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Geometry and quasisymmetric

parametrization of Semmes spaces

Pekka Pankka and Jang-Mei Wu

Abstract. We consider decomposition spaces R
3/G that are manifold

factors and admit defining sequences consisting of cubes-with-handles of
finite type. Metrics on R

3/G constructed via modular embeddings of R3/G
into a Euclidean space promote the controlled topology to a controlled
geometry.

The quasisymmetric parametrizability of the metric space R
3/G×R

m

by R
3+m for any m ≥ 0 imposes quantitative topological constraints, in

terms of the circulation and the growth of the cubes-with-handles, on the
defining sequences for R3/G. We give a necessary condition and a sufficient
condition for the existence of such a parametrization.

The necessary condition answers negatively a question of Heinonen and
Semmes on quasisymmetric parametrizability of spaces associated to the
Bing double. The sufficient condition gives new examples of quasispheres
in S

4.

1. Introduction

1.1. A homeomorphism f : X → Y between metric spaces (X, dX) and (Y, dY ) is
called quasisymmetric if there exists a homeomorphism η : [0,∞) → [0,∞) so that

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(dX(x, y)

dX(x, z)

)

for all triples {x, y, z} in X . Quasisymmetry generalizes quasiconformality from
Euclidean spaces to general metric spaces. A metric space (X, d) is called a metric
n-sphere if it is homeomorphic to S

n.
When is a metric n-sphere (X, d) quasisymmetrically equivalent to the stan-

dard S
n? The goal is to find intrinsic qualitative metric properties of the space

(X, d) that recognize such geometric equivalence. A complete characterization of
quasispheres is known only for dimensions 1 and 2.
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In dimension 1, a result of Tukia and Väisälä [21] states a metric 1-sphere (X, d)
is quasisymmetrically equivalent to S

1 if and only if X is doubling and is of bounded
turning. Bonk and Kleiner (Theorem 1.1 in [5]) give a characterization in dimen-
sion 2. A consequence of their theorems states that a metric 2-sphere (X, d) is
quasisymmetrically equivalent to S

2 if X is linearly locally contractible and Ahlfors
2-regular. Semmes proved this result earlier for metric spaces with some added
smoothness properties (Section 5 in [17]). Wildrick proved recently an analogue of
Bonk and Kleiner’s result for R2 [23].

A metric space (X, d) is said to be linearly locally contractible if for a fixed C > 1
every ball of radius r < 1/C is contractible in a concentric ball of radius Cr; and X
is said to be Ahlfors 2-regular if there exists a measure μ on the space so that the
μ-measure of every ball of radius r is uniformly comparable to r2.

Could a metric space which is homeomorphic to S
n or R

n, and resembles S
n

or Rn, geometrically (linearly locally contractible), measure-theoretically (Ahlfors
n-regular), and analytically (supports Poincaré and Sobolev inequalities) in dimen-
sions n ≥ 3, fail to be quasisymmetrically equivalent to S

n or Rn?
Semmes’s counterexample [19] to this natural question in dimension 3 is a geo-

metrically self-similar space modeled on the decomposition space R3/Bd associated
to the Bing double Bd. The classical construction of R.H. Bing in geometric topol-
ogy gives an example of a wild involution in R

3. As a topological space R
3/Bd is

homeomorphic to R
3.

Semmes shows that this space admits a metric that is smooth Riemannian
outside a totally disconnected closed set and, in many ways, indistinguishable from
the standard metric on R

3, and yet the space is not quasisymmetrically equivalent
to R

3. In Semmes’s metric the 2k tori at kth stage of the construction of R3/Bd are
uniformly round and thick, whereas under any homeomorphism from R

3/Bd to R
3,

there exists a sequence of tori that are distorted into a shape longer and thinner
than allowed by any fixed quasisymmetry. Semmes’s construction is robust and
essentially available in all decomposition spaces of R3 arising from topologically
self-similar constructions.

The natural conditions for metric n-spheres listed earlier are also insufficient in
higher dimensions. The decomposition space R3/Wh associated to the Whitehead
continuum Wh is not homeomorphic to R

3, but R
3/Wh × R is homeomorphic

to R
4. In [12], Heinonen and the second author showed that the decomposition

space R
3/Wh associated to the Whitehead continuum Wh admits a linearly locally

contractible and Ahlfors 3-regular metric, but (R3/Wh) × R
m is not quasisym-

metrically equivalent to R
3+m for any m ≥ 1. The metric on R

3/Wh is due to
Semmes; as in the case of R3/Bd this metric makes the tori in the construction of
the Whitehead continuum uniformly round and thick.

The Whitehead link, formed by a meridian of the first torus and the core of
the second torus, however prevents the conformal modulus of a sequence of surface
families over longitudes of the nested tori from being quasi-preserved under any
homeomorphism R

3/Wh× R
m → R

3+m.

1.2. The decomposition space R
3/Wh is only one example of an exotic manifold

factor of R4. By a theorem of Edwards and Miller [7], decomposition spaces that
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Figure 1. Two generations of Whitehead links.

are exotic factors of R4 exist in abundance. In fact, cell-like closed 0-dimensional
upper semicontinuous decomposition spaces R3/G are manifold factors of R4, that
is, R3/G × R is homeomorphic to R

4. Furthermore, under mild assumptions on
the decomposition, these spaces are definable by nested sequences X = (Xk)k≥0

of unions of cubes-with-handles, i.e., the degenerate part of the decomposition G
is
⋂
k≥0Xk; see Lambert and Sher [14] and Sher and Alford [20]. This class of de-

composition spaces provides a natural environment for testing the quasisymmetric
parametrization.

In this article, we consider a subclass of decomposition spaces R
3/G that are

manifold factors and admit defining sequences of finite type. The corresponding
defining sequences X = (Xk)k≥0 satisfy the a priori condition

#{[H \ intXk+1]PL : k ≥ 0 and H is a component of Xk} <∞;

here [E]PL is the PL-homeomorphism equivalence class of a PL-manifold E ⊂ R
3.

The definition of finite type is based on the notion of welding. A welding
structure (C,A,W) consists of condensers C, an atlas A composed of charts, and
weldings W determined by the atlas A. The condensers can be seen as fixed
geometric realizations of PL-homeomorphism equivalence classes of components of
differences Xk \ intXk+1 in the defining sequence X , and the charts in the atlas A
determine the parametrization of these components. The weldings, in turn, are
transition maps between the charts; see Section 4.

Definition 1.1. A defining sequence X = (Xk)k≥0 has finite type if there exists
a welding structure (C,A,W) with finitely many condensers C and finitely many
weldings W. A decomposition space (R3/G,X ) is of finite type if the defining
sequence X has finite type.

We take up a systematic study of the geometric realizations which promote the
controlled topology to a controlled geometry. Using results from classical geometric
topology, we construct for every defining sequence of finite type a geometrically
simple welding structure, called a rigid welding structure, having translations as
weldings; see Theorem 5.2.

A rigid welding structure allows the natural geometrization of the decomposi-
tion space R

3/G. Given a rigid welding structure (C,A,W) and a scaling factor
λ ∈ (0, 1), we show that there exists a modular embedding of R3/G into a Euclidean
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Figure 2. These condensers generate an infinite number of defining sequences of finite
type.

space that respects the atlas A and the chosen scaling factor λ; see Theorem 6.2.
The metric dλ induced on R

3/G by a modular embedding is called a Semmes met-
ric and the corresponding metric space a Semmes space; these metrics naturally
extend the class of metrics constructed by Semmes in [19].

For a fixed rigid welding structure, the Semmes spaces (R3/G, dλ) for all scal-
ings are mutually quasisymmetric. We find it appealing that, although R

3/G does
not admit a canonical metric, there exists a natural class of metrics on R

3/G
respecting the defining sequence X whose quasisymmetry equivalence classes are
parametrized by rigid welding structures on X modulo compatible atlases ; see Propo-
sition 7.10.

We summarize the essential features of this geometrization process of decompo-
sition spaces by Semmes metrics in the following theorem; see Sections 6 and 7 for
these results. Given a Semmes metric dλ on R

3/G, we equip the space R3/G×R
m

with the product metric dλ,m((x, v), (y, w)) = dλ(x, y) + |v − w|.

Theorem 1.2. Let (R3/G,X ) be a decomposition space of finite type. Then there
exists a Semmes metric dλ on R

3/G so that, for each m ≥ 0, (R3/G× R
m, dλ,m)

is a quasiconvex Ahlfors (3 +m)-regular Loewner space that admits an isometric
embedding into a Euclidean space. Moreover, the space (R3/G × R

m, dλ,m) is
linearly locally contractible if the sequence X is locally contractible.

A defining sequence X = (Xk)k≥0 is locally contractible if every component
of Xk+1 is contractible in Xk for all k ≥ 0. We emphasize that the linear lo-
cal contractibility and the Loewner property are necessary for the existence of a
quasisymmetric parametrization; see Semmes [19], Heinonen and Koskela [9], and
Tyson [22].

1.3. Having this general theory at our disposal, we now discuss the problem of
quasisymmetric parametrization.

Due to the quasi-invariance of the conformal modulus, the existence of a qua-
sisymmetric homeomorphism between R

3/G × R
m and R

3+m imposes a relation
between geometry (growth of the handlebodies and the fixed scaling factor) and
topology (circulation of the handlebodies).

The order of growth of X controls the growth of the number of components
of Xk in the sequence as k tends to infinity; see Definition 4.2. The order of
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circulation of X reflects the growth of the unsigned linking numbers of the longi-
tudes of handlebodies of Xk′ with respect to the meridians of Xk, for k

′ > k; see
Definition 9.2.

Theorem 1.3. Let R3/G be a decomposition space of finite type associated to a
locally contractible defining sequence X . Suppose that the order of growth of the
defining sequence X is at most γ, the order of circulation is at least ω, where
γ, ω ∈ [0,∞], and

(1.1) ω3 > γ2.

Then there exists a Semmes metric on R
3/G so that R3/G×R

m is a linearly locally
contractible, Ahlfors (3 + m)-regular, Loewner space but not quasisymmetrically
equivalent to R

3+m for any m ≥ 0.

For the Whitehead continuum and the Bing double we may take the pair (γ, ω)
to be (1, 2) and (2, 2), respectively. In particular, Theorem 1.3 provides a neg-
ative answer to a question of Heinonen and Semmes in [11] (Question 11). The
casem = 0 in the following theorem is Semmes’s quasisymmetric non-parametriza-
bility result of R3/Bd in [19].

Theorem 1.4. The decomposition space R
3/Bd associated to the Bing double

admits a metric that is Ahlfors 3-regular, Loewner, and linearly locally contractible
but none of the spaces R

3/Bd × R
m for m ≥ 0 is quasisymmetrically equivalent

to R
3+m.

Theorem 1.3 admits a local formulation as stated in Theorem 14.3. This local
version examines inequality (1.1) on a branch of the defining sequence at a point
in R

3/G; it is generally more applicable. Whereas inequality (1.1) gives a natural
necessary condition for a quasisymmetric parametrization of (R3/G × R

m, dλ,m)
by R

3+m, the pointwise inequality (14.1) provides a criterion for the quasisymmet-
ric equivalence of the product spaces (R3/G× R, dλ,1) for 0 < λ < 1. This yields,
for example, the following inequivalence result for the product spaces associated
to the Bing double.

Theorem 1.5. Let (R3/Bd, dλ) be a Semmes space associated to the Bing double.
For any λ′ ∈ (1/2, 1) and λ ∈ (0, λ′), the spaces (R3/Bd× R, dλ,1) and (R3/Bd×
R, dλ′,1) are quasisymmetrically inequivalent.

When applying Theorem 1.3 and Theorem 14.3, estimating the order of cir-
culation from below for a particular decomposition space can be a challenging
topological problem of its own. For decomposition spaces associated to the Bing
double [19], to the Whitehead continuum [12], or to Bing’s dogbone (Section 18),
the circulation is estimated by adapting a theorem of Freedman and Skora [8] on
counting essential intersections by relative homologies; see Section 17.

1.4. Theorem 1.3 imposes a topological condition on the parametrization. In the
opposite direction, additional Euclidean restrictions on the welding structure yield
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positive results about the quasisymmetric parametrization of R3/G by R
3. These

geometric assumptions on the defining sequence are encapsulated in the notion of
flat welding structure; see Section 8.

Theorem 1.6. Let R
3/G be a decomposition space of finite type that admits a

defining sequence with a flat welding structure in R
3. Then there exists a linearly

locally contractible, Ahlfors 3-regular metric on R
3/G so that R3/G is quasisym-

metric to R
3. Moreover, there exist an isometric embedding θ : R3/G→ R

4 and a
quasisymmetric homeomorphism f : R4 → R

4 so that f(R3) = θ(R3/G).

These decomposition spaces give new examples of quasispheres in R
4 as formu-

lated in the second part of the theorem.
In light of Theorem 1.6, we ask about the sharpness of the condition (1.1) in

Theorem 1.3, especially for a fixedm. In case of R3 (i.e., m = 0) the construction of
Antoine’s necklaces G using I linked tori yields decomposition spaces with order
of growth I and order of circulation at least 2. Semmes’s result on the Bing
double implies that the decomposition space (R3/G, d) associated with a necklace
constructed using two linked tori, when equipped with a Semmes metric d, is not
quasisymmetric to R

3.
The existence of a quasisymmetric parametrization of R3/G when I is suffi-

ciently large has been observed by Heinonen and Rickman [10] using similar round
tori. Using rectangular tori in place of round tori, we prove in Theorem 16.1 that
for every I ≥ 10, the decomposition space R

3/G associated to Antoine’s I-necklace
may be equipped with a Semmes metric so that it is quasisymmetrically equivalent
to R

3.
Having these examples at hand, the real test for the sharpness of Theorem 1.3

seems to be the quasisymmetric parametrizability of the decomposition space as-
sociated to the Antoine’s 3-necklace.
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2. Preliminaries

Unless otherwise stated, we assume that Rn, n ≥ 1, is equipped with the Euclidean
metric and the standard basis (e1, . . . , en). We denote by Bn(x, r) the closed
Euclidean ball in R

n of radius r and center x. For brevity, the closed balls centered
on the origin are denoted Bn(r) = Bn(0, r) for r > 0 and B

n = Bn(1). Similarly,
Sn−1(x, r) = ∂Bn(x, r) is the Euclidean sphere of radius r and center x in R

n, and
Sn−1(r) = Sn−1(0, r) for r > 0 and S

n−1 = Sn−1(1).
For all 1 ≤ m < n, we identify R

m with the subspace Rm×{0} in R
n where {0}

is the origin in R
n−m, and identify a setA ⊂ R

m with the set A×{0} in R
m×R

n−m.
When R

n is expressed as Rm×R
p×R

q withm, p, q > 0, n = m+p+q, a subset of Rn

in the form A×B × C is understood to have the property that A ⊂ R
m, B ⊂ R

p,
and C ⊂ R

q.
By a map, we always mean a continuous map. Given a map F : X× [0, 1] → Y ,

we denote by Ft : X → Y the map Ft(x) = F (x, t). We say that a homotopy
F : X × [0, 1] → Y is an isotopy if Ft is a homeomorphism for all t ∈ [0, 1].

We call a map α : I → X from an interval in R into a metric space X a path
and maps S

1 → X loops. If there is no confusion we do not distinguish between
a map and its image. Images of paths and loops are also called curves. A loop
S
1 → X is simple if it is an embedding.
Given a set E in a metric space (X, d) and a number a > 0, we call

Nd(E, a) = {x ∈ X : distd(x,E) < a}

the a-neighborhood of E in X . When X = R
n and d is the Euclidean metric,

we write Nn(E, a) for Nd(E, a). We denote by C(E) the set of all connected
components of E.

Given a metric space (X, d) so that points in the space can be connected by

rectifiable paths, we denote by d̂ the path metric of (X, d) defined by

d̂(x, y) = inf
γ
	d(γ)
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for x, y ∈ X , where 	d(γ) is the length of path γ in the metric d and the infimum
is taken over all paths γ connecting x and y in X . A metric space (X, d) is called

quasiconvex if id : (X, d̂) → (X, d) is bilipschitz.
A metric space (X, d) is Ahlfors Q-regular if there exist a Borel measure μ in X

and a constant C ≥ 1 so that

1

C
rQ ≤ μ(B(x, r)) ≤ C rQ

for every ball B(x, r) of radius r ≤ diamX centered on x in X . Furthermore, the
space (X, d) is locally linearly contractible if there exists C ≥ 1 so that the ball
B(x, r) in X is contractible in B(x,Cr) for all r < 1/C.

We say that a mapping f : (X, dX) → (Y, dY ) between metric spaces is a (λ, L)-
quasisimilarity if

λ

L
dX(x, y) ≤ dY (f(x), f(y)) ≤ λL dX(x, y)

for all x, y ∈ X . Clearly, quasisimilarities are a subclass of quasisymmetries.
As usual, we call (λ, 1)-quasisimilarities similarities and 1-similarities isometries.
The (1, L)-quasisimilarities are L-bilipschitz mappings. In what follows, we abuse
notation and write |x − y| = d(x, y) when there is no ambiguity as to what is the
metric in question.

In what follows, we consider only Lipschitz chains of multiplicity one, that is,
we consider only m-chains σ so that σ =

∑k
i=1 σi, where σi : [0, 1]

m → X is a
Lipschitz map for i = 1, . . . , k. In a metric measure space (X, d, μ) we define the
p-modulus of an m-chain family as follows.

Given a family Σ of m-chains in a X , the p-modulus of Σ is

(2.1) Modp(Σ) = inf
ρ

∫
X

ρp dμ,

where ρ is a nonnegative Borel function satisfying

(2.2)

k∑
i=1

∫
σi([0,1]m)

ρ dHm ≥ 1

for all σ =
∑k
i=1 σi ∈ Σ.

In what follows, handlebodies are three dimensional piecewise linear cubes-
with-handles embedded in R

n. For this we assume in what follows that R
n is

given a fixed PL-structure for every n ≥ 3.
We use the following topological facts on cubes-with-handles; see Chapter 2

of [13] for more details. We say thatH is a cube-with-handles if it is a regular neigh-
borhood of an embedded rose ι(

∨g
S
1), where ι :

∨g
S
1 → R

3 is a PL-embedding.
Here

∨g
S
1 is the wedge of g circles, that is, the identification of g circles at a

point;
∨0

S
1 is a point. The number g of circles in the rose is called the number of

handles of H or the genus of H . The image ι(
∨g

S
1) is called a core of H .
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The genus of H is also the maximal number of essentially embedded 2-disks
whose union separates H . We say that a disk D in H is essentially embedded if
there exists an embedding ϕ : (B2, ∂B2) → (H, ∂H) so that ϕ|∂B2 : ∂B2 → ∂H is
not null-homotopic in ∂H .

The genus of H is a topological invariant. Two cube-with-handles H and H ′

in R
3 are PL homeomorphic if and only if they have the same number of handles

and both are either orientable or nonorientable (Theorem 2.2 in [13]). We denote
by g(H) the genus of H .

A three-dimensional cube-with-handles in R
n need not be orientable for n > 3,

but a three-dimensional cube-with-handles in R
3 inherits an orientation from R

3

and is therefore orientable.

3. Decomposition spaces

We begin this section by reviewing some classical results on decomposition spaces
relevant to our study. We do not aim at the full generality and refer to Daverman [6]
for details.

A decomposition G of a topological space X is a partition of X . Associated
with G is the decomposition space X/G equipped with the topology induced by
the quotient map πG : X → X/G, the richest topology for which πG is continuous,
see [6], p. 8.

A decomposition G is upper semicontinuous (usc) if each g ∈ G is closed and if
for every g ∈ G and every neighborhood U of g in X there exists a neighborhood V
of g contained in U so that every g′ ∈ G intersecting V is contained in U . If G is
usc then X/G is metrizable (Definition I.2 and Proposition I.2.2 in [6]); however
there is not a canonical metric on X/G.

Suppose that G is a usc decomposition of an n-manifold M and d is a metric
on M/G. The decomposition map πG : M →M/G can be approximated by home-
omorphisms if and only if G satisfies Bing’s shrinkability criterion (Theorem II.5.2
in [6]). In particular, M/G is homeomorphic to M .

Bing’s shrinkability criterion states that for every ε > 0 there is a homeomor-
phism h : M → M such that

1. diamh(g) < ε for each g ∈ G, and

2. d(πGh(x), πG(x)) < ε for every x ∈M .

Suppose M is an n-manifold. If G is a shrinkable usc decomposition then each
g ∈ G is cellular, therefore cell-like (see Proposition II.6.1 and Corollary III.15.2B
in [6]). A subset Z ofM is cellular if for each open U ⊃ Z there is an n-cell E such
that Z ⊂ intE ⊂ E ⊂ U ; recall that an n-cell is a subset homeomorphic to B

n.
A compact set Z in a space X is cell-like in X if Z can be contracted to a point
in every neighborhood of Z.

Certain decomposition spaces can be constructed from defining sequences. A de-
fining sequence for a decomposition of an n-manifoldM is a sequence X = (Xk)k≥0

of compact sets satisfying intXk ⊃ Xk+1. The decomposition G associated to the
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defining sequence X consists of the components of X∞ =
⋂
k≥0Xk and the single-

tons from M \X∞, see [6], p. 61. The decomposition G associated to X is upper
semicontinuous and πG(X∞) is compact and 0-dimensional, see Proposition II.9.1
in [6].

In the context of defining sequences, a sufficient condition for R
3/G to be

homeomorphic with R
3 is the following shrinking criterion: For each k ≥ 1 and

each ε > 0, there exist 	 ≥ 1 and a homeomorphism h of R3 onto itself satisfying
h|(R3 \Xk) = id, and diamh(H) < ε for all components H of Xk+�.

Convention. In what follows, all decomposition spaces R
3/G are derived from

defining sequences X consisting of (unions of) cubes-with-handles. At times, we
denote the space by (R3/G,X ) to emphasize the role of the sequence X .

We fix some notation for use in later sections. Let X = (Xk)k≥0 be a defining
sequence. We denote by C(X ) =

⋃
k C(Xk) all components of the defining sequence

X = (Xk)k≥0; here C(E) denotes the set of components of the set E.

Given H ∈ C(X ) there is a unique index k ≥ 0 so that H ∈ C(Xk). We call the
index k the level of H and write level (H) = k. For every H ∈ C(X ), we write

Hdiff = H \ intXlevel (H)+1.

Then C(H \ intHdiff) consists of all components of Xlevel (H)+1 contained in H .

Given two cubes-with-handles H and H ′ in C(X ), we have

H = H ′, H ′ ⊂ intH, H ⊂ intH ′, or H ∩H ′ = ∅.

Thus ∂H ∩X∞ = ∅ for every H ∈ C(X ). Since X∞ is closed in R
3, there exists,

for every H ∈ C(X ), a neighborhood Ω∂H of ∂H in R
3 so that πG|Ω∂H is an

embedding.

At times we shall write R3/X∞ for R3/G for simplicity, in particular when X∞
is a Whitehead continuum, a necklace, a Bing double, or a Bing’s dogbone.

3.1. Decomposition spaces as manifold factors

Our main interest lies in decomposition spaces R3/G that are homeomorphic to R
3

or whose product, R3/G×R
m, with a Euclidean space is homeomorphic to R

3+m

for some m > 0. Decomposition spaces of the latter type are called manifold
factors of Euclidean spaces.

By results of Sher and Alford and Lambert and Sher (Theorem 1 in [20],
and [14]), if G is a cell-like usc decomposition of R

3 so that the closure of all
nondegenerate elements of G is 0-dimensional, then G admits a defining sequence
consisting of (unions of) cubes-with-handles. Subsequently Edwards and Miller
(see [7], p. 192) proved that if G satisfies the conditions of Lambert and Sher, then
R

3/G is a factor of R4, that is,

(3.1) R
3/G× R ≈ R

4,
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and G × R is a shrinkable decomposition of R4, see also Section V. 27 in [6]. In
particular, the quotient map π′ : R3+m → R

3+m/(G × R
m) can be approximated

by homeomorphisms. The composition

(πG × id) ◦ (π′)−1 : R3+m/(G× R
m) → R

3/G× R
m

is a homeomorphism ([6], Proposition I.2.4). Therefore

R
3/G× R

m ≈ R
3+m,

and πG × id : R3+m → R
3/G× R

m can be approximated by homeomorphisms.
Let R3/G be a decomposition space associated to a locally contractible defining

sequence X = (Xk)k≥0 consisting of unions of cubes-with-handles. That is, every
component of Xk+1 is contractible in Xk, for all k ≥ 0. Then, by Edwards–Miller,
R

3/G × R is homeomorphic to R
4. Indeed, under this assumption on X , the

components of X∞ are cell-like and πG(X∞) is compact and 0-dimensional.

3.2. Local contractibility

In this section, we establish a local contractibility property for πG(Xk) in the
decomposition space R

3/G from the local contractiblity of a defining sequence
X = (Xk)k≥0.

Lemma 3.1. Let R3/G be a decomposition space associated to a locally contractible
defining sequence X = (Xk)k≥0. Then components of πG(Xk+1) are contractible
in πG(Xk) for k ≥ 0.

Lemma 3.1 follows directly from the following cellularity property of the de-
composition G× R

m for m ≥ 1.

Lemma 3.2. Let m ≥ 1 and let R
3/G be a decomposition space associated to

a locally contractible defining sequence X = (Xk)k≥0. Then, for every k ≥ 0,
H ′ ∈ C(Xk), H ∈ C(Xk+1 ∩H ′), and r > 0, there exists a (3 +m)-cell E so that

πG(H)× [−r, r]m ⊂ E ⊂ πG(H
′)× (−2r, 2r)m.

Proof of Lemma 3.1. Let k ≥ 0, H ′ ∈ C(Xk), and H ∈ C(Xk+1 ∩ H ′). To show
that πG(H) is contractible in πG(H

′), let m = 1 and r > 0, and let E be a 4-cell
in R

3/G× R as in Lemma 3.2.
Denote by proj the projection R

3/G × R → R
3/G. We identify R

3/G with
R

3/G × {0} in R
3/G × R. Since E is an 4-cell, πG(H) is contractible in E.

Thus πG(H) is contractible in proj(E) ⊂ πG(H
′). �

The proof of Lemma 3.2 is based on an approximation of the quotient map
πG × id : R3+m → R

3/G × R
m by homeomorphisms, and the classical Penrose–

Whitehead–Zeeman lemma (Lemma 2.7 in [15]): Let M be an n-manifold and let
P ⊂ intM be an (q − 1)-dimensional polyhedron (1 ≤ q ≤ n/2) such that the
inclusion map i : P → M is homotopic in M to a constant. Then there exists
an n-cell E ⊂ intM such that P ⊂ intE.
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Proof of Lemma 3.2. Let r > 0 and k ≥ 0, and let H ′ ∈ C(Xk) and H ∈ C(Xk+1 ∩
H ′) be cubes-with-handles in X . Let δ be any metric on the decomposition space
R

3/G, and let δm be the product of δ with the Euclidean metric on R
3/G × R

m.
Let a0 = min{r, distδ(∂πG(H), ∂πG(H

′))}.
We fix cores R and R′ of H and H ′, respectively. Then H and H ′ are regular

neighborhoods of R and R′, respectively. By adding a one-sided collar of the
boundary ∂H to H , we obtain a regular neighborhood H ′′ of R containing H in
the interior. Similarly, by removing a one-sided collar of ∂H ′ in H ′, we obtain
a regular neighborhood H ′′′ of R contained in H ′; see Corollaries 2.26 and 3.17
in [16]. Moreover, we require that

H ⊂ intH ′′ ⊂ H ′′ ⊂ intH ′′′ ⊂ H ′′′ ⊂ intH ′ ⊂ H ′,

and that a0/10 < distδ(x, ∂πGH) < a0/9 for all x ∈ ∂πGH
′′ and a0/10 <

distδ(x, ∂πGH
′) < a0/9 for all x ∈ ∂πGH

′′′.
Since H is contractible in H ′, we have that H ′′ is contractible in H ′′′. By the

Penrose–Whitehead–Zeeman lemma, there exists a (3 +m)-cell E′ so that

R× {0} ⊂ H ′′ × (− 5
4 r,

5
4 r)

m ⊂ E′ ⊂ H ′′′ × (− 3
2 r,

3
2 r)

m.

Since πG×id can be approximated by homeomorphisms, by the Edwards–Miller
theorem, we may fix a homeomorphism h : R3+m → R

3/G× R
m so that

max
(x,v)∈X0×[−3r,3r]m

δm(h(x, v), (πG(x), v)) < a0/100.

Then h−1(πGH × [−r, r]m) ⊂ H ′′ × (− 5
4 r,

5
4 r)

m and h(H ′′′ × (− 3
2 r,

3
2 r)

m) ⊂
πGH

′ × (−2r, 2r)m. Thus E = h(E′) is a (3 +m)-cell satisfying

πG(H)× [−r, r]m ⊂ E ⊂ πG(H
′)× (−2r, 2r)m. �

4. Welding structures

Let n ≥ 3. By abusing the standard terminology in potential theory, we say
that a pair (A,B) is a condenser in R

n if A is a 3-dimensional cube-with-handles
in R

n and B is a disjoint union of 3-dimensional cubes-with-handles in R
n so that

B ⊂ intA; here intA is the manifold interior of A. Given a condenser c = (A,B),
we set

cdiff = A \ intB.
Given two condensers c = (A,B) and c′ = (A′, B′) in R

n, a PL-embedding
ψ : ∂A′ → ∂B is said to be a welding of c′ to c. Since ∂A′ is a closed surface
and ∂B is a disjoint union of closed surfaces in R

n, ψ(∂A′) is a component of ∂B.
Here ∂M is the two dimensional manifold boundary of a 3-manifold M .

Let X be a defining sequence and C a family of condensers in R
n. Suppose that

for each H ∈ C(X ), there exist a condenser cH = (AH , BH) ∈ C and a PL-homeo-
morphism ϕH : Hdiff → cdiffH satisfying ϕH(∂H) = ∂AH and ϕH(∂Hdiff \ ∂H)
= ∂BH . Then we call

A = {ϕH}H∈C(X )

an atlas for X , and the elements of A charts.
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Let C be a family of condensers and A={ϕH}H∈C(X ) an atlas for X . Given H∈
C(X ) andH ′∈C(H∩Xlevel (H)+1), let cH = (AH , BH) and cH′ = (AH′ , BH′) be the
corresponding condensers in C. We define the induced welding ψH,H′ : ∂A′

H → ∂BH
by the formula

ψH,H′ = ϕH ◦ ϕ−1
H′ |∂AH′ .

We denote the induced welding scheme by

W = {ψH,H′ : ∂AH′ → ∂BH}(H,H′),

where H ∈ C(X ) and H ′ ∈ C(H ∩Xlevel (H)+1);

∂H ′

ϕH′ |∂H′

����
��
��
��
�

ϕH |∂H′

���
��

��
��

��

∂AH′
ψH,H′

�� ∂BH

The triple (C,A,W) is called a welding structure on X .

Figure 3. A welding between two condensers.

4.1. Defining sequences of finite type

Recall from the introduction that a defining sequence (Xk)k≥0 is of finite type if
there exists a welding structure (C,A,W) with #C <∞ and #W <∞. A decom-
position space (R3/G,X ) is of finite type if X has finite type.

The definition of a welding structure allows condensers to lie in high dimensional
Euclidean spaces. However, a welding structure in R

3 can always be built from
the original defining sequence.

Proposition 4.1. Let X be a defining sequence of finite type. Then there exists a
welding structure (C,A,W) in R

3 so that

(i) for each c = (A,B) ∈ C, there exists H ∈ C(X ) for which (A,B) = (H,H ∩
Xlevel (H)+1); and

(ii) #C <∞ and #W <∞.
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Proof. Let (C′,A′,W′) be a welding structure for X so that #C′<∞ and #W′<∞.
We may assume that each condenser c=(A,B)∈C′ is the image of a chart, that is,
there exists H∈C(X ) for which cH=c and ϕH : (Hdiff , ∂H)→(cdiffH , ∂AH). We fix
for each c ∈ C′ such a cube-with-handles and denote it byHc. Let φc : c

diff → Hdiff
c

be the inverse of the chart ϕHc
.

Define
C = {(Hc, Hc ∩Xlevel (Hc)+1}c∈C′

and
A = {φcH ◦ ϕH}H∈C(X ),

Since W ′ is a finite collection, the charts in A induce a finite collection weldings W
between boundary components of condensers in C. Thus (C,A,W) satisfies the
conditions of the claim. �

Let X = (Xk)k≥0 be a defining sequence of finite type. Then the cubes-with-
handles in C(X ) have uniformly bounded genus; we define

ḡX = max{g(H) : H ∈ C(X )}.
Furthermore, X has a finite (upper) growth

γ̄X = max{#C(Xk+1 ∩H) : H ∈ C(Xk), k ≥ 0}.
Definition 4.2. The order of growth γX of X is defined to be

(4.1) γX = lim
r→∞max{#C(Xk+1 ∩H) : H ∈ C(Xk), k ≥ r}.

4.2. Self-similar spaces

Self-similar decomposition spaces are examples of decomposition spaces of finite
type. Semmes’s initial packages for defining self-similar decomposition spaces yield
almost directly finite welding structures on the defining sequences if the initial
packages are understood in the PL-category instead of the smooth category; see
Section 3 of [19].

An initial package (T, T1, . . . , TN , φ1, . . . , φN ) consists of cubes-with-handles
T, T1, . . . , TN in R

3 with Ti ⊂ intT and Ti ∩ Ti′ = ∅ for i 
= i′, together with
PL-embeddings φi : U → T of a neighborhood U of T into T so that φi(T ) = Ti
and the images φi(U) are mutually disjoint neighborhoods of Ti’s. The defining
sequence X = (Xk)k≥0 is given by X0 = T and

Xk =
⋃
α

φα(T )

for k ≥ 1, where α = (α1, . . . , αk) ∈ {1, . . . , N}k and φα = φα1 ◦ · · · ◦ φαk
.

Let c =
(
T,

⋃N
i=1 φi(T )

)
be a condenser. Then homeomorphisms (φα|cdiff)−1 :

φα(T )
diff → cdiff , α ∈ ⋃

k≥0{1, . . . , N}k, form an atlas A for X . Although A is an
infinite atlas, the associated collection of weldings

W = {φi|∂T : 1 ≤ i ≤ N}



Geometry and quasisymmetric parametrization of Semmes spaces 907

is finite. We call ({c},A,W) the welding structure associated to the initial package
(T, T1, . . . , TN , φ1, . . . , φN ).

Figure 4. Two welding structures associated to the Whitehead construction in Figure 1.

We refer to Section 3 of [19] for more details on initial packages for self-similar
decomposition spaces.

5. Rigid welding structures

We introduce now rigid welding structures which correspond to the excellent pack-
ages of Semmes ([19], Definition 3.2). In our terminology, Semmes’s excellent
packages translate to welding structures with one condenser in R

4, whose bound-
ary lies entirely in R

3×{0}, and with similarities as weldings. Semmes showed the
existence of excellent packages for defining sequences associated to the Whitehead
continuum, Bing’s dogbone, and the Bing double; see Sections 4-6 of [19].

Definition 5.1. Let (C,A,W) be a welding structure on a defining sequence X of
finite type. We call (C,A,W) a rigid welding structure in R

n, n ≥ 4, if C consists
of finitely many condensers and

(S1) all boundary components of differences {cdiff : c ∈ C} of the same genus are
translations of one another,

(S2) weldings in W are translations,

(S3) for every c = (A,B) ∈ C we have that ∂A ⊂ B
3 × {0} ⊂ R

4 ⊂ R
n, B ⊂

B
3 × {1} ⊂ R

4 ⊂ R
n, and int (cdiff) ⊂ B

3 × (0, 1)× R
n−4.

For self-similar defining sequences, the existence of an excellent package induces
a natural embedding of the space R

3/G into R
4 (see Lemma 3.21 in [19]). The

possibility to place B ∪ ∂A on two separate levels and to use all dimensions n ≥ 4
is less restrictive than the requirements for excellent packages. For this reason, all
defining sequence of finite type admit rigid welding structures. Whereas Semmes’s
excellent packages lie in R

4, the rigid welding structures lie in a fixed space R
16.

As the dimension of the ambient space containing condensers does not play a
significant role in the construction of metrics, we make no attempt to obtain the
optimal ambient dimension for rigid welding structures.
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Theorem 5.2 (Existence of rigid welding structures). Let (R3/G,X ) be a decom-
position space of finite type. Then X admits a rigid welding structure in R

16.

To straighten the condensers and the weldings between condensers, we apply
the Klee trick ; see Proposition II.10.4 in [6].

Lemma 5.3. Let m ≥ 1 and k ≥ 1, and let E be a PL compact set in R
k,

and let f : E → R
m be a PL-embedding. Then there exists a PL-homeomorphism

h : Rk+m → R
k+m so that h|E × {0} = f .

To obtain condensers satisfying (S3), we use the following lemma based on
general position.

Lemma 5.4. Suppose c = (A,B) is a condenser in R
n, n ≥ 8, so that ∂A ⊂

B
3 × {0} ⊂ R

4 ⊂ R
n and B ⊂ B

3 × {1} ⊂ R
4 ⊂ R

n. Then there exists a PL-
embedding F : A→ R

n so that F |∂A ∪B = id and F (cdiff) ⊂ B
3 × (0, 1)× R

n−4.

Proof. We fix t > 1 and t′ < 0 so that A ⊂ R
3 × (t′, t)× R

n−4.
Since ∂B×[1, t] is a 3-dimensional PL-manifold in R

4 ⊂ R
n and cdiff is 3-dimen-

sional, there exists, by general position (see Theorem 5.3 in [16]), a PL-homeomor-
phism h : R3×R×R

n−4 → R
3×R×R

n−4 satisfying h|R3× (R\ (1, t))×R
n−4 = id

and h(∂B × (1, t]) ∩ cdiff = ∅.
Let B′ = B + te4, A

′ = (A \ B) ∪ h(∂B × [1, t]) ∪ B′, and c′ = (A′, B′).
Since h(∂B × [1, t]) is a one-sided collar of ∂B, there exists a PL-homeomorphism
k : A→ A′ so that k|∂A = id and k|B is the translation (x, 1, y) �→ (x, t, y), where
x ∈ R

3 and y ∈ R
n−4.

Let g : R3×R×R
n−4 → R

3×R×R
n−4 be the map (x, s, y) �→ (x, s/t, y). Then

c′′ = g(c′) = (A′′, B′′) is a condenser so that (c′′)diff ⊂ R
3× (−∞, 1)×R

n−4. Note
that g ◦ k|(∂A ∪ B) = id. Since the same argument can be applied to [t′, 0], we
may assume that int (c′′)diff ⊂ R

3 × (0, 1)× R
n−4.

We fix a piecewise linear function ν : R → (0, 1) and a PL-homeomorphism
f : R3 ×R×R

n−4 → R
3 ×R×R

n−4, f(x, s, y) = (ν(s)x, s, y), so that ν(s) = 1 for
s 
∈ (0, 1) and f((c′′)diff ∩R

3×{s}) ⊂ B
3×{s} for s ∈ (0, 1). Since f |∂A∪B = id,

the composition F = f ◦ g ◦ k satisfies the requirements of the claim. �

Proof of Theorem 5.2. Let (C,A,W) be the welding structure in R
3 associated to X

as in Proposition 4.1. As a preliminary step, we fix, for every 0 ≤ g ≤ ḡX , a cube-
with-handles Tg of genus g in R

3.

Step 1: We straighten the boundary components of the condensers.
Let c = (A,B) be a condenser in C. We fix a point zD ∈ R

3 × {1} for each
componentD ∈ C(B) so that the cubes-with-handles TgD+zD are pairwise disjoint,
where gD is the genus of D. Fix also a regular neighborhood E of ∂A in R

3 so
that E ∩ B = ∅ and an embedding f : E ∪ B → R

3 × {0, 1} such that f(∂A) =
∂TgA ⊂ R

3 × {0} and f(D) = TgD + zD ⊂ R
3 × {1} for each D ∈ C(B). Then, by

Lemma 5.3, there exists a PL-homeomorphism hc : R
8 → R

8 such that hc(∂A) =
∂TgA ⊂ R

3 × {0} and hc(D) = TgD + zD for every D ∈ C(B).
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Homeomorphisms hc induce a new welding structure with the condensers C̃ =
{(hc(A), hc(B)) : c ∈ C}, the atlas Ã = {hcH ◦ ϕH : H ∈ C(X )}, and the weldings
W̃ defined by C̃ and Ã.

We denote the new structure (C̃, Ã, W̃) in R
8 again by (C,A,W), and the new

condensers, charts, and weldings again by c, ϕH , and ψH,H′ = ϕH ◦ ϕ−1
H′ respec-

tively.

Step 2: We now straighten the weldings from Step 1 to translations while
expanding the collection of condensers.

Let ψ : ∂A1 → ∂B2 be a welding in W between the condensers (A1, B1) and
(A2, B2) in C. LetD ∈ C(B2) be the component receiving ψ, that is, ψ(∂A1) = ∂D.
Since D and A1 have the same genus, we may fix a translation τψ : ∂A1 → ∂D.
Set

Ŵ = {τψ}ψ∈W.

We will add to C a new condenser for each welding in Ŵ and modify the existing
charts in A. This new atlas has Ŵ as the collection of induced weldings.

Figure 5. The construction of a new condenser, cψ.

We first define the new condensers. Let ψ : ∂A1 → ∂B2 be a welding in W

between the condensers (A1, B1) and (A2, B2) in C. Fix a one-sided collar E of
∂A1 in A1 \B1 and an open set U ⊂ R

8 satisfying A1 ∩U ⊂ E. By the Klee trick
(Lemma 5.3), there exists a homeomorphism fψ : R

16 → R
16 so that fψ|A1\U = id

and fψ|∂A1 = τ−1
ψ ◦ψ. We set cψ = (fψ(A1), B1), and note that B1 ⊂ A1 \U and

thus fψ|B1 = id. We define

Ĉ = C ∪ {cψ : ψ ∈ W}.

Since #C+#W <∞, Ĉ is a finite collection of condensers satisfying (S1).

We finish the proof by defining the atlas Â. For H ′ ∈ C(X ) with level (H ′) = 0,
we define ĉH′ =cH′ and ϕ̂H′ =ϕH′ . Suppose now that H ′∈C(X ) has level at least 1
and let H ∈ C(X ) be the cube-with-handles satisfying H ′∈C(H ∩Xlevel (H)+1).

Let ϕH : Hdiff → cH and ϕH′ : H ′diff → cH′ be the corresponding charts in A,
and ψ = ψH,H′ the welding induced by ϕH and ϕH′ . We define ĉH′ = cψ and set
ϕ̂H′ : H ′diff → cdiffψ by the formula fψ ◦ ϕH′ . Define

Â = {ϕ̂H′}H′∈C(X ).
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To check that weldings induced by charts in Â are in Ŵ, let H ∈ C(X ) and H ′ ∈
C(H ∩ Xlevel (H)+1) be as above, and define ĉH′ = (ÂH′ , B̂H′). Since ϕ̂H |∂H ′ =
ϕH |∂H ′, we have

ϕ̂H ◦ ϕ̂−1
H′ |∂ÂH′ = ϕH ◦ ϕ−1

H′ ◦ f−1
ψH,H′ |∂ÂH′ = ψH,H′ ◦ f−1

ψH,H′ |∂ÂH′ = τψH,H′ .

Thus weldings are in Ŵ and satisfy (S2).

Step 3: To obtain condensers satisfying condition (S3) we first apply a transla-

tion and a scaling in R
3 (with the same scaling constant) to all condensers in Ĉ so

that the assumptions of Lemma 5.4 are satisfied. Then we apply Lemma 5.4 and
change the atlas accordingly. �

Figure 6. A condenser in a rigid structure.

6. Modular embeddings

In this section we discuss embeddings of decomposition spaces of finite type into
Euclidean spaces. Given a welding structure, we first introduce the notion of a
modular embedding of R3/G into a Euclidean space, which respects the quasisim-
ilarity type of that structure. This embedding defines a geometrically natural
modular metric on the decomposition space R

3/G.

It has been shown in the previous section that a defining sequence of finite type
admits a rigid welding structure. Theorem 6.2 proves the existence of a modular
embedding with respect to any rigid structure.

Given a welding structure (C,A,W) on a decomposition space (R3/G,X ) of
finite type with 0 < λ < 1 and n ≥ 3, we say that an embedding θ : R3/G→ R

n is
λ-modular (with respect to (C,A,W)) if θ◦πG|(R3\X0)=id and there exists L ≥ 1
so that

(6.1) θ ◦ πG ◦ ϕ−1
H : cdiffH → R

n

is a (λk, L)-quasisimilarity for every H ∈ C(Xk) and k ≥ 0, that is, the following
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diagram commutes:

Hdiff

πG|Hdiff

��

ϕH �� cdiffH

θ◦πG◦ϕ−1
H

��
R

3/G
θ

�� Rn

Given a λ-modular embedding θ : R3/G→ R
n with respect to a welding struc-

ture (C,A,W), we define the λ-modular metric dθ on R
3/G by

(6.2) dθ(x, y) = |θ(x) − θ(y)|;
here | · | is the Euclidean norm on R

n.
We need the notion of compatible atlases to compare the modular metrics

induced by modular embeddings with respect to two different welding structures.
Welding structures (C,A,W) and (C′,A′,W′) on X are said to have compatible
atlases if there exists L ≥ 1 so that

(6.3) ϕ′
H ◦ ϕ−1

H |cdiffH : cdiffH → (c′H)
diff

is L-bilipschitz for every H ∈ C(X ), where homeomorphisms ϕH : Hdiff → cdiffH
and ϕ′

H : Hdiff → (c′H)diff are charts in A and A′, respectively.

Lemma 6.1. Let (R3/G,X ) be a decomposition space of finite type and let λ ∈
(0, 1). Suppose (Ci,Ai,Wi), i = 1, 2, are welding structures on X having com-
patible atlases, and let θi : R

3/G → R
mi be λ-modular embeddings associated to

(Ci,Ai,Wi), respectively. Then path metrics d̂θ1 and d̂θ2 on R
3/G are bilipschitz

equivalent.

Proof. Since (C1,A1,W1) and (C2,A2,W2) have compatible atlases, there exists
L ≥ 1 so that, for every H ∈ C(X ),

τH = ϕ2
H ◦ (ϕ1

H)−1 : (c1H)diff → (c2H)diff

is L-bilipschitz, where ϕiH : Hdiff → (ciH)diff is the chart for H in Ai for i = 1, 2.
Since θ1 and θ2 are λ-modular embeddings, we also have constants L1 and L2

so that θi ◦ πG ◦ (ϕiH)−1 is a (λk, Li)-quasisimilarity for each H ∈ C(Xk) and
every k ≥ 0.

Let H ∈ C(X ). We define

θH = θ2 ◦ θ−1
1 |θ1(πG(Hdiff)) : θ1(πG(H

diff)) → θ2(πG(H
diff)).

Since
θH =

(
θ2 ◦ πG ◦ (ϕ2

H)−1
) ◦ τH ◦ (θ1 ◦ πG ◦ (ϕ1

H)−1)−1,

θH is LL1L2-bilipschitz.
Let Ω=(R3/G)\πG(X∞). Since θH is uniformly bilipschitz on each θ1(πG(H

diff)),
we observe that θ2◦θ−1

1 |θ1(Ω) is a bilipschitz map in the path metric from θ1(Ω) to
θ2(Ω). Since θ1(R

3/G) is the closure of θ1(Ω), we observe that θ2◦θ−1
1 is bilipschitz

in the path metric from θ1(R
3/G) to θ2(R

3/G). The claim now follows. �
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We state the modular embedding theorem with respect to a given rigid welding
structure as follows.

Theorem 6.2 (Modular embedding theorem). Let (R3/G,X ) be a decomposition
space of finite type and let (C,A,W) be a rigid welding structure on X . Then
for every 0 < λ < 1, there exists a λ-modular embedding θ : R3/G → R

n where
n ≥ 16, whose image θ(R3/G) is quasiconvex in the Euclidean metric. Moreover,
there exists L = L(θ) ≥ 1 so that, any two distinct points x, y ∈ θ(R3/G) are
contained in an L-bilipschitz image of a closed Euclidean 3-ball of radius |x− y|.

The proof of the modular embedding theorem is divided into two parts. First
we consider a tree TreeX derived from the combinatorial structure of the defining
sequence X and a bilipschitz embedding of TreeX into some Euclidean space R

d.
In the second part, we obtain an embedding of R3/G into R16+d by gluing reshaped
and rescaled condensers in a rigid welding structure provided by Theorem 5.2. This
gluing is guided by the embedded structural tree TreeX .

6.1. Combinatorial trees

Let R3/G be a decomposition space with a defining sequence X = (Xk). We denote
by TreeX the tree with vertices C(X ) and unoriented edges 〈H,H ′〉, where H ∈
C(Xk) and H

′ ∈ C(H ∩Xk+1).
Given H,H ′ ∈ C(X ), we define

(6.4) ρX (H,H ′) = max{level (H ′′) ∈ Z : H ∪H ′ ⊂ H ′′ ∈ C(X )}.

Since TreeX is a tree there exists a unique shortest chain H = H1, . . . , H� = H ′ so
that 〈Hi, Hi+1〉 is an edge in TreeX for every i = 1, . . . , 	− 1. In particular, there
exists a unique index i0 = i0(H,H

′) so that level (Hi0) = ρX (H,H ′).
Given λ > 0 we define the metric δλ on TreeX by the formula

δλ(H,H
′) =

�−1∑
i=1

λmin{level (Hi),level (Hi+1)},

where H,H ′ ∈ C(X ) and the sum is taken over the shortest chain H = H1, . . .,
H� = H ′. The metric δ1 is the standard graph distance on TreeX . The definition
of the metric δλ immediately yields a distance estimate

(6.5) λρX (H,H′) ≤ δλ(H,H
′) ≤ C λρX (H,H′)

for all H,H ′ ∈ C(X ), H 
= H ′, where C = C(λ).
This distance estimate implies that the metric trees (TreeX , δλ), λ > 0, are

quasisymmetrically equivalent. We record this observation in the following lemma.

Lemma 6.3. Let λ1, λ2 > 0. The identity map (TreeX , δλ1) → (TreeX , δλ2) is
η-quasisymmetric with η(t) = Ctp, where p = logλ2/ logλ1 and C = C(λ1, λ2).
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The metric trees (TreeX , δλ) embed bilipschitzly into Euclidean spaces. Recall
that (e1, . . . , en) is the standard basis of Rn for n ≥ 1.

Lemma 6.4. Let (R3/G,X , (C,A,W)) be a decomposition space of finite type and
let 0 < λ < 1. Then there exist n = n(X , λ) and a map eX : C(X ) → {e1, . . . , en} so
that the map ϑ : (TreeX , δλ) → R

n defined inductively by ϑ(X0) = 0 and ϑ(H ′) =
ϑ(H)+λkeX (H ′) for H ∈ C(Xk) and H

′ ∈ C(H∩Xk+1), is a bilipschitz embedding.

Proof. Let m0 > 0 be the smallest integer satisfying

(6.6)
∞∑
j=1

λjm0 < 1/4.

Since X has finite type, there exists n depending on C and m0, thus depending
on X and λ, so that

#
( k+2m0⋃

i=k

C(Xi ∩H)
)
≤ n

for all k ≥ 0 and H ∈ C(Xk). We fix a map eX : C(X ) → {e1, . . . , en} so that if
eX (H) = eX (H ′) then the graph distance δ1(H,H

′) satisfies δ1(H,H ′) ≥ m0

We show now that the mapping ϑ : TreeX → R
n, defined in the statement, is a

bilipschitz embedding.
Let H,H ′ ∈ C(X ) and let H = H1, . . . , H� = H ′ be the unique shortest chain.

Let Ij = {i : 1 ≤ i ≤ 	, i 
= i0(H,H
′) and eX (Hi) = ej} for j = 1, . . . , n. Then

ϑ(H)− ϑ(H ′) =
�−1∑
i=1

ϑ(Hi)− ϑ(Hi+1) =
n∑
j=1

(∑
i∈Ij

± (ϑ(Hi)− ϑ(Hĩ))
)
,

where ĩ is either i + 1 or i − 1 such that level (Hi) = level (Hĩ) + 1. The positive
sign is chosen when ĩ = i+ 1, and the negative sign is chosen when ĩ = i− 1.

By orthogonality,

|ϑ(H)− ϑ(H ′)| =
( n∑
j=1

∣∣∣∑
i∈Ij

± (ϑ(Hi)− ϑ(Hĩ))
∣∣∣2)1/2

.

Since ϑ(Hi)− ϑ(Hĩ) = λlevel (Hi)ej for i ∈ Ij , we have

3

4
λkj ≤

∣∣∣∑
i∈Ij

± (ϑ(Hi)− ϑ(Hĩ))
∣∣∣ ≤ 5

2
λkj ,

where kj = min{level (Hi) : i ∈ Ij}. Since
ρX (H,H ′) = min{kj : 1 ≤ j ≤ n} − 1,

we have
3

4
λρX (H,H′)+1 ≤ |ϑ(H)− ϑ(H ′)| ≤ 5

√
n

2
λρX (H,H′)+1.

Thus, by (6.5), ϑ is bilipschitz. �
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6.2. Bending and reshaping of condensers

Suppose that c = (A,B) is a condenser in a rigid welding structure in R
m for some

m ≥ 4 and that e : C(B) → {em+1, . . . , em+n} is an injection, where (e1, . . . , em+n)
is an orthonormal basis of Rm+n. We say that a bilipschitz PL-homeomorphism
bc,e : R

m+n → R
m+n is a bending of c by e if

1. bc,e|∂A = id,

2. bc,e|D : x �→ x+ e(D) for every D ∈ C(B), and

3. bc,e(int c
diff) ⊂ B

3 × (0, 1)× R
m+n−4.

Bendings of c by e can be found easily.

Let k ≥ 4 and λ ∈ (0, 1). We define the λ-reshaping sλ : R
k → R

k to be

sλ(x, t, y) = (c(t)x, t, y)

for (x, t, y) ∈ R
3 × R× R

k−4, where

c(t) =

⎧⎨
⎩

λ, t ≥ 1,
1− (1 − λ)t, 0 ≤ t ≤ 1,
1, t ≤ 0.

6.3. Proof of the modular embedding theorem

To prove Theorem 6.2, we construct first an auxiliary sequence of PL submani-
folds (Mj) of a fixed Euclidean space which tends to a PL submanifold M∞. The
image of the embedding θ|πG(R3 \X∞) will be the manifoldM∞. This embedding
is then extended to R

3/G by continuity.

Assume, as we may by Theorem 5.2, that (C,A,W) is a rigid welding structure
for X in R

16.

Auxiliary sequence (Mj). Let eX : C(X ) → {e16+1, . . . , e16+n} be the map and
let ϑ : TreeX → {0} ×R

n be the embedding defined in Lemma 6.4, with a natural
shift of coordinates; recall that ϑ(X0) = 0.

We enumerate the cubes-with-handles in C(X ) by H0, H1, . . . so that H0 = X0

and if Hi ∈ C(Xk) then Hi+1 ∈ C(Xk) ∪ C(Xk+1). We may assume that the
condenser c0 = (A0, B0) is in C and that the charts ϕX0 : X

diff
0 → cdiff0 are chosen

so that A0 = X0 and ϕX0 |∂X0 = id. We write ci = (Ai, Bi) for the condensers
cHi ∈ C and denote by ϕi the charts ϕHi : H

diff
i → cdiffi in A for i ≥ 0.

Submanifolds (Mj) will be constructed by gluing together bended and reshaped
condensers {ci : i ≥ 0} guided by the embedded tree ϑ(TreeX ).

We start by defining the directions for bending. Given i ≥ 0, we denote by
Φi : C(Hi ∩ Xlevel (Hi)+1) → C(Bi) the bijection between components induced by
charts ϕHi so that Φi|∂H ′ = ϕHi |∂H ′ for H ′ ∈ C(Hi∩Xlevel (Hi)+1). Furthermore,
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we define ei : C(Bi) → {e16+1, . . . , e16+n} by ei = eX ◦ Φ−1
i .

C(Hi ∩Xlevel (Hi)+1)
Φi ��

incl.

��

C(Bi)
ei

��
C(X ) eX

�� {e16+1, . . . , e16+n}

We then fix a family of bendings {bi = bci,ei : R
16+m → R

16+m : i ≥ 0}. To ensure
that the collection {bi : i ≥ 0} of bendings is finite, we require bi = bj when
(ci, e

i) = (cj , e
j). Thus, the bendings in {bi, i ≥ 0} are uniformly bilipschitz.

Fix a constant C0 > 0 so that B16+n(C0) contains all the condensers in C.
LetM−1 =

(
R

3 \X0

)×{0} ⊂ R
4 ⊂ R

16 ⊂ R
16+n and let θ−1 : R

3\X0 → R
16+n

be the natural inclusion. We define M0 by

M0 =M−1 ∪ cdiff0

and an embedding θ0 : R
3 \X1 → R

16+n by θ0|R3 \X0 = θ−1 and θ0|Xdiff
0 = ϕX0 .

Suppose now that we have defined manifolds M−1, . . . ,Mj−1 and embeddings
θ−1, . . . , θj−1 so that, for i = −1, . . . , j − 1,

1. Mi =Mi−1 ∪ fi(cdiffi ) where Hi ∈ C(Xki), fi is the quasisimilarity

(6.7) x �→ λki(sλ ◦ bi)(x) + ϑ(Hi) + wi,

and wi is a point in R
16 satisfying |wi| < C0

∑
0≤r≤ki λ

r; and

2. the embedding θi : (R
3 \X0)∪ (Hdiff

0 ∪· · ·∪Hdiff
i ) →Mi is defined by θi|(R3 \

X0) ∪ (Hdiff
0 ∪ · · · ∪Hdiff

i−1) = θi−1 and θi|Hdiff
i = fi ◦ ϕi.

We construct the set Mj and the embedding θj as follows. Suppose that Hj ∈
C(Xk) and that Hi, i < j , is the unique cube-with-handles in C(Xk−1) with the
propertyHj ∈ C(Hi∩Xk), and let ψ = ϕi◦ϕ−1

j be the welding map from cj to c
diff
i .

Since (C,A,W) is a rigid structure, ψ is a translation x �→ x + vψ in R
16, where

vψ ∈ R
16, 〈vψ , e4〉 = 1, and |vψ| < C0 as in the construction. By the induction

hypothesis, fi|ϕi(∂Hj) is a similarity

x �→ λkx+ λkeX (Hj) + ϑ(Hi) + wi = λkx+ ϑ(Hj) + wi;

here we use the facts that bi|ϕi(∂Hj) = ei(Hj) = eX (Hj) and the reshaping sλ on
∂ϕi(Hj) is a scaling by λ. We set fj to be the quasisimilarity

x �→ λk(sλ ◦ bj)(x) + ϑ(Hj) + λkvψ + wi.

Set also wj = λkvψ + wi ∈ R
16, and note that by the induction hypothesis that

|wj | ≤ C0

∑
0≤r≤k λ

r.
Since cj is a condenser in a rigid structure and 〈vψ , e4〉 = 1, we have that

Mj−1 ∩ fj(cj) is a common boundary component of Mj−1 and fj(cj). Thus Mj =
Mj−1∪fj(cj) is a connected manifold with boundary satisfying (1) in the induction
hypothesis.
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Now we define the embedding θj : (R
3 \ X0) ∪ (Hdiff

0 ∪ · · · ∪ Hdiff
j ) → Mj by

formula θj |R3 ∪ (Hdiff
0 ∪ · · · ∪Hdiff

j−1) = θj−1 and θj |Hdiff
j = fj ◦ϕj . This completes

the induction step.

Construction of M∞. Define now the limit manifold M∞ by

M∞ =
⋃
j≥0

Mj

and the limiting embedding θ∞ : R3 \X∞ →M∞ by θ∞|Mj = θj .
Since there exists C > 0 so that diam θ(H) ≤ C λk for every H ∈ C(Xk), the

components of M∞ \M∞ are singletons. Thus θ∞ ◦ π−1
G extends to a homeomor-

phism θ : R3/G→M∞.
Note that θ ◦ πG ◦ ϕ−1

j : cdiffj → R
16+n is a (λlevel (Hj), L)-quasisimilarity, for a

constant L ≥ 1 depending only on the family of bendings {bi : i ≥ 0} and n. Thus
θ is a λ-modular embedding.

Metric properties of θ(R3/G). We show now the last claim in the statement:
given x, y ∈ θ(R3/G), there exists an L′-bilipschitz map h : B3(|x−y|) → θ(R3/G)
so that x, y ∈ h(B3(|x − y|)), where L′ = L′(θ) ≥ 1. In particular, θ(R3/G) is
quasiconvex.

It suffices to consider the case x, y ∈ θ(πG(R
3 \ X∞)); the other cases are

obtained by similar arguments.
We observe, by the (λlevel (H), L)-quasisimilarity of the mappings θ◦πG◦ϕ−1

j and
the finiteness of condensers in C, the following. If H and H ′ are condensers in C(X )
satisfying Hdiff ∩H ′diff 
= ∅, then any two points x and y in θ(πG(H

diff ∪H ′diff))
can be connected by a PL-curve contained in a 3-cell in θ(πG(H

diff∪H ′diff)) that is
L′-bilipschitz equivalent to a Euclidean ball of diameter |x− y|, where L′ depends
only on the data. In particular, the claim holds in this case.

We now assume x ∈ θ(πG(H
diff)), y ∈ θ(πG(H

′diff)) and Hdiff ∩H ′diff = ∅. Let
H = H0, . . . , H� = H ′ be the unique shortest chain in TreeX joining vertices H
and H ′, and ρX (H,H ′) = min{level (Ĥ) ∈ Z : H ∪H ′ ⊂ Ĥ ∈ C(X )}. Then by the
construction of the embedding θ, there exists C = C(θ) ≥ 1 so that

(6.8) C−1λρX (H,H′) ≤ |x− y| ≤ C λρX (H,H′).

There exist C′ = C′(θ) ≥ 1 and points x = x0, . . . , x� = y with xi ∈ θ(πG(H
diff
i ))

so that each xi, 1 ≤ i ≤ 	 − 1, is contained in a 3-cell Di ⊂ θ(πG(H
diff
i )) which

is L′-bilipschitz equivalent to B3(λlevel (Hi)), and so that

C′−1λlevel (Hi) ≤ |xi − xi+1| ≤ C λlevel (Hi)

for 0 ≤ i ≤ 	− 1. Consequently,

�−1∑
i=0

|xi − xi+1| ≤ C |x− y|.

By the argument for the previous case, we find PL 3-cells Ei ⊂ πG(H
diff
i ∪Hdiff

i+1)
that are L′-bilipschitz equivalent to B3(|xi − xi+1|) and contain the points xi and
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xi+1 in their interiors in πG(H
diff
i ∪ Hdiff

i+1), respectively. It is now easy to find a

PL 3-cell E ⊂ ⋃�−1
i=1 Di ∪

⋃�−1
i=0 Ei that is L′-bilipschitz equivalent to B3(|x − y|)

and contains the points x and y. This concludes the proof of Theorem 6.2.

Remark 6.5. The fact that any two points x, y in θ(R3/G) are contained in a
3-cell in θ(R3/G) that is L-bilipschitz equivalent to a Euclidean ball of diameter
|x − y|, yields that θ(R3/G) has the Loewner property. We formulate this more
precisely in Section 7.4.

7. Semmes spaces

In this section we discuss quasiconvexity, Ahlfors regularity, linearly locally con-
tractibility, and the Loewner property of the modular metrics provided by the
modular embedding theorem as listed in Theorem 1.2.

Definition 7.1. Let (R3/G,X ) be a decomposition space of finite type, let (C,A,W)
be a rigid welding structure for X , let θ : R3/G → R

n be a modular embedding
associated to (C,A,W) as in Theorem 6.2, and let dθ be a λ-modular metric asso-
ciated to θ. A metric space (R3/G, dλ) is called a Semmes space if dλ is bilipschitz
equivalent to dθ. In this case we say dλ is a Semmes metric with a scaling factor λ.

At times we say that (R3/G,X , (C,A,W), θ, dλ) is a Semmes space in order to
emphasize the relation to between the structure, the embedding, and the metric.

Product spaces R3/G× R
m carry the natural product metric dλ,m defined by

(7.1) dλ,m((x, u), (y, v)) = dλ(x, y) + |u− v|
for (x, u) and (y, v) in R

3/G× R
m.

We observe that the metric space (R3/G, dλ) is quasiconvex ; indeed, θ(R3/G)
is a quasiconvex set in R

n by Theorem 6.2. By quasiconvexity and Lemma 6.1 we
have the bilipschitz equivalence of the modular metric spaces associated to rigid
welding structures with compatible atlases. We record this observation as a lemma.

Lemma 7.2. Let λ ∈ (0, 1) and suppose that (R3/G,X , (Ci,Ai,Wi), θi, dθi) are
λ-modular metric spaces, i = 1, 2. The metrics dθ1 and dθ2 are bilipschitz equiva-
lent if the rigid welding structures (C1,A1,W1) and (C2,A2,W2) have compatible
atlases.

7.1. Metric properties

We list some elementary metric and measure theoretic properties of Semmes spaces
in the following remarks and the subsequent lemma. Let (R3/G,X , (C,A,W), θ, dλ)
be a Semmes space.

Remark 7.3. By quasiconvexity of dθ, the path metric space (R3/G, d̂θ) is a

Semmes space. Similarly, the path metric space (R3/G, d̂λ) of (R3/G, dλ) is a
Semmes space.
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Remark 7.4. By modularity of the embedding θ and quasiconvexity of the metric
dθ there exists a constant C = C(dλ) so that

C−1λρX (H,H′) ≤ dλ(x, y) ≤ C λρX (H,H′)

for x ∈ πG(H
diff) and y ∈ πG(H

′diff) wheneverH,H ′ ∈ C(X ) and Hdiff∩H ′diff = ∅.
Remark 7.5. By the finiteness of the welding structure (C,A,W) and the qua-
sisimilarity property (6.1) of modular embeddings, there exists C > 1 so that for
every k ≥ 0 and H ∈ C(Xk),

1. C−1λk ≤ distdλ(∂πG(H), ∂πG(H
′)) ≤ C λk, if H ′ ∈ C(X ), H ′ ⊂ H and

H ′ 
= H ;

2. C−1λk ≤ diamdλ πGH
diff ≤ C λk;

3. C−1λ3k ≤ H3
dλ
(πG(H

diff)) ≤ C λ3k; and

4. C−1r3 ≤ H3
dλ
(Bdλ(x, r)) ≤ C r3, if Bdλ(x, r) ⊂ πG(Xk−1 \Xk+2)

Observe also that components of πG(X∞) are singletons in (R3/G, dλ). Thus
πG(X∞) is 0-dimensional.

Lemma 7.6. Let (R3/G,X , (C,A,W), θ, dλ) be a Semmes space. Then there exists
C > 1 so that

(7.2) C−1λk ≤ diamdλ πGH ≤ C λk,

for every k ≥ 0 and H ∈ C(Xk).
If, in addition, λ3γX < 1, then H3

dλ
(πG(X∞)) = 0 and there exists C > 1 so

that

(7.3) C−1λ3k ≤ H3
dλ
(πGH) ≤ C λ3k

for every k ≥ 0 and H ∈ C(Xk).

Proof. Since

πGH =
⋃
i≥k

⋃
H′∈C(Xi∩H)

πG(H ′diff).

we have, by connectedness and Remark 7.5 (2),

C−1λk ≤ diamdλ H
diff ≤ diamdλ H ≤

∑
i≥k

C λi ≤ C′λk.

Similarly, we have that

H3
dλ
(πG(H)) = H3

dλ
(πG(X∞ ∩H)) +

∑
i≥k

∑
H′∈C(Xi∩H)

H3
dλ
(πG(H

′diff)).

Suppose now that λ3γX < 1. Then, by (7.2),

H3
dλ(πG(X∞)) ≤ lim sup

i→0

∑
H′∈C(Xi)

(C λi)3 ≤ C3 lim sup
i→0

λ3iγiX = 0.
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By Definition 4.2 and Remark 7.5 (3), there exist k0 ≥ 1 and C > 1 so that

C−1λ3k ≤
∑
i≥k

∑
H′∈C(Xi∩H)

H3
dλ
(πG(H

′diff)) ≤
∑
i≥k

C λ3iγi−kX ≤ C λ3k

for k ≥ k0. After replacing C by another constant that depends only on C, λ, k0,
and the upper growth γX , we may obtain (7.3) for all k ≥ 0. This concludes the
proof. �

Remark 7.7. We observe that, by Remark 7.5 and Lemma 7.6, the number

ε̂λ = min
k≥0

min
H∈C(Xk)

{
distdλ(πG(∂H), πG(H \Hdiff))

λk

}
.

is strictly positive. Furthermore, we may fix ελ = ελ(dλ) < ε̂/10 so that the
neighborhood Ndλ(πG(∂H), ελλ

level (H)) is contained in a regular neighborhood of
πG(∂H) in πG(Xlevel (H)−1) \ πG(Hlevel (H)+1).

7.2. Ahlfors regularity

The Ahlfors regularity of Semmes spaces follows as in [19], Lemma 3.45. We discuss
the details for completeness of the exposition.

Proposition 7.8. Let (R3/G,X , (C,A,W), θ, dλ) be a Semmes space, and suppose
that 0 < λ3γX < 1. Then the space (R3/G, dλ) is Ahlfors 3-regular, and the spaces
(R3/G× R

m, dλ,m) are Ahlfors (3 +m)-regular for m ≥ 1.

Proof. It suffices to show that (R3/G, dλ) is Ahlfors 3-regular. Then the Ahlfors
(3+m)-regularity of spaces (R3/G×R

m, dλ,m), m ≥ 1, follows by taking products.
By the bilipschitz invariance of Ahlfors regularity, we may assume that dλ is

the metric dθ defined by a λ-modular embedding θ : R3/G → R
16+n. To simplify

the exposition, we assume that X0 = B
3, and set X−j = B3(0, λ−j) for j > 0.

To show that

(7.4) C−1 r3 ≤ H3
dλ
(Bdλ(x, r)) ≤ C r3

for all balls Bdλ(x, r) in (R3/G, dλ), we consider two cases: (a) x ∈ πG(R
3 \X∞),

and (b) x ∈ πG(X∞).
We first consider case (a). Assume that x ∈ πG(X0 \ X∞), and suppose x ∈

πG(H
diff) and H ∈ C(Xk). By Remark 7.5(1), there exists a constant C1 =

C1(dλ) ∈ (0, 1) so that if r ≤ C1λ
k then Bdλ(x, r) ⊂ πG(Xk−1 \Xk+2). By (7.2) of

Lemma 7.6, there exists a constant C2 = C2(dλ) > 1 so that if r ≥ C2λ
k then

πG(H) ⊂ Bdλ(x, r).
Case (b) follows from (a). Indeed, since πG(R

3 \X∞) is dense in R
3/G, given

x ∈ πG(X∞) and r > 0 there exists y ∈ πG(R
3 \ X∞) so that dλ(x, y) < r/2.

So Bdλ(y, r/2) ⊂ Bdλ(x, r) ⊂ Bdλ(y, 2r), and (7.4) follows by (a).
For 0 < r ≤ C1λ

k, the claim follows from Remark 7.5 (4).
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For r ≥ C2λ
k, we fix m ∈ Z so that λm+1 ≤ r < λm. Then, by Remark 7.5 (1),

there exist an integer C3 = C3(dλ) > 0, and cubes-with-handles H ′ ∈ C(Xm+C3)
and H ′′ ∈ C(Xm−C3) so that

πG(H
′) ⊂ Bdλ(x, r) ⊂ πG(H

′′).

Then, by (7.3) in Lemma 7.6, there exists C = C(dλ) > 1 so that

C−1λ3(m+C3) ≤ H3
dλ
(Bdλ(x, r)) ≤ C λ3(m−C3).

In the remaining subcase C1λ
k < r < C2λ

k, Bdλ(x, r) contains the ball
Bdλ(x,C1λ

k) and is contained in a cube-with-handles in C(Xk−C4) for some C4 =
C4(dλ) > 0. Then (7.4) follows by combining Remark 7.5 and (7.3) in Lemma 7.6.
This concludes the proof. �

7.3. Linear local contractibility

In this section we show that a Semmes space (R3/G, (Xk)k≥0, (C,A,W), θ, dλ) is
linearly locally contractible if X is locally contractible. Recall that a defining
sequence X = (Xk) is locally contractible if components of Xk+1 are contractible
in Xk for k ≥ 0.

The linear local contractibility of (R3/G, dλ) is a necessary condition for the
existence of a quasisymmetric parametrization of (R3/G, dλ) by a Euclidean space.

Proposition 7.9. Let (R3/G,X , (C,A,W), θ, dλ) be a Semmes space having locally
contractible defining sequence X . Then, for every m ≥ 0, (R3/G × R

m, dλ,m) is
linearly locally contractible.

As before, we assume as we may that X0 = B
3 and X−j = B3(0, λ−j) for j > 0.

Proof. SinceX−k is a 3-cell for k ≥ 0, the components of πG(Xk+1) are contractible
in πG(Xk) for every k ∈ Z by Lemma 3.1.

Special case: Assume that m = 0 and y ∈ πG(R
3 \X∞); so y ∈ Hdiff for some

H ∈ C(Xk). We consider this case in two parts.
By the uniform quasisimilarity of the modular embedding θ, there exist con-

stants C0 = C0(dλ) > 1 and C1 = C1(dλ) > 0 with the property: if 0 < r < C1λ
k

there exists a 3-cell E ⊂ πG(Xk−1 \Xk+2) satisfying

Bdλ(y, r) ⊂ E ⊂ Bdλ(y, C0r).

Hence Bdλ(y, r) contracts in Bdλ(y, C0r) if r < C1λ
k.

Suppose now that r ≥ C1λ
k. We fix cubes-with-handles H ′, H ′′ ∈ C(X ) satis-

fying H ⊂ H ′ ⊂ H ′′,

level (H ′) = min{level (K) : K ∈ C(X ), Bdλ(x, r) ⊂ πG(K))},
and

level (H ′′) = level (H ′)− 1.



Geometry and quasisymmetric parametrization of Semmes spaces 921

ThenBdλ(y, r) ⊂ πG(H
′) and, by Lemma 3.1, πG(H

′) contracts in πG(H ′′). By Re-
mark 7.5 and Lemma 7.6, there exists C2 = C2(dλ) ≥ 1 so that diamdλ(πG(H

′′)) ≤
C2r. Thus πG(H

′′) ⊂ Bdλ(y, C2r), and Bdλ(y, r) contracts in Bdλ(y, C2r). This
concludes the proof of this special case.

General case: Let x = (y, v) ∈ πG(R
3)×R

m, where m ≥ 0. Let r > 0. To show
that there exists C = C(dλ,m) > 1 so that every ball Bdλ,m

(x, r) is contractible
in Bdλ,m

(x,Cr), we consider the two cases (a) x ∈ πG(R
3 \ X∞) × R

m and (b)
x ∈ πG(X∞)× R

m.
We consider first case (a), that is x = (y, v) ∈ πG(R

3 \ X∞) × R
m with

y ∈ πG(H
diff) and H ∈ C(Xk). Then Bdλ,m

(x, r) contracts in Bdλ(y, Cr)×
(v + [−r, r]m). Thus Bdλ,m

(x, r) is contractible in Bdλ,m
(x, (C +

√
m)r) and the

claim follows.
Case (b) follows from (a). Indeed, there exists z ∈ πG(R

3 \ X∞) × R
m so

that dλ,m(x, z) < r/2. Hence Bdλ,m
(x, r) is contained in a ball Bdλ,m

(z, 2r) that
is contractible in Bdλ,m

(z, 2Cr) ⊂ Bdλ,m
(x, 4Cr), where C = C(dλ,m) is as in

case (a). �

7.4. Loewner property

In this section, we briefly list some other analytical properties of Semmes spaces.
We refer to [19], [18], and [9] for definitions and background. Assume in what
follows that (R3/G, dλ) is Ahlfors 3-regular.

From the proof of the modular embedding theorem (Theorem 6.2) we see that
any pair of points x, y ∈ R

3/G is contained in a uniformly bilipschitz image of the
Euclidean ball B3(|x− y|). This property is the same as in Lemma 3.70 of [19] for
self-similar spaces. The argument of Proposition 10.8 in [19] can now be applied
almost verbatim to show that (R3/G, dλ) supports a (1, 1)-Poincaré inequality as
formulated in (10.9) of [19]. Since the space R

3/G is PL outside πG(X∞), the
Poincaré inequality can be formulated in terms of generalized gradients (upper
gradients). We refer to Appendix C of [18] for a detailed treatment.

Ahlfors 3-regularity, quasiconvexity, and the (1, 1)-Poincaré inequality together
imply that (R3/G, dλ) is a Loewner space in the sense of Heinonen and Koskela;
see Theorem 5.7 in [9]. A metric measure space (X, d, μ) of Hausdorff dimension Q
is a Loewner space if there exists a function φ : (0,∞) → (0,∞) so that

ModQ(E,F ) ≥ φ(Δ(E,F,X))

whenever E and F are disjoint continua in X , where

Δ(E,F,X) =
dist(E,F )

min{diamE, diamF} ,

and ModQ(E,F ) is the Q-modulus of the family of paths connecting E and F
in X .

Suppose now that the space (R3/G × R
m, dλ,m) is Ahlfors (3 + m)-regular

and homeomorphic to R
3+m for some m ≥ 0. Then (R3/G×R

m, dλ,m) supports a
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(1, 1)-Poincaré inequality by a theorem of Semmes for manifolds (Theorem B.10 (b)
in [18]). Thus (R3/G× R

m, dλ,m) is a Loewner space by the aforementioned the-
orem of Heinonen and Koskela. Recall that the Loewner property is a necessary
condition for the quasisymmetric parametrizability; see Tyson [22].

7.5. Quasisymmetric equivalence of Semmes metrics

In this section we prove the quasisymmetric equivalence of the Semmes metrics on
(R3/G,X ) associated to different welding structures and scaling factors.

Proposition 7.10. Let (R3/G,X , (Ci,Ai,Wi), θi, dλi) be two Semmes spaces with
i = 1, 2 and λ1, λ2 ∈ (0, 1). Suppose that (C1,A1,W1) and (C2,A2,W2) have
compatible atlases. Then id : (R3/G, dλ1) → (R3/G, dλ2) is quasisymmetric.

Proof. Assume, as we may, that X0 = B
3 and define X−j = B3(0, λ−j) for j > 0.

Since πG(R
3 \X∞) is dense in R

3/G and the metrics dλi are bilipschitz equiv-
alent to modular metrics dθi for i = 1, 2, respectively, it suffices to show that there
exists a homeomorphism η : [0,∞) → [0,∞) so that, for all distinct points x, y,
and z in πG(R

3 \X∞),

(7.5)
|θ2(x)− θ2(y)|
|θ2(x)− θ2(z)| ≤ η

( |θ1(x)− θ1(y)|
|θ1(x) − θ1(z)|

)

We divide the proof into different cases depending on the relative distances
between the points x, y, and z. For brevity, say that points x and y in πG(R

3\X∞)
are close if there exist H,H ′ ∈ C(X ) so that {x, y} ⊂ πG(H

diff ∪ H ′diff) and the
common boundaryHdiff∩H ′diff 
= ∅. Otherwise, we say that points x and y are far.

Let x, y, and z be distinct points in πG(R
3 \X∞).

Case I: Suppose that at least two pairs of points in the set {x, y, z} are close.

Then there exist H,H ′, H ′′ ∈ C(X ) so that Hdiff ∩ H ′diff 
= ∅, H ′diff ∩ H ′′diff


= ∅, and {x, y, z} ⊂ πG(H
diff ∪ H ′diff ∪ H ′′diff). Then, by quasiconvexity of the

metrics dλi , compatibility of the atlases, and modularity of the embeddings θi,
there exists C1 = C1(θ1, θ2) > 0 so that (7.5) holds with η = η1, where η1(t) = C1t.

Case II: Suppose that the points x, y, and z are far from each other. Then,
by Remark 7.4, there exists C2 = C2(θ1, θ2) > 0 so that (7.5) holds with η = η2,
where η2(t) = C2t

p and p = logλ2/ logλ1.

Case III: Suppose now that there exists only one pair in {x, y, z} where the
points are close and that points in the other two pairs are far. We have three
subcases.

Case III.1: Suppose that y and z are close. Then x and y are far and x and z
are far. So there exists C = C(θ1, θ2) > 0 so that

1

C
≤ |θi(x) − θi(y)|

|θi(x)− θi(z)| ≤ C

for i = 1, 2. Thus (7.5) holds with η = η3, where η3(t) = C3t with C3 =
C3(θ1, θ2) > 0.
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Case III.2: Suppose now that x and z are close and let H,H ′ ∈ C(X ) be such
that {x, z} ⊂ πG(H

diff ∪H ′diff) and Hdiff ∩H ′diff 
= ∅. Then, by modularity of the
embeddings θ1 and θ2, there exist C = C(θ1, θ2) > 1 and w ∈ πG(H

diff ∪H ′diff) so
that

min{|θi(x)− θi(w)|, |θi(z)− θi(w)|} ≥ 1

C
diam θi(πG(H

diff ∪H ′diff))

for i = 1, 2.
Following the argument for cases I and II, there exists C4 = C4(θ1, θ2) > 0 so

that |θ2(x)− θ2(w)|
|θ2(x) − θ2(z)| ≤ C1 η1

( |θ1(x) − θ1(w)|
|θ1(x)− θ1(z)|

)

and |θ2(x)− θ2(y)|
|θ2(x)− θ2(w)| ≤ C4 η2

( |θ1(x) − θ1(y)|
|θ1(x) − θ1(w)|

)

where the homeomorphisms η1 and η2 are as in cases I and II.
Thus

|θ2(x)− θ2(y)|
|θ2(x)− θ2(z)| =

|θ2(x)− θ2(y)|
|θ2(x)− θ2(w)|

|θ2(x)− θ2(w)|
|θ2(x)− θ2(z)|

≤ C1 C4 η2

( |θ1(x)− θ1(y)|
|θ1(x)− θ1(w)|

)
η1

( |θ1(x) − θ1(w)|
|θ1(x)− θ1(z)|

)

≤ C1 C4 η2

(
C
|θ1(x)− θ1(y)|
|θ1(x)− θ1(z)|

)
η1

(
C
|θ1(x)− θ1(w)|
|θ1(x)− θ1(z)|

)
,

Thus (7.5) holds with η = η3, where η3(t) = C1 C4 η1(Ct) η2(Ct).

Case III.3: The remaining case is that x and y are close. Let H,H ′ ∈ C(X ) be
such that {x, y} ⊂ πG(H

diff ∪H ′diff) and Hdiff ∩H ′diff 
= ∅. As in Case III.2, there
exist C = C(θ1, θ2) > 1 and w ∈ πG(H

diff ∪H ′diff) so that

(7.6) min{|θi(x)− θi(w)|, |θi(y)− θi(w)|} ≥ 1

C
diam θi(πG(H

diff ∪H ′diff)).

Furthermore, there exists C5 = C5(θ1, θ2) > 0 so that

|θ2(x) − θ2(y)|
|θ2(x)− θ2(z)| ≤ C5 η1

( |θ1(x)− θ1(y)|
|θ1(x)− θ1(w)|

)
η2

( |θ1(x) − θ1(w)|
|θ1(x) − θ1(z)|

)
.

By (7.6) and the assumptions on {x, y, z}, we have that

max
{ |θ1(x)− θ1(y)|
|θ1(x) − θ1(z)| ,

|θ1(x)− θ1(y)|
|θ1(x)− θ1(w)| ,

|θ1(x)− θ1(w)|
|θ1(x)− θ1(z)|

}
≤ C′

where C′ = C′(θ1, θ2). Assume first that

|θ1(x) − θ1(y)|
|θ1(x) − θ1(w)| ≤

( |θ1(x)− θ1(y)|
|θ1(x)− θ1(z)|

)1/2

.

Then |θ2(x) − θ2(y)|
|θ2(x)− θ2(z)| ≤ C5 η1

( |θ1(x)− θ1(y)|
|θ1(x) − θ1(z)|

)1/2

η2(C
′).
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The case
|θ1(x)− θ1(w)|
|θ1(x)− θ1(z)| ≤

( |θ1(x) − θ1(y)|
|θ1(x) − θ1(z)|

)1/2

is similar. So (7.5) holds with η(t) = C5 max{η1(t1/2)η2(C′), η1(C′)η2(t1/2)}. This
concludes consideration of Case III.2 and the proof. �

8. A sufficient condition for quasisymmetric parametrization

In this section we consider the existence of a Semmes metric dλ on R
3/G such that

(R3/G, dλ) is quasisymmetrically equivalent to R
3. A sufficient condition for the

parametrizability is the existence of a flat welding structure.

Definition 8.1. We say that (C,A,W) is a flat welding structure if C is finite,
condensers C are in R

3, and weldings W are similarities.

The existence of a flat welding structure leads to a modular embedding θ
of the decomposition space R

3/G into R
4, which in turn shows a strong form

of the quasisymmetric parametrizability of θ(R3/G), in particular, θ(R3/G) is a
3-dimensional quasiplane in R

4.

Theorem 8.2. Suppose that (R3/G,X ) is a decomposition space of finite type
whose defining sequence X has a flat welding structure (C,A,W). Suppose also
that the components of Xk+1 are contractible in Xk for every k ≥ 0. Then there
exists λ0 ∈ (0, 1) depending on (C,A,W) satisfying the following conditions. For
each λ ∈ (0, λ0), there is a λ-modular embedding θ : R3/G → R

4 with respect
to this structure, so that the embedded set θ(R3/G) ⊂ R

4 is Ahlfors 3-regular,
linearly locally contractible, and quasisymmetric to R

3. Furthermore, there exists
a quasisymmetric map f : R4 → R

4 so that f(R3) = θ(R3/G).

It is easy to see that every flat welding structure on a defining sequence of
finite type induces a rigid welding structure with a compatible atlas, in the sense
of (6.3). The converse is not always true; an obvious criterion can be given as
follows.

Lemma 8.3. Let X be a defining sequence of finite type and let (C,A,W) be a rigid
welding structure on X in R

3. Suppose that for every c = (A,B) ∈ C there exists
a PL embedding hc : A → R

3 so that hc|∂A and hc|D are (Euclidean) similarities
for each component D of B. Then X admits a flat welding structure.

All but the last claim in Theorem 8.2 can be proved by appealing to a rigid
welding structure (C′,A′,W′) compatible with the given flat structure (C,A,W).
However, in order to extend the quasisymmetric map R

3 → θ(R3/G) to a quasisym-
metric homeomorphism of R4, we will need to repack the condensers in (C,A,W).
The idea of repacking is adapted from Semmes’s excellent packages for self-similar
decomposition spaces ([19], Definition 3.2).
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Let dθ be a λ-modular metric induced by an embedding θ : R3/G → R
4 as in

Theorem 8.2. By Lemma 8.3, the path metric d̂θ associated to dθ is bilipschitz
equivalent to the path metric associated to the Semmes metric (with the same
scaling λ) derived from a compatible rigid structure (C′,A′,W′). Thus dθ is a
Semmes metric and (R3/G,X , (C,A,W), θ, dθ) a Semmes space; we write dλ for dθ.

In view of Theorem 8.2, there exist defining sequences which do not admit
flat welding structures. Indeed, by Theorem 8.2, the existence of a flat welding
structure yields quasisymmetric parametrizability. Thus, for example, the standard
defining sequences associated to the Whitehead continuum and to the Bing double
do not admit flat welding structures.

8.1. Unlinking and repacking

As a preliminary step for the proof of Theorem 8.2, we discuss homeomorphisms
of R4 that unlink and repack condensers in R

3.
Let K ⊂ R

3 be a cube-with-handles. We define

K∗ = K × [− diamK, diamK] ⊂ R
4,

where diamK is the Euclidean diameter of K. If B is a pairwise disjoint union
of cubes-with-handles, we set B∗ =

⋃
K∈C(B)K

∗. Suppose (A,B) is a condenser

in R
3. We will also call (A∗, B∗) a (4-dimensional ) condenser.
Let c = (A,B) be a condenser in R

3 with diamA = 1 and λ ∈ (0, 1). We say
a PL-embedding pc : (R

3 \A) ∪B → R
3 is a λ-repacking of c if there are pairwise

disjoint Euclidean balls {bD ⊂ intA : D ∈ C(B)} such that

(i) pc|R3 \A = id,

(ii) pc|D is an orientation-preserving similarity, and

(iii) pc(D) ⊂ int bD and diam pc(D) = λ,

for each component D of B.
Let c be a condenser in R

3 with diamA = 1. We denote by λc the supremum
of λ > 0 so that c admits a λ-repacking. Note that λc > 0, since repackings exist
for all sufficiently small λ > 0.

Let C be a finite collection of condensers in R
3, with diamA = 1 for every

c = (A,B) ∈ C. We denote by λC the supremum of λ > 0 so that every c ∈ C

admits a λ-repacking. We call λC the repacking constant of C.

Definition 8.4. Let c = (A,B) be a condenser in R
3 with diamA = 1. We say

that a PL-homeomorphism Pc : R
4 → R

4 is a *-stable λ-repacking of c in R
3 (or

of the condenser (A∗, B∗)) if

1) Pc|(R3 \A) ∪B is a λ-repacking of c,

2) Pc|R4 \A∗ = id,

3) Pc|D∗ is an orientation preserving similarity for each component D of B,

4) in particular, Pc(B
∗) = Pc(B)∗.
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Lemma 8.5. Let c = (A,B) be a condenser in R
3 with diamA = 1. If the

components of B are contractible in A, then, for every 0 < λ < λc, there exists a
*-stable λ-repacking Pc : R

4 → R
4 of c.

Proof. Let pc : (R
3 \ A) ∪ B → R

3 be a λ-repacking of the condenser c = (A,B).
Fix d ∈ (0, 1) so that

B∗ ∪ (pc(B))∗ ⊂ int (A× [−d, d]),

and set I = [−d, d].
As a preliminary step, we construct for every D ∈ C(B) a PL-homeomorphism

fD : R4 → R
4 with the properties that fD|R4 \ (A× I) = id and that fD|D∗ is an

orientation-preserving similarity satisfying fD|D = pc|D and fD(D
∗) = pc(D)∗.

Given D ∈ C(B), let bD = B3(xD, rD) ⊂ A be the Euclidean ball containing
pc(D) as in (iii). Since pc|D is a similarity, it extends to a similarity pD : R3 → R

3

with a scaling constant ρD. Denote again by pD : R4 → R
4 the extension (x, t) �→

(pD(x), ρDt).
Fix a core RD of D. Since D∗ is a regular neighborhood of RD and RD is

contractible in A, there exist, by the Penrose–Whitehead–Zeeman lemma (see Sec-
tion 3.2), PL 4-cells ED and E′

D in A× I so that

D∗ ⊂ intED ⊂ ED ⊂ intE′
D ⊂ E′

D ⊂ int (A× I).

We fix zD ∈ intED and εD > 0 so that B4(zD, 2εD) ⊂ ED, and choose a number
r′D ∈ (rD, λc). Thus

pD(D
∗) ⊂ b∗D ⊂ B3(xD, r

′
D)

∗ ⊂ int (A× I).

By standard isotopy results, we may fix two PL self-homeomorphisms hD and
τD of R4 with the following properties. Since ED and E′

D are 4-cells, there ex-
ists an orientation-preserving PL homeomorphism hD : R4 → R

4 so that hD|R4 \
(A × I) = id, hD(E

′
D) = B4(zD, 2εD), hD(ED) = B4(zD, εD), and hD(D

∗) ⊂
B4(zD, εD/2), and so that hD|D∗ is a scaling followed by a translation. Further-
more, there exists a PL-homeomorphism τD : R4 → R

4 such that τD|R4 \ (A×I) =
id, τD(B

4(zD, 2εD)) = B3(xD, r
′
D)

∗, and τD(B
4(zD, εD)) = b∗D, and so that

τD|hD(D∗) is an orientation preserving similarity that maps hD(D
∗) onto pD(D∗).

Therefore, the PL homeomorphism fD = τD ◦ hD satisfies fD|R4 \ (A× I) = id
and fD|D∗ is the similarity pD|D∗.

We will combine the homeomorphisms fD, D ∈ C(B), defined above as follows.
First, the components of B are raised to different levels in R

3 × (d, 1) ⊂ R
4 by

a homeomorphism g1 of R4. Next, one component at a time, each D ∈ C(B) is
lowered to {x4 = 0}, where the homeomorphism fD may be applied, and then the
image pD(D) is raised to the previous level. The composition of these maps is a
homeomorphism g2 of R4. Finally, all raised pD(D) are descended to {x4 = 0} by
a homeomorphism g−1

3 of R4. The *-stable λ-repacking of c is defined by

Pc = g−1
3 ◦ g2 ◦ g1.
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We now give the details.
For everyD∈C(B), fix dD ∈ (d, 1) so that dD 
= dD′ for different componentsD

and D′ in C(B); fix also δ > 0 so that the intervals [dD − δ, dD + δ] are pairwise
disjoint and contained in (d, 1). Let ρ = δ/(4d) and set JD = [dD − δ/4, dD + δ/4]
for every D ∈ C(B). We fix a PL-homeomorphism g1 : R

3 × R → R
3 × R so that

g1|R4 \ A∗ = id and g1(x, t) = (x, ρt + dD) for (x, t) ∈ D × I and D ∈ C(B).
In particular,

g1(D
∗) ⊂ g1(D × I) = D × JD

for every D ∈ C(B).
The homeomorphism g3 is defined similarly as g1, with (A,

⋃
D∈C(B) pD(D)) in

place of (A,B) and with dpD(D)=dD, so that the PL-homeomorphism g3:R
4→R

4

satisfies g3|R4 \A∗ = id and

g3(pD(D)∗) ⊂ g3(pD(D)× I) ⊂ pD(D)× JD

for D ∈ C(B).
Having g1 and g3 at our disposal, we construct a PL-homeomorphism g2 as

follows. For every D ∈ C(B), let ζD : R → R, be a piecewise linear increasing
function so that ζD(t) = ρt + dD for t ∈ I, and ζD(t) = t for |t| > 1. Let also
ξD : R4 → R

4 be the PL map (x, t) �→ (x, ζD(t)). Then ξD|D∗ = g1|D∗ and
ξD|pD(D)∗ = g3|pD(D)∗ for every D ∈ C(B).

Since fD|R4 \ (A× I) = id, we have

ξD ◦ fD ◦ ξ−1
D |(R4 \ (A× (dD − δ/4, dD + δ/4))) = id

for every D ∈ C(B). Thus the mapping g2 : R
4 → R

4 defined by taking the
composition (in any fixed order) of ξD ◦ fD ◦ ξ−1

D for all D ∈ C(B), is a well-defined
PL-homeomorphism satisfying g2|R4 \A∗ = id. Moreover,

g−1
3 ◦ g2 ◦ g1|D∗ = (g−1

3 ◦ ξD) ◦ fD ◦ (ξ−1
D ◦ g1)|D∗ = fD|D∗ = pD|D∗

is a similarity. Since pc|D = pD|D, Pc = g−1
3 ◦ g2 ◦ g1 is a *-stable repacking

of c. �

8.2. Proof of Theorem 8.2

Let (C,A,W) be a flat welding structure on the defining sequence X , and assume
that diamA = 1 for all c = (A,B) ∈ C. We also assume that X0 = H0 = AH0 ,
where cH0 = (AH0 , BH0) is the condenser associated to H0, and that the corre-
sponding chart satisfies ϕH0 |∂H0 = id.

We enumerate the cubes-with-handles in C(X ) by H0, H1, . . . so that if Hj ∈
C(Xk) then Hj+1 ∈ C(Xk)∪C(Xk+1). This enumeration induces natural orderings
on condensers, charts, and weldings as well. Write cj = (Aj , Bj) = cHj for
condensers in C and ϕj = ϕHj : H

diff
j → cdiffj for the charts in A for j ≥ 0.

Let kj = level (Hj), and let q(j) be the index of the parent of Hj , that is,
level (Hq(j)) = kj − 1 and Hj ∈ C(Hq(j) ∩Xkj ).
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Let wj = ϕq(j) ◦ ϕ−1
j be the welding of (Aj , Bj) to its parent (Aq(j), Bq(j)), for

j ≥ 1. Since wj is a similarity and Bq(j) ⊂ R
3, wj(Aj) is a component of Bq(j).

We extend wj to a similarity wj : R
4 → R

4 by (x, t) �→ (wj(x), λjt), where λj is the
scaling factor of wj . We call the extended wj a welding of (A

∗
j , B

∗
j ) to (A

∗
q(j), B

∗
q(j)),

and note that wj(A
∗
j ) = wj(Aj)

∗ is a component of B∗
q(j).

We construct now cumulative welding maps and repacked cumulative welding
maps. We define the cumulative welding maps ŵj by ŵ0 = id and

ŵj = ŵq(j) ◦ wj
for j ≥ 1.

Since wj |∂Aj = ϕq(j) ◦ ϕ−1
j |∂Aj , we have

(8.1) ŵj ◦ ϕj |∂Hj = ŵq(j) ◦ wj ◦ ϕj |∂Hj = ŵq(j) ◦ ϕq(j)|∂Hj

for j ≥ 1, and ŵ0 ◦ ϕ0|∂H0 = id.
Since wj is a similarity, ŵj(Aj) is a component of ŵq(j)(Bq(j)) and

ŵj(A
∗
j ) = ŵq(j)(wj(A

∗
j )) ⊂ ŵq(j)(B

∗
q(j)).

It follows by induction that the images ŵj(A
∗
j \B∗

j ) are pairwise disjoint for j ≥ 0.
Then

(8.2) R
4 \ F̂ = (R4 \X∗

0 )
⋃ ∞⋃
j=1

ŵj(A
∗
j \B∗

j )

is a disjoint union, where

F̂ =
⋂
k≥0

(⋃{
ŵj(Aj) : (Aj , Bj) ∈ C, ϕ−1

j (Aj) = Hj ∈ C(Xk)
})
.

Since diam ŵj(Aj) → 0 as j → ∞, the components of F̂ are points.
Now we define repacked cumulative welding maps w̃j . Let 0 < λ < λC. We

show first that the components of Bj are contractible in Aj . Let D ∈ C(Bj).
Since ϕ−1

j (∂D) is the boundary of a component of Hj ∩Xlevel (Hj)+1, ϕ
−1
j (∂D) is

contractible in Hj . Thus ∂D is contractible in Aj . Let RD be a core of D that is
contained in a collar ΩD of ∂D in D. Since ΩD retracts to ∂D, RD is contractible
in Aj . Thus D is contractible in Aj .

Using Lemma 8.5, we fix a collection of *-stable λ-repackings {Pc : R
4 →

R
4 : c ∈ C}. For simplicity, denote the *-stable repacking for cj = (Aj , Bj)

by Pj = Pcj for j ≥ 0; note that there are only finitely many distinct mappings
in {Pj : j ≥ 0}.

Associated to the welding maps wj : R
4 → R

4 for j ≥ 1, and the *-stable
repackings Pj for j ≥ 0, we define w̃j : R

4 → R
4 by

w̃j = w̃q(j) ◦ wj ◦ Pj
for j ≥ 1 and set w̃0 = P0.
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Since the *-stable repacking Pj is a similarity on D∗ for each D ∈ C(Bj) and
Pj(A

∗
j ) = A∗

j , we know that wj ◦ Pj(A∗
j ) ⊂ B∗

q(j) and that w̃j |D∗ is a similarity

for every D ∈ C(Bj). Therefore w̃q(j) ◦ wj |A∗
j is a similarity, and w̃j |A∗

j \ B∗
j is a

composition of an L-bilipschitz map Pj with a similarity for every j ≥ 0. Indeed,
the mapping w̃j |Aj is Lλj-Lipschitz for every j ≥ 0, where L is the maximum of
the Lipschitz constants of *-stable repackings {Pc : c ∈ C}.

Since Pj |∂Aj = id, we have, as in (8.1),

(8.3) w̃j ◦ ϕj |∂Hj = w̃q(j) ◦ ϕq(j)|∂Hj

for j ≥ 1, and w̃0 ◦ ϕ0|∂H0 = P0 ◦ ϕ0|∂H0 = id.
Since w̃j(Aj) is a component of w̃q(j)(Bq(j)) for each j ≥ 1 and the image sets

w̃j(A
∗
j \B∗

j ) are pairwise disjoint for j ≥ 0, we obtain a disjoint union

(8.4) R
4 \ F̃ = (R4 \X∗

0 )
⋃ ∞⋃
j=1

w̃j(A
∗
j \B∗

j ),

with
F̃ =

⋂
k≥0

(⋃{
w̃j(Aj) : (Aj , Bj) ∈ C, ϕ−1

j (Aj) = Hj ∈ C(Xk)
})
.

As in the case of F̂ , the set F̃ is totally disconnected.
Having (8.3) and (8.4) at our disposal, we define an embedding θ∞ : R3\X∞ →

R
4 by θ∞|R3\X0 = id and θ∞|Hdiff

j = w̃j ◦ϕj for j ≥ 1. Furthermore, θ∞ descends

(and then extends) to an embedding θ : R3/G → R
4 so that θ(πG(X∞)) = F̃ .

The λ-modularity of θ with respect to (C,A,W) follows directly from the uni-
form quasisimilarity of the cumulative repacked welding maps w̃j . The space
(R3/G,X , (C,A,W), θ, dθ) is linearly locally connected and Ahlfors 3-regular for
sufficiently small λ.

It remains to construct a quasisymmetric map f : R4 → R
4 so that f(R3) =

θ(R3/G). Since Pj |∂A∗
j = id, we have

w̃j ◦ŵ−1
j |ŵj(∂A∗

j ) = (w̃q(j) ◦wj ◦Pj)◦(w−1
j ◦ŵ−1

q(j))|ŵj(∂A∗
j ) = w̃q(j)◦ŵ−1

q(j)|ŵj(∂A∗
j )

for every j ≥ 1. Thus the map f∞ : R4 \ F̂ → R
4 \ F̃ , defined by

f∞|ŵj(A∗
j \B∗

j ) = w̃j ◦ ŵ−1
j |ŵj(A∗

j \B∗
j )

for j ≥ 1 and f∞|R4 \A∗
0 = id, is a well-defined homeomorphism. Since F̂ and F̃

are totally disconnected, f∞ extends to a homeomorphism f : R4 → R
4.

Since f |R3 \A0 = θ∞|R3 \X0 and

f ◦ ŵj ◦ ϕj |Xdiff
j = w̃j ◦ ŵ−1

j ◦ ŵj ◦ ϕj |Xdiff
j = w̃j ◦ ϕj |Xdiff

j = θ∞|Xdiff
j

for every j ≥ 0, we have
f(R3) = θ(R3/G)

by continuity.
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Since w̃j ◦ ŵ−1
j |ŵj(A∗

j ) is a (L, μj)-quasisimilarity for some μj > 0 and for

every j ≥ 0, the homeomorphism f∞ : R4\F̂ → R
4\F̃ is quasiconformal. Moreover,

the homeomorphisms fj : R
4 → R

4, defined by

fj |R4 \ ŵj(A∗
j ) = f∞|R4 \ ŵj(A∗

j )

and
fj |ŵj(A∗

j ) = w̃j ◦ ŵ−1
j |ŵj(A∗

j ),

are uniformly quasiconformal. Therefore there exists a homeomorphism η : [0,∞)→
[0,∞) so that the homeomorphisms fj are η-quasisymmetric. Since f = limj→∞ fj ,
f is η-quasisymmetric. This completes the proof of Theorem 8.2.

Remark 8.6. The quasisymmetric map f : R4 → R
4 in Theorem 8.2 can be taken

to be the identity in a neighborhood of infinity, that is, there exists R > 0 so
that f |R4 \ B4(R) = id. Thus the quasisymmetric map f : R4 → R

4 extends
naturally to a quasiconformal map f : S4 → S

4 and f(S3) is the one point com-
pactification of f(R3). Thus the embedding θ : R3/G→ R

4 extends to an embed-
ding S

3/G→ S
4. So θ(S3/G) is a quasisphere, that is, θ(S3/G) = f(S3), where

f : S4 → S
4 is a quasiconformal map.

In view of Theorem 8.2, geometrically different quasispheres built this way exist
in abundance.

9. Circulation

In this section we introduce the notion of the circulation of a union of cubes-with-
handles based on longitudes and meridians. This concept of circulation will be
used in estimating the conformal moduli of surface families.

9.1. Meridians and longitudes

Recall that a simple closed curve S
1 → ∂B2 × S

1 on the boundary of a torus
B
2 ×S

1 is called a meridian of B2 ×S
1 if it is homotopic to the loop eiθ �→ (eiθ, 1),

on ∂B2×S
1. In particular, a meridian is contractible in B

2×S
1 but not in ∂B2×S

1.
A noncontractible loop in the solid torus B2×S

1 is called a longitude of B
2×S

1.
A longitude is nontrivially linked with every meridian, that is, given a longitude σ
and a meridian α of B2 × S

1 then σ(S1) ∩ φ(B2) 
= ∅ for every φ : B2 → B
2 × S

1

satisfying φ|∂B2 = α.
Let X be a disjoint union of cubes-with-handles. We call a simple closed PL

curve α : S1 → ∂X a meridian of X if [α] 
= 0 in π1(∂X) and [α] = 0 in π1(X); that
is, α is not contractible on ∂X but there exists a map φ : B2→X so that φ|∂B2=α.

Suppose α : S1 → ∂X is a meridian of X . Departing slightly from the standard
notion of a mapping of pair (C,D) → (E,F ), we denote by φ : (B2, ∂B2) → (X,α)
a mapping φ : B2 → X that satisfies φ|∂B2 = α. Let

E(X,α) = the collection of all maps φ : (B2, ∂B2) → (X,α).
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Let σ = σ1+· · ·+σk be a PL 1-chain in a union of cubes-with-handles X , where
σi : S

1 → X are PL maps for i = 1, . . . , k ; and let |σ| = ⋃k
i=1 σi(S

1) be its carrier.
We say that σ is a longitude in X if |σ| ∩ φ(B2) 
= ∅ for all φ : (B2, ∂B2) → (X,α)
and all meridians α of X . Heuristically, a longitude is a 1-cycle in X that is linked
with every meridian of X . We let

(9.1) Σ(X) = the family of all longitudes ofX.

Suppose that H1, . . . , Hd are pairwise disjoint cubes-with-handles, then

(9.2) Σ
( d⋃
i=1

Hi

)
= {σ1 + · · ·+ σd : σi ∈ Σ(Hi), 1 ≤ i ≤ d}.

9.2. Circulation with respect to meridians

Let H be a cube-with-handles, let X be a finite union of cubes-with-handles in
intH , and let α : S1 → ∂H be a meridian of H . The circulation of X in H with
respect to the meridian α is defined to be

(9.3) circ(X,α,H) = min
φ∈E(H,α)

min
σ∈Σ(X)

#(|σ| ∩ φ(B2)).

Figure 7. Circulations having values 1 and 2 with respect to α.

Let (R3/G,X , (C,A,W)) be a decomposition space of finite type. We call a
meridian of any cube-with-handles in X a meridian of X . We denote this family
of meridians by M(X ).

Definition 9.1. Let (R3/G,X , (C,A,W)) be a decomposition space of finite type.
Meridians α : S1 → ∂H and α′ : S1 → ∂H ′ in M(X ) are related by the atlas A if
the charts ϕH and ϕH′ have the same target condenser in C and ϕ−1

H ◦ ϕH′ ◦ α′ is
homotopic to α on ∂H .

Given a meridian α in X ,

(9.4) MA(X ;α) = {α′ ∈ M(X ) : α and α′ are related by atlas A}

is called the set of meridians in X related to α by A.
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Definition 9.2. Let (R3/G,X , (C,A,W)) be a decomposition space of finite type.
We say that the order of circulation of X is at least ω, ω ≥ 0, if there exist a
meridian α0 ∈ M(X ) and a constant C > 0 such that for every 	 ≥ 0 there exist
k′ > k ≥ 0 with k′ − k > 	, a cube-with-handles H ∈ C(Xk), and a meridian
α : S1 → ∂H in MA(X ;α0) that satisfy

(9.5) circ(Xk′ ∩H,α,H) ≥ C ωk
′−k.

The homotopy property of a collection of meridians translates to geometric
finiteness in the corresponding Semmes space after fixing a simple PL-representative
for each homotopy class.

Lemma 9.3. Let (R3/G,X , (C,A,W), θ, dλ) be a Semmes space and let α0 ∈
M(X ). Then there exists L = L(dλ, α0) ≥ 1 so that for every meridian α : S1 →
∂H in MA(X ;α0) there exists a meridian β of H homotopic to α in ∂H so that
πG ◦ β : S1 → (R3/G, dλ) is a (λlevel (H), L)-quasisimilarity.

We record the observation that a quasisimilar meridian has a quasisimilar collar.
The claim follows directly from properties of the metric dλ,m and the definition of
the constant ελ in Remark 7.7.

Lemma 9.4. Let (R3/G,X , (C,A,W), θ, dλ) be a Semmes space and let H ∈ C(X ).
Suppose α : S1 → ∂H is a (λlevel (H), L)-quasisimilar meridian on H. Then, for
each m ≥ 0, there exists a (λlevel (H), L′)-quasisimilarity

κα : (B
2+m × S

1, {0} × S
1) → (Ndλ,m

(πG(∂H), ελλ
level (H)), (πG ◦ α)× {0})),

where L′ > 1 is a constant depending only on m, dλ and L.

Given a defining sequence X = (Xk) and a union Y of a nonempty subcollection
of cubes-with-handles in C(Xk), we call

(9.6) Σ(Y,X ) = {σ ∈ Σ(Y ) : |σ| ⊂ Xk \Xk+1}
the set of longitudes of Y relative to X . This subfamily Σ(Xk′∩H,X ) of Σ(Xk′∩H)
can be used to determine the circulation circ(Xk′ ∩H,α,H).

Lemma 9.5. Let k ≥ 0 and H ∈ C(Xk), and let α be a meridian of H. Then

circ(Xk′ ∩H,α,H) = min
φ∈E(H,α)

min
σ∈Σ(Xk′∩H,X )

#(|σ| ∩ φ(B2))

for k′ > k.

Proof. Let σ = σ1 + · · ·+ σ� ∈ Σ(Xk′ ∩H) and φ ∈ E(H,α) be chosen so that

#(|σ| ∩ φ(B2)) = circ(Xk′ ∩H,α,H).

We claim that there exists a homeomorphism h of Xk′ ∩H , equal to the identity
on ∂(Xk′ ∩H), so that h ◦ σ = h ◦ σ1 + · · ·+ h ◦ σ� ∈ Σ(Xk′ ∩H,X ).
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For every component H1, . . . , Hd of Xk′ ∩H let gi be the genus of Hi and let
ρi :

∨gi
S
1 → Hi be a core of Hi. Let R =

⋃
i ρi(

∨gi
S
1). By considering an

isotopy of Xk′ ∩ H if necessary, we may assume that R ∩ |σ| = ∅. Then there
exists a regular neighborhood X of R so that (Xk′ ∩H) \X is homeomorphic to
∂(Xk′ ∩H)× [0, 1) and |σ| ⊂ (Xk′ ∩H) \X . Then there exists a homeomorphism
h of Xk′ ∩H , isotopic to the identity, so that h((Xk′ ∩H) \X)∩Xk′+1 = ∅ and h
is the identity on ∂(Xk′ ∩H). Hence h ◦ σ ∈ Σ(Xk′ ∩H,X ).

We extend the homeomorphism h by the identity on H \ Xk′ . Then h ◦ φ ∈
E(H,α) and

#(|h ◦ σ| ∩ h(φ(B2))) = #(|σ| ∩ φ(B2)) = circ(Xk′ ∩H,α,H).

The claim follows from Σ(Xk′ ∩H,X ) ⊂ Σ(Xk′ ∩H). �

9.3. Intersections in decomposition spaces

When R
3/G is a manifold factor, the circulation of cubes-with-handles in R

3 can
be estimated from above by the intersection number of longitudes and interior
essential components of maps in the decomposition space R

3/G, instead of R3.
The following proposition deals with this subtle, technical point.

In the following, Π: R3/G× R
m → R

3/G is the projection map (x, v) �→ x.

Proposition 9.6. Let (R3/G,X ) be a decomposition space, let α : S1 → ∂H be a
meridian of H ∈ C(X ), and let ζ : B2 → πGH be a map satisfying ζ|∂B2 = πG ◦α.
Suppose that R3/G× R

m is homeomorphic to R
3+m for some m ≥ 0. Then

#(πG(|σ|) ∩ ζ(B2)) ≥ circ(Xk′ ∩H,α,H)

for all k′ > level (H) and every longitude σ ∈ Σ(Xk′ ∩H,X ).

The proof is based on the following approximation lemma.

Lemma 9.7. Under the hypotheses of the proposition, for every k′ > k there
exists a map φ : B2 → H so that πG ◦ φ|Ω = ζ|Ω, where Ω is the component of
ζ−1(πGH \ πG(Xk′ )) that contains ∂B

2.

Proof. If ζ(B2)∩πG(XK) = ∅ for some K > 0 then we may take φ = π−1
G ◦ ζ, since

πG|R3 \XK is a homeomorphism. The conclusion follows. Thus we may assume
that ζ(B2) ∩ πG(XK) 
= ∅ for all K > 0.

We fix a homeomorphism f : R3/G×R
m → R

3+m and a number R > 0 so that
f(ζ(B2)) ⊂ B3+m(R). Let B′ = B3+m(R+ 1), B = B3+m(R+ 2), and

ε =
1

4
min{1, dist(f(πG(∂Xk′+1)× R

m) ∩ B, f(πG(Xk′+2)× R
m) ∩ B)}.

Since ζ and f |f−1B are uniformly continuous, we may fix δ > 0 so that |f(ζ(x))−
f(ζ(y))| < ε/5 for all x, y ∈ B

2 satisfying |x− y| < δ.
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We fix K > k′ +2 so that the diameters of components of ζ−1(πG(XK)) are at
most δ/2. Let ΩK be the component of ζ−1(R3/G \ πG(XK)) that contains ∂B2.
Then Ω ⊂ ΩK .

Since πG is a homeomorphism near the boundary of XK , we may use the
transversality and the PL-structure in R

3 to modify ζ in a neighborhood of πG(∂XK)
in πG(Xk+2) in such a way that the components of ζ−1(πG(∂XK)) are topological
circles, that |f(ζ(x)) − f(ζ(y))| < ε/4 for all |x − y| < δ, and that f(ζ(B2)) ⊂
B3+m(R + ε).

For each component C of ∂ΩK , except for the outermost boundary ∂B2, we
denote by ω the 2-cell in B

2 enclosed by C, thus C = ∂ω, and define a map
φ̃ω : ω → R

3+m extending f ◦ ζ|∂ω as follows.
Let τ : ω → B

2 be a homeomorphism and fix a point y0 ∈ f(ζ(∂ω)). Define
φ̃ω : ω → R

3+m so that φ̃ω(τ
−1(0)) = y0 and

φ̃ω(x) = (1− |τ(x)|)y0 + |τ(x)|f ◦ ζ ◦ τ−1
( τ(x)

|τ(x)|
)
, x 
= τ−1(0).

Then φ̃ω |∂ω = f ◦ ζ|∂ω. Since diam ∂ω < δ we have diam f(ζ(∂ω)) ≤ ε/4,
diam(φ̃ω(ω)) < ε, and φ̃ω(ω) ⊂ B′; since ζ(∂ω) ⊂ πG(∂XK), we have φ̃ω(∂ω)) ⊂
f(πG(Xk′+2)× R

m) ∩ B′. Therefore

dist(φ̃ω(ω), f(πG(∂Xk′+1)× R
m))

≥dist(φ̃ω(∂ω), f(πG(∂Xk′+1)× R
m))− diam(φ̃ω(ω))

≥ min{1, dist(φ̃ω(∂ω), f(πG(∂Xk′+1)× R
m) ∩ B)} − diam(φ̃ω(ω)) > 3ε.

Thus φ̃ω(ω) ⊂ f(πG(Xk′+1)× R
m).

We define a map φ : B2 → R
3 by φ|ΩK = π−1

G ◦ ζ|ΩK and φ|ω = Π ◦ f−1 ◦ φ̃ω
on every 2-cell ω bounded by a component of ∂ΩK \ ∂B2. Since πG|R3 \XK is a
homeomorphism and φ̃ω|∂ω = f ◦ ζ|∂ω, the map is well-defined and continuous.

Since φ(B2) is connected, φ(B2) ⊂ H , and since Ω ⊂ ΩK , φ|Ω = π−1
G ◦ ζ|Ω.

The claim follows. �

Proof of Proposition 9.6. The map φ : B2 → H constructed in Lemma 9.7 belongs
to E(H ;α) and satisfies πG ◦ φ|Ω = ζ|Ω. Then, by Lemma 9.5,

#(ζ(B2) ∩ πG(|σ|)) ≥ #(φ(B2) ∩ |σ|) ≥ circ(Xk′ ∩H,α,H)

for every σ ∈ Σ(Xk′ ∩H,X ). The claim follows. �

9.4. Virtually interior essential components

Let Ω be a 2-manifold with boundary, let M be an n-manifold with boundary,
and let φ : (Ω, ∂Ω) → (M,∂M) be a map. Following Daverman ([6], pp. 73–74),
we say that φ is interior inessential if there exists a map φ′ : Ω → ∂M so that
φ′|∂Ω = φ|∂Ω; if no such map exists, we say that φ is interior essential.
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If φ : (Ω, ∂Ω) → (M,∂M) is interior essential and Ω is a submanifold of a
2-cell D so that ∂D ⊂ ∂Ω, we say that φ is virtually interior essential if there
exists a map Φ: D →M so that Φ|Ω = φ and Φ(D \ Ω) ⊂ ∂M .

Let X be a defining sequence for a decomposition space. Given H ∈ C(Xk),
a meridian α of H , and k′ > k, denote by E(H,α;Xk′ ) the collection of maps
φ : (B2, ∂B2)→(H,α) such that φ(B2) is transverse to ∂Xk′ . Given φ∈E(H,α;Xk′ ),
we say that a component ω of φ−1Xk′ is virtually interior essential with respect
to Xk′ if φ|ω : (ω, ∂ω) → (Xk′ , ∂Xk′) is virtually interior essential. We denote
by Γ(φ,Xk′ ) the set of virtually interior essential components of φ−1Xk′ .

Remark 9.8. The circulation circ(Xk′ ∩H,α,H) is closely related to the minimal
number of essential components among all maps in E(H,α;Xk′ ). In fact,

circ(Xk′ ∩H,α,H) ≥ min
φ∈E(H,α;Xk′ )

#Γ(φ,Xk′).

Indeed, given φ ∈ E(H,α;Xk′ ) and σ ∈ Σ(Xk′ ∩ H), it follows from the
definition of longitudes that |σ| ∩ φ(ω) 
= ∅ for every ω ∈ Γ(φ,Xk′ ). Thus
#(|σ| ∩ φ(B2)) ≥ #Γ(φ,Xk′ ).

10. Circulation and a modulus estimate for walls

Suppose that (R3/G,X , (C,A,W), θ, dλ) is a Semmes space. Let Y be the union
of a nonempty subcollection of cubes-with-handles in C(Xk), and let m ≥ 0 and
a > 0. We call carriers of (1 +m)-chains in the collection

Σm(Y,X , a) = {|σ| × [−a, a]m : σ ∈ Σ(Y,X )}
m-walls over Y of height a relative to X . Note that these walls do not meet
X∞ × R

m and that πG|R3 \X∞ is a homeomorphism. We denote by

Σ̂m(Y,X , a) = (πG × id)(Σm(Y,X , a))
the corresponding collection of m-walls in the decomposition space R

3/G× R
m.

The main result of this section is an upper bound for the conformal modulus
of an m-wall family in terms of circulation. This, together with a lower bound in
terms of growth, yields a necessary condition for the existence of a quasisymmetric
parametrization. Our result extends the second part of Proposition 4.5 in [12].

Theorem 10.1. Let (R3/G,X , (C,A,W), θ, dλ) be a Semmes space, let α : S1 →
∂H be an (λk, L)-quasisimilar meridian of H ∈ C(Xk), and let m ≥ 0. Suppose
that f : (R3/G × R

m, dλ,m) → R
3+m is η-quasisymmetric. Then there exist A =

A(η, dλ,m, L) > 0 and C = C(η, dλ,m, L) so that

Mod 3+m
1+m

(
f(Σ̂m(Xk′ ∩H,X , Aλk))

)
≤ C

( 1

circ(Xk′ ∩H,α,H)

)(3+m)/(1+m)

for all k′ > k + 1.
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We begin with an intersection lemma which contains the gist of the proof; the
number ελ in the statement is the constant defined in Remark 7.7.

Lemma 10.2. Suppose g : (R3/G× R
m, dλ,m) → R

3+m is η-quasisymmetric. Let
α : S1 → ∂H be a meridian of H ∈ C(X ) and let β : S1 → R

3/G × R
m be a

map homotopic to πG ◦ α in Ndλ,m
(πG(∂H), ελλ

level (H)/3) with the property that
g(β(S1)) = ∂B2 × {0} ⊂ R

2 × R
1+m. Then there exist δ = δ(η, dλ,m) > 0 and

A = A(ηg−1 ) ≥ 1 so that

(10.1) #(g(w) ∩ (B2 + j)) ≥ circ(Xk′ ∩H,α,H)

for every k′ > level (H), m-wall w ∈ Σ̂m(Xk′ ∩ H,X , Aλlevel (H)), and j ∈ {0} ×
B1+m(δ) ⊂ R

2 × R
1+m.

Figure 8. An example of (10.1), where m = 0, k = 0, and k′ = 1.

Proof. Let k = level (H). We show first that dist(∂B2, g(πG(Xk+1) × R
m)) is

bounded from below by a positive constant depending only on η and λ.
Since β(S1) ⊂ Ndλ,m

(πG(∂H), ελλ
k/3) ⊂ πG(R

3 \Xk+1)× R
m and g(β(S1)) =

∂B2, we may fix x ∈ β(S1) and z ∈ πG(Xk+1)× R
m so that

|g(x)− g(z)| = dist(∂B2, g(πG(Xk+1)× R
m)).

We also fix y ∈ β(S1) so that dλ,m(x, y) = dλ(x, y) = maxy′∈β(S1) dλ(x, y′). Since

x, y ∈ Ndλ,m
(πG(∂H), ελλ

k) and projection Π(z) ∈ πG(Xk+1), we have, by qua-
sisymmetry and Remark 7.5,

|g(x)− g(y)| ≤ η
(dλ,m(x, y)

dλ,m(x, z)

)
|g(x)− g(z)|

≤ η
( diamdλ,m

(Ndλ,m
(πG(∂H), ελλ

k))

distdλ,m
(Ndλ,m

(πG(∂H), πG(Xk+1))

)
|g(x)− g(z)|

≤ η(C(dλ,m)) |g(x) − g(z)|.
Choose x′ ∈ β(S1) so that g(x′) and g(x) are antipodal on ∂B2. Then,

|g(x)− g(x′)| ≤ η
(dλ,m(x, x′)
dλ,m(x, y)

)
|g(x)− g(y)| ≤ η(1) |g(x) − g(y)|.
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Thus

(10.2) dist(∂B2, g(πG(Xk+1)× R
m)) ≥ 2

η(1) η(C(dλ,m))
.

Since g is η-quasisymmetric, we may fix δ ∈ (0, (η(1)η(C(dλ,m)))−1), indepen-
dent of k, so that

(10.3) g−1(∂B2 ×B1+m(δ)) ⊂ Ndλ,m
(πG(∂H), ελλ

k).

We prove now (10.1). Let k′ > k and j ∈ {0}×B1+m(δ); define φj : (B
2, ∂B2) →

R
3/G× R

m to be the map φj(x) = g−1(x+ j).
By the definition of ελ, Ndλ(πG(∂H), ελλ

k)⊂ R
3/G is contained in a regular

neighborhood of πG(∂H). In view of (10.2) and (10.3), the projection Π ◦ φj |∂B2

is homotopic to πG ◦ α in Ndλ(πG(∂H), ελλ
k) ⊂ R

3/G and there exists a map
ζ : (B2, ∂B2)→(πGH, πG◦α) so that ζ|Ω = Π◦φj |Ω, where Ω = (Π◦φj)−1(πG(Xk′)).

Note, from Proposition 9.6, that

#(πG(|σ|) ∩ ζ(B2)) ≥ circ(Xk′ ∩H,α,H)

for every σ ∈ Σ(Xk′ ∩H,X ). Thus

#(g(πG(|σ|) × R
m) ∩ (B2 + j)) = #((πG(|σ|)× R

m) ∩ g−1(B2 + j))

= #((πG(|σ|)× R
m) ∩ φj(B2))

≥ #(πG(|σ|) ∩ Πφj(B
2))

= #(πG(|σ|) ∩ ζ(B2))

≥ circ(Xk′ ∩H,α,H)

for all σ ∈ Σ(Xk′ ∩H,X ). This concludes the proof in the case m = 0.
Suppose now m ≥ 1. It suffices to find A = A(η) ≥ 1 so that

(10.4) φj(B
2) ⊂ R

3/G× [−Aλk, Aλk]m.

Let x ∈ ∂B2 and y ∈ B
2. By quasisymmetry of g−1, we have

|φj(y)− φj(x)| =
∣∣g−1(y + j)− g−1(x+ j)

∣∣
≤ ηg−1

( |y − x|
|(−x)− (x+ j)|

) ∣∣g−1(−x)− g−1(x + j)
∣∣

≤ ηg−1

( |y − x|
2− |j|

)
ηg−1

(2 + |j|
2

)
|g−1(−x)− g−1(x)|

≤ ηg−1 (1) ηg−1(2) diamdλ,m
g−1(∂B2).

Since
g−1(∂B2) = |β| ⊂ Ndλ,m

(πG(∂H), ελλ
k),

(10.4) holds with A = C(λ)ηg−1 (1)ηg−1(2). The claim now follows. �
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The proof of Theorem 10.1 is based on Lemma 10.2 and unknotting properties
of quasisymmetric tubes; see Propositions 11.1 and 11.3.

Proof of Theorem 10.1. We first consider the case m ≥ 1. Let α : S1 → ∂H be the
(λk, L)-quasisimilar meridian in the statement of the theorem and let k′ > k + 1.
We assume, as we may, that circ(Xk′ ∩H,α,H) > 0. So

#(|σ| ∩ φ(B2)) ≥ circ(Xk′ ∩H,α,H)

for all σ ∈ Σ(Xk′ ∩H,X ) and all maps φ : (B2, ∂B2) → (H,α).

By Lemma 9.4, there exists an (λk, L′)-quasisimilar, thus η′-quasisymmetric,
embedding κ : B2+m×S

1 → Ndλ,m
(πG(∂H), ελλ

k/3) so that κ(0, x) = (πG◦α(x), 0)
for x∈S

1, where the constantL′ and the homeomorphism η′ : [0,∞)→ [0,∞) depend
only on dλ,m and L. Recall that Ndλ,m

(πG(∂H), ελλ
k)⊂πG(R3 \Xk+1)×R

m.

Set T = f ◦ κ(B2+m × S
1) ⊂ R

3+m and h = f ◦ κ. By Proposition 11.1,
there exist an η′′-quasisymmetric map χ : R3+m → R

3+m, η′′ = η′′(m, η, η′), and
a constant δ0 = δ0(m, η, η

′) > 0 so that χ(T ) contains the tubular neighbor-
hood N3+m(∂B2, 2δ0) of ∂B2 in R

3+m and that χ ◦ f ◦ πG ◦ α : S1 → R
3+m

is homotopic in χ(T ) to the identity map id: ∂B2 → R
2 × R

1+m. Set β =
f−1 ◦ χ−1 ◦ idR3+m |S1 : S1 → R

3/G× R
m. Thus we have

B
2+m × S

1

κ

����
���

���
���

�

S
1
��

����
���

���
��

� �

������������ πG◦α ��
β

�� R3/G× R
m

f

��
R

3+m
R

3+mχ		

where both diagrams commute and the maps πG ◦ α and β are homotopic in
κ(B2+m × S

1).
Note that χ ◦ f : R3/G × R

m → R
3+m is η′′′-quasisymmetric for some η′′′ =

η′′′(η, η′′).
Since β is homotopic to πG ◦α in κ(B2+m×S

1) ⊂ Ndλ,m
(πG(∂H), ελλ

k/3) and
dist(∂B2, χ ◦ f(πG(Xk+1)× R

m)) > 2δ0, we can find, by applying Lemma 10.2 to
g = χ ◦ f and setting δ = δ0, a constant A = A(η′′′,m) so that

(10.5) #
(
χ(f(w)) ∩ (

B
2 + j

)) ≥ circ(Xk′ ∩H,α,H),

for every w ∈ Σ̂m(Xk′ ,X , Aλk) and j ∈ {0} ×B1+m(δ0).
Using (10.5) we estimate the conformal modulus of the m-wall family χ ◦

f(Σ̂m(Xk′ ,X , Aλk)) in R
3+m. Set J = {0} × B1+m(δ0). By the co-area formula,

we have, for w ∈ Σ̂m(Xk′ ,X , Aλk), that
H1+m(χ(f(w))) ≥ H1+m

(
χ(f(w)) ∩ (

B
2 ×B1+m(δ0)

))
≥

∫
J

#
(
χ(f(w)) ∩ (

B
2 + j

))
dH1+m(j) ≥ circ(Xk′ ∩H,α,H)H1+m(J).
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Thus

ρ =
1

circ(Xk′ ∩H,α,H) H1+m(J)
χB2×J ,

is an admissible function for the family χ(f(Σ̂m(Xk′ ,X , Aλk))), and

Mod 3+m
1+m

(χ(f Σ̂m(Xk′ ,X , Aλk))) ≤
∫
R3+m

ρ(3+m)/(1+m) dH3+m

=
H2(B2)Hm+1(J)

Hm+1(J)(3+m)/(1+m)

( 1

circ(Xk′ ∩H,α,H)

)(3+m)/(1+m)

≤ C(δ0,m)
( 1

circ(Xk′ ∩H,α,H)

)(3+m)/(1+m)

.

This concludes the proof for m ≥ 1.
In the case m = 0, we apply Proposition 11.3 to the mapping h = f ◦ κ and

the 3-manifold M = f(πG(H)). Otherwise the proof is the same. �

11. Quasisymmetric tubes

In Proposition 11.1 we quantify Zeeman’s unknotting theorem to provide a qua-
sisymmetric unknotting of quasisymmetric tubes in R

n, n ≥ 4. In Proposition 11.3
we apply Dehn’s Lemma to treat the unknotting in R

3.

Proposition 11.1. Let m ≥ 1, let h : B2+m×S
1 → R

3+m be an η-quasisymmetric
embedding, and let T = h(B2+m × S

1). Then there exist an η′-quasisymmetric
homeomorphism χ : R3+m → R

3+m, η′ = η′(m, η), and a constant δ0 = δ0(m, η) >
0 so that

(1) χ(T ) contains the tube N3+m(∂B2, δ0) in R
3+m,

(1)′ in particular, ∂B2 + j ⊂ χ(T ) for j ∈ {0} ×B1+m(δ0) ⊂ R
2 × R

1+m, and

(2) χ ◦ h|({0} × S
1) is homotopic to the identity map id|∂B2 in χ(T ).

Here B2+m×S
1 has the natural Euclidean metric inherited fromR

2+m ×R
2=R

3+m.
We first state a bilipschitz version of Zeeman’s theorem on unknotting a PL

1-sphere in S
q for q ≥ 4. Since the claim follows from Theorem 5.6 and Corollary 5.9

in [16] almost directly, we omit the details.
For the statement, let 	 ∈ Z+ and m ≥ 1. Given w1, . . . , wn ∈ (1/	)Z3+m, we

set w = (w1, . . . , wn), and let γw be the piecewise linear curve [w0, w1]∪ [w1, w2]∪
· · · ∪ [wn−1, w0] in R

3+m. Given R > 0, we also denote by J (R, 	,m;n) the
collection of Jordan curves in {γw ⊂ B3+m(R) : w ∈ ((1/	)Z3+m)n}.

Lemma 11.2. Let R ≥ 1, 	 ∈ Z+, m ≥ 1, and n ≥ 3. Then there exists
L0 = L0(R, 	,m, n) so that given γ ∈ J (R, 	,m;n) there exists an L0-bilipschitz
map χ : R3+m → R

3+m satisfying χ(γ) = ∂B2(diam γ)× {0} ⊂ R
2 × R

1+m.
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Proof of Proposition 11.1. Set S1 = {0} × S
1. Then, by quasisymmetry,

diamh(S1) ≤ η(5)dist(h(S1), ∂T ).

Indeed, set κ = dist(h(S1), ∂T ) and choose x ∈ S
1 and y ∈ ∂(B2+m × S

1) so
that |h(x)− h(y)| = κ. Then

|h(x′)− h(x)| ≤ η
( |x′ − x|
|y − x|

)
|h(y)− h(x)| ≤ η(5)κ

for all x′ ∈ S
1.

We fix an orientation of h(S1) and choose points z0, z1, . . . , zn = z0 on h(S1)
as follows. Let z0 be any point on h(S1). After zi has been chosen, let zi+1 be the
last point z on the subarc of h(S1) starting at zi and ending at z0 according to
the orientation, so that |z − zi| = κ/100 if such a point exists; otherwise, we have
|z0 − zi| < κ/100 and in this case we remove the already defined value of zi and
set n = i and zn = z0. We show next that n ≤ n0 for some n0 = n0(η) > 0.

Let si = h−1(zi) ∈ S
1 for 0 ≤ i ≤ n − 1. Then there exists an i so that

|si − si+1| ≤ 2π/n; for this particular i,

κ/100 ≤ |zi − zi+1| ≤ η
( |si − si+1|
|(−si)− si|

)
|h(−si)− h(si)| ≤ η(1/n) η(5)κ.

Hence |si − si+1| ≥ C0, where C0 depends on η, and n ≤ 2π/C0.
We next fix points wi ∈ (κ/(1000

√
mn0))Z

3+m so that |wi − zi| < κ/500 and
let γ be the polygonal path [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wn−1, w0].

By replacing the points wi with points in

(κ/(1000
√
3 +mn0))Z

3+m ∩B3+m(zi, κ/500),

we may assume that γ is a Jordan curve. Indeed, if γ is not a Jordan curve,
then there exist indices i and j, i > j, so that (wi, wi+1) ∩ (wj , wj+1) 
= ∅. Since
B3+m(zi, κ/500) contains more than n3+m

0 points in (κ/(1000
√
3 +mn0))Z

3+m

and there are at most n0(n0 − 1)/2 directions between the points w1, . . . , wn,
there exists w′ ∈ B3+m(zi, κ/500) so that (wi, w

′) ∩ (wk, wk+1) = ∅ for all k < i.
We remove all the intersections inductively on i.

Since maxw∈[wi,wi+1] dist(w, zi) ≤ κ/40, we have maxw∈γ dist(w, h(S1)) ≤ κ/40.
Thus dist(γ, ∂h(T )) ≥ 39κ/40.

Let ι : R3+m → R
3+m be a linear transformation ι(x) = −w0 + x/κ which

maps γ into B3+m(η(5)). Then

ι(γ) ∈ J (2η(5), 1/(1000
√
3 +mn0),m;n).

By Lemma 11.2, there exists an L0-bilipschitz, therefore η
′-quasisymmetric, home-

omorphism χ′ of R3+m so that χ′(ι(γ)) = ∂B2(diam ι(γ)) ⊂ R
2 × R

1+m, where η′

depends only on η(5), m, and n0. Then χ = (diam ι(γ))−1χ′ ◦ ι is also η′-quasi-
symmetric. Since n ≤ n0 and n0 depends only on η, we have that η′ = η′(m, η).
The existence of the constant δ0 follows from quasisymmetry of χ and geometry
of B2+m × S

1. �
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Proposition 11.3. Let M be a PL 3-manifold with boundary in R
3. Suppose

h : B2 × S
1 → R

3 is an η-quasisymmetric embedding with the properties that h
embeds {0} × S

1 into ∂M and h|({0} × S
1) is null-homotopic in M . Let T =

h(B2 × S
1). Then there exist an η′-quasisymmetric homeomorphism χ : R3 → R

3,
η′ = η′(η), and a constant δ0 = δ0(η) > 0 so that

(1) χ(T ) contains the tube N3(∂B2, δ0) in R
3,

(1)′ in particular, ∂B2 + j ⊂ χ(T ) for j ∈ {0} × [−δ0, δ0] ⊂ R
2 × R, and

(2) χ ◦ h|({0} × S
1) is homotopic to the identity map id|∂B2 in χ(T ).

Proof. Let α : S1 →M be the map x �→ h(0, x). Then, by assumption, α is simple
and null-homtopic in M . We show first that α is an unknot. It suffices to show
that there exists an embedding τ : B2 →M for which τ |∂B2 = α.

Since α is null-homotopic, there exists an extension α̂ : B2 →M of α. Since M
is a PL manifold with boundary, ∂M has a collar in M ; see Corollary 2.26 in [16].
Thus we may assume that ∂B2 has a neighborhood A in B

2 for which α̂|A is an
embedding and α̂−1(α̂(A)) = A. Thus the conditions of Dehn’s Lemma (see, e.g.,
Chapter 4 of [13]) are satisfied and there exists an embedding τ : B2 →M so that
τ |∂B2 = α.

To unknot quantitatively, we follow the proof of Proposition 11.1 almost ver-
batim. Let κ = dist(h(S1), ∂T ) and n0(η) be as in the proof of Proposition 11.1.
Then there exists a polygonal Jordan path

γ = [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wn−1, w0]

with vertices wi ∈ (κ/(1000
√
3 +mn0))Z

3+m so that maxw∈γ dist(w, h(S1)) ≤
κ/20 and dist(γ, ∂h(T )) ≥ 19κ/20. Therefore γ is PL-isotopic to h({0} × S

1)
in h(T ). We may now fix a scaled L0 = L0(η,m, n0)-bilipschitz, therefore η′-
quasisymmetric, homeomorphism χ : R3 → R

3 so that χ(h(S1)) = ∂B2, as in the
proof of Proposition 11.1. Conditions (1) and (2) in the statement now follow by
quasisymmetry. �

12. Growth and a modulus estimate for walls

The main result in this section is a lower bound on the conformal modulus of a
m-wall family, which corresponds partly to the first claim of [12, Proposition 4.5].

Proposition 12.1. Suppose (R3/G,X , (C,A,W), θ, dλ) is a Semmes space. Let
k ≥ 0, let Y be a collection of cubes-with-handles in C(Xk) of positive genus, and
let Y be their union. Let m ≥ 0. Then the conformal modulus of m-walls satisfies

(12.1) Mod 3+m
1+m

(
Σ̂m(Y,X , a)) ≥ C

(
(#Y)

( a

λk

)m )1−(3+m)/(1+m)

for every a > 0 and a constant C = C(C,W,A,m) > 0.
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To obtain the estimate, we first fix a collection of cubes-with-handles H =
{H0,H1, . . .}, one for each genus, and a special family of longitudes in each Hg as
follows.

Let Q(x, r) = [x1 − r, x1 + r] × [x2 − r, x2 + r] ⊂ R
2 for x = (x1, x2) ∈ R

2

and r > 0 and denote the origin of R2 by O. Set H0 = Q(O, 1)× [0, 1].
For each g > 0, fix points {p1, . . . , pg} in Q(O, 1 − 1/(10g)) having pairwise

distances at least 1/(20g). Let Ωg = Q(O, 1) \ ∪i(intQ(pi, 1/(100g))) and Hg =
Ωg × [0, 1]. Then Hg is a cube-with-g-handles. For every 0 ≤ t ≤ 1/(100g) and
every 0 < s < 1, fix a PL 1-cycle σgt,s in Hg having

(
∂Q(O, 1− t) ∪ ∂Q

(
p1,

1

100g
+ t

)
∪ · · · ∪ ∂Q

(
pg,

1

100g
+ t

))
× {s}

as a carrier.

Lemma 12.2. Given g > 0, the 1-cycles σgt,s defined above are longitudes of Hg
for all 0 ≤ t ≤ 1/(100g) and 0 < s < 1. Moreover, if ω is a 2-manifold in B

2 and
ζ : (ω, ∂ω) → (Hg, ∂Hg) is virtually interior essential, then ζ(ω) ∩ |σgt,s| 
= ∅.

Proof. We denote Ω = Ωg, H = Hg = Ωg × [0, 1], and σt,s = σgt,s.
To show that σt,s is a longitude, let α : S1 → ∂H be a meridian of H and

φ : (B2, ∂B2) → (H, α) a map. We claim that φ(B2) ∩ |σt,s| 
= ∅.
Consider first the case t = 0. Suppose aiming at a contradiction that there is an

s ∈ (0, 1) so that φ(B2)∩|σ0,s| = ∅. After postcomposing φ with a homeomorphism
from H \ |σ0,s| onto H \ (∂Ω× [0, 1]), we may assume that φ : (B2, ∂B2) → (H,Ω×
{0, 1}). Suppose that φ(∂B2) ⊂ Ω × {1}. Since φ is interior essential, φ(∂B2) is
not trivial in π1(Ω × {1}). Hence φ(∂B2) is not trivial in π1(Ω × [0, 1]) = π1(H).
Since φ(B2) ⊂ H, this is a contradiction.

We next prove the second statement in the lemma for t = 0. Let ζ : (ω, ∂ω) →
(H, ∂H) be the given map. Since ζ is virtually interior essential, it has an extension
ζ′ : Dω → H satisfying ζ′(Dω \ω) ⊂ ∂H, where Dω is the 2-cell in B

2 with ω ⊂ Dω

and ∂Dω ⊂ ∂ω; see Section 9.4. After applying a homotopy to ζ′ which leaves
ζ′|∂Dω fixed, we may assume that ζ′(Dω) ∩ ∂H = ζ′(∂Dω) ∩ ∂H. Since ζ′ is
interior essential, ζ′(Dω) ∩ |σ0,s| 
= ∅ for all s ∈ (0, 1). Since ζ′(∂Dω) ⊂ ζ(∂ω),
ζ(∂ω) ∩ |σ0,s| 
= ∅. Since ζ|∂ω = ζ′|∂ω, the claim follows.

We now verify φ(B2) ∩ |σt,s| 
= ∅ in the case 0 < t ≤ 1/(100g) for a given
s ∈ (0, 1). Let Ωt be the planar closed region with boundary |σt,0|, and Ht,s =
Ωt× [s/2, (1+s)/2] a cube-with-g-handles contained in H. Note that |σt,s| ⊂ ∂Ht,s.
Since H\Ht,s is a regular neighborhood of ∂H in H, φ−1Ht,s contains a component,
say ω′, on which φ|ω′ : (ω′, ∂ω′) → (Ht,s, ∂Ht,s) is virtually interior essential. Then,
by the argument above, φ(ω′)∩|σt,s| 
= ∅ and hence φ(B2)∩|σt,s| 
= ∅. This proves
the claim.

The second statement in the case t > 0 follows from the same argument
for t = 0. �

Proof of Proposition 12.1. By passing to a bilipschitz equivalent metric if neces-
sary, we may assume that dλ = dθ, where θ is a λ-modular embedding R

3/G→ R
n.
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As a preliminary step, we fix for every c = (Ac, Bc) ∈ C, a PL-homeomorphism
ξc : Ac → Hgc , where gc is the genus of Ac. Since C is finite, the mappings ξc are
uniformly bilipschitz, and there exists tC ∈ (0, 1/(100g)) so that

ξc(Bc) ∩ |σgct,s| = ∅

for every 0 ≤ t ≤ tC, every 0 < s < 1, and c ∈ C.
We fix a special family of longitudes for each Hg in H and an induced family

of longitudes on X as follows. For each g > 0, let

Σ(Hg,H) = {σgt,s : 0 ≤ t ≤ rC, 0 < s < 1};

and for g = 0, define Σ(H0,H) = ∅.
By Lemma 12.2, these 1-cycles are longitudes of Hg. Define for every H ∈ C(X )

an induced family of longitudes of H by

Σ(H,X ,H) = {ϕ−1
H ◦ ξ−1

cH
(σ) : σ ∈ Σ(HgH ,H)},

where gH is the genus of H and ϕH : Hdiff → cdiffH is the chart map in A.
By (9.2), every 1-cycle in Y of the form

τt,s =
∑
H∈Y

ϕ−1
H ◦ ξ−1

cH (σgHt,s ),

0 ≤ t ≤ tC and 0 < s < 1, is a longitude of Y . Set

Σ(Y,X ,H) = {τt,s : 0 ≤ t ≤ tC and 0 < s < 1},

and

Σm(Y,X ,H; a) = {|τ | × [−a, a]m : τ ∈ Σ(Y,X ,H)}
the collection of corresponding m-walls over Y of height a.

Since Σm(Y,X ,H; a) ⊂ Σm(Y,X ; a), it suffices to show that the estimate (12.1)
holds for the surface family Σ̂m(Y,X ,H; a) = (πG × id) (Σm(Y,X ,H; a)).

Before continuing, we observe that, since the embedding θ : R3/G → R
n is

λ-modular, there exists L = L(C,A,W) ≥ 1 so that for every k ≥ 0 and every
H ∈ C(Xk), the map

ζH = πG ◦ ϕ−1
H ◦ ξ−1

cH
|ξcH (cdiffH ) : ξcH (c

diff
H ) → πG(H

diff)

and its extension ξcH (cdiffH )× R
m → (πG(H)× R

m, dλ,m) defined by

ζH : (x, z) �→ (πG ◦ ϕ−1
H ◦ ξ−1

cH
(x), λkz)

are (λk, L)-quasisimilarities.

In the following estimation of the modulus of surface families, we denote by Hβ
δ

and by Hβ
e the β-dimensional Hausdorff measures with respect to dλ,m and the

Euclidean metric, respectively.
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Suppose that ρ is an admissible Borel function for Σ̂m(Y,X ,H; a) on R
3/G×

R
m, that is, ∫

πG(|τt,s|)×[−a,a]m
ρ dH1+m

δ ≥ 1

for every τt,s ∈ Σ(Y,X ,H). We assume, as we may, that ρ is supported in πG(Y \
Xk+1)× [−a, a]m.

We have, for every 0 ≤ t ≤ tC and every 0 < s < 1, that

∑
H∈Y

(Lλk)1+m
∫
|σgH

t,s |×[−λ−ka,λ−ka]m
ρ ◦ ζH dH1+m

e

≥
∑
H∈Y

∫
ζH(|σgH

t,s |×[−λ−ka,λ−ka]m)
ρ dH1+m

δ =

∫
πG(|τt,s|)×[−a,a]m

ρ dH1+m
δ ≥ 1.

Thus

∑
H∈Y

∫
HgH

×[−λ−ka,λ−ka]m
ρ ◦ ζH dH3+m

e

≥ C

∫
[0,tC]×[0,1]

( ∑
H∈Y

∫
|σgH

t,s |×[−λ−ka,λ−ka]m
ρ ◦ ζH dH1+m

e

)
dH2

e

≥ C tC λ
−k(1+m),(12.2)

where C depends only (C,A,W).

Let p = (3 +m)/(1 +m). Then, by (12.2),

∑
H∈Y

∫
HgH

×[−λ−ka,λ−ka]m
(ρ ◦ ζH)p dH3+m

e

≥
( ∑
H∈Y

H3+m
e (HgH × [−λ−ka, λ−ka]m)

)1−p

×
( ∑
H∈Y

∫
HgH

×[−λ−ka,λ−ka]m
ρ ◦ ζH dH3+m

e

)p

≥ C(#Y)1−p(λ−ka)m(1−p)λ−k(1+m)p = C(#Y)1−pλ−k(m+p)am(1−p),(12.3)

where C > 0 depends only on m and (C,A,W).

Since ζH is a (λk, L)-quasisimilarity, ζ−1
H is Lλ−k-Lipschitz. By a change of

variables,

∫
πG(H)×[−a,a]m

ρp dH3+m
δ =

∫
πG(H)×[−a,a]m

(ρ ◦ ζH)p ◦ ζ−1
H dH3+m

δ

≥
(λk
L

)3+m
∫
HgH

×[−λ−ka,λ−ka]m
(ρ ◦ ζH)p dH3+m

e ,
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for every H ∈ Y. Since ρ is supported in πG(Y \Xk+1)× [−a, a]m, we have

∫
R3/G×Rm

ρp dH3+m
δ =

∫
πG(Y \Xk+1)×[−a,a]m

ρp dH3+m
δ

≥ (λk/L)3+m
∑
H∈Y

∫
HgH

×[−λ−ka,λ−ka]m
(ρ ◦ ζH)p dH3+m

e

≥ C(#Y)1−p λk(3+m)am(1−p) λ−k(m+p) = C
(
(#Y)(a/λk)m)1−p

,

where C depends only on m and (C,A,W). The claim follows. �

13. A necessary condition for quasisymmetric parametriza-
tion

The existence of a quasisymmetric parametrization of (R3/G×R
m, dλ,m) by R

3+m

requires a balance among the growth, circulation and the scaling factor of the
Semmes space. We prove this result in this section.

Theorem 13.1. Let (R3/G,X , (C,A,W), θ, dλ) be a Semmes space, and let m ≥ 0.
Assume that X has order of growth at most γ and order of circulation at least ω.
Suppose that there exists a quasisymmetric homeomorphism (R3/G×R

m, dλ,m) →
R

3+m. Then

λm ω(3+m)/2 ≤ γ.

We obtain now Theorem 1.3 as a corollary.

Proof of Theorem 1.3. Since ω3 > γ2 ≥ 1, we may fix λ so that ω−1/2 < λ < γ−1/3.
On the one hand, λγ3 < 1, so (R3/G×R

m, dλ,m) is Ahlfors (3+m)-regular for all
m ≥ 0. On the other hand,

λm ω(3+m)/2 > γ,

so there are no quasisymmetric homeomorphisms (R3/G×R
m, dλ,m) → R

3+m for
any m ≥ 0. The linear local contractibility follows from Proposition 7.9. �

To combine the modulus estimates in Sections 10 and 12, we need a one-sided
comparison between the modulus of a wall family and the modulus of a quasisym-
metric image of the same family. The proof of Proposition 4.1 in [12] for the
case of the Whitehead continuum applies almost verbatim to the Semmes spaces
R

3/G× R
m; we omit the details.

Proposition 13.2. Suppose f : R3/G × R
m → R

3+m is an η-quasisymmetric
homeomorphism, and Y is the union of a nonempty subcollection of cubes-with-
handles in C(Xk) for some k ≥ 1. Then there exists C = C(η) > 0 so that, for
a > 0,

Mod 3+m
1+m

(Σ̂m(Y,X , a)) ≤ CMod 3+m
1+m

f(Σ̂m(Y,X , a)).
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Proof of Theorem 13.1. Let α0 ∈ M(X ) be a meridian as in Definition 9.2. In view
of Lemma 9.3, when considering a lower bound for the circulation, we may restrict
to a subcollection M of MA(X ;α0) consisting of uniformly quasisimilar meridians.

Since the order of circulation of X is at least ω, there exists C > 0 so that for
each 	 > 1, there exist k, k′ ≥ 0, k′ − k ≥ 	, H ∈ C(Xk), and α : S

1 → ∂H in M so
that

circ(Xk′ ∩H,α,H) ≥ Cωk
′−k.

Let f be an η-quasisymmetric mapping (R3/G × R
m, dλ,m) → R

3+m. From
Lemma 9.3, Theorem 10.1, Proposition 12.1, and Proposition 13.2 it follows that

(
#C(Xk′ ∩H)(Aλk)mλ−k

′m)1−p ≤ C
( 1

circ(Xk′ ∩H,α,H)

)p
,

where p = (3 +m)/(1 +m); C > 0 depends only on (C,A,W), λ, and m; and A is
the constant defined in Theorem 10.1. Since the order of growth of X is at most
γ, there exists C = C(C,W,A,m, η, α0) ≥ 1 such that

ω(k′−k)p ≤ C (circ(Xk′ ∩H,α,H))
p ≤ C

(
#C(Xk′ ∩H)(Aλk)mλ−k

′m)p−1

≤ C
(
γk

′−kλkmλ−k
′m)p−1 ≤ C λ(k−k

′)m(p−1)γ(k
′−k)(p−1),

as 	→ ∞. Thus
λm ωp/(p−1) ≤ C1/(k′−k)γ ≤ C1/�γ,

as 	→ ∞. The claim now follows. �

14. Local parametrizability

In this section we consider a local version of Theorem 13.1 that compares growth
and circulation in parallel along a sequence of blocks of (Xk) targeting a point
x ∈ πG(X∞). Theorem 14.3 below can be used to detect the quasisymmetric
nonparametrizability of some Semmes spaces, undetected by Theorem 13.1.

Let (R3/G,X , (C,A,W)) be a decomposition space of finite type. Given x ∈
πG(X∞), we denote by (Hk(x)) the unique sequence in C(X ) for which x ∈
πG(Hk(x)) and Hk(x) ∈ C(Xk) for every k ≥ 0. We call (Hk(x)) the branch
of X at x.

We denote by M(X , x) the collection of all meridians on the branch (Hk(x))
of X at x. Given a meridian α0 ∈ M(X , x), we write

MA(X , x;α0) = MA(X ;α0) ∩M(X , x),
where MA(X ;α0) is the collection of meridians in X related to α0 by A defined
in (9.4).

Definition 14.1. At a point x ∈ πG(X∞), we say that the order of circulation of X
is at least ω ≥ 0 and the order of growth of X is at most γ ≤ ∞ concurrently if the
following holds. There exists a meridian α0 ∈ M(X , x) and constants C1, C2 > 0
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such that for every 	 ≥ 0 there exist k′ > k ≥ 0 with k′ − k > 	 and a meridian
α : S1 → ∂Hk(x) in MA(X , x;α0) satisfying

circ(Xk′ ∩Hk(x), α,Hk(x)) ≥ C1 ω
k′−k,

and
#C(Xk′ ∩Hk(x)) ≤ C2 γ

k′−k.

Remark 14.2. By mixing the steps in the constructions of the Whitehead con-
tinuum and of Antoine’s necklace, we may build a defining sequence X having
the following property. Sequence X has order of growth at most γ and order
of circulation at least ω and, moreover, ω3 < γ2. Nevertheless, at each point
x ∈ πG(X∞), a concurrent pair (ω(x), γ(x)), as defined in 14.1, may be chosen so
that ω3(x) > γ2(x).

Theorem 14.3. Let (R3/G,X , (C,A,W), θ, dλ) be a Semmes space and let x ∈
πG(X∞). Suppose at x, X has order of growth at most γ(x) and order of circulation
at least ω(x) concurrently. If for some δ > 0 and a neighborhood U of x there exists
a quasisymmetric embedding (U × (−δ, δ)m, dλ,m) → R

3+m then

(14.1) λm ω(x)(3+m)/2 ≤ γ(x).

Sketch of the proof. The only essential modification to the proof of Theorem 13.1
is related to the application of a local version of Theorem 10.1.

Let U ⊂ R
3/G be an open set containing x and f : (U × (−δ, δ)m, dλ,m) →

R
3+m be a quasisymmetric embedding. We may fix a ball B3+m(f(x), r0) in

f(U × (−δ, δ)m), and an integer k0 > 0 so that πG(Hk0 (x)) × [−λk0 , λk0 ]m ⊂
U × (−δ, δ)m. Under these choices of parameters, the quasisymmetric unknotting
of images of meridians (Proposition 11.1 and Proposition 11.3) can be performed in
B3+m(f(x), r0). Thus the proof of Theorem 10.1 can be carried over to the defining
sequence (Xk)k≥k0 . We omit the straightforward modifications of Theorem 10.1
and the related lemmas in Sections 10, 11, and 12. �

15. Singular fibers of Semmes spaces

In this section, we consider an application of Theorem 14.3 to a question on the
quasisymmetric equivalence of product spaces (R3/G× R

1, dλ,1) for 0 < λ < 1.
Let (R3/G, (Xk), dλ) be a Semmes space and m ≥ 0. A point x ∈ R

3/G is
said to be (quasisymmetrically) λ-singular of index m if there is no quasisymmet-
ric homeomorphism from any neighborhood of (x, 0) in R

3/G × R
m to a subset

of R
3+m; in this case, {x} × R

m ⊂ R
3/G × R

m is called a singular fiber. We
denote by singλ,m(R3/G) the set of λ-singular points of index m and note that
singλ,m(R3/G) is a closed subset of πG(X∞).

A quasisymmetric map (R3/G × R
m, dλ,m) → (R3/G′ × R

m, dμ,m) between
two Semmes spaces induces a homeomorphism from singλ,m(R3/G) × R

m to
singμ,m(R3/G′)× R

m. For m = 1, the induced map is bilipschitz on nonisolated
fibers.
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Theorem 15.1. Let (R3/G, (Xk), dλ) and (R3/G′, (Yk), dμ) be two Semmes spaces,
let m ≥ 1, and let f : (R3/G×R, dλ,m) → (R3/G′×R, dμ,m) be an η-quasisymmetric
map. Then

f(singλ,m(Rn/G)× R) = singμ,m(R3/G′)× R.

Furthermore, if m = 1 and A is the collection of accumulation points in
singλ,1(R

3/G), then f |A× R is L0-bilipschitz for some L0 ≥ 1.

By quasisymmetry, the bilipschitz rigidity of the singular fibers yields the nest-
ing of corresponding branches. We formalize this observation in the next theorem.
As an application of this result, we obtain the quasisymmetric inequivalence of
(R3/Bd × R

1, dλ,1) and (R3/Bd × R
1, dλ′,1) for λ 
= λ′ and 1/2 < λ′ < 1; see

Theorem 1.5 in the introduction. We postpone this discussion to Section 17.

Theorem 15.2. Let 0 < λ < μ < 1, let (R3/G, (Xk), dλ) and (R3/G′, (Yk), dμ)
be Semmes spaces, and let f : (R3/G × R, dλ,1) → (R3/G′ × R, dμ,1) be an η-
quasisymmetric map. Let x ∈ singλ,1(R

3/G) be an accumulation point. Then, for
any 	 > 0, there exists k0 = k0(η, dλ, dμ, 	) > 0 so that

f(πG(Hk(x)) × R) ⊂ πG′(Hk+�(y))× R

for all k ≥ k0, where y = proj f(x) is the image of f(x) under the projection
proj: R3/G′×R → R

3/G′, and (Hk(x)) and (Hk(y)) are the branches of X = (Xk)
and Y = (Yk) at x and y respectively.

We begin with some auxiliary results on lines in metric spaces. Let (X, d) be
a metric space. We say that L ⊂ X is a line if L is isometric to R. We say that a
line L is parallel to a line L′ if there exists a > 0 so that dist(p, L′) = a for every
p ∈ L; in this case, L′ is also parallel to L and dist(L,L′) = a.

Lemma 15.3. Suppose f : X → Y is an η-quasisymmetric map between two metric
spaces that maps two given parallel lines L and L′ to parallel lines fL and fL′.
Then there exists C = C(η) > 1 so that

1

C

distY (fL, fL
′)

distX(L,L′)
≤ distY (f(p), f(q))

distX(p, q)
≤ C

distY (fL, fL
′)

distX(L,L′)

for all p, q ∈ L with distX(p, q) ≥ distX(L,L′).

Proof. Suppose that the points p, q ∈ L have distance distX(p, q) ≥ distX(L,L′).
Since L is a line, there exist points p = p0, . . . , pk = q on L so that

distX(L,L′) ≤ distX(pi, pi−1) ≤ 2 distX(L,L′)

for all 1 ≤ i ≤ k. Since the lines L and L′ are parallel, the lines fL and fL′ are
parallel, and f is η-quasisymmetric, there exists C0 = C0(η) > 1 so that

1

C0
distY (fL, fL

′) ≤ distY (f(pi), f(pi−1)) ≤ C0 distY (fL, fL
′)

for all 1 ≤ i ≤ k. Since L and fL are lines, the claim follows by summing. �
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Corollary 15.4. Let f : X → Y be an η-quasisymmetric map between two metric
spaces that maps two given parallel lines L and L′ to two parallel lines fL and fL′.
Suppose, in addition, that f maps a sequence (Li) of lines parallel to L tending
to L to a sequence (fLi) of lines parallel to fL tending to fL. Then there exists
C = C(η) > 1 so that

1

C

distY (fL, fL
′)

distX(L,L′)
≤ distY (f(p), f(q))

distX(p, q)
≤ C

distY (fL, fL
′)

distX(L,L′)

for p, q ∈ L.

Proof. Calculations using Lemma 15.3 show that there exists a constant C > 1 so
that

1

C

distY (fL, fL
′)

distX(L,L′)
≤ distY (fL, fLi)

distX(L,Li)
≤ C

distY (fL, fL
′)

distX(L,L′)

for every i ≥ 0.
Given p, q ∈ L, we fix a line Li so that distX(L,Li) < distX(p, q). The claim

now follows by applying Lemma 15.3 again. �

Proof of Theorem 15.1. The first claim is clear.
Suppose next that f : R3/G × R → R

3/G′ × R is quasisymmetric and x ∈
singλ,1(R

3/G) is an accumulation point. We choose a point x′ in singλ,1(R
3/G)

so that dλ,1(x, x
′) ≥ 1

2 diam singλ,1(R
3/G), and let L and L′ be the singular fibers

{x} × R and {x′} × R, respectively. In view of Corollary 15.4,

1

C0
≤ distμ,1(f(p), f(q))

distλ,1(p, q)
≤ C0

for all p = (x, s) and q = (x, t) in the singular fiber {x}×R, where C0 > 1 depends
only on the data and not on x.

Let p = (x, s) and w = (y, r) ∈ singλ,1(R
3/G) × R, and set q = (x, t), where

t is defined by t = r + dλ,1(x, y) if r ≥ s and by t = r − dλ,1(x, y) if r < s. So,
distλ,1(p, w) = distλ,1(p, q). By η-quasisymmetry,

1

η(1)
≤ distμ,1(f(p), f(w))

distμ,1(f(p), f(q))
≤ η(1).

Hence
1

C0 η(1)
≤ distμ,1(f(p), f(w))

distλ,1(p, w)
≤ C0 η(1).

The second claim now follows. �

Proof of Theorem 15.2. By properties of the Semmes metric (see Section 7.1),
there exist C1 > 1 and C2 > 1 so that

diamdλ,1
(πG(T )) ≤ C1λ

level (T )
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and

distdμ,1(singμ,1(R
3/G′) ∩ πG′(T ′), ∂πG′(T ′)) ≥ 1

C2
μlevel (T ′)

for every T ∈ C(X ) and T ′ ∈ C(Y).
Let L0 ≥ 1 be the constant in Theorem 15.1. Since λ < μ, we may fix 	 > 0

and k0 > 0 so that
L0C1C2η(1)λ

k < μk+�

for k ≥ k0.
Since f({x}×R) = {y}×R, f({x}×R) ⊂ f(πG(Hk(x))×R)∩(πG′ (Hk′(y))×R)

for k, k′ ≥ 1. From Theorem 15.1 and the η-quasisymmetry, it follows that for any
k ≥ k0,

distH(f(∂πG(Hk(x))× R), f({x} × R)) ≤ L0η(1) diamdλ,1
πG(Hk(x))

≤ L0C1η(1)λ
k ≤ μk+�/C2 ≤ distdλ,1

(∂πG′(Hk+�(y))× R, {y} × R),

where distH(f(∂πG(Hk(x)) × R), f({x} × R)) is the Hausdorff distance between
f(∂πG(Hk(x)) × R) and f({x} × R) in the Semmes metric dμ,1. Thus

f(πG(Hk(x)) × R) ⊂ πG′(Hk+�(y))× R.

This concludes the proof. �

16. Necklaces

As an application of Theorem 8.2 we prove the existence of quasisymmetric parame-
trization for decomposition spaces associated with an Antoine necklace when the
chains are long. For the statement, we introduce some terminology.

Let I ≥ 3. A union
⋃I
i=1 Ti of pairwise disjoint tori T1, . . . , TI in R

3 is called
a chain if Ti ∪ Tj is a Hopf link if |i − j| = 1 or {i, j} = {1, I}, and an unlink
otherwise.

Suppose T a torus in R
3 and

⋃I
i=1 Ti is a torus chain contained in intT in such

a way that there is a homeomorphism h : T → B
2×S

1 satisfying h(∂T ) = ∂B2×S
1

and having the property that arguments of p(h(Ti)) are contained, for each i =
1, . . . , I, in [2πi/I, 2π(i+ 4/3)/I]. Here p : B2 × S

1 → S
1 is the projection map

(x, s) �→ s. In this case, we say
⋃I
i=1 Ti is a necklace chain in T .

Let φi : U → Ui be PL-homeomorphisms from a neighborhood U of T onto
mutually disjoint neighborhoods Ui of Ti, 1 ≤ i ≤ I, satisfying Ti ⊂ Ui ⊂ T ⊂ U .
The initial package (T, T1, . . . , TI ;φ1, . . . , φI) yields a defining sequence X = (Xk)
and a decomposition space, called an Antoine’s I-necklace space, R3/G; see Sec-
tion 4.2. It is easy to see that the diameters of components of Xk can be arranged
to tend to zero. Thus the components of X∞ are singletons and R

3/G is homeo-
morphic to R

3.
As discussed in Section 4.2, the initial package induces a welding structure for

the I-necklace space R3/G, therefore for each λ > 0, a modular embedding of R3/G
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and a Semmes metric dλ on R
3/G. The Semmes spaces (R3/G, dλ) associated with

necklaces are linearly locally contractible because the tori Ti are contractible in T ,
and these spaces are Ahlfors 3-regular when λ3I < 1.

The existence of a quasisymmetric parametrization is proved in the following.

Theorem 16.1. For every I ≥ 10, there exists a Semmes metric d on the de-
composition space R

3/G associated to an Antoine I-necklace so that (R3/G, d) is
quasisymmetric to R

3.

The proof of Theorem 16.1 relies on the possibility of fitting a necklace chain of
length I in a torus, using only tori all similar to the larger one; we find it easier to
fit a rectangular chain in a rectangular torus than to fit a round chain in a round
torus.

16.0.1. Rectangular necklaces. Let 0 < λ < b < a. We define

R+(a, b, λ) =
[
− λ

2
, a+

λ

2

]
×
[
− λ

2
, b+

λ

2

]
,

R−(a, b, λ) =
(λ
2
, a− λ

2

)
×
(λ
2
, b− λ

2

)
,

and

T (a, b, λ) = (R+(a, b, λ) \R−(a, b, λ))×
[
− λ

2
,
λ

2

]
.

Let L(a, b) = ∂([0, a] × [0, b]) × {0} be the boundary of the rectangle [0, a] ×
[0, b]× {0}. We say T (a, b, λ) is a torus with length a+ λ, width b + λ, thickness
λ, and core L(a, b).

Let T = T (a, b, λ). We say that components of

∂T ∩ (R× {−λ/2, b+ λ/2} × R) and ∂T ∩ ({−λ/2, a+ λ/2} × R
2
)

are the long and short faces of T , respectively. We call the components of

∂T ∩ (
R

2 × {−λ/2, λ/2})

the boundary annuli of T .
We call the 3-cells

[
− λ

2
, a+

λ

2

]
×
[
− λ

2
,
λ

2

]
×
[
− λ

2
,
λ

2

]
and

[
− λ

2
, a+

λ

2

]
×
[
b− λ

2
, b+

λ

2

]
×
[
− λ

2
,
λ

2

]

the long sides (front and back ) of T , and similarly

[
− λ

2
,
λ

2

]
×
[
− λ

2
, b+

λ

2

]
×
[
− λ

2
,
λ

2

]
and

[
a− λ

2
, a+

λ

2

]
×
[
− λ

2
, b+

λ

2

]
×
[
− λ

2
,
λ

2

]

the short sides (left and right ) of T .
We say that a torus T in R

3 is a rectangular torus if there exist a similarity
g : R3 → R

3 and 0 < λ < b < a so that T = g(T (a, b, λ)). Furthermore, T is
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(p, q, r)-oriented if g = h◦O, where h is a similarity of the form x �→ μx+v , μ > 0,
and O is an orthogonal transformation taking the standard basis (e1, e2, e3) to
(ep, eq, er). We call the images of the long (resp. short) sides (resp. faces) of
T (a, b, λ) the long (resp short) sides (resp. faces) of T .

In what follows we use the following three types of tightly fitted torus pairs.
Let T = T (A,B, 1) and let T ′ = g(T (a, b, λ)) be an oriented torus contained in T .
We say that T ′ is tightly fitted in T if one of the following conditions holds:

1. T ′ is a (1, 2, 3)-oriented torus contained in a long side of T , so that each long
face of T ′ intersects ∂T ;

2. T ′ is a (1, 3, 2)-oriented torus contained in a long side of T , so that the long
faces of T ′ are contained in the boundary annuli of T ;

3. T ′ is a (2, 1, 3)-oriented torus contained in a short side of T , so that each
long face of T ′ intersects ∂T and the short faces of T ′ are contained in the
long faces of T .

If T ′ is either a (1, 2, 3) or (1, 3, 2)-oriented torus, we have the relations

(16.1) a+ λ ≤ A+ 1, b+ λ = 1, and 2λ < 1.

If T ′ is (2, 1, 3)-oriented,

(16.2) a+ λ = B + 1, b + λ = 1, and 2λ < 1.

Proposition 16.2. Suppose I ≥ 10. There exist A > B > 1 and ai > bi >
λi, (1 ≤ i ≤ I) satisfying

ai
A

=
bi
B

=
λi
1
,

and the tori T and Ti, 1 ≤ i ≤ I, are congruent to T (A,B, 1) and T (ai, bi, λi),
respectively, such that the union

⋃
1≤i≤I Ti is a necklace chain in T .

Theorem 16.1 now readily follows from this proposition and Theorem 8.2.

Proof of Theorem 16.1. Let I ≥ 10 and let T, T1, . . . , TI be the tori constructed
in Proposition 16.2. Let φi : R

3 → R
3 be similarity maps x �→ λix + vi so that

φi(T ) = Ti for 1 ≤ i ≤ I. Then the initial package (T, T1, . . . , TI , φ1, . . . , φI) gives
rise to a natural self-similar welding structure in R

3 as in Section 4.2. The claim
now follows from Theorem 8.2. �

Proof. We construct for each I ≥ 10, a torus T = T (A,B, 1) and a chain
⋃

1≤i≤I Ti
which consists of tori all similar to T and is tightly fitted in T .

Since the tori in the chain are pairwise disjoint, there exist similarity maps
hi : R

3 → R
3, x �→ μx + vi, with μ ∈ (0, 1) and vi ∈ R

3, so that the new chain⋃I
i=1 hi(Ti) is contained in the interior of T . Hence tori h1(T1), . . . , hI(TI) satisfy

the claims of the proposition.

It remains to construct tori T, T1, . . . , TI with aforementioned properties.
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Case I. Suppose I = 4k ≥ 12. Then I = 2K + 2 for some odd integer K ≥ 5.
We seek A > B > 2 and a > b > 2λ satisfying

(16.3)
a

A
=

b

B
=
λ

1
,

and mutually disjoint tori Ti, 1 ≤ i ≤ 2K+2, which are congruent to T (a, b, λ) and
contained in T (A,B, 1) so that

⋃
Ti forms a necklace-chain positioned as follows.

Tori T1 and TK+2 are (2, 1, 3)-oriented tori tightly fitted in the two short sides
(left and right) of T (A,B, 1) with cores lying on the plane {x3 = 0}. The tori Ti are
(1, 3, 2)-oriented for even i, and Ti are (1, 2, 3)-oriented for odd indices i 
= 1,K+2.

The tori T2, T3, . . . , TK+1 are tightly fitted in the front side of T (A,B, 1),
with the cores of T2, T4, . . . , TK+1 lying in the plane {x2 = 0} and the cores of
T3, T5, . . . , TK lying in {x3 = 0}. The tori TK+3, TK+4, . . . , T2K+2 are tightly fit-
ted in the back side of T (A,B, 1), with the cores of TK+3, TK+5, . . . , T2K+1 lying
in the plane {x2 = B} and the cores of TK+4, TK+4, . . . , T2K lying in the plane
{x3 = 0}.

Since the necklace-chain
⋃I
i=1 Ti is tightly fitted in T (A,B, 1),

(16.4) a+ λ = B + 1 and b+ λ = 1.

Since the tori T1 and T2, of thickness λ, are linked,

(16.5) 3λ < 1.

In order to fit the linked chain T1 ∪T2 ∪ . . .∪TK+2 in a long side of T (A,B, 1), we
seek ε and δ in (0, 1/10) so that

A+ 1 = K(a+ λ)− (K − 1)(2 + ε)λ+ 2(1 + δ)λ,(16.6)

a+ λ > 2(2 + ε)λ,(16.7)

1 > (3 + δ)λ.(16.8)

Note that K(a+λ)− (K−1)(2+ ε)λ is the total length of the union T2∪T3∪· · ·∪
TK+1, with (K − 1)(2 + ε)λ measuring the K − 1 overlaps and (1+ δ)λ measuring
the distance from the chain to either short face of T (A,B, 1). Conditions (16.7)
and (16.8) are imposed to allow room for linking between consecutive tori in the
union T1 ∪ T2 ∪ · · · ∪ TK+2.

We now check that (16.3) to (16.8) can be realized with proper choices of
A,B, a, b, λ, ε, and δ. By (16.3) and (16.4), we have the relations

(16.9) A+ 1 = λ−2 and B + 1 = a+ λ = λ−1.

Furthermore, by (16.6) and (16.9),

(16.10) 2(K − 2)λ3 − (2δ − (K − 1)ε)λ3 −Kλ+ 1 = 0.

Let 0 < ε < 1/(5K), to be fixed later, and fix δ = (K − 1)ε/2. Then (16.10)
becomes

(16.11) 2(K − 2)λ3 −Kλ+ 1 = 0.
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It is now easy to check that (16.11) admits a solution λ ∈ (0, 3/10). We now
choose ε so small that (16.7) and (16.8) hold. The parameters A,B, a, and b are
now uniquely determined by (16.9) and (16.3).

Case II. Suppose that I = 4k + 2 ≥ 10. Then I = 2K + 2 for an even
K ≥ 4. Again we will fit a necklace-chain

⋃2K+2
i=1 Ti, consisting of tori all similar

to T (A,B, 1), in the torus T (A,B, 1).
Since K is even, the linking condition forces T1 and TK+2 to have different

(p, q, r)-orientations and unequal sizes. Let T1 be a (2, 1, 3)-oriented torus tightly
fitted in the left side of T (A,B, 1) with the core lying on the plane {x3 = 0}, and
let TK+2 be a smaller (2, 3, 1)-oriented torus (not tightly fitted) in the right side
of T (A,B, 1) with its core lying on the 2-plane {x1 = A}.

As in Case I, we choose Ti to be (1, 3, 2)-oriented when i 
= K + 2 is even
and Ti to be (1, 2, 3)-oriented when i 
= 1 is odd. The tori T2, T3, . . . , TK+1 will
be tightly fitted in the front side of T (A,B, 1) with the cores of T2, T4, . . . , TK
lying on the plane {x2 = 0} and the cores of T3, T5, . . . , TK+1 lying on {x3 = 0}.
Tori TK+3, TK+4, . . . , T2K+2 will be tightly fitted in the back side of T (A,B, 1)
with the cores of TK+3, TK+5, . . . , T2K+1 lying on the plane {x2 = B} and cores
of TK+4, TK+6, . . . , T2K+2 lying on the plane {x3 = 0}. Furthermore, one short
face of TK+1 and one short face of TK+3 are placed in a common short face of
T (A,B, 1).

The tori Ti, 1 ≤ i ≤ 2K + 2 and i 
= K + 2, are congruent to T (a, b, λ) and the
torus TK+2 is congruent to a smaller T (a′, b′, λ′); all are similar to T (A,B, 1).

It is straightforward to check that numbers A > B > 1, a > b > λ > 0, and
a′ > b′ > λ′ > 0 can be found so that

⋃I
i=1 Ti is a chain tightly fitted in T . We

omit the details.

Case III. Suppose that I ≥ 11 is odd. Then I = 2K + 3 for some K ≥ 4.
For K even, there exist, by Case I, numbers A,B, a, b, and λ and tightly fitted
tori T1, . . . , T2K+2 in T = T (A,B, 1) so that tori T1, . . . , T2K+2 are congruent to
T (a, b, λ). For K odd, we have, in addition, parameters a′, b′, and λ′ so that the
tori T1, . . . , T2K+2 are congruent to either T (a, b, λ) or T (a′, b′, λ′). Let ε > 0 and
δ > 0 be the parameters appearing in these constructions. We rename the first
torus T1 as T0.

The plan is to replace the tori T2, T3, T4 congruent to T (a, b, λ) by four tori t1,
t2, t3, t4 congruent to a smaller torus T (a′′, b′′, λ′′) which is similar to T (a, b, λ).
The new collection T0, t1, t2, t3, t4, T5, . . . , T2K+2 forms the necklace chain for the
case I = 2K + 3.

Denote by Fθ the rotation in R
3 about the x1-axis by an angle θ, so that

Fθ(R
2 × {0}) = Pθ, where Pθ is the plane {x3 = x2 tan θ} in R

3. Recall that T0 is
a (2, 1, 3)-torus and T5 is a (1, 2, 3)-torus with cores lying on the plane P0.

For j = 1, . . . , 4, let tj be a translate of F2jπ/5(T (a
′′, b′′, λ′′)) in the direc-

tion of x1, where the translation will be fixed later. Then the core of tj lies on
the plane P2jπ/5; and the planes containing the cores of two consecutive tori in
{T0, t1, t2, t3, t4, T5} form an angle 2π/5.

The numbers A > B > 1, a > b > λ > 0, and a′ > b′ > λ′ > 0 are retained
from the previous cases. To realize the plan, we need to choose a′′ > b′′ > λ′′ > 0
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satisfying a′′/A = b′′/B = λ′′/1 < λ, so that the 4 new tori t1, t2, t3, t4 can be fitted
lengthwise in the space vacated by T2, T3, and T4 to form a necklace chain. The
calculations leading to these choices are routine and tedious; we omit the details.
This completes the proof. �

17. The Bing double and the Whitehead continuum revisited

The construction of the space R
3/Bd associated to the Bing double is illustrated

and discussed in Daverman’s book (see Example 1, pp. 62–63 in [6]) and in an
article of Freedman and Skora [8]. See the original article [1] or [4] for a highly
nontrivial shrinking procedure that leads to a homeomorphism R

3/Bd ≈ R
3.

We fix an initial package consisting of three tori T, T1, and T2 in R
3 so that T1

and T2 are linked in T but not in R
3 as in Figure 9-1 of [6], and we fix the home-

omorphisms φi : T → Ti. Denote by X = (Xk) the defining sequence induced by
the initial package as described in Section 4.2, by Bd the (cellular) decomposition,
and by R

3/Bd the decomposition space.

Semmes showed (Theorem 1.12c in [19]) that R3/Bd admits a metric d so that
the space (R3/Bd, d) is quasiconvex, Ahlfors 3-regular, and linearly locally con-
tractible and it supports certain Sobolev and Poincaré inequalities that are crucial
for analysis, but this space is not quasisymmetric to R

3. Semmes’s construction of
the metric d served as a model for the modular metrics defined in Section 7; it is
easy to verify that d is bilipschitz equivalent to a modular metric.

The nonexistence of a quasisymmetric homeomorphism (R3/Bd, d) → R
3 is

based on a lemma of Freedman and Skora on essential intersections (Lemma 2.4
in [8]).

We state their lemma in the following.

Lemma 17.1. Let T1 and T2 be solid tori embedded in B
2×S

1 as in the Bing double
construction. Let (P, ∂P ) ⊂ (B2 × S

1, ∂B2 × S
1) be an embedded connected planar

surface representing the generator of the relative homology group H2(B
2×S

1, ∂,Z).
Suppose P and T1 ∪ T2 meet in transverse general position. Then for i = 1 or 2,
P∩Ti must contain at least two surfaces which represent generators of H2(Ti, ∂,Z).

Using the notion of circulation, Lemma 17.1 can be interpreted as follows.

Lemma 17.2. Let R3/Bd be the decomposition space associated to the Bing double
Bd and let X = (Xk) be the defining sequence associated to the initial package
(T, T1, T2, φ1, φ2). Then

circ(Xk, T ;α) ≥ 2k

for every k ≥ 0 and every meridian α on T .

The Freedman–Skora lemma yields that the defining sequence X of the Bing
double has order of circulation at least 2; in fact the order of growth of X is
exactly 2. Theorem 1.4 now follows from Theorem 13.1.
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By the Freedman–Skora lemma, the concurrent pair (γ(x), ω(x)) defined in
Section 14 can be taken to be (2, 2) for every x in πBd(Bd∞). From Theorem 14.3,
it follows that

1. any open subset of (R3/Bd, dλ) which intersects πBd(Bd∞) is not quasisym-
metrically embeddable in R

3 for any 0 < λ < 1;

2. every point in πBd(Bd∞) is λ-singular (of index 1) for 1/2 < λ < 1.

We finish the proof of Theorem 1.5 using the second fact.

Proof of Theorem 1.5. Suppose there is a quasisymmetric homeomorphism f :
(R3/Bd × R, dλ,1) → (R3/Bd × R, dλ′,1) for some λ′ ∈ (1/2, 1) and λ ∈ (0, λ′).
Let X = (Bdk) be the standard defining sequence for the Bing double, and write
Bd∞ =

⋂
k Bdk. By Theorems 14.3 and 15.1,

(17.1) πBd(Bd∞) = singλ,1(R
3/Bd) = singλ′,1(R

3/Bd).

Since πBd(Bd∞) is a Cantor set, every point is an accumulation point. By The-
orem 15.2, given 	 > 0 there exists k0 > 0 so that

f(πBd(Bdk)× R) ⊂ πBd(Bdk+�)× R

for all k ≥ k0. Since πBd(Bdk) has 2k components and πBd(Bdk+�) has 2k+�

components, we conclude that there exists a component T of Bdk+� so that

πBd(T )× R ∩ f(πBd(Bd∞)× R) = ∅.
This contradicts (17.1). �

We refer to [12] for the nonexistence of the quasisymmetric parametrization of
R

3/Wh × R
m, where Wh is the Whitehead continuum. We merely note that the

homological argument of the Freedman–Skora lemma was used in [12] to obtain a
version of the intersection lemma and to show that the standard defining sequence
for the Whitehead continuum has order of circulation at least 2. Since the order
of growth of the Whitehead continuum is 1, we can use Theorem 13.1 to recover
the nonexistence of quasisymmetric parametrizations of (R3/Wh×R

m, dλ,m). In-
deed, as shown in [12], (R3/Wh × R

m, dλ,m) is not quasisymmetric to R
3+m

for λ > 2−(3+m)/(2m).

18. Bing’s dogbone

The decomposition space R
3/Db associated with Bing’s dogbone [2] was the first

known example of a decomposition space which is not homeomorphic to R
3 but

whose product with a line, (R3/Db)× R, is homeomorphic to R
4; see [3].

Bing’s dogbone space R
3/Db is constructed as follows. Let A be a PL cube-

with-2-handles standardly embedded in R
3, and let A1, A2, A3, and A4 be four

cubes-with-handles of genus 2 embedded in the interior of A as illustrated in Fig-
ure 1, p. 486, of [2].
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Let φj : U → Uj be PL-homeomorphisms from a neighborhood U of A onto
mutually disjoint neighborhoods Ui, 1 ≤ i ≤ 4, of Ai satisfying Ai ⊂ Ui ⊂ A ⊂ U .
The intersection

Db =
∞⋂
k=0

⋃
α∈Sk

φα(A)

is called Bing’s dogbone, where φα = φα1 ◦ · · · ◦ φαk
and α = (α1, . . . , αk) ∈

{1, 2, 3, 4}k. The decomposition R
3/Db is topologically different from R

3 even
though each nondegenerate component of Db is a tame arc [2]. On the other hand,
(R3/Db)× R is R4.

The initial package (A,A1, . . . , A4, φ1, . . . , φ4) yields a defining sequence XDb =
(Xk): X0 = A and

Xk+1 =
4⋃

α=1
φα(Xk)

for k ≥ 0. Hence Xk =
⋃
α∈Sk

φα(A). The initial package induces a welding
structure (CDb,ADb,WDb) on the defining sequence XDb; in particular C consists
of a single condenser (A,∪4

i=1Ai). See Section 4.2 for details.

Theorem 18.1. Let (R3/Db, dλ) be a Semmes space associated to the defining
sequence XDb and the welding structure (CDb,ADb,WDb). Suppose m ≥ 1 and
2−(1+m)/m < λ < 2−2/3. Then (R3/Db×R

m, dλ,m) is Ahlfors (3+m)-regular and
linearly locally contractible, but it is not quasisymmetrically equivalent to R

3+m.

The Ahlfors regularity follows from Proposition 7.8, since X has order of
growth 4. The linear local contractibility follow from Proposition 7.9, since everyAi
is contractible in A.

To show that (R3/Db) × R
m is not quasisymmetric to R

3+m, we estimate the
order of circulation of X in A from below.

As in Figure 1 of [2], let C1 and C2 be two disjoint 3-cells in A so that the
handles of ∪Ai are sorted into two groups, and each group consists of four pairwise
linked handles, one from each Ai, and is contained in one of the 3-cells C1 or C2.
Then C1 ∪ C2 ∪ A1 ∪ A4 and C1 ∪ C2 ∪ A2 ∪A3 is a pair of solid tori in A.

The arrangement of cubes-with-handles ∪Ai is understood as follows. We fix
essential 2-disks D1, D2, and D3 in A as in Figure 1 of [2]. These disks have the
property that if h : R3 → R

3 is a homeomorphism that is identity outside A then

1. h(A1) ∪ h(A4) and h(A2) ∪ h(A3) intersect both D1 and D2,

2. h(A1) ∪ h(A3) and h(A2) ∪ h(A4) intersect both D1 and D3, and

3. h(A1) ∪ h(A2) and h(A3) ∪ h(A4) intersect both D2 and D3.

We use topological properties of the initial package to show the following esti-
mate of Freedman–Skora type. This estimate implies that the order of circulation
of X is at least 4. This together with Theorem 13.1 proves Theorem 18.1.

Lemma 18.2. Let γ be a meridian of A that is isotopic to ∂D1 on ∂A. Then

(18.1) circ(Xk, γ, A) ≥ 4k−1

for every k ≥ 1.
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Proof. As a preliminary step, we define tori TO and TX as follows

TO = C1 ∪ C2 ∪ A1 ∪ A4 and TX = C1 ∪ C2 ∪ A2 ∪A3.

Then
Aα1 ∪ Aα4 ⊂ (TO)α ⊂ Aα and Aα2 ∪ Aα3 ⊂ (TX)α ⊂ Aα,

where Aα = φαA, (T
O)α = φα(T

O) (TX)α = φα(T
X), and α ∈ {1, 2, 3, 4}k.

Note that tori (TO)1 ∪ (TO)4 are linked in TO the way that the two first stage
tori are linked in the 0-th stage torus as in the construction of the Bing double.
Note also that the same can be said about the linking of (TX)1 ∪ (TX)4 in TO,
(TO)2 ∪ (TO)3 in TX , and (TX)2 ∪ (TX)3 in TX .

Therefore for every α ∈ {1, 2, 3, 4}k, the tori (TO)α1 ∪ (TO)α4 are linked in
(TO)α the way the first stage tori are linked in the 0th stage torus as in the Bing
double, and the same can be said about the linking of (TX)α1 ∪ (TX)α4 in (TO)α,
(TO)α2 ∪ (TO)α3 in (TX)α and (TX)α2 ∪ (TX)α3 in (TX)α.

This linking property has the following consequences.

(I) If f : (B2, ∂B2) → (A, ∂D1) is map with the property f(∂B2) = ∂D1, then
f(B2) intersects both TO and TX virtually interior essentially. Indeed, let Q
be a 3-cell in R

3 so that Q ∩ A ⊂ ∂A, Q ∩ ∂D1 = ∅, and so that Q ∪ A is a
torus. We write T = Q ∪ A. Since a core of TO is also a core of T , we have
that f(B2) intersects TO virtually interior essentially. The same argument
applies also to TX .

(II) Suppose Ω is a 2-manifold in B
2 and f : (Ω, ∂Ω) → (TO, ∂TO) is a virtually

interior essential map. Then by the standard argument of filling TO with
2-disks, we have that f has an virtually interior essential intersection with
A1 ∪A4; see e.g. the proof of the wildness of Antoine’s necklace in Proposi-
tion 5, pp. 73–74 of [6]. The same can be said about TX and A2 ∪ A3.

The circulation estimate (18.1) follows from the claim below and the relation
between the number of essential intersections and the circulation stated in Re-
mark 9.8.

Claim. Let f : (B2, ∂B2) → (A, ∂A) be an interior essential map so that f(∂B2)
is isotopic to ∂D1 on ∂A. Then f(B

2)∩Xk has at least 4
k virtually interior essential

components. It remains to verify the claim.
Let ς : {1, 2, 3, 4} → {O,X} be the map defined by ς(1) = ς(4) = O and

ς(2) = ς(3) = X , and let ςk = ς × · · · × ς : {1, 2, 3, 4}k → {O,X}k be the product
map. Set Sk = {1, 2, 3, 4}k, Σk = {O,X}k, and sk(w) = (ςk)−1(w). Note that, for
w = (w1, . . . , wk) ∈ Σk,

sk(w) = (ςk)−1(w) = {(α1, . . . , αk) ∈ Sk, αj ∈ ς−1(wj) for all 1 ≤ j ≤ k},
so Sk = ∪w∈Σk

sk(w) is a disjoint union.
For each k ≥ 1, we sort the 4k cubes-with-handles in Xk into 2k mutually

disjoint groups as follows. If k = 1, the two groups are X1(O) = {A1, A4} and
X1(X) = {A2, A3}. Suppose k ≥ 2. Define, for w ∈ Σk,

Xk(w) = {Aα : α ∈ sk(w)},
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so Xk = ∪w∈Σk
Xk(w) is a disjoint union of 2k groups.

Fix a w ∈ Σk. We will focus on the 2k cubes-with-handles in Xk(w) and con-
sider a finite defining sequence associated with this particular w = (w1, w2, ..., wk)
as follows. Set

Z0 = A, Z1 = Tw1 , and Zj = ∪α∈sj−1(w1,w2,...,wj−1)(T
wj )α

for 2 ≤ j ≤ k. Note that

Zj+1 ∩ (Twj)α = (Twj+1)αi1 ∪ (Twj+1)αi2 ,

where {i1, i2} = ς−1(wj), for every (Twj )α in Zj .
Let f : (B2, ∂B2) → (A, ∂A) be an interior essential map so that f(∂B2) is

isotopic to ∂D1 on ∂A. By applying a homotopy near ∂A, we may assume that
f(B2) ∩ ∂A = ∂D1. Then, by (I), f(B2) intersects both TO and TX virtually
interior essentially. In particular, f(B2) ∩ Z1 has at least one virtually interior
essential component.

In view of the linking relation (of the Bing double type) between tori in consec-
utive generations, we may apply the lemma of Freedman and Skora (Lemma 17.1)
iteratively to conclude that f(B2)∩Zk has at least 2k−1 virtually interior essential
components.

The tori in Zk are pairwise disjoint and each torus contains two cubes-with-
handles in Xk(w). It follows from (II) above that f(B2)∩Xk(w) has at least 2

k−1

virtually interior essential components.
The claim follows by summing over w ∈ Σk. This completes the proof of the

theorem. �
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