

(
y, 0, tN−1, T

)1−α

G0

(
y, 0, tN−1, T

)1−α

≥ exp
[
− (1− α) |λ|AT |y|

2 ε

−CN (1− α) |λ|2(AT )2T
ε 2N

− CN (1− α)AT

2N

]
(5.79)

·G0

(
y, 0, tN−1, T

)α
E
{
G0

(
Yε(tN ), 0, tN , T

)−α

· exp
[
− CN (1− α) |λ|AT |Yε(tN )|

ε

] ∣∣∣ Yε(tN−1) = y, Yε(T ) = 0
}
,

where Yε(·) is the solution to (1.5). From Lemma 5.2 we have that

(5.80)
G0

(
y, 0, tN−1, T

)
G0

(
z, 0, tN , T

) ≥ exp
[
− 1

2
log 2− y2

2 ε T/2N
− CAT

2N

]
, z ∈ R,

for some universal constant C. Since we are assuming that |y| ≥ K
√
ε (T − tN ),

we conclude from (5.80) that, for sufficiently large K,

(5.81)
G0

(
y, 0, tN−1, T

)α
G0

(
z, 0, tN , T

)α ≥ exp
[
− |λ|AT |y|

ε

]
, z ∈ R.

To get a lower bound for the right-hand side of (5.79) we are therefore left to
estimate from below the expectation

E
{
exp

[
− CN (1− α) |λ|AT |Yε(tN )|

ε

] ∣∣∣ Yε(tN−1) = y, Yε(T ) = 0
}

≥ exp
[
− CN (1− α) |λ|AT

ε
E
{
|Yε(tN )|

∣∣∣ Yε(tN−1) = y, Yε(T ) = 0
}]
.(5.82)

We estimate the expectation on the right-hand side of (5.82) by

E
[ |Yε(tN )| ∣∣ Yε(tN−1) = y, Yε(T ) = 0

]
≤ 3|y|

4
+

∫ ∞

|y|/4
dρP

(|Yε(tN )| − y/2| > ρ
∣∣ Yε(tN−1) = y, Yε(T ) = 0

)
.(5.83)
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We have now that

(5.84) P
( |Yε(tN )− y/2| > ρ

∣∣ Yε(tN−1) = y, Yε(T ) = 0
)

= G0

(
y, 0, tN−1, T

)−1
∫ ∞

−∞
dξ G0

(
y, ξ, tN−1, tN

)
H
(|ξ − y/2| − ρ

)
G0

(
ξ, 0, tN , T

)
,

with H(·) being the Heaviside function. Now, arguing in the same way as we did
to obtain (5.60), we conclude from (5.84) that

P
( |Yε(tN )− y/2| > ρ

∣∣ Yε(tN−1) = y, Yε(T ) = 0
)

≤ exp
[
− ρ2

2 ε T/2N
+
CAy2

ε

]
, if ρ ≥ K0

√
ε (T − tN ),(5.85)

where C and K0 are universal constants. Hence we have that∫ ∞

|y|/4
dρP

( |Yε(tN )− y/2| > ρ
∣∣ Yε(tN−1) = y, Yε(T ) = 0

)

≤ εT

|y| 2N−2
exp

[
− |y|22N−4

2 ε T
+
CAy2

ε

]
,(5.86)

provided the constantK0 in (5.85) satisfies K ≥ 4K0. Now (5.83) and (5.86) imply
that the expectation on the left-hand side of (5.83) is bounded by 4|y|/5. Hence it
follows from (5.79), (5.81), and (5.82) that we can take CN−1 = 4CN/5 +K1 for
some universal constant K1. Thus in order to complete the proof of (5.66) we need
to show that CN satisfies limN→∞ 4N CN/5

N = 0. To do this we proceed as in
the proof of Lemma 5.2 by proving that (5.66) holds with a constant C = C(AT )
which diverges logarithmically in AT as AT → 0.

We have already observed that (5.66) holds for a universal constant C if |y| ≤
|λ|AT 2 and for a constant C depending only on K if |λ|AT 2 ≤ |y| ≤ K

√
ε T .

Hence we shall assume that |y| ≥ max
[ |λ|AT 2,K

√
ε T

]
. Analogously to (5.78),

the inequality

Gλ

(
y, 0, 0, T

)1−α

≥
∫ ∞

−∞
G0

(
y, z, 0, T−Δ)

exp
[
− (1− α)

2α ε
A2λ2T 3

]
Gλ

(
z, 0, T−Δ, T )1−α

dz(5.87)

holds. We set α = |λ|AT 2/2|y| in (5.87), whence 0 < α ≤ 1/2 and the exponential
on the right-hand side of (5.87) can be absorbed into the right-hand side of (5.66).
As in (5.67) we shall obtain a perturbation expansion of Gλ (z, 0, T −Δ, T ) by
considering the function

uλ(z, t) = Gλ(z + ϕλ(t), 0, t, T ),(5.88)

where φ′λ(t) = bλ(ϕλ(t), t), t < T, ϕλ(T ) = 0.

Then uλ(z, t) is a solution to the terminal value problem (5.68) but now with
drift b̃λ(z, t) given by

(5.89) b̃λ(z, t) = bλ(z + ϕλ(t), t)− bλ(ϕλ(t), t).
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Since |b̃λ(z, t)| ≤ A|z| for z ∈ R, we may expand the solution of the Dirichlet
problem (5.68) by perturbation theory on the rectangle |z| < η, T −Δ < t < T ,
provided η and Δ satisfy

(5.90) η = K1

√
εΔ, (Aη)2Δ = ν ε,

whereK1 >> 1 and ν << 1. Thus if uλ,D(z, t) denotes the solution to this Dirichlet
problem we have, as in (5.23), the inequality

uλ,D
(
z, T −Δ

) ≥ 1√
2 π εΔ

[
exp

{ −z2
2 εΔ

}
− C3 exp

[
− K2

1

4

]
(5.91)

− C4(ρ) ν
1/2 exp

{
− z2

2 ε (1 + ρ)Δ

}]
, |z| < η,

where C3 is a universal constant, ρ > 0 can be arbitrary, and C4(ρ) is a constant
depending only on ρ. We choose now ν,K1, and Δ/T by

K1 = (AT )−k1 exp
[
C1Ay

2/ε
]
, ν1/2 = (AT )k2 exp

[− C2Ay
2/ε

]
,

Δ/T = (AT )k1+k2−1 exp
[− (C1 + C2)Ay

2/ε
]
,

(5.92)

where k1, k2, C1, C2 > 0 and k1 + k2 > 1. Evidently the choice of K1, ν, and Δ
in (5.92) is consistent with (5.90).

To estimate from below the left-hand side of (5.66) we use the inequality

Gλ

(
y, 0, 0, T

)1−α ≥ exp
[
− (1− α) |λ|AT |y|

ε

]
(5.93)

·
∫ η+ϕλ(T−Δ)

−η+ϕλ(T−Δ)

G0

(
y, z, 0, T −Δ

)
uλ,D

(
z − ϕλ(T −Δ), T −Δ

)1−α
dz,

derived from (5.87) and (5.88). If we substitute now the right-hand side of (5.91)
into the right-hand side of (5.93) we obtain an integral which we would like to
show is comparable to G0(y, 0, 0, T )

1−α. To do this we write

(5.94) G0(y, 0, 0, T ) =

∫ ∞

−∞
G0(y, z, 0, T −Δ)G0(z, 0, T −Δ, T ) dz,

and use perturbation analysis to show that G0(z, 0, T − Δ, T ) is comparable to
the right-hand side of (5.91). Using the upper bound (5.35) on G0(z, 0, T −Δ, T )
in (5.94) we obtain an upper bound on G0(y, 0, 0, T ) which has the same form as
the integral on the right-hand side of (5.93).

We compare the principal terms of these integrals. Thus for the integral on the
right-hand side of (5.93) the principal term is

(
2 π εΔ

)α/2 ∫ η+ϕλ(T−Δ)

−η+ϕλ(T−Δ)

dz√
2 π εΔ

G0

(
y, z, 0, T −Δ

)
(5.95)

· exp
[
− (1− α)

{
z − ϕλ(T −Δ)

}2

2 εΔ

]
.
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For the integral on the right-hand side of (5.94) the principal term is

(5.96)

∫ ∞

−∞
G0

(
y, z, 0, T −Δ

) 1√
2 π εΔ

exp
[ −z2
2 εΔ

]
dz.

Observe now that we may assume |ϕλ(T − Δ)| ≤ η/2. To see this we first
note from (5.88) that |ϕλ(T − Δ)| ≤ CA|λ|TΔ for some universal constant C,
whence it follows that |ϕλ(T − Δ)| ≤ C|y|Δ/T . Thus from (5.90) the inequality
|ϕλ(T − Δ)| ≤ η/2 will follow if we can show that 2C|y| ≤ K1(T/Δ)1/2

√
εT ,

which is equivalent to showing that 4C2|y|2/εT ≤ K2
1 (T/Δ). Choosing K1 and

T/Δ as in (5.92) we see that this inequality holds provided 3k1 + k2 > 2 and AT
is sufficiently small, depending only on C1 and C2. Similarly we have that

ϕλ(T −Δ)2

2 εΔ
+
η |ϕλ(T −Δ)|

εΔ
≤ C2A2|λ|2T 2Δ

2 ε
+
C η A |λ|T

ε

≤ C2A2|λ|2 T 3

2 ε
+
CK1|y|√

ε T

(Δ
T

)1/2

≤ C2A2|λ|2T 3

2 ε
+ C′AT,(5.97)

provided the constants in (5.92) satisfy k2 > k1 + 5, C2 > C1. In that case the
constant C′ in (5.97) depends only on k1, k2, C1, and C2. We conclude then that
the expression in (5.95) is bounded below by

(
2 π εΔ

)α/2
exp

[
− C |λ|2A2T 3

ε
− CAT

]
(5.98)

·
∫ η/2

−η/2

G0

(
y, z, 0, T −Δ

)
exp

[
− z2

2 εΔ

] dz√
2 π εΔ

,

for a constant C depending only on the constants in (5.92).

Next we bound the integral in (5.98) from below by a constant times the integral
in (5.96). To show this we use Lemma 5.3. Thus the the inequalities

G0

(
y, z, 0, t

) ≤ 1√
2 π ε t

exp
[
− (y − z)2

2 ε t
+
CA

ε
(y2 + z2) + CA t

]
,

G0

(
y, z, 0, t

) ≥ 1√
2 π ε t

exp
[
− (y − z)2

2 ε t
− CA

ε
(y2 + z2)− CA t

]
,

(5.99)

give upper and lower bounds on the Green’s function G0(y, z, 0, t). Substituting
the lower bound of (5.99) into (5.96) we conclude that

∫ ∞

−∞
G0

(
y, z, 0, T −Δ

) 1√
2 π εΔ

exp
[
− z2

2 εΔ

]
dz

≥ 1√
2 π ε T

exp
[
− y2

2 ε T
− CA

ε
y2 − CAT

]
,(5.100)
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for some universal constant C. Using the upper bound in (5.99) we also have that
∫
|z|>η/2

G0(y, z, 0, T −Δ)
1√

2 π εΔ
exp

[
− z2

2 εΔ

]
dz

≤ exp
[
− η2

16 εΔ

] ∫ ∞

−∞
G0

(
y, z, 0, T −Δ

) 1√
2πεΔ

exp
[
− z2

4 εΔ

]
dz

≤ 1√
2 π ε T

exp
[
− η2

16 εΔ
− y2

2 ε T
+
CA

ε
y2 + CAT +

1

2
log 2

]
,(5.101)

for some universal constant C. Observe that in (5.101) we are assuming that the
constants in (5.92) satisfy k1 + k2 > 2 so that Δ/T ≤ AT . Now taking η to be
given by (5.90) and (5.92), we conclude from (5.100) and (5.101) that
∫
|z|>η/2

G0

(
y, z, 0, T −Δ

) 1√
2 π εΔ

exp
[
− z2

2 εΔ

]
dz

≤ exp
[
− 1

32 (AT )2k1

] ∫ ∞

−∞
G0

(
y, z, 0, T −Δ

) 1√
2 π εΔ

exp
[
− z2

2 εΔ

]
dz.(5.102)

It follows that (5.95) is bounded below by

(
2 π εΔ

)α/2
exp

[
− C |λ|2A2T 3

ε
− CAT

]{
1− exp

[
− 1

32 (AT )2k1

]}
(5.103)

∫ ∞

−∞
G0

(
y, z, 0, T −Δ

) 1√
2 π εΔ

exp
[
− z2

2 εΔ

]
dz.

The integral in (5.103) is the principle term in the expression (5.94) for G0(y, 0,
0, T ). Assuming then that we can replace the integral by G0(y, 0, 0, T ) and that we
take into account only the principal term for uλ,D in (5.93), we have from (5.103)
that the inequality

Gλ

(
y, 0, 0, T

)1−α ≥
[ (

2 π εΔ
)1/2

G0

(
y, 0, 0, T

)]α
(5.104)

· exp
[
− C (1−α) |λ|AT

ε

{|y|+ |λ|AT 2
}− C(1−α)AT

]
G0

(
y, 0, 0, T

)1−α

holds for some universal constant C. By Lemma 5.2 we have that
(5.105)[ (

2 π εΔ
)1/2

G0

(
y, 0, 0, T

)]α ≥ exp
[
− α

2
log(T/Δ)− αy2

2 ε T
(1 +CAT )− αCAT

]

for some universal constant C. Taking α as before to be given by α = |λ|AT 2/2|y|≤
1/2 and using the fact that |y| ≥ K

√
εT we see from (5.92) and (5.105) that

(5.106)
[ (

2 π εΔ
)1/2

G0

(
y, 0, 0, T

)]α ≥ exp
[
−(1−α)CAT

{ |λ y|
ε

| log(AT )|+1
}]
,

where the constant C depends only on the constants C1, C2, k1, and k2 of (5.92)
and also K. Combining then (5.104) and (5.106), we have obtained a lower bound
of the form (5.66) with a constant C = C(AT ) = C′| log(AT )|.
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To complete the proof of (5.66) with a constant C = C(AT ) = C′| log(AT )| we
need to estimate the effect of the error terms in (5.35) and (5.91). From (5.35) the
main error term in (5.94) is given by

(5.107)

∫ ∞

−∞
G0

(
y, z, 0, T −Δ

)
C2(ρ) ν

1/2 1√
2 π εΔ

exp
[
− z2

2 ε (1 + ρ)Δ

]
dz,

where ν is given by (5.92). It is evident that by choosing k2 and C2 sufficiently large
in a universal way in (5.92) that the integral of (5.107) is bounded above by AT
times the integral on the left-hand side of (5.100). We can similarly estimate the
error terms in (5.93) of uλ,D. If we use the inequality (5.26), then from (5.91) we ob-
tain a term like (5.107). Hence (5.66) with a constant C = C(AT ) = C′| log(AT )|
holds. By the preceding argument it follows then that (5.66) holds with some uni-
versal constant C provided AT ≤ η, where η may also be chosen in a universal way.

The completion of the proof of the upper bound (5.65) can be carried out in a
way similar to that used to prove the lower bound. �

Lemma 5.9. Suppose b(·, ·) satisfies (1.1) and b(0, ·) ≡ 0. If G is the Green’s
function defined by (1.4), then there are universal positive constants η and C such
that G satisfies the inequalities,

(5.108)
G
(
y, ξ, 0, T

)
G
(
y, 0, 0, T

) ≤ exp
[
− ξ2

2 ε T
(1−CAT )+ ξ y

ε T

[
1+CAT sgn(ξ y)

]
+CAT

]
,

and

(5.109)
G
(
y, ξ, 0, T

)
G
(
y, 0, 0, T

) ≥ exp
[
− ξ2

2 ε T
(1+CAT )+

ξ y

ε T

[
1−CAT sgn(ξ y)

]−CAT ],
for all y, ξ ∈ R, provided AT ≤ η.

Proof. The result follows from Lemma 5.3 if |y| ≤ |ξ|, so we shall assume that
|ξ| ≤ |y|. Letting w(z, t) = G(z, ξ, t, T ), t < T , it follows from (1.2) that the
function wλ(z, t) defined by

(5.110) wλ(z, t) = exp
[
− λz

ε
+
λ2

2 ε
(T − t)

]
w (z + λt, t)

is the solution to the terminal value problem

0 =
∂wλ

∂t
+ b (z + λt, t)

∂wλ

∂z
+
ε

2

∂2wλ

∂z2
+
λ

ε
b (z + λt, t)wλ,

lim
t→T

wλ(z, t) = exp
[
− λz

ε

]
δ (z + λT − ξ).

(5.111)

Taking λ = ξ/T in (5.111) we see from Lemma 5.8 that

wλ(y, 0) = Gλ

(
y, 0, 0, T

)

·E
[
exp

{λ
ε

∫ T

0

b (Yε,λ(s) + λs, s) ds
} ∣∣∣ Yε,λ(0) = y, Yε,λ(T ) = 0

]
,(5.112)
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where Yε,λ(·) is the solution to (1.4) with the drift bλ of Lemma 5.8 in place of b.
Since ∫ T

0

|bλ(0, s)| ds ≤ AT 2|λ|/2 ≤ |ξ| ≤ |y|

if AT ≤ 2, we can use Corollary 5.7 to estimate the expectation in (5.112). To see
this first observe that the expectation is bounded above by

(5.113) exp
[λ2AT 2

2 ε

]
E
[
exp

{AT |λ|
ε

sup
0≤s≤T

|Yε,λ(s)|
} ∣∣∣ Yε,λ(0) = y, Yε,λ(T ) = 0

]
.

To bound the expectation in (5.113) we use the identity

(5.114) E
[
eX

]
= 1 +

∫ 1

0

E
[
XekX

]
dk,

valid for any random variable X . From (5.52) we have that

E
[

sup
0≤s≤T

|Yε,λ(s)| exp
{
r sup
0≤s≤T

|Yε,λ(s)|
} ∣∣∣ Yε,λ(0) = y, Yε,λ(T ) = 0

]

≤ C2

[ |y|+√
ε T

]
exp

{
r C2

[|y|+√
ε T

]}
(5.115)

·
∞∑
n=0

(n+ 1) exp
{
n r C2

[ |y|+√
ε T

]− C1C
2
2n

2
[ |y|+√

ε T
]2
/2 ε T

}
,

for any r ≥ 0. Assuming r ≤ AT |λ|/ε and using the fact that |λ| ≤ |y|/T , we
see that there is an integer n0 ≥ 1, depending only on AT, C1, and C2, such that
2r ≤ C1C2n0[ |y|+

√
ε T ]/2 ε T . Hence (5.115) implies that there is a constant C

depending only on AT such that

E
[

sup
0≤s≤T

|Yε,λ(s)| exp
{
r sup
0≤s≤T

|Yε,λ(s)|
} ∣∣∣ Yε,λ(0) = y, Yε,λ(T ) = 0

]

≤ C
[ |y|+√

ε T
]
exp

{
Cr

[ |y|+√
ε T

]}
, 0 ≤ r ≤ AT |λ|/ε.(5.116)

It follow now from (5.116), on using the inequality 2
√
εT ≤ ε/|λ|+ |λ|T , that

there is a constant C depending only on AT such that

E
[
exp

{λ
ε

∫ T

0

b
(
Yε,λ(s) + λs, s

)
ds
} ∣∣∣ Yε,λ(0) = y, Yε,λ(T ) = 0

]

≤ exp
[C|λ|AT

ε

{ |y|+ |λ|T}+ CAT
]
.(5.117)

Substituting (5.117) into (5.112) and using the inequality (5.65) of Lemma 5.8,
we conclude that the upper bound (5.108) holds. The lower bound (5.109) can be
established by a similar argument. �
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Proof of Theorem 1.2. Since in Corollary 5.4 we already proved the result for
δ ∼ T/2 we shall be concerned here with the situation where δ/T << 1. We
have now with y < 0, the identity

P
(
Yε(T − δ) < C3 δ y/T

∣∣ Yε(0) = y, Yε(T ) = 0
)

= G(y, 0, 0, T )−1

∫ C3δy/T

−∞
dξ G(y, ξ, 0, T − δ)G(ξ, 0, T − δ, T ).(5.118)

The identity

(5.119) G(y, 0, 0, T ) =

∫ ∞

−∞
dξ G(y, ξ, 0, T − δ)G(ξ, 0, T − δ, T )

also holds. From Lemma 5.2 and Lemma 5.9 one obtains from (5.119) the inequality

G(y, 0, 0, T ) ≥ G(y, 0, 0, T − δ)√
2 π ε δ

∫ ∞

−∞
dξ exp

[ −ξ2
2 ε (T − δ)

(5.120)

− ξ2

2 ε δ
+

ξy

ε (T − δ)
− CAξ2

ε
− CA |ξ y|

ε
− CAT

]

for some universal constant C. Now let X be the normal variable with mean δy/T
and variance εδ(T − δ)/T . Then (5.120) is equivalent to

G(y, 0, 0, T ) ≥ G(y, 0, 0, T − δ)
(T − δ

T

)1/2

exp
[ δ y2

2 ε T (T − δ)
− CAT

]
(5.121)

·E
[
exp

{−CAX2

ε
− CA |y| |X |

ε

}]
.

Applying Jensen’s inequality in (5.121) and then the Schwarz inequality, we
conclude that

G(y, 0, 0, T ) ≥ G(y, 0, 0, T − δ)
(T − δ

T

)1/2

(5.122)

· exp
[ δ y2

2 ε T (T − δ)
− CAT − CAδ y2

ε T
− CA

(δ
ε

)1/2

|y|
]
,

for some universal constant C. We similarly have from Lemmas 5.2 and 5.9 that

∫ C3δy/T

−∞
dξ G(y, ξ, 0, T − δ)G(ξ, 0, T − δ, T )

≤ G(y, 0, 0, T − δ)
(T − δ

T

)1/2

exp
[ δ y2

2 ε T (T − δ)
+ CAT

]
(5.123)

·E
[
exp

{CAX2

ε
+
CA |y| |X |

ε

}
; X <

C3 δ y

T

]
,
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for some universal constant C. Assuming now that C3 > 1, we have then

E
[
exp

{CAX2

ε
+
CA |y| |X |

ε

}
; X <

C3 δ y

T

]

≤
√
2 exp

[
− (C3 − 1)2δ y2

4 ε T (T − δ)

]
(5.124)

·E
[
exp

{CAX2
1

ε
+
CA |y|X1

ε

}
+ exp

{CAX2
1

ε
− CA |y|X1

ε

}]
,

whereX1 is the Gaussian variable with mean δy/T and variance 2εδ(T−δ)/T . The
expectation on the right-hand side of (5.124) can be computed explicitly. Hence
we conclude that, for some universal constant C,

E
[
exp

{CAX2

ε
+
CA |y| |X |

ε

}
; X <

C3 δ y

T

]

≤ 2
√
2 exp

[
− (C3 − 1)2δ y2

4 ε T (T − δ)
+
CAδ y2

ε T
+ CAδ

]
,(5.125)

The first inequality of (5.4) follows from (5.118)–(5.125) upon taking C3 large
enough and using the fact that y < −T√ε/δ.

To prove the second inequality of (5.4) we consider the identity

P
(
Yε(T − δ) >

C4δy

T

∣∣ Yε(0) = y, Yε(T ) = 0
)

= G(y, 0, 0, T )−1

∫ ∞

C4δy/T

dξ G(y, ξ, 0, T − δ)G(ξ, 0, T − δ, T ).(5.126)

We now choose C4 to satisfy 0 < C4 < 1 and proceed as before. �

6. Representation formula for the stochastic cost function

Corollary 4.5 suggests that we can take the limit δ → 0 in (3.55) by setting
limδ→0 E[qε(x, yε(T − δ), T − δ)] = 0, but it does not prove it. In fact Lemma 3.1
shows that qε(x, yε(T − δ), T − δ) becomes arbitrarily large for y close to x with
y < x as δ → 0. To deal with this problem we need to obtain a lower bound
on −∂qε(x, y, t)/∂y sharper than in (4.2), in particular one that does not de-
cay as y → −∞. In the linear approximation b(y, s) = A(s)y, one can express
−∂qε(0, y, 0)/∂y for y < 0 by the formula,

(6.1) − ∂qε(0, y, 0)

∂y
=

εΛ (T )√
2 π ε σ2(T )

exp
[
− Λ (T )2y2

2 ε σ2(T )

]/
Φ
( Λ (T ) y√

ε σ2(T )

)
,

where Φ is the cumulative distribution function for the standard normal variable
and Λ(T ) and σ2(T ) are given by (5.1). Hence provided AT < 1 we see from (4.12)
that

(6.2) − ∂qε
∂y

(0, y, 0) ∼ −Λ(T )2y

σ2(T )
, y

/√
ε T << −1.
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Comparing (6.2) and (4.2), we see that the exponential factor in (4.2) may be
removable in the case of nonlinear b(·, ·). We prove this in the following lemma.

Lemma 6.1. Suppose b(·, ·) satisfies (1.1) and let qε(x, y, t) for x, y ∈ R and t < T ,
be defined by (1.7). Then there are universal positive constants C and η such that

(6.3) − ∂qε(x, y, t)

∂y
≥

[F (x, t)− y

T − t

]
e−CA(T−t),

provided 0 ≤ t < T, A(T − t) < η, and y < F (x, t), where F (x, t) is the function
defined in (1.11).

Proof. From (4.17) we see that

(6.4) − ∂qε(x, y, t)

∂y
≥ e−A(T−t) ε G(y, x, t, T )∫∞

x
G(y, z, t, T ) dz

.

Let us assume first that b(x, s) = 0 for 0 ≤ s ≤ T , whence F (x, t) = x for
0 ≤ t < T . From Lemma 5.6 we see that provided A(T − t) < η and η is chosen
sufficiently small,∫∞

x
G(y, z, t, T ) dz

εG(y, x, t, T )
≤ 1

ε

∫ ∞

0

dξ exp
[
− ξ(x− y)

ε (T − t) {1 + CA(T − t)}
]

=
(T − t) {1 + CA(T − t)}

x− y
(6.5)

where C is a universal constant. The inequality (6.3) follows now from (6.4)
and (6.5). To deal with the more general case we make the change of variable as
in (5.88) and (5.89), and proceed as above. �

Theorem 6.2. Suppose b(·, ·) satisfies (1.1) and qε(x, y, t) for x, y ∈ R and t < T ,
is defined by (1.7). If λε(·, ·) is the optimal controller defined by (1.16) then for
0 ≤ t < T and x, y ∈ R, the functions qε(x, y, t), ∂qε(x, y, t)/∂x, and ∂qε(x, y, t)/∂y
have the representations

qε(x, y, t) = E
{ 1

2

∫ T

t

[
λε(yε(s), s)− b (yε(s), s)

]2
ds

∣∣∣ yε(t) = y
}
,(6.6)

∂qε(x, y, t)

∂y
= − 1

T − t
(6.7)

· E
{∫ T

t

[
1 + (T−s) ∂b

∂y
(yε(s), s)

][
λε(yε(s), s)− b (yε(s), s)

]
ds

∣∣∣ yε(t) = y
}
,

∂qε(x, y, t)

∂x
=

1

T − t
(6.8)

· E
{∫ T

t

[
1− (s−t) ∂b

∂y
(yε(s), s)

][
λε(yε(s), s)− b (yε(s), s)

]
ds

∣∣∣ yε(t) = y
}
,

where yε(s), defined for t ≤ s < T , is the solution to the SDE (1.14) with initial
condition yε(t) = y.
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Proof. From (3.55) the representation (6.6) for qε(x, y, t) holds provided we can
show that

(6.9) lim
δ→0

E
[
qε(x, yε(T − δ), T − δ)

∣∣ yε(t) = y
]
= 0.

In view of Lemma 3.1 and Corollary 4.5, (6.9) will follow if we can show that
for M ≥ 1,

(6.10) lim sup
δ→0

E
[
qε(x, yε(T−δ), T−δ) ; yε(T−δ) ≤ x−M

√
ε δ

∣∣ yε(t) = y
] ≤ c(M),

where the constant c(M) satisfies limM→∞ c(M) = 0. To prove (6.10) we use
Lemma 6.1. Thus let t0 < T be such that CA(T − t0) < 1/10, where C is
the constant in (6.3). If, in addition, A(T − t0) < 1/10, then yε(s) satisfies the
differential inequality

(6.11) dyε(s) ≥
[ 3

4

{x− yε(s)}
T − s

− 2 sup
s≤s′≤T

|b(x, s′)|
]
ds+

√
ε dW (s),

provided t0 ≤ s < T , and yε(s) < x. If t ≥ t0 then we see from (6.11), by following
the argument of Lemma 4.3, that, for δ/(T − t) < 1/K,

(6.12) P
(
yε(T − δ) < x− ρ

∣∣ yε(t) = y
) ≤ exp

[−ρ2/20 ε δ],
provided ρ ≥ K

√
ε δ and the constantK depends only on x and y. Evidently (6.10)

follows from (6.12) on using Lemma 3.1. If t < t0 then one can argue as in the
proof of Theorem 4.4 that the probability of yε(t0) conditioned on yε(t) = y being
very negative is extremely small. Then one applies (6.11) for t0 ≤ s < T to show
that (6.10) holds in this case also. We have obtained the representation (6.6).

To prove (6.7) we proceed in a similar way to how we obtained the analogous
representation (2.29) in the classical case. Thus let yε(s) for t ≤ s < T , with
yε(t) = y be as before and for Δy ∈ R define yε,Δy(s) by

(6.13) yε,Δy(s) = yε(s) + (T − s)Δy/(T − t), t ≤ s < T,

so that yε,Δy(t) = y +Δy and yε,Δy(s) satisfies the SDE:

dyε,Δy(s) =
[
λε

(
yε,Δy(s)− (T − s)Δy/(T − t), s

)−Δy/(T − t)
]
ds+

√
ε dW (s).

(6.14)

for t ≤ s < T . Then, by Lemma 3.2, the inequality

(6.15) qε(x, y +Δy, t) ≤ E
{
qε(x, yε(T − δ) + δΔy/(T − t), T − δ)

∣∣ yε(t) = y
}

+E
{ 1

2

∫ T−δ

t

ds
[
λε(yε(s), s)− Δy

T − t
− b

(
yε(s) + (T − s)

Δy

T − t
, s
)]2 ∣∣∣ yε(t) = y

}

holds, where we have used the fact that (6.13) gives the solution to (6.14). Since,
by the argument we used to establish (6.6), one has that

lim
δ→0

E
{
qε(x, yε(T − δ) + δΔy/(T − t), T − δ)

∣∣ yε(t) = y
}
= 0,
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we conclude from (6.15) that

qε(x, y +Δy, t) ≤E
{ 1

2

∫ T

t

ds
[
λε(yε(s), s)− Δy

T−t(6.16)

− b
(
yε(s) + (T−s) Δy

T−t , s
)]2∣∣∣ yε(t) = y

}
.

To see that the right-hand side of (6.16) is finite, it will be sufficient to show
that

(6.17) E
{∫ T

t

λε(yε(s), s)
2ds

∣∣∣ yε(t) = y
}
<∞.

Observe that the inequality (6.17) does not follow in a straightforward way
from the fact that yε(s) is a solution to (1.14), where λε(·, ·) is given by (1.16) and
−∂qε(x, y, t)/∂y satisfies (6.3). In fact for Zε(s) the solution to (4.28), it is easy
to see that

E
{∫ T

t

Zε(s)
2

(T − s)2
ds

∣∣∣ Zε(t) = z
}
= ∞,

for all μ > 0. To prove (6.17) we use the fact that the left-hand side of (6.6) is
finite. Hence (6.17) follows if we can show that

(6.18) E
{∫ T

t

yε(s)
2ds

∣∣∣ yε(t) = y
}
<∞.

It is easy to see that (6.18) is a consequence of the fact that λε(y, s) ≥ b(y, s)
for y ∈ R and t ≤ s < T , and Lemma 3.4. Here we use the fact that Lemma 3.4
implies that for any η > 0, λε(y, s) is uniformly Lipschitz in y in any region
y ≥ x + η, t ≤ s < T . Having established (6.17), we obtain from (6.6) and (6.16)
the inequality

lim sup
Δy→0

qε(x, y +Δy, t)− qε(x, y, t)

Δy
≤− 1

T − t
E
{ ∫ T

t

[
1 + (T − s)

∂b

∂y
(yε(s), s)

]

· [λε(yε(s), s)− b(yε(s), s)
]
ds

∣∣∣ yε(t) = y
}
.(6.19)

Next, in analogy to (6.16), we have that

qε(x, y, t) ≤E
{ 1

2

∫ T

t

ds
[
λε(yε(s), s) +

Δ

T − t
(6.20)

− b
(
yε(s)− (T − s)

Δ y

T − t
, s
)]2 ∣∣∣ yε(t) = y +Δy

}
.

Using now (6.6) with y replaced by y +Δy we conclude from (6.20) that

lim inf
Δy→0

qε(x, y +Δy, t)− qε(x, y, t)

Δy
≥ − 1

T − t
E
{ ∫ T

t

[
1 + (T − s)

∂b

∂y
(yε(s), s)

]

· [λε(yε(s), s)− b (yε(s), s)
]
ds

∣∣∣ yε(t) = y
}
,(6.21)
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provided we show that

lim
η→0

E
[ ∫ T

t

∣∣ yε,η(s)− yε,0(s)
∣∣ ds] = 0,(6.22)

lim
η→0

E
[ ∫ T

t

∣∣λε(yε,η(s), s)− λε(yε,0(s), s)
∣∣ ds] = 0,(6.23)

where yε,η(s) for t ≤ s < T , is the solution to (1.14) with initial condition yε,η(t) =
y + η. To prove (6.22) we use the uniform Lipschitz continuity of λε(z, s) in any
region z ≥ z0, t ≤ s ≤ T − δ, where δ > 0 and z0 ∈ R can be arbitrary. Thus
by introducing a stopping time and using the fact that the probability of yε,η(s)
being large and negative is very small we see that

(6.24) lim
η→0

E
[ ∫ T−δ

t

∣∣ yε,η(s)− yε,0(s)
∣∣ ds] = 0.

Now (6.22) follows from (6.18) and (6.24) using the fact that one can obtain
a bound in (6.18) which is uniform in η for small η. To prove (6.23) first observe
that (6.6) implies that

(6.25) sup
|η|≤η0

E
{∫ T

t

λε(yε,η(s), s)
2 ds

}
<∞,

for any η0 > 0. Thus it is sufficient to show that

(6.26) lim
η→0

E
[ ∫ T−δ

t

∣∣λε(yε,η(s), s)− λε(yε,0(s), s)
∣∣ ds] = 0

for any δ > 0. For any z0 ∈ R we introduce a stopping time τη(z0) = inf{s ≥ t :
yε,η(s) = z0}. From the uniform Lipschitz continuity of λε(z, s) in the rectangle
z ≥ z0, t ≤ s ≤ T − δ, and (6.24) we have that

(6.27) lim
η→0

E
[ ∫ (T−δ)∧τη(z0)∧τ0(z0)

t

∣∣λε(yε,η(s), s)− λε(yε,0(s), s)
∣∣ ds] = 0.

The expectation in (6.26) exceeds the expectation in (6.27) by at most

(6.28) 2P
(
τη(z0) ∧ τ0(z0) < T − δ

)
sup

t≤t′<T−δ
E
[ ∫ T−δ

t′

∣∣λε(yε(s), s)∣∣ ds
∣∣∣yε(t′) = z0

]
.

Since λε(z, s) ≥ b(z, s) for z ∈ R and t ≤ s < T , the probability in (6.28)
decays exponentially fast in z0 as z0 → −∞. In contrast the expectation in (6.28)
increases at most linearly in |z0| as z0 → −∞. This follows from the repre-
sentation (6.6) for qε and Lemma 3.1. Hence the expression in (6.28) converges
to 0 as z0 → −∞, whence we conclude that (6.26) follows from (6.28). We have
proved (6.23). Now (6.7) follows from (6.19) and (6.21). The proof of (6.8) is
similar to the proof of (6.7). �

Once we have the representations in Theorem 6.2 for qε(x, y, t) and its first
derivatives, the inequality (1.22) follows easily.
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Corollary 6.3. Suppose the function b(·, ·) satisfies the Lipschitz condition (1.1).
Then for x, y ∈ R and t < T , the following inequalities hold:∣∣∣∂qε

∂x
(x, y, t)

∣∣∣ ≤ [
1 + (T − t)A

] [
2qε(x, y, t)/(T − t)

]1/2
,

∣∣∣∂qε
∂y

(x, y, t)
∣∣∣ ≤ [

1 + (T − t)A
] [

2qε(x, y, t)/(T − t)
]1/2

.
(6.29)

Proof. This follows from Theorem 6.2 on using the representations (6.6), (6.7),
and (6.8) by applying the Schwarz inequality to (6.7) and (6.8)). �

7. Proof of Theorem 1.3

In order to prove convergence as ε→ 0 of first derivatives in x and y of the function
qε(x, y, t) defined by (1.7) to the corresponding derivatives of the function q(x, y, t)
defined by (1.10), it will generally be necessary to assume the concavity in y of the
function b(y, t) in (1.2). Recall however that q(x, y, t) = 0 if y ≥ F (x, t), where
F (·, ·) is the function defined from (1.11). Thus for y ≥ F (x, t) the derivatives of
q(x, y, t) are 0. In this case it follows easily from Corollary 6.3 that the derivatives in
x or y of qε(x, y, t) converge to 0 as ε→ 0, without making any further assumptions
on the function b(·, ·) beyond the Lipschitz condition (1.1).

Corollary 7.1. Suppose b(·, ·) satisfies (1.1) and the function F (·, ·) is defined
from (1.11). Then for 0 < ε ≤ 1 there is a constant C(x, y, t, T ) such that

(7.1)
∣∣∣∂qε
∂x

(x, y, t)
∣∣∣+

∣∣∣∂qε
∂y

(x, y, t)
∣∣∣ ≤ C(x, y, t, T )ε1/4,

provided y ≥ F (x, t).

Proof. The inequality (7.1) follows from Theorem 1.1 and Corollary 6.3 since
q(x, y, t) = 0 for y ≥ F (x, t). �

In order to show convergence when y < F (x, t) we shall need to assume b(·, ·) is
concave and that (1.1) holds. We first prove a result about the classical problem.

Lemma 7.2. For α ≥ 0, let yα(s), defined for 0 ≤ s ≤ T , be the solution of

(7.2)
dyα
ds

= b (yα(s), s)− α
∂q

∂y
(x, yα(s), s), 0 ≤ s < T, yα(0) = y,

where q(·, ·, ·) is the classical cost function (1.10). Then there is a constant C(AT )
depending only on AT such that

(7.3) 0 ≤ yα(s)− y0(s) ≤ max[1, α]C(AT )
√
Tq(x, y, 0), 0 ≤ s ≤ T.

Proof. We first consider the case α = 1 since y1(·) is the optimal trajectory for the
variational problem (2.2). From (2.2) and (2.14)) we see that, for 0 ≤ s < T ,

C1(AT )
[
q(x, y, 0)/T

]1/2 ≤ dy1(s)

ds
− b (y1(s), s) ≤ C2(AT )

[
q(x, y, 0)/T

]1/2
,(7.4)
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for some positive constants C1 and C2 depending only on AT . Setting ϕ1(s) =
y1(s)− y0(s) it follows from (7.2) and (7.4) that

(7.5) |ϕ′
1(s)| ≤ Aϕ1(s) + C2(AT )

[
q(x, y, 0)/T

]1/2
, 0 ≤ s ≤ T, ϕ1(0) = 0.

Applying Gronwall’s inequality to (7.5) we conclude that (7.3) holds for α = 1
and a fortiori for 0 ≤ α ≤ 1.

Suppose now that α > 1 in which case yα(s) > y1(s) for 0 ≤ s ≤ T . Using the
fact that q(x, y, t) is convex in y, we see from (7.2) that

dyα(s)

ds
≤ b (yα(s), s)− α

∂q

∂y
(x, y1(s), s), 0 ≤ s < T.

Thus if ϕα(s) = yα(s)− y0(s) we have that

|ϕ′
α(s)| ≤ Aϕα(s) + αC2(AT )

[
q(x, y, 0)/T

]1/2
,

whence (7.3) follows for α > 1 as before. �

We can use the method of Lemma 7.2 to find a region where the paths yε(s),
defined for 0 ≤ s < T , for the stochastic control problem (1.14) and (1.15) are
most likely to be found.

Lemma 7.3. Let yε(s), defined for 0 ≤ s < T , be the solution to the stochastic
equation (1.14) with yε(0) = y, where λε(·, ·) is given by (1.16). Then there is a
universal constant M and a constant C(AT ) depending only on AT such that

(7.6) P
[

inf
0≤s<T

[
yε(s)− y0(s)

]
< −ρ

]
≤ exp

[− ρ2/ε T C(AT )
]
,

provided ρ2 ≥ MεTC(AT ). There is a further constant C1(x, y, A, T ) depending
only on x, y, A, and T such that

P
[

sup
0≤s<T

[
yε(s)− y0(s)

]
> ρ+ C(AT )

√
T q(x, y, 0) + C1(x, y, A, T )ε

1/4
]

(7.7)

≤ exp
[− ρ2/ε T C(AT )

]
, provided ρ2 ≥M εT C(AT ).

Proof. The inequality (7.6) is obtained by using the fact that yε(s) ≥ Yε(s) for
0 ≤ s < T , where Yε(0) = y and Yε(·) satisfies (1.5). Then one compares solutions
of (1.5) to solutions of the deterministic equation (7.2) with α = 0, using the
Lipschitz property (1.1) of b(·, ·) and applying Gronwall’s inequality.

To obtain the inequality (7.7) we need to use the convexity of the function
qε(x, y, s) in y, which is established in the appendix (Theorem A.2). Let yc(s) for
0 ≤ s < T , be the optimal trajectory y(·) for the variational problem (1.10) with
y(0) = y. Then, if y > yc(s), we have from Corollary 6.3 that

(7.8) 0 ≤ −∂qε
∂y

(x, y, s) ≤ −∂qε
∂y

(x, yc(s), s) ≤ (1 +AT )
[2qε(x, yc(s), s)

(T − s)

]1/2
.
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From Lemma 3.3 we see that there is a constant C2(x, y, A, T ) depending only
on x, y, A, and T such that

(7.9) qε(x, yc(s), s) ≤ q(x, yc(s), s) + C2(x, y, A, T )
√
ε, 0 ≤ s < T.

Putting together (7.8) and (7.9)) and using the fact that (7.4) holds for yc(·),
we conclude that

0 ≤ −∂qε
∂y

(x, y, s) ≤ C1(AT )
[
q(x, y, 0)/T

]1/2
(7.10)

+ C3(x, y, A, T ) ε
1/4

/√
T − s, 0 ≤ s < T, y > yc(s).

Consider now the diffusion process Zε(·) defined as a solution to the stochastic
equation

(7.11) dZε(s) = με(Zε(s), s) ds+
√
ε dW (s), 0 ≤ s < T,

where με(·, ·) is given by the formula
(7.12)

με(z, s) =

⎧⎪⎪⎨
⎪⎪⎩
b (z, s)− ∂qε

∂y
(x, z, s), z < yc(s),

b (z, s) + C1(AT )
[q(x, y, 0)

T

]1/2
+ C3(x, y, A, T )

ε1/4√
T − s

, z > yc(s).

Then, if Zε(0) ≥ yε(0), it follows from (7.10) that Zε(s) ≥ yε(s) for 0 ≤ s < T ,
with probability 1.

For any t, 0 ≤ t < T , suppose that z0 > yc(t) and consider the solution z(s) to
the initial value problem

(7.13) dz(s) = με(z(s), s) ds, t ≤ s < T, z(t) = z0.

By letting ε → 0 in (7.10) we see that z(s) > yc(s) for t < s ≤ T . Hence on
setting φ(s) = z(s)− yc(s) we have from (7.13) and the Lipschitz property of b(·, ·)
that, for t ≤ s < T,

−Aφ(s) ≤ φ′(s)

≤ Aφ(s) + C1(AT )
[
q(x, y, 0)/T

]1/2
+ C3(x, y, A, T ) ε

1/4
/√

T − s.(7.14)

Integrating (7.14) we conclude that, fr t ≤ s < T,

[z0 − yc(t)]e
−AT ≤ z(s)− yc(s)(7.15)

≤ eAT
{
[z0 − yc(t)] + C1(AT ) [Tq(x, y, 0)]

1/2 + 2
√
T C3(x, y, A, T ) ε

1/4
}
.

We can compare the solution of (7.13) to the solution of the stochastic equa-
tion (7.11) with initial condition Zε(t) = z0 > yc(t). Arguing as in the proof of
Lemma 3.1 we see that

(7.16) P
(

sup
t≤s<T

|Zε(s)− z(s)| > δ
)
≤ exp

[− δ2/ε T C2(AT )
]
,
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where the constant C2(AT ) depends only on AT . Also δ must satisfy the inequal-
ities

(7.17) δ < [z0 − yc(t)] e
−AT , δ2 ≥M εT C2(AT ),

where M is a universal constant. The first inequality in (7.17) ensures by (7.15)
that if |Zε(s) − z(s)| < δ then Zε(s) > yc(s). Hence to estimate the probabil-
ity (7.16) we can assume the drift με(·, ·) of (7.11) is given by the second formula
in (7.12).

To prove (7.7) first observe that the probability in (7.7) is bounded above by
the probability

(7.18) sup
0≤t<T

P
[

sup
t≤s<T

[yε(s)−y0(s)] > 1 + 2eAT

2 (1+eAT )
η
∣∣∣ yε(t)−y0(t) = η

2 (1+eAT )

]
,

where η is given by the formula

(7.19) η = ρ+ C(AT )
√
T q(x, y, 0) + C1(x, y, A, T ) ε

1/4.

The probability in (7.18) is in turn bounded above by the same probability
with yε(s) replaced by Zε(s). Observe next that

(7.20) Zε(s)− y0(s) >
1 + 2eAT

2(1 + eAT )
η =⇒ Zε(s)− z(s) > η/4,

where we have used the fact that z0 − y0(t) = η/2(1 + eAT ) and the inequali-
ties (7.3) and (7.15). The constants C(AT ) and C1(x, y, A, T ) in (7.19) must also
be chosen sufficiently large. Hence the probability in (7.18) is bounded above by
the probability

(7.21) P
(

sup
t≤s<T

|Zε(s)− z(s)| > η e−AT

4 (1 + eAT )

∣∣∣ Zε(t)− y0(t) =
η

2 (1 + eAT )

)
.

It is clear from (7.3) that if the constant C(AT ) in (7.19) is chosen sufficiently
large then we may apply (7.16) to estimate (7.21), since for C(AT ) large enough
the first inequality in (7.17) is satisfied. Now (7.7) follows from (7.16) since the
condition on ρ implies the second inequality in (7.17). �

Lemma 7.4. Let yε(s) for 0 ≤ s < T , be as in Lemma 7.3 and let yc(s) for
0 ≤ s < T , be the solution to the corresponding classical problem (1.10) which has
optimal controller λc(s) for 0 ≤ s < T . Then there is a constant C(x, y, A, T )
such that
(7.22)

E
{∫ T

0

[
λε(yε(s), s)− b (yε(s), s)− λc(s) + b (yc(s), s)

]2
ds
}
≤ C(x, y, A, T ) ε1/4.

Proof. Following the argument of Lemma 3.5 we define a classical path yε,c(·)
which corresponds to the stochastic path yε(·) by

(7.23)
dyε,c(s)

ds
= λε(yε(s), s) + k/T, 0 ≤ s < T,
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where yε,c(0) = y and k is defined by

(7.24) k = max
[
x− y −

∫ T

0

λε(yε(s), s) ds, 0
]
.

Observe from Lemma 4.1 and Theorem 4.4 that the integral on the right-hand
side of (7.24) exists with probability 1. Letting α lie in the interval 0 < α < 1,
and using the fact that yε,c(T ) ≥ x, we have that

q(x, y, 0) ≤ F[
αyε,c(·) + (1− α)yc(·)

]
(7.25)

=
1

2

∫ T

0

[
α
{
λε(yε(s), s)− b (yε(s), s)

}

+ (1− α)
{
λc(s)− b (yc(s), s)

}
+ gε(s)− h(yε(s), s)

]2
ds,

where the deterministic function h(z, s) is given by the formula

(7.26) h(z, s) = b
(
αz + (1− α) yc(s), s

)− α b (z, s)− (1− α) b (yc(s), s),

and the random function gε(s) by the formula,

(7.27) gε(s) = αk/T+b
(
αyε(s)+(1−α) yc(s), s

)−b (αyε,c(s)+(1−α) yc(s), s
)
.

We expand out gε(·) in the quadratic expression in (7.25) to obtain the inequality

q(x, y, 0) ≤ 1

2

∫ T

0

gε(s)
2 ds+

∫ T

0

|gε(s)| |h(yε(s), s)| ds
(7.28)

+

∫ T

0

|gε(s)| |λc(s)− b (yc(s), s)| ds +
∫ T

0

|gε(s)| |λε(yε(s), s)− b (yε(s), s)| ds

+
1

2

∫ T

0

[
α
{
λε(yε(s), s)−b(yε(s), s)

}
+(1− α)

{
λc(s)−b(yc(s), s)

}−h(yε(s), s)
]2
ds.

Since b(·, s) is concave for 0 ≤ s < T , it follows that the function h is non-
negative. Thus since [λε(yε(s), s) − b(yε(s), s)] and [λc(s) − b(yc(s), s)] are both
nonnegative, one has the inequality

1

2

∫ T

0

[
α
{
λε(yε(s), s)− b(yε(s), s)

}
+ (1−α){λc(s)− b(yc(s), s)} − h(yε(s), s)

]2
ds

≤ α

2

∫ T

0

[
λε(yε(s), s)− b (yε(s), s)

]2
ds+

1−α
2

∫ T

0

[
λc(s)− b (yc(s), s)

]2
ds

− α(1 − α)

2

∫ T

0

[
λε(yε(s), s)− b (yε(s), s)− λc(s) + b (yc(s), s)

]2
ds,(7.29)

provided that h(yε(s), s) ≤ 2(1−α)[λc(s)−b(yc(s), s)] for 0 ≤ s < T . Since we also
have that h(z, s) ≤ 2Aα (1−α)|z − yc(s)|, we conclude that (7.29) holds provided
yε(·) satisfies the inequality

(7.30) Aα | yε(s)− yc(s)| ≤
[
λc(s)− b (yc(s), s)

]
, 0 ≤ s < T.
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If we now use (7.3) and the lower bound in (7.4) we see that (7.30) is implied
by the inequality

(7.31) | yε(s)− y0(s)| ≤
[
α−1C1(AT )− C2(AT )

]√
T q(x, y, 0), 0 ≤ s < T,

for some positive universal constants C1(AT ) and C2(AT ) depending only on AT .
Observe now that from Theorem 1.1 the inequality (7.22) holds if Tq(x, y, 0) ≤

ε1/4, whence we may assume Tq(x, y, 0) > ε1/4. It follows then from Lemma 7.3
that, for α sufficiently small depending only on AT and ε sufficiently small de-
pending only on x, y, A, and T the inequality (7.31) holds with probability close
to 1.

We now estimate the expectation of the terms in gε(·) on the right-hand side
of (7.28). From Theorem 4.4 it follows that the quantity k in (7.24) satisfies the
inequality

(7.32) 0 ≤ k ≤ √
ε max [W (T ), 0],

where W (·) is Brownian motion. We also have from (1.14) and (7.23) that

(7.33) sup
0≤s<T

|yε(s)− yε,c(s)| ≤
√
ε sup
0≤s<T

|W (s)|+ k.

We may bound the random function gε(·) of (7.27) using (7.32) and (7.33) to
obtain

(7.34) sup
0≤s<T

|gε(s)| ≤ 2α
√
ε

T
[1 +AT ] sup

0≤s<T
|W (s)|.

Evidently (7.34) implies that

(7.35) E
[ ∫ T

0

gε(s)
2 ds

]
≤ α2εC3(AT )

for a constant C3(AT ) depending only on AT . The inequality (7.35) in turn implies
by the Schwarz inequality that

(7.36) E
[ ∫ T

0

|gε(s)| |λc(s)− b (yc(s), s)| ds
]
≤ ε1/2αC4(AT ) [1 + q(x, y, 0)]

for a constant C4(AT ) depending only on AT . Similarly one has by Theorem 1.1
that

E
[ ∫ T

0

|gε(s)| |λε(yε(s), s)− b (yε(s), s)| ds
]

(7.37)

≤ √
ε αC5(AT )

[
1 + q(x, y, 0) + C6(x, y, A, T )

√
ε
]
,

for constantsC5(AT ) depending only onAT and C6(x, y, A, T ) depending on x, y, A,
and T . The final term involving gε(·) can be estimated by using Lemma 7.3. Thus

E
[ ∫ T

0

|gε(s)| |h(yε(s), s)| ds
]

(7.38)

≤ α
√
εC3(AT )

1/22Aα (1− α)E
[ ∫ T

0

| yε(s)− yc(s)|2 ds
]1/2

,
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and the expectation on the right-hand side of (7.38) is bounded as

(7.39) E
[ ∫ T

0

|yε(s)− yc(s)|2 ds
]
≤ C7(AT )

{
T 2q(x, y, 0) + C8(x, y, A, T ) ε

1/2
}
.

We now define pε as the probability that the inequality (7.31) is violated, and
take the expectation of (7.28) over the event (7.31). Thus from (7.28), (7.29), and
(7.35)–(7.39) we conclude that

α (1 − α)

2
E
[ ∫ T

0

[
λε(yε(s), s)− b(yε(s), s)− λc(s) + b(yc(s), s)

]2
ds ; (7.31) holds

]

≤ [
pε + ε1/2αC9(AT )

]
q(x, y, 0) + αC10(x, y, A, T ) ε

1/4.(7.40)

Since we can estimate pε from Lemma 7.3, we can conclude (7.22) from (7.40)
provided we can estimate the expectation

(7.41) E
[ ∫ T

0

[
λε(yε(s), s)− b (yε(s), s)

]2
ds ; (7.31) does not hold

]

appropriately. We have now from Corollary 6.3 that

E
[ ∫ T−δ

0

[
λε(yε(s), s)− b (yε(s), s)

]2
ds ; (7.31) does not hold

]
(7.42)

≤ 2 p1/2ε (1 +AT )2
∫ T−δ

0

ds

T − s
E
[
qε(x, yε(s), s)

2
]1/2

.

Let Yε(s) for s ≥ 0, be the solution to (1.5) with Yε(0) = y. Recall that since
∂qε(x, z, s)/∂z ≤ 0 we have that yε(s) ≥ Yε(s) for s ≥ 0 . Using Lemma 3.1 then,
we conclude that

(7.43) E
[
qε(x, yε(s), s)

2
] ≤ 1

(T − s)2
[
C3(AT )E[{x− Yε(s)}4] + C4(x, y, A, T )

]
.

We are left now to estimate

(7.44) E
[ ∫ T

T−δ

[
λε(yε(s), s)− b (yε(s), s)

]2
ds ; (7.31) does not hold

]

for some δ > 0. Instead of attempting to show that the expectation (7.44) is small,
we consider, as for (7.29), under what circumstances the inequality

[
α{λε(yε(s), s)− b (yε(s), s)}+ (1− α) {λc(s)− b (yc(s), s)} − h(yε(s), s)

]2

≤ α

2

[
λε(yε(s), s)− b (yε(s), s)

]2
+

(1− α)

2

[
λc(s)− b (yc(s), s)

]2

− α (1− α)

2

[
λε(yε(s), s)− b (yε(s), s)− λc(s) + b (yc(s), s)

]2
(7.45)
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holds if s lies in the interval T − δ < s < T . From Lemma 6.1 we see that if δ > 0
is sufficiently small and depends only on A, then (7.45) holds if yε(s) satisfies the
one-sided inequality

(7.46) yε(s)− y0(s) ≤
[
α−1C1(AT )− C2(AT )

]√
T q(x, y, 0)

similar to (7.31). Thus, instead of estimating (7.44), it will be sufficient to estimate

(7.47) E
[ ∫ T

T−δ

[
λε(yε(s), s)− b( yε(s), s)

]2
χ(yε(s), s) ds

]
,

where

χ(z, s) = 1 if z > y0(s) +
[
α−1C1(AT )− C2(AT )

]√
Tq(x, y, 0),

χ(z, s) = 0, otherwise.
(7.48)

Using (7.8) and (7.9) we see that if χ(yε(s), s)=1 then [λε(yε(s), s)−b(yε(s), s)]2
is bounded, whence we conclude that the expectation (7.47) is bounded by a con-
stant C(x, y, A, T ) depending only on x, y, A, and T . The result follows from
Lemma 7.3. �

Proof of Theorem 1.3. We use the representation for ∂q(x, y, t)/∂y given by (2.29)
and for ∂qε(x, y, t)/∂y by (6.7). Thus we have that

∂q

∂y
(x, y, 0)− ∂qε

∂y
(x, y, 0) =

1

T
E
{∫ T

0

[
1 + (T − s)

∂b

∂y
(yε(s), s)

]
(7.49)

· [λε(yε(s), s)− b (yε(s), s)− λc(s) + b (yc(s), s)
]
ds
}

+
1

T
E
{∫ T

0

(T − s)
[ ∂b
∂y

(yε(s), s)− ∂b

∂y
(yc(s), s)

][
λc(s)− b(yc(s), s)

]
ds
}
.

In view of Lemma 7.4 the second identity of (1.25) follows if we can show that

(7.50) lim
ε→0

E
{∫ T

0

∣∣∣ ∂b
∂y

(yε(s), s) − ∂b

∂y
(yc(s), s)

∣∣∣ ds} = 0.

We put φε(s) = yε(s) − yc(s) for 0 ≤ s < T , and observe that φε(s) satisfies
the equation

(7.51) dφε(s) =
[
λε(yε(s), s)− λc(s)

]
ds+

√
ε dW (s), φε(0) = 0.

It follows from (7.51) that, for 0 ≤ t < T ,

|φε(t)| ≤
∫ t

0

∣∣λε(yε(s), s)− b (yε(s), s)− λc(s) + b (yc(s), s)
∣∣ ds(7.52)

+A

∫ t

0

|φε(s)| ds+
√
ε |W (t)|.

Using Gronwall’s inequality in (7.52) and Lemma 7.4 we see that (7.50) holds. This
proves the second identity of (1.25). The first identity follows in a similar way. �
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A. Log concavity of solutions to linear diffusion equations

Our goal in this appendix is to establish convexity properties of the function
qε(x, y, t) defined by (1.7). We shall first show convexity in y for fixed x ∈ R

and t < T , since showing joint convexity in (x, y) is considerably more difficult.
We consider the terminal boundary value problem

⎧⎨
⎩
∂w

∂t
+ b (y, t)

∂w

∂y
+
ε

2

∂2w

∂y2
= 0, y > 0, t < T,

w(y, T ) = w0(y), y > 0; w(0, t) = 0, t < T.

(A.1)

Proposition A.1. Assume b(·, ·) satisfies (1.1) and the terminal function w0(y)
is C2 for y > 0 and C1 for y ≥ 0 with w0(0) = 0. Assume further that

(A.2) sup
y>0

{|w0(y)|+ |dw0(y)/dy|+ |d2w0(y)/dy
2|} <∞.

Then there is a unique solution w(y, t) for y > 0 and t < T , to the terminal
boundary value problem (A.1) which has the property that w(y, t) is C2 in y, C1

in t, and satisfies the inequality

(A.3) sup
y>0,T0<t<T

{|w(y, t)|+ |∂w(y, t)/∂y|+ |∂2w(y, t)/∂y2|} <∞

for any T0 < T . In addition, the functions w(y, t) and ∂w(y, t)/∂y are continuous
for y ≥ 0 and t ≤ T .

Proof. We first observe that the result holds when b ≡ 0. In this case the solution
is given by the method of images as

(A.4) w(y, t) =

∫ ∞

0

[
G
(
y − y′, ε(T − t)

)−G
(
y + y′, ε(T − t)

)]
w0(y

′) dy′,

where G(·, s) is the probability density function of the Gaussian variable with
mean 0 and variance s. Thus on using integration by parts we have

(A.5)
∂w

∂y
(y, t) =

∫ ∞

0

[
G
(
y − y′, ε(T − t)

)
+G

(
y + y′, ε(T − t)

)] dw0(y
′)

dy′
dy′,

where we have used the fact that w0(0) = 0 in deriving (A.5).
Upon a further integration by parts we have that

(A.6)
∂2w

∂y2
(y, t) =

∫ ∞

0

[
G
(
y − y′, ε(T − t)

)−G
(
y + y′, ε(T − t)

)] d2w0(y
′)

dy′2
dy′.

It follows easily from (A.4)–(A.6) that (A.3) holds. In addition w(y, t) and
∂w(y, t)/∂y are continuous for y ≥ 0 and t ≤ T . We also have that ∂2w(y, t)/∂y2

is continuous for y > 0 and t ≤ T , provided d2w0(y)/dy
2 is continuous in y > 0.

To prove the result for general b(·, ·) satisfying (1.1) it will be sufficient to
establish it for t restricted to a small interval [T − Δ, T ]. We proceed as in
Lemma 3.4.
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Taking y1 = η in (3.18) we see from (3.19) that w(y, t) is given by the formula

(A.7) w(y, t) =

∫ 2η

0

G(y, y′, t, T )w0(y
′) dy′ − ε

∫ T

t

dsw+(s)
∂G

∂y′
(y, 2η, t, s),

provided 0 < y < 2η. The Green’s function G(y, y′, t, T ) is defined by the pertur-
bation expansion (3.23). Since w+(·) is bounded by virtue of (A.2), we see that
if Δ satisfies (3.20) then sup{|w(y, t)| : 0 < y ≤ η, T − Δ ≤ t < T } < ∞ and
w(y, t) is continuous for 0 ≤ y ≤ η and T −Δ ≤ t ≤ T , with w(0, t) = 0.

We consider next the first derivative ∂w(y, t)/∂y, which from (A.7) is given by
the formula

(A.8)
∂w

∂y
(y, t) =

∫ 2η

0

∂G

∂y
(y, y′, t, T )w0(y

′) dy′ − ε

∫ T

t

dsw+(s)
∂2G

∂y∂y′
(y, 2η, t, s).

It is evident from (3.41) that the second integral on the right-hand side of (A.8)
is uniformly bounded in the set {(y, t) : 0 < y ≤ η, T −Δ ≤ t < T } and that the
integral converges to 0 as t → T , uniformly for 0 < y ≤ η. To estimate the first
integral on the right-hand side of (A.8) we integrate by parts the first term in the
perturbation expansion (3.23) for G(y, y′, t, T ). Just as in (A.5) we see that this
term is uniformly bounded in the set {(y, t) : 0 < y ≤ η, T − Δ ≤ t < T }, and
converges uniformly to dw0(y)/dy as t → T . We can estimate the higher order
terms

(A.9)

∫ 2η

0

∂vn
∂y

(y, y′, t, T )w0(y
′) dy′,

for n ≥ 0 simply by using (3.24). Thus we see that the sum of the higher order
terms is uniformly bounded in the set {(y, t) : 0 < y ≤ η, T − Δ ≤ t < T }.
To prove continuity of ∂w(y, t)/∂y as t → T we need to show that the integral
in (A.9) converges uniformly to 0 as t→ T in the interval 0 < y ≤ η. This follows
from (3.24) when n ≥ 1. To prove it for n = 0 we again need to make use of
integration by parts. Thus we see that

∣∣∣
∫ 2η

0

g0(z, y
′, s, T )w0(y

′) dy′
∣∣∣

≤ C |b(z, s)|
[

sup
0<y≤2η

|dw0(y)/dy|+G
(
z − 2η, 2ε(T − s)

) |w0(2η)|
]
,(A.10)

for some universal constant C.
It follows from (A.10) and the representation (3.23) for v0 that the integral (A.9)

also converges to 0 as t→ T when n = 0. We have shown that sup{|∂w(y, t)/∂y| :
0 < y ≤ η, T −Δ ≤ t < T } <∞ and ∂w(y, t)/∂y is continuous for 0 ≤ y ≤ η and
T −Δ ≤ t ≤ T .

To estimate the second derivative ∂2w(y, t)/∂y2 we proceed in a similar manner:

(A.11)
∂2w

∂y2
(y, t) =

∫ 2η

0

∂2G

∂y2
(y, y′, t, T )w0(y

′)dy′−ε
∫ T

t

dsw+(s)
∂3G

∂y2∂y′
(y, 2η, t, s).
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We wish to show that sup{|∂2w(y, t)/∂y2| : 0 < y ≤ η, T −Δ ≤ t < T } < ∞.
In view of (3.46)) it is sufficient to consider only the first integral on the right-hand
side of (A.11). We estimate the first term in the perturbation expansion (3.23)
for G(y, y′, t, T ) using integration by parts as in (A.6). The higher order terms,
corresponding to vn(y, y

′, t, T ) with n ≥ 1, can be estimated using (3.39), so we
are only left to deal with the term corresponding to v0(y, y

′, t, T ). We can estimate
this by using (A.10)) and the corresponding inequality for the derivative of g0:

(A.12)
∣∣∣
∫ 2η

0

∂g0
∂z

(z, y′, s, T )w0(y
′) dy′

∣∣∣

≤ C
[
A+

{ ν

Δ(T − t)

}1/2 ][
sup

0<y≤2η
|dw0(y)/dy|+G

(
z − 2η, 2ε(T − s)

) |w0(2η)|
]
,

for some universal constant C. We have shown that sup{|∂2w(y, t)/∂y2| : 0 < y ≤
η, T −Δ ≤ t < T } <∞.

We can easily extend the estimates we have made on w(y, t) and its y derivatives
in the set {(y, t) : 0 < y ≤ η, T −Δ ≤ t < T } to all of y > 0 by observing that
the function v(z, t) defined by v(z, t) = w(z + y(t), t), where y(s) for s ≤ T , is a
solution to (1.11) with y(T ) = y1, satisfies the PDE

(A.13)
∂v

∂t
+
[
b (z + y(t), t)− b (y(t), t)

] ∂v
∂z

+
ε

2

∂2v

∂z2
= 0.

Then we represent v(z, t) by a formula similar to (A.7) and use perturbation
theory as before, observing that the perturbation series for the Green’s function
converges in a region {|z| < η, T −Δ ≤ t < T }, where η and Δ can be taken to
be independent of y1. �

Theorem A.2. Suppose b(·, ·) satisfies (1.1), and in addition the function b(y, t)
is concave in y for y ∈ R and t ≤ T . Then for any fixed x ∈ R and 0 ≤ t < T , the
function qε(x, y, t) of (1.7) is a convex function of y ∈ R.

Proof. We shall take without loss of generality x = 0. For δ satisfying 0 < δ < 1
we define a function gδ(z) with domain {z ∈ R : z > −1} by

g′′δ (z) = 1/(1 + z)2, if − 1 < z < −(1− δ),

g′′δ (z) = −z/δ2(1− δ) if − (1− δ) < z < 0,

gδ(0) = g′δ(0) = 0,

g′′δ (z) = 0, if z > 0.

(A.14)

Evidently gδ(z) is a C
2 convex decreasing function which has the property that

gδ(z) = 0 for z > 0 and gδ(z) ∼ Kδ − log(1+ z) as z → −1, where Kδ is a constant
depending on δ. For Λ > 0 and y > −Λ let τΛ,y,t be the first hitting time at −Λ
for the diffusion Yε(s) with s ≥ t, of (1.5) with Yε(t) = y. We define a function
uε,Λ,δ(y, t) by

(A.15) uε,Λ,δ(y, t) = E
{
exp[−gδ(Yε(T )/Λ)] ; τΛ,y,t > T

}
.
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Letting δ → 0 in (A.15) we conclude from (A.14) that

(A.16) P
(
Yε(T ) > 0 ; τΛ,y,t > T

∣∣ Yε(t) = y
)
= lim

δ→0
uε,Λ,δ(y, t).

It is also clear from (1.6) that

(A.17) uε(0, y, t) = lim
Λ→∞

P
(
Yε(T ) > 0 ; τΛ,y,t > T

∣∣ Yε(t) = y
)
.

We conclude from (A.16) and (A.17) that the convexity of qε(0, y, t) in y follows
from the logarithmic concavity of the function uε,Λ,δ(y, t) in y.

To prove logarithmic concavity we first observe that uε,Λ,δ(y, t) satisfies the
PDE (1.2) for y > −Λ and t < T , with Dirichlet boundary condition uε,Λ,δ(y, t) = 0
at y = −Λ, and terminal data

(A.18) uε,Λ,δ(y, T ) = exp [−gδ (y/Λ)] , y > −Λ.

Since the function (A.18) is increasing in y, it follows from the maximum prin-
ciple that for t < T the function uε,Λ,δ(y, t) is also an increasing function of y.
From (A.14) we see that uε,Λ,δ(y, T ) is C

2 for y ≥ −Λ, and uε,Λ,δ(−Λ, T ) = 0 and
∂uε,Λ,δ(−Λ, T )/∂y > 0. Therefore we can apply the regularity result of Proposi-
tion A.1. It follows from this and the Hopf maximum principle [19] that

(A.19) ∂uε,Λ,δ(−Λ, t)/∂y > 0, t ≤ T.

Next as in (1.7) we put uε,Λ,δ(y, t) = exp[−qε,Λ,δ(y, t)/ε], and observe that
qε,Λ,δ(y, t) satisfies the PDE (1.8). Since uε,Λ,δ(y, t) is an increasing function of y,
it follows that qε,Λ,δ(y, t) is a decreasing function of y. Hence qε,Λ,δ(y, t) is a
solution to the PDE

(A.20)
∂qε,Λ,δ

∂t
+
ε

2

∂2qε,Λ,δ

∂y2
−B

(
y, t,

∂qε,Λ,δ

∂y

)
= 0,

where the function B(y, t, p) is defined by

(A.21) B(y, t, p) = b(y, t) |p|+ p2/2.

Observe that the function B(y, t, p) is concave in y for all p ∈ R and t ≤ T .
Applying Theorem 4.1 of [9] to (A.20) we see that qε,Λ,δ(y, t) is convex in y for
y > −Λ and t < T , provided we can show that the expression

(A.22) qε,Λ,δ

(
(y + y′)/2, t

)− [
qε,Λ,δ(y, t) + qε,Λ,δ(y

′, t)
]
/2

is less than or equal to 0 as (y, y′, t) approaches (y∞, y′∞, t∞) with t∞ ≤ T finite,
and (y∞, y′∞) on the boundary of (−Λ,∞)2 ⊂ R

2 if t∞ < T , and an arbitrary
point in the closure of (−Λ,∞)2 if t∞ = T .

Suppose now that y∞ = −Λ and −Λ < y′∞ ≤ ∞. From (A.15) we see that
uε,Λ,δ(y, t) > 0 for y > −Λ and t ≤ T , whence the limits of the first and third
terms in (A.22) are finite as (y, y′, t) → (y∞, y′∞, t∞), whereas the second term
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converges to −∞. Thus we may assume y′∞ = y∞ = −Λ. In that case we observe
that the exponential of ε−1 times the expression (A.22) is the same as

(A.23) [uε,Λ,δ(y, t) uε,Λ,δ(y
′, t)]1/2

/
uε,Λ,δ({y + y′}/2, t).

From (A.19) we may write (A.23) as

(A.24) p (z, z′, t) (zz′)1/2
/
[(z + z′)/2],

where z = y + Λ, z′ = y′ + Λ, and lim{p (z, z′, t) : z, z′ → 0, t → t∞} = 1. Thus
since the arithmetic mean exceeds the geometric mean, it follows from (A.24) that
the limit of (A.22) as (y, y′, t) → (−Λ,−Λ, t∞) is less than or equal to 0.

For t∞ = T , the nonpositivity of (A.22) for any (y∞, y′∞) in the closure of
(−Λ,∞)2 follows from Proposition A.1 and the convexity of gδ(·). �

Theorem A.3. Suppose b(·, ·) satisfies (1.1). Then ∂2qε(x, y, t)/∂x∂y ≤ 0 for
x, y ∈ R and 0 ≤ t < T .

Proof. It will be sufficient to show that for any h > 0 the function qε(x+h, y, t)−
qε(x, y, t) is a decreasing function of y. Letting g(z) be the function

(A.25) g(z) = z2, z < 0; g(z) = 0, z ≥ 0,

we define uε,δ(x, y, t) similarly to (A.15) by

(A.26) uε,δ(x, y, t) = E
{
exp

[
− g

(Yε(T )− x

δ

)] ∣∣ Yε(t) = y
}
.

Evidently limδ→0 uε,δ(x, y, t) = uε(x, y, t) and hence the function qε,δ(x, y, t) =
−ε loguε,δ(x, y, t) satisfies limδ→0 qε,δ(x, y, t) = qε(x, y, t). Arguing as in the proof
of Lemma 3.1, we also see that qε,δ(x, y, t) satisfies the inequality

(A.27) 0 ≤ qε,δ(x, y, t) ≤ C
[
(x− y)2H(x− y) + 1

]
, y ∈ R, 0 ≤ t < T,

where H(·) is the Heaviside function and C is a constant.
In order to prove that qε(x + h, y, t) − qε(x, y, t) is decreasing in y it will be

sufficient to show that the function vε,δ(y, t) = qε,δ(x + h, y, t) − qε,δ(x, y, t) is
decreasing in y for any δ > 0. To see this we note that vε,δ satisfies a PDE

(A.28)
∂vε,δ
∂t

+ bε,δ(y, t)
∂vε,δ
∂y

+
ε

2

∂2vε,δ
∂y2

= 0, y ∈ R, t < T,

where the drift bε,δ(·, ·) is given by the formula

(A.29) bε,δ(y, t) = b(y, t)− 1

2

∂qε,δ(x+ h, y, t)

∂y
− 1

2

∂qε,δ(x, y, t)

∂y
.

The terminal data for vε,δ is given by

vε,δ(y, T ) =

⎧⎪⎨
⎪⎩
h[2(x− y) + h]/δ2, if y < x,

[x+ h− y]2/δ2, if x < y < x+ h,

0, if y > x+ h.

(A.30)
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Consider now the diffusion process Yε,δ(s) defined by

(A.31) dYε,δ(s) = bε,δ(Yε,δ(s), s) ds+
√
ε dW (s).

From Lemma 3.4 we see that the drift bε,δ(y, s) is uniformly Lipschitz in y in
any region y ≥ y0, 0 ≤ t ≤ T − η, where y0 ∈ R and η > 0 can be arbitrary.
Let τy,t be the first hitting time at y0 for Yε,δ(·) with Yε,δ(t) = y > y0. Then we
have the representation

vε,δ(y, t) = E
[
vε,δ(Yε,δ(T − η), T − η) ; τy,t > T − η

]
(A.32)

+ E
[
vε,δ(Yε,δ(τy,t), τy,t) ; τy,t < T − η

]
.

Observe that from (A.29) we have that bε,δ(y, s) ≥ b(y, s) for t ≤ s < T . Hence
using (A.27) we may take the limit y0 → −∞ in (A.32) to conclude that

(A.33) vε,δ(y, t) = E
[
vε,δ(Yε,δ(T − η), T − η)

∣∣ Yε,δ(t) = y
]
.

If vε,δ(z, T−η) were known to be a decreasing function of z then it would follow
from (A.33) that vε,δ(y, t) is a decreasing function of y. Since uε,δ(x, y, T − η)
converges uniformly on any finite interval a ≤ y ≤ b as η → 0 to the function
exp[−g(y − x)/δ], we see that vε,δ(z, T − η) converges uniformly on any finite
interval as η → 0 to the decreasing function (A.30). Thus we can still conclude
from (A.33) that vε,δ(y, t) is a decreasing function of y. The result follows. �

It appears that one cannot prove the convexity of qε(x, y, t) as a function of x
for fixed y directly, in analogy to Theorem A.2, so we shall proceed to showing
that qε(x, y, t) is convex jointly in (x, y). To do this we consider solutions v(x, y, t)
to the semi-linear equation

(A.34)
∂v

∂t
+ b(y, t)

∣∣∣ ∂v
∂y

∣∣∣+ ε

2

∂2v

∂y2
+
ε′

2

∂2v

∂x2
= 0, t < T,

in the disk DR = {(x, y) : x2 + y2 < R2}, with Dirichlet boundary condition and
given terminal data. Thus we wish to solve (A.34) subject to the conditions

(A.35) v(x, y, T ) = v0(x, y), (x, y) ∈ DR ; v(x, y, t) = 0, (x, y) ∈ ∂DR, t < T.

Using classical techniques [7], [15] for proving regularity of solutions to semi-
linear parabolic equations, we can establish the following result:

Proposition A.4. Assume b(·, ·) satisfies (1.1) and the terminal function v0(x, y)
is C2 for (x, y) in the closure D̄R of DR, with v0(x, y) = 0 for (x, y) ∈ ∂DR. Then
there is a unique solution v(x, y, t) for (x, y) ∈ DR and t < T , to the terminal
value problem (A.34) and (A.35), which has the property that v(x, y, t) is C2 in
(x, y), C1 in t, and satisfies the inequality

(A.36) sup
T0<t<T

{|v(x, y, t)| + |Dv(x, y, t)|+ |D2v(x, y, t)| : (x, y) ∈ DR

}
<∞
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for any T0 < T . In (A.36) Dv(x, y, t) denotes the gradient of v(x, y, t) with respect
to (x, y), and D2v(x, y, t) the Hessian with respect to (x, y). Additionally, the
functions v(x, y, t) and Dv(x, y, t) are continuous for (x, y) ∈ D̄R and t ≤ T . The
tangential second derivative

(
y ∂/∂x− x ∂/∂y

)
Dv(x, y, t) is also continuous.

Next we need to establish a Hopf maximum principle (A.19) for solutions
to (A.34) and (A.35).

Lemma A.5. Suppose v0(x, y), defined for (x, y) ∈ D̄R, satisfies the conditions
of Proposition A.4, and in addition 0 ≤ v0(x, y) ≤ 1 and (x, y) ∈ D̄R. Then if
v0 	≡ 0, the solution v(x, y, t) of (A.34) and (A.35) satisfies the inequalities

0 < v(x, y, t) < 1, (x, y) ∈ DR, t < T,(A.37)

x
∂v

∂x
(x, y, t) + y

∂v

∂y
(x, y, t) < 0, (x, y) ∈ ∂DR, t < T.(A.38)

Proof. The fact that 0 ≤ v(x, y, t) ≤ 1 for (x, y) ∈ DR and t < T , follows by
applying the argument for the weak maximum principle, Theorem 1 of Chapter 3
of [19], to the quasilinear equation (A.34). Similarly one sees that the argument for
the strong maximum principle, Theorem 2 of Chapter 3 in [19], applies to (A.34).
We conclude that (A.37) holds. Finally (A.38) follows by applying the argument
of Theorem 3 of Chapter 3 in [19] to (A.34). �

The final result we need in order to apply the method of Korevaar [14] to prove
convexity in (x, y) of qε(x, y, t) is in effect a comparison principle for solutions of
the quasilinear equation (A.34) to solutions of the linear equation

(A.39)
∂v

∂t
+ b(y, t)

∂v

∂y
+
ε

2

∂2v

∂y2
+
ε′

2

∂2v

∂x2
= 0.

Lemma A.6. Assume b(·, ·) satisfies (1.1) and let v(x, y, t) for (x, y) ∈ DR and
t < T, be a solution of (A.34) which is C2 in (x, y) and C1 in t. Assume further
that v(x, y, t) extends to a continuous function on D̄R × {t ≤ T }. Let w(x, y, t) be
a second solution to (A.34) with similar properties to those of v(x, y, t). Then if
for some constant M the inequality

(A.40)

∫ T

t

|b(0, s)| ds+A(T − t) +
√
ε(T − t) ≤M

holds, there is a constant C depending only on M such that

(A.41) |v(0, 0, t)− w(0, 0, t)|

≤ exp
[
− R2

Cε(T − t)

]
sup

{|v(x, y, s)− w(x, y, s)| : t ≤ s < T, (x, y) ∈ ∂DR

}

+
∑
k≥0

exp
[
− k2

Cε(T − t)

]
sup

{|v(x, y, T )− w(x, y, T )| : (x, y) ∈ Dk+M ∩DR

}
,

provided 0 < ε′ ≤ ε.
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Proof. We set u(x, y, t) = v(x, y, t) − w(x, y, t), and observe from (A.34) that
u(x, y, t) satisfies the differential inequality

(A.42)
∂u

∂t
− |b(y, t)|

∣∣∣∂u
∂y

∣∣∣ + ε

2

∂2u

∂y2
+
ε′

2

∂2u

∂x2
≤ 0 .

Suppose now that C(x, y, t) satisfies

(A.43)
∂C

∂t
− |b(y, t)|

∣∣∣∂C
∂y

∣∣∣+ ε

2

∂2C

∂y2
+
ε′

2

∂2C

∂x2
= 0, (x, y) ∈ DR, t < T,

with boundary and terminal data given by

C(x, y, T ) = u(x, y, T ), (x, y) ∈ DR;

C(x, y, t) = u(x, y, t), (x, y) ∈ ∂DR, t < T.
(A.44)

Then by the maximum principle we have that u(x, y, t) ≥ C(x, y, t) for (x, y) ∈
DR and t < T . Observe next that C(x, y, t) is the cost function for an optimal
control problem. Thus

C(x, y, t) = inf
λ(·,·)

{
E
[
u(X(T ), Y (T ), T ); τx,y,t > T

]
(A.45)

+ E
[
u(X(τx,y,t), Y (τx,y,t), t); τx,y,t < T

]}
,

where the stochastic process [X(s), Y (s)] satisfies the SDE

(A.46) dY (s) = λ(Y (s), s)ds+
√
ε dW (s), dX(s) =

√
ε′ dW ′(s),

andW (·), W ′(·) are independent copies of Brownian motion. The controller λ(y, s)
satisfies the constraints |λ(y, s)| ≤ |b(y, s)| for y ∈ R and s ≤ T . The stopping
time τx,y,t is the first hitting time on ∂DR for the process (A.46) with X(t) = x
and Y (t) = y.

If we argue now as we did in Lemma 3.1 we can see that C(0, 0, t) is bounded be-
low by the negative of the right-hand side of (A.41). Thus we obtain a lower bound
on v(0, 0, t)− w(0, 0, t). Since we can repeat the previous argument with v and w
interchanged, we also get an upper bound on v(0, 0, t)− w(0, 0, t), whence (A.41)
follows. �

Proposition A.7. Assume b(·, ·) satisfies (1.1), and the terminal function v0(x, y)
in Proposition A.4 is logarithmically concave and satisfies the boundary condition
|Dv0(x, y)| 	= 0 for (x, y) ∈ ∂DR. If in addition the function b(y, t) is concave
in y for y ∈ R, t ≤ T , then the solution v(x, y, t) of (A.34) and (A.35) is also
logarithmically concave.

Proof. We again follow the method of Korevaar [14] as given in [9] (see also [10]).
Thus on setting w(x, y, t) = − log v(x, y, t) we see from (A.34) that w(x, y, t) sat-
isfies the PDE

(A.47)
∂w

∂t
+
ε

2

∂2w

∂y2
+
ε′

2

∂2w

∂x2
−B(y, t,Dw) = 0,
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where the function B(y, t, p) is given by the formula

(A.48) B(y, t, p) = b(y, t) |py|+ ε p2y/2 + ε′p2x/2.

Since B(y, t, p) satisfies the conditions of Theorem 4.1 of [9], the result follows
provided we can show that w(x, y, t) is convex for (x, y, t) close to the boundary
of DR × {t < T }. To see this we argue as in Lemma 2.4 of [14]. Observe that
it is sufficient to assume D2v(x, y, t) is bounded as in (A.36), and not necessar-
ily continuous as (x, y, t) approaches a boundary point, provided the tangential
derivative of Dv(x, y, t) remains continuous. To see why this is the case consider a
nonnegative C2 function f on the half plane H = {(x, z) ∈ R

2 : z > 0}. We assume
that f extends to a C1 function on the closure H̄ of H and that f ≡ 0 on ∂H . In
addition we assume the boundary behavior at (0,0) of the second derivatives of f
is given by
(A.49)

lim sup
(x,z)→(0,0)

∣∣∣ ∂2f
∂x∂z

(x, z)
∣∣∣ <∞, lim

(x,z)→(0,0)

∂2f

∂x2
(x, z) = 0, lim sup

(x,z)→(0,0)

∣∣∣∂2f
∂z2

(x, z)
∣∣∣ <∞.

Now define a function w(x, y) on the domain U = {(x, y) ∈ R
2 : y > x2/2} by

exp[−w(x, y)] = f(x, y − x2/2). Then we can see that if ∂f(0, 0)/∂z > 0, there
exists δ > 0 such that the Hessian of w is strictly positive definite for (x, y) ∈
U ∩ Dδ. The convexity of w(x, y, t) close to the boundary of DR × {t < T }
follows from the regularity result Proposition A.4 and Lemma A.5 by an analogous
argument. �

Theorem A.8. Assume b(·, ·) satisfies (1.1) and in addition the function b(y, t)
is concave in y for y ∈ R and t ≤ T . Then for t < T the function qε(x, y, t) is
convex in (x, y) for (x, y) ∈ R

2.

Proof. Similarly to the proof of Theorem A.2, we approximate qε(x, y, t) by func-
tions defined on finite domains DR which are convex by virtue of Proposition A.7.
To specify the terminal function v0(x, y), we define a function f(z) for z < 1 by

f(z) = 0 for z < 1/2, f(1/2) = f ′(1/2) = 0,

f ′′(z) =
exp

[− (1− z)2/(2z − 1)
]

(1 − z)2
, for 1/2 < z < 1.

(A.50)

Evidently f(·) is a nonnegative increasing C∞ convex function which has the
property that f(z) + log(1− z) has a Taylor expansion about z = 1 with positive
radius of convergence. Next let g : R → R be defined by

(A.51) g(z) = z4, z < 0 ; g(z) = 0, z ≥ 0,

whence g is a nonnegative decreasing C3 convex function. It follows from (A.50)
and (A.51) that the function v0 with domain DR defined by

(A.52) v0(x, y) = exp
[− f

(√
x2 + y2/R

)− g([y − x]/δ)
]
,
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is C2 for (x, y) ∈ D̄R with v0(x, y) = 0 if (x, y) ∈ ∂DR. In addition v0(x, y)
is logarithmically concave for (x, y) ∈ DR and satisfies the nondegenerate bound-
ary condition |Dv0(x, y)| 	= 0 if (x, y) ∈ ∂DR. Hence by Proposition A.7 the
corresponding solution vδ,R(x, y, t) of (A.34) and (A.35) is logarithmically concave
in (x, y).

Next we compare the function vδ,R(x, y, t) to a solution of the linear equa-
tion (A.39). Thus let vδ(x, y, t) be the unique bounded solution to (A.39) in the
domain {(x, y, t) : (x, y) ∈ R

2, t < T } with terminal condition

(A.53) vδ(x, y, t) = exp
[− g([y − x]/δ)

]
, (x, y) ∈ R

2.

From (A.51) one sees that vδ(x, y, T ) is an increasing function of y for every
x ∈ R. The maximum principle implies then that vδ(x, y, t) is also an increasing
function of y for every x ∈ R and t < T . Thus vδ(x, y, t) is also a solution to (A.34).
We may therefore use Lemma A.6 to compare the functions vδ and vδ,R. In view
of the fact that 0 ≤ vδ ≤ 1 and the properties of the function f of (A.50), we
conclude from (A.52) and (A.53) that

(A.54) lim sup
R→∞

{|vδ(x, y, t)− vδ,R(x, y, t)| : (x, y) ∈ DR0 , T0 ≤ t < T
}
= 0,

for any R0 > 0 and T0 < T .
We conclude from (A.54) and the logarithmic concavity of vδ,R that the function

vδ(x, y, t) is also logarithmically concave in (x, y) for (x, y) ∈ R
2 and t < T .

Observe here that we are using the strong maximum principle to conclude that
vδ(x, y, t) > 0 for (x, y) ∈ R

2 and t < T . Next we see that the function v(x, y, t) =
limδ→0 vδ(x, y, t) is the unique bounded solution of (A.39) which has terminal
data v(x, y, T ) = 0 if y < x, v(x, y, T ) = 1 if y > x. Thus v(x, y, t) = vε,ε′(x, y, t)
is logarithmically concave for (x, y) ∈ R

2 and t < T . Finally we conclude the
convexity of qε(x, y, t) in (x, y) by noting that the function uε(x, y, t) of (1.2)
and (1.3) satisfies uε(x, y, t) = limε′→0 vε,ε′ (x, y, t). �
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