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Geometry and quasisymmetric
parametrization of Semmes spaces

Pekka Pankka and Jang-Mei Wu

Abstract. We consider decomposition spaces R? /G that are manifold
factors and admit defining sequences consisting of cubes-with-handles of
finite type. Metrics on R?/G constructed via modular embeddings of R* /G
into a Euclidean space promote the controlled topology to a controlled
geometry.

The quasisymmetric parametrizability of the metric space R?/G x R™
by R3™™ for any m > 0 imposes quantitative topological constraints, in
terms of the circulation and the growth of the cubes-with-handles, on the
defining sequences for R®/G. We give a necessary condition and a sufficient
condition for the existence of such a parametrization.

The necessary condition answers negatively a question of Heinonen and
Semmes on quasisymmetric parametrizability of spaces associated to the
Bing double. The sufficient condition gives new examples of quasispheres
in S*.

1. Introduction

1.1. A homeomorphism f: X — Y between metric spaces (X,dx) and (Y, dy) is
called quasisymmetric if there exists a homeomorphism 7: [0, c0) — [0, 00) so that

dy (/@) SW)) _ (dx(@9)
dy (F@). F(2) = ’(dxu,z))

for all triples {z,y,z} in X. Quasisymmetry generalizes quasiconformality from
Euclidean spaces to general metric spaces. A metric space (X, d) is called a metric
n-sphere if it is homeomorphic to S™.

When is a metric n-sphere (X,d) quasisymmetrically equivalent to the stan-
dard S™% The goal is to find intrinsic qualitative metric properties of the space
(X, d) that recognize such geometric equivalence. A complete characterization of
quasispheres is known only for dimensions 1 and 2.
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In dimension 1, a result of Tukia and Vaisila [21] states a metric 1-sphere (X, d)
is quasisymmetrically equivalent to S' if and only if X is doubling and is of bounded
turning. Bonk and Kleiner (Theorem 1.1 in [5]) give a characterization in dimen-
sion 2. A consequence of their theorems states that a metric 2-sphere (X,d) is
quasisymmetrically equivalent to S* if X is linearly locally contractible and Ahlfors
2-regular. Semmes proved this result earlier for metric spaces with some added
smoothness properties (Section 5 in [17]). Wildrick proved recently an analogue of
Bonk and Kleiner’s result for R? [23].

A metric space (X, d) is said to be linearly locally contractible if for a fixed C' > 1
every ball of radius r < 1/C'is contractible in a concentric ball of radius Cr; and X
is said to be Ahlfors 2-regular if there exists a measure ;. on the space so that the
p-measure of every ball of radius 7 is uniformly comparable to 2.

Could a metric space which is homeomorphic to S or R”, and resembles S™
or R™, geometrically (linearly locally contractible), measure-theoretically (Ahlfors
n-regular), and analytically (supports Poincaré and Sobolev inequalities) in dimen-
sions n > 3, fail to be quasisymmetrically equivalent to S™ or R™?

Semmes’s counterexample [19] to this natural question in dimension 3 is a geo-
metrically self-similar space modeled on the decomposition space R?/Bd associated
to the Bing double Bd. The classical construction of R. H. Bing in geometric topol-
ogy gives an example of a wild involution in R3. As a topological space R?/Bd is
homeomorphic to R3.

Semmes shows that this space admits a metric that is smooth Riemannian
outside a totally disconnected closed set and, in many ways, indistinguishable from
the standard metric on R?, and yet the space is not quasisymmetrically equivalent
to R3. In Semmes’s metric the 2 tori at kth stage of the construction of R3/Bd are
uniformly round and thick, whereas under any homeomorphism from R3/Bd to R?,
there exists a sequence of tori that are distorted into a shape longer and thinner
than allowed by any fixed quasisymmetry. Semmes’s construction is robust and
essentially available in all decomposition spaces of R3 arising from topologically
self-similar constructions.

The natural conditions for metric n-spheres listed earlier are also insufficient in
higher dimensions. The decomposition space R?/Wh associated to the Whitehead
continnum Wh is not homeomorphic to R*, but R?/Wh x R is homeomorphic
to R*. In [12], Heinonen and the second author showed that the decomposition
space R? /Wh associated to the Whitehead continuum Wh admits a linearly locally
contractible and Ahlfors 3-regular metric, but (R3/Wh) x R™ is not quasisym-
metrically equivalent to R3T™ for any m > 1. The metric on R?/Wh is due to
Semmes; as in the case of R®/Bd this metric makes the tori in the construction of
the Whitehead continuum uniformly round and thick.

The Whitehead link, formed by a meridian of the first torus and the core of
the second torus, however prevents the conformal modulus of a sequence of surface
families over longitudes of the nested tori from being quasi-preserved under any
homeomorphism R3/Wh x R™ — R3+t™,

1.2. The decomposition space R3/Wh is only one example of an exotic manifold
factor of R%. By a theorem of Edwards and Miller [7], decomposition spaces that
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FIGURE 1. Two generations of Whitehead links.

are exotic factors of R* exist in abundance. In fact, cell-like closed 0-dimensional
upper semicontinuous decomposition spaces R? /G are manifold factors of R*, that
is, R?/G x R is homeomorphic to R*. Furthermore, under mild assumptions on
the decomposition, these spaces are definable by nested sequences X = (Xi)i>0
of unions of cubes-with-handles, i.e., the degenerate part of the decomposition G
is (>0 X&; see Lambert and Sher [14] and Sher and Alford [20]. This class of de-
composition spaces provides a natural environment for testing the quasisymmetric
parametrization.

In this article, we consider a subclass of decomposition spaces R?/G that are
manifold factors and admit defining sequences of finite type. The corresponding
defining sequences X = (X} )x>0 satisfy the a priori condition

#{[H \ int Xp41]pr: k> 0 and H is a component of X} < 0o;

here [E]pr, is the PL-homeomorphism equivalence class of a PL-manifold E C R?.

The definition of finite type is based on the notion of welding. A welding
structure (C, A, W) consists of condensers C, an atlas A composed of charts, and
weldings W determined by the atlas A. The condensers can be seen as fixed
geometric realizations of PL-homeomorphism equivalence classes of components of
differences X}, \ int Xj,41 in the defining sequence X, and the charts in the atlas A
determine the parametrization of these components. The weldings, in turn, are
transition maps between the charts; see Section 4.

Definition 1.1. A defining sequence X = (X )r>0 has finite type if there exists
a welding structure (€, A, W) with finitely many condensers € and finitely many
weldings W. A decomposition space (R3/G,X) is of finite type if the defining
sequence X has finite type.

We take up a systematic study of the geometric realizations which promote the
controlled topology to a controlled geometry. Using results from classical geometric
topology, we construct for every defining sequence of finite type a geometrically
simple welding structure, called a rigid welding structure, having translations as
weldings; see Theorem 5.2.

A rigid welding structure allows the natural geometrization of the decomposi-
tion space R?/G. Given a rigid welding structure (€, A, W) and a scaling factor
A € (0,1), we show that there exists a modular embedding of R? /G into a Euclidean
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FIGURE 2. These condensers generate an infinite number of defining sequences of finite
type.

space that respects the atlas A and the chosen scaling factor A; see Theorem 6.2.
The metric dy induced on R?/G by a modular embedding is called a Semmes met-
ric and the corresponding metric space a Semmes space; these metrics naturally
extend the class of metrics constructed by Semmes in [19].

For a fixed rigid welding structure, the Semmes spaces (R®/G, dy) for all scal-
ings are mutually quasisymmetric. We find it appealing that, although R?/G does
not admit a canonical metric, there exists a natural class of metrics on R?/G
respecting the defining sequence X whose quasisymmelry equivalence classes are
parametrized by rigid welding structures on X modulo compatible atlases; see Propo-
sition 7.10.

We summarize the essential features of this geometrization process of decompo-
sition spaces by Semmes metrics in the following theorem; see Sections 6 and 7 for
these results. Given a Semmes metric dy on R3/G, we equip the space R?/G x R™
with the product metric dy , ((z,v), (y,w)) = da(z,y) + |[v — w|.

Theorem 1.2. Let (R?/G,X) be a decomposition space of finite type. Then there
ezists a Semmes metric dy on R®/G so that, for each m >0, (R3/G x R™, d )
is a quasiconvex Ahlfors (3 + m)-reqular Loewner space that admits an isometric
embedding into a Fuclidean space. Moreover, the space (R3/G x R™ dy.,) is
linearly locally contractible if the sequence X is locally contractible.

A defining sequence X = (Xy)r>0 is locally contractible if every component
of Xj41 is contractible in Xj for all & > 0. We emphasize that the linear lo-
cal contractibility and the Loewner property are necessary for the existence of a
quasisymmetric parametrization; see Semmes [19], Heinonen and Koskela [9], and
Tyson [22].

1.3. Having this general theory at our disposal, we now discuss the problem of
quasisymmetric parametrization.

Due to the quasi-invariance of the conformal modulus, the existence of a qua-
sisymmetric homeomorphism between R?/G x R™ and R**™ imposes a relation
between geometry (growth of the handlebodies and the fixed scaling factor) and
topology (circulation of the handlebodies).

The order of growth of & controls the growth of the number of components
of X} in the sequence as k tends to infinity; see Definition 4.2. The order of
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circulation of X reflects the growth of the unsigned linking numbers of the longi-
tudes of handlebodies of Xy with respect to the meridians of Xy, for k' > k; see
Definition 9.2.

Theorem 1.3. Let R?/G be a decomposition space of finite type associated to a
locally contractible defining sequence X. Suppose that the order of growth of the
defining sequence X is at most v, the order of circulation is at least w, where
v, w € [0,00], and

(1.1) w3 > 42,

Then there exists a Semmes metric on R3 /G so that R3 /G xR™ is a linearly locally
contractible, Ahlfors (3 + m)-regular, Loewner space but not quasisymmetrically
equivalent to R3™ for any m > 0.

For the Whitehead continuum and the Bing double we may take the pair (y,w)
to be (1,2) and (2,2), respectively. In particular, Theorem 1.3 provides a neg-
ative answer to a question of Heinonen and Semmes in [11] (Question 11). The
case m = 0 in the following theorem is Semmes’s quasisymmetric non-parametriza-
bility result of R?/Bd in [19].

Theorem 1.4. The decomposition space R3/Bd associated to the Bing double
admits a metric that is Ahlfors 3-reqular, Loewner, and linearly locally contractible

but none of the spaces R3/Bd x R™ for m > 0 is quasisymmetrically equivalent
to R3+tm,

Theorem 1.3 admits a local formulation as stated in Theorem 14.3. This local
version examines inequality (1.1) on a branch of the defining sequence at a point
in R?/G; it is generally more applicable. Whereas inequality (1.1) gives a natural
necessary condition for a quasisymmetric parametrization of (R?/G x R™, dj )
by R3+™ | the pointwise inequality (14.1) provides a criterion for the quasisymmet-
ric equivalence of the product spaces (R*/G x R,dy 1) for 0 < A < 1. This yields,
for example, the following inequivalence result for the product spaces associated
to the Bing double.

Theorem 1.5. Let (R3/Bd,dy) be a Semmes space associated to the Bing double.
For any N € (1/2,1) and X € (0, \'), the spaces (R*/Bd x R,dx 1) and (R3/Bd x
R,dx 1) are quasisymmetrically inequivalent.

When applying Theorem 1.3 and Theorem 14.3, estimating the order of cir-
culation from below for a particular decomposition space can be a challenging
topological problem of its own. For decomposition spaces associated to the Bing
double [19], to the Whitehead continuum [12], or to Bing’s dogbone (Section 18),
the circulation is estimated by adapting a theorem of Freedman and Skora [8] on
counting essential intersections by relative homologies; see Section 17.

1.4. Theorem 1.3 imposes a topological condition on the parametrization. In the
opposite direction, additional Euclidean restrictions on the welding structure yield
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positive results about the quasisymmetric parametrization of R3/G by R®. These
geometric assumptions on the defining sequence are encapsulated in the notion of
flat welding structure; see Section 8.

Theorem 1.6. Let R3/G be a decomposition space of finite type that admits a
defining sequence with a flat welding structure in R3. Then there exists a linearly
locally contractible, Ahlfors 3-regular metric on R?/G so that R3/G is quasisym-
metric to R3. Moreover, there exist an isometric embedding 0: R®/G — R* and a
quasisymmetric homeomorphism f: R* — R* so that f(R?) = 0(R3/Q).

These decomposition spaces give new examples of quasispheres in R* as formu-
lated in the second part of the theorem.

In light of Theorem 1.6, we ask about the sharpness of the condition (1.1) in
Theorem 1.3, especially for a fixed m. In case of R? (i.e., m = 0) the construction of
Antoine’s necklaces G using I linked tori yields decomposition spaces with order
of growth I and order of circulation at least 2. Semmes’s result on the Bing
double implies that the decomposition space (R3/G, d) associated with a necklace
constructed using two linked tori, when equipped with a Semmes metric d, is not
quasisymmetric to R3.

The existence of a quasisymmetric parametrization of R?/G when I is suffi-
ciently large has been observed by Heinonen and Rickman [10] using similar round
tori. Using rectangular tori in place of round tori, we prove in Theorem 16.1 that
for every I > 10, the decomposition space R3 /G associated to Antoine’s I-necklace
may be equipped with a Semmes metric so that it is quasisymmetrically equivalent
to R3.

Having these examples at hand, the real test for the sharpness of Theorem 1.3
seems to be the quasisymmetric parametrizability of the decomposition space as-
sociated to the Antoine’s 3-necklace.
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2. Preliminaries

Unless otherwise stated, we assume that R™, n > 1, is equipped with the Euclidean
metric and the standard basis (e1,...,e,). We denote by B™(z,r) the closed
Euclidean ball in R™ of radius r and center x. For brevity, the closed balls centered
on the origin are denoted B™(r) = B™(0,r) for r > 0 and B™ = B™(1). Similarly,
S"=l(x,r) = OB"(x,r) is the Euclidean sphere of radius r and center x in R", and
S7=Y(r) = S"=1(0,7) for r > 0 and S~ = $"~1(1).

For all 1 < m < n, we identify R™ with the subspace R™ x {0} in R” where {0}
is the origin in R”~", and identify a set A C R with the set Ax {0} in R™xR"~".
When R" is expressed as R™ xRP x R? with m, p, g > 0, n = m+p+q, a subset of R”
in the form A x B x C' is understood to have the property that A C R™, B C R?,
and C C RY.

By a map, we always mean a continuous map. Given a map F: X x[0,1] = Y,
we denote by Fy: X — Y the map Fi(x) = F(x,t). We say that a homotopy
F: X x[0,1] = Y is an isotopy if F; is a homeomorphism for all ¢ € [0, 1].

We call a map «: I — X from an interval in R into a metric space X a path
and maps S* — X loops. If there is no confusion we do not distinguish between
a map and its image. Images of paths and loops are also called curves. A loop
S! — X is simple if it is an embedding.

Given a set F in a metric space (X, d) and a number a > 0, we call

Ny(E,a) ={z € X: disty(z, E) < a}

the a-neighborhood of F in X. When X = R™ and d is the Euclidean metric,
we write N™(E,a) for Ng(E,a). We denote by C(E) the set of all connected
components of E.

Given a metric space (X, d) so that points in the space can be connected by
rectifiable paths, we denote by d the path metric of (X, d) defined by

d(z,y) = inf La(7)
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for z,y € X, where £4(7) is the length of path 7 in the metric d and the infimum
is taken over all paths v connecting = and y in X. A metric space (X, d) is called
quasiconvez if id: (X,d) — (X, d) is bilipschitz.

A metric space (X, d) is Ahlfors Q-regular if there exist a Borel measure pin X
and a constant C' > 1 so that

19 < p(B(r,r) < €O

for every ball B(z,r) of radius r < diam X centered on z in X. Furthermore, the
space (X,d) is locally linearly contractible if there exists C' > 1 so that the ball
B(z,r) in X is contractible in B(x, Cr) for all r < 1/C.

We say that a mapping f: (X,dx) — (Y, dy) between metric spaces is a (A, L)-
quasisimilarity if

2 dx(r,y) < dy (1), f0) < ALdx (z,)

for all z,y € X. Clearly, quasisimilarities are a subclass of quasisymmetries.
As usual, we call (A, 1)-quasisimilarities similarities and 1-similarities isometries.
The (1, L)-quasisimilarities are L-bilipschitz mappings. In what follows, we abuse
notation and write |z — y| = d(z,y) when there is no ambiguity as to what is the
metric in question.

In what follows, we consider only Lipschitz chains of multiplicity one, that is,
we consider only m-chains o so that o = Zle oi, where o;: [0,1]™ — X is a
Lipschitz map for ¢ = 1,...,k. In a metric measure space (X,d, ;1) we define the
p-modulus of an m-chain family as follows.

Given a family ¥ of m-chains in a X, the p-modulus of ¥ is

(2.1) Mod,(X) = inf/ PP du,
PJx

where p is a nonnegative Borel function satisfying

k
(2.2) / pdH™ > 1
2 ai([0,1]™)

i=1

for all o = Zle o; € X.

In what follows, handlebodies are three dimensional piecewise linear cubes-
with-handles embedded in R™. For this we assume in what follows that R™ is
given a fixed PL-structure for every n > 3.

We use the following topological facts on cubes-with-handles; see Chapter 2
of [13] for more details. We say that H is a cube-with-handles if it is a regular neigh-
borhood of an embedded rose +(\/?S!), where ¢: \/Y St — R? is a PL-embedding.
Here \/?S! is the wedge of g circles, that is, the identification of g circles at a
point; \/0 S! is a point. The number g of circles in the rose is called the number of
handles of H or the genus of H. The image ¢(\/? S!) is called a core of H.
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The genus of H is also the maximal number of essentially embedded 2-disks
whose union separates H. We say that a disk D in H is essentially embedded if
there exists an embedding ¢: (B2, 0B?) — (H,0H) so that ¢|0B?: 0B? — OH is
not null-homotopic in 0H.

The genus of H is a topological invariant. Two cube-with-handles H and H’
in R? are PL homeomorphic if and only if they have the same number of handles
and both are either orientable or nonorientable (Theorem 2.2 in [13]). We denote
by g(H) the genus of H.

A three-dimensional cube-with-handles in R™ need not be orientable for n > 3,
but a three-dimensional cube-with-handles in R3 inherits an orientation from R?
and is therefore orientable.

3. Decomposition spaces

We begin this section by reviewing some classical results on decomposition spaces
relevant to our study. We do not aim at the full generality and refer to Daverman [6]
for details.

A decomposition G of a topological space X is a partition of X. Associated
with G is the decomposition space X/G equipped with the topology induced by
the quotient map mg: X — X/G, the richest topology for which 7¢ is continuous,
see [6], p. 8.

A decomposition G is upper semicontinuous (usc) if each g € G is closed and if
for every g € G and every neighborhood U of g in X there exists a neighborhood V'
of g contained in U so that every ¢’ € GG intersecting V' is contained in U. If G is
usc then X/G is metrizable (Definition 1.2 and Proposition 1.2.2 in [6]); however
there is not a canonical metric on X/G.

Suppose that G is a usc decomposition of an n-manifold M and d is a metric
on M/G. The decomposition map 7g: M — M /G can be approximated by home-
omorphisms if and only if G satisfies Bing’s shrinkability criterion (Theorem I1.5.2
in [6]). In particular, M/G is homeomorphic to M.

Bing’s shrinkability criterion states that for every € > 0 there is a homeomor-
phism h: M — M such that

1. diam h(g) < € for each g € G, and

2. d(mgh(z), mq(z)) < € for every x € M.

Suppose M is an n-manifold. If G is a shrinkable usc decomposition then each
g € G is cellular, therefore cell-like (see Proposition I1.6.1 and Corollary 111.15.2B
in [6]). A subset Z of M is cellular if for each open U D Z there is an n-cell E such
that Z C int E C E C U; recall that an n-cell is a subset homeomorphic to B™.
A compact set Z in a space X is cell-like in X if Z can be contracted to a point
in every neighborhood of Z.

Certain decomposition spaces can be constructed from defining sequences. A de-
fining sequence for a decomposition of an n-manifold M is a sequence X = (Xj)r>0
of compact sets satisfying int X D Xy41. The decomposition G associated to the
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defining sequence X’ consists of the components of Xo, = ()50 X and the single-
tons from M \ X, see [6], p.61. The decomposition G associated to X is upper
semicontinuous and 7¢ (X ) is compact and 0-dimensional, see Proposition I1.9.1
in [6].

In the context of defining sequences, a sufficient condition for R3/G to be
homeomorphic with R? is the following shrinking criterion: For each k > 1 and
each € > 0, there exist £ > 1 and a homeomorphism h of R? onto itself satisfying
h|(R3\ X}) =id, and diam h(H) < € for all components H of Xgi¢.

Convention. In what follows, all decomposition spaces R3/G are derived from
defining sequences X’ consisting of (unions of) cubes-with-handles. At times, we
denote the space by (R?/G, X) to emphasize the role of the sequence X.

We fix some notation for use in later sections. Let X = (X )r>0 be a defining
sequence. We denote by C(X) = |J, C(X}) all components of the defining sequence
X = (Xk)r>0; here C(E) denotes the set of components of the set E.

Given H € C(X) there is a unique index k > 0 so that H € C(X}). We call the
index k the level of H and write level (H) = k. For every H € C(X), we write

HYT = [\ int Xievel (H)+1-

Then C(H \ int HM) consists of all components of Xievel ()41 contained in H.
Given two cubes-with-handles H and H' in C(&X), we have

H=H,H cintH, HCintH', or HNH' = .

Thus OH N X, = () for every H € C(X). Since X is closed in R?, there exists,
for every H € C(X), a neighborhood Qs of OH in R? so that mg|Qom is an
embedding.

At times we shall write R3/ X, for R3/G for simplicity, in particular when X,
is a Whitehead continuum, a necklace, a Bing double, or a Bing’s dogbone.

3.1. Decomposition spaces as manifold factors

Our main interest lies in decomposition spaces R3 /G that are homeomorphic to R?
or whose product, R?/G x R™, with a Euclidean space is homeomorphic to R3+™
for some m > 0. Decomposition spaces of the latter type are called manifold
factors of Euclidean spaces.

By results of Sher and Alford and Lambert and Sher (Theorem 1 in [20],
and [14]), if G is a cell-like usc decomposition of R? so that the closure of all
nondegenerate elements of G is 0-dimensional, then G admits a defining sequence
consisting of (unions of) cubes-with-handles. Subsequently Edwards and Miller
(see [7], p. 192) proved that if G satisfies the conditions of Lambert and Sher, then
R?/G is a factor of R, that is,

(3.1) R3/G x R ~ R*,
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and G x R is a shrinkable decomposition of R*, see also Section V.27 in [6]. In
particular, the quotient map 7’: R3*™ — R3+™ /(G x R™) can be approximated
by homeomorphisms. The composition

(mg xid) o ()71 R3*T™ /(G x R™) — R3/G x R™
is a homeomorphism ([6], Proposition 1.2.4). Therefore
R?/G x R™ ~ R3*t™,

and g x id: R3*™ — R3/G x R™ can be approximated by homeomorphisms.
Let R3/G be a decomposition space associated to a locally contractible defining
sequence X = (Xj)r>o consisting of unions of cubes-with-handles. That is, every
component of Xy is contractible in Xy, for all £ > 0. Then, by Edwards—Miller,
R3/G x R is homeomorphic to R*. Indeed, under this assumption on X, the
components of X, are cell-like and 7¢(X o) is compact and 0-dimensional.

3.2. Local contractibility

In this section, we establish a local contractibility property for 7g(Xy) in the
decomposition space R?®/G from the local contractiblity of a defining sequence
X = (Xk)k>o0-

Lemma 3.1. Let R3/G be a decomposition space associated to a locally contractible
defining sequence X = (Xi)g>0. Then components of mq(Xit1) are contractible
in 7q(Xg) for k> 0.

Lemma 3.1 follows directly from the following cellularity property of the de-
composition G x R™ for m > 1.

Lemma 3.2. Let m > 1 and let R3/G be a decomposition space associated to
a locally contractible defining sequence X = (Xi)g>o0. Then, for every k > 0,
H €C(Xy), He C( X1 NH'), and r > 0, there exists a (3 +m)-cell E so that

76 (H) % [=r,7]™ C E C ng(H') x (=2r,2r)™.

Proof of Lemma 3.1. Let k > 0, H € C(X}), and H € C(Xy+1 N H'). To show
that g (H) is contractible in wg(H'), let m = 1 and r > 0, and let E be a 4-cell
in R?/G x R as in Lemma 3.2.

Denote by proj the projection R?*/G x R — R3/G. We identify R?/G with
R3/G x {0} in R3/G x R. Since E is an 4-cell, mg(H) is contractible in E.
Thus 7 (H) is contractible in proj(E) C ng(H'). O

The proof of Lemma 3.2 is based on an approximation of the quotient map
e x id: R3*™ — R3/G x R™ by homeomorphisms, and the classical Penrose—
Whitehead—Zeeman lemma (Lemma 2.7 in [15]): Let M be an n-manifold and let
P C int M be an (¢ — 1)-dimensional polyhedron (1 < q < n/2) such that the
inclusion map i: P — M is homotopic in M to a constant. Then there exists
an n-cell E C int M such that P C int .
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Proof of Lemma 3.2. Let r > 0 and k > 0, and let H' € C(X}) and H € C(Xg41 N
H’) be cubes-with-handles in X. Let 6 be any metric on the decomposition space
R3/G, and let 6, be the product of § with the Euclidean metric on R3/G x R™.
Let ag = min{r, dists(Org(H),Org(H'))}.

We fix cores R and R’ of H and H’, respectively. Then H and H’ are regular
neighborhoods of R and R/, respectively. By adding a one-sided collar of the
boundary 0H to H, we obtain a regular neighborhood H” of R containing H in
the interior. Similarly, by removing a one-sided collar of dH' in H’, we obtain
a regular neighborhood H"" of R contained in H'; see Corollaries 2.26 and 3.17
in [16]. Moreover, we require that

HcintH" c H' cintH" c H" cintH' Cc H',

and that ag/10 < dists(z,0ncH) < ag/9 for all x € dngH"” and ap/10 <
dists (2, OnrgH') < ag/9 for all x € dngH"' .
Since H is contractible in H', we have that H" is contractible in H'”. By the
Penrose-Whitehead—Zeeman lemma, there exists a (3 4+ m)-cell E' so that
Rx{0}C H" x (=2r,5r)" C E' C H" x (=3r,3r)™.
Since 7 X id can be approximated by homeomorphisms, by the Edwards—Miller
theorem, we may fix a homeomorphism h: R3t™ — R3 /G x R™ so that

(xﬂ})EXr()nxa[)E%M]m Im (R(z,v), (Ta(x),v)) < ag/100.

Then h=YmeH x [—r,r|™) C H"” x (=3r,2r)™ and h(H" x (=3r,3r)™) C

maH' x (=2r,2r)™. Thus E = h(E") is a (3 + m)-cell satistying
nq(H) x [-r,r]" C E C ng(H') x (=2r,2r)™. a

4. Welding structures

Let n > 3. By abusing the standard terminology in potential theory, we say
that a pair (A4, B) is a condenser in R™ if A is a 3-dimensional cube-with-handles
in R™ and B is a disjoint union of 3-dimensional cubes-with-handles in R" so that
B C int A; here int A is the manifold interior of A. Given a condenser ¢ = (A4, B),
we set
M — A\ int B.

Given two condensers ¢ = (A,B) and ¢’ = (A’,B’) in R", a PL-embedding
: QA" — 9B is said to be a welding of ¢’ to c. Since 0A’ is a closed surface
and 0B is a disjoint union of closed surfaces in R™, ¢(0A’) is a component of 9B.
Here OM is the two dimensional manifold boundary of a 3-manifold M.

Let X be a defining sequence and € a family of condensers in R™. Suppose that
for each H € C(X), there exist a condenser cy = (Ay, By) € € and a PL-homeo-
morphism ¢z : HUF — ¢ satisfying o (0H) = 0Ag and o (OHYT \ OH)
= 0Bpg. Then we call

A ={pr}tmecx)
an atlas for X, and the elements of A charts.
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Let C be a family of condensers and A= {yx } pec(x) an atlas for X'. Given H €
C(X)and H' € C(HNXjevel (11)+1), let ey = (A, By) and cyr = (Apv, B) be the
corresponding condensers in €. We define the induced welding Y g, m : 0A — 0By
by the formula

Y, = P o P |0Am .

We denote the induced welding scheme by
W = {Yr,u: 0Ag — OBy} u,

where H € C(X) and H' € C(H N Xievel (H)+1);

oOH'
o y \HaH/
aAH/ aBH
wH,H’

The triple (C, A, W) is called a welding structure on X.

FIGURE 3. A welding between two condensers.

4.1. Defining sequences of finite type

Recall from the introduction that a defining sequence (X)i>o is of finite type if
there exists a welding structure (€, A, W) with #C€ < oo and #W < co. A decom-
position space (R?/G, X) is of finite type if X has finite type.

The definition of a welding structure allows condensers to lie in high dimensional
Euclidean spaces. However, a welding structure in R? can always be built from
the original defining sequence.

Proposition 4.1. Let X be a defining sequence of finite type. Then there exists a
welding structure (€, A, W) in R3 so that

(i) for each c = (A, B) € C, there exists H € C(X) for which (A,B) = (H,H N
Xlevel(H)+1); and
(ii) #C < 0o and #W < 0.
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Proof. Let (€', A", W) be a welding structure for X’ so that #€’ < oo and #W’ < occ.
We may assume that each condenser c= (A, B) € €’ is the image of a chart, that is,
there exists H €C(X) for which cy=c and g : (HY 0H)— (cH 0A ). We fix
for each ¢ € €’ such a cube-with-handles and denote it by H.. Let ¢.: cff — Hdiff
be the inverse of the chart oy, .

Define

€ = {(He, He N Xievel (H.)+1)ceer
and
A ={¢ey o putmec(x)
Since W is a finite collection, the charts in A induce a finite collection weldings W

between boundary components of condensers in €. Thus (C, A, W) satisfies the
conditions of the claim. O

Let X = (Xk)r>0 be a defining sequence of finite type. Then the cubes-with-
handles in C(X') have uniformly bounded genus; we define

gx =max{g(H): H € C(X)}.
Furthermore, X’ has a finite (upper) growth
Y = max{#C(Xp1 N H): H € C(X}), k> 0}.
Definition 4.2. The order of growth vx of X is defined to be

(4.1) Y = le max{#C(Xx+1 NH): H € C(Xy), k>r}.

4.2. Self-similar spaces

Self-similar decomposition spaces are examples of decomposition spaces of finite
type. Semmes’s initial packages for defining self-similar decomposition spaces yield
almost directly finite welding structures on the defining sequences if the initial
packages are understood in the PL-category instead of the smooth category; see
Section 3 of [19].

An initial package (T,T,...,TN,¢1,...,¢n) consists of cubes-with-handles
T,Ty,...,Ty in R® with T; C int7 and T; N Ty = O for i # 4/, together with
PL-embeddings ¢;: U — T of a neighborhood U of T into T so that ¢;(T) = T;
and the images ¢;(U) are mutually disjoint neighborhoods of T;’s. The defining
sequence X = (X )r>0 is given by Xo =T and

Xy = U¢o¢(T)

for k > 1, where a = (aq,...,a;) € {1,...,N}¥ and ¢po = ¢, 0 0 @, -

Let ¢ = (T, Uy, ¢i(T)) be a condenser. Then homeomorphisms (¢q |c) 7!
Go(T)HE — A o e (J,o{1,..., N}*, form an atlas A for X. Although A is an
infinite atlas, the associated collection of weldings

W= {$:]0T: 1 <i< N}
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is finite. We call ({c}, A, W) the welding structure associated to the initial package
(T7T1,"',TN,¢1,"',¢N)~

FIGURE 4. Two welding structures associated to the Whitehead construction in Figure 1.

We refer to Section 3 of [19] for more details on initial packages for self-similar
decomposition spaces.

5. Rigid welding structures

We introduce now rigid welding structures which correspond to the excellent pack-
ages of Semmes ([19], Definition 3.2). In our terminology, Semmes’s excellent
packages translate to welding structures with one condenser in R*, whose bound-
ary lies entirely in R® x {0}, and with similarities as weldings. Semmes showed the
existence of excellent packages for defining sequences associated to the Whitehead
continuum, Bing’s dogbone, and the Bing double; see Sections 4-6 of [19].

Definition 5.1. Let (€, A, W) be a welding structure on a defining sequence X" of
finite type. We call (C, A, W) a rigid welding structure in R™, n > 4, if € consists
of finitely many condensers and

(S1) all boundary components of differences {c%iff: ¢ € €} of the same genus are

translations of one another,
(S2) weldings in W are translations,

(S3) for every ¢ = (A, B) € € we have that 94 C B® x {0} C R* C R", B C
B3 x {1} C R* C R, and int (c) € B3 x (0,1) x R4

For self-similar defining sequences, the existence of an excellent package induces
a natural embedding of the space R?/G into R? (see Lemma 3.21 in [19]). The
possibility to place BU 0A on two separate levels and to use all dimensions n > 4
is less restrictive than the requirements for excellent packages. For this reason, all
defining sequence of finite type admit rigid welding structures. Whereas Semmes’s
excellent packages lie in R*, the rigid welding structures lie in a fixed space R'C.
As the dimension of the ambient space containing condensers does not play a
significant role in the construction of metrics, we make no attempt to obtain the
optimal ambient dimension for rigid welding structures.
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Theorem 5.2 (Existence of rigid welding structures). Let (R?/G,X) be a decom-
position space of finite type. Then X admits a rigid welding structure in RS,

To straighten the condensers and the weldings between condensers, we apply
the Klee trick; see Proposition I1.10.4 in [6].

Lemma 5.3. Let m > 1 and k > 1, and let E be a PL compact set in R,
and let f: E — R™ be a PL-embedding. Then there exists a PL-homeomorphism
h: RFt™ 5 REF™ 5o that h|E x {0} = f.

To obtain condensers satisfying (S3), we use the following lemma based on
general position.

Lemma 5.4. Suppose ¢ = (A, B) is a condenser in R", n > 8, so that 0A C
B3 x {0} ¢ R* C R” and B C B3 x {1} C R* C R". Then there exists a PL-
embedding F: A — R™ so that F|0AU B = id and F(c) Cc B3 x (0,1) x R*~%.

Proof. We fix t > 1 and ¢’ < 0 so that A C R? x (#/,¢) x R"~4.

Since B x[1, 1] is a 3-dimensional PL-manifold in R* ¢ R™ and ¢ is 3-dimen-
sional, there exists, by general position (see Theorem 5.3 in [16]), a PL-homeomor-
phism h: R? x R x R"~* — R3 x R x R"~* satisfying h|R3 x (R\ (1,¢)) x R"~* = id
and h(0B x (1,t]) N ¢4 =@

Let B = B+ teq, A’ = (A\ B)U h(0B x [1,t])) UB’, and ¢’ = (4", B').
Since h(90B x [1,t]) is a one-sided collar of JB, there exists a PL-homeomorphism
k: A — A’ so that k|0A = id and k|B is the translation (z,1,y) — (z,t,y), where
z €R?and y € R4

Let g: R2xRxR"* — R?® xR x R"~* be the map (z,s,y) + (z,s/t,y). Then
¢” =g(c') = (A", B") is a condenser so that (c”)¥f C R3 x (—oc0,1) x R"~*. Note
that g o k[(0A U B) = id. Since the same argument can be applied to [t/,0], we
may assume that int (¢”)¥ C R3 x (0,1) x R*~4.

We fix a piecewise linear function v: R — (0,1) and a PL-homeomorphism
FiRIXxRxR"™ 5 R3 xR xR, f(x,s,y) = (v(s),s,y), so that v(s) =1 for
s (0,1) and f((c")MNR3 x {s}) C B3 x {s} for s € (0,1). Since f|0AUB = 1id,
the composition F' = f o g o k satisfies the requirements of the claim. O

Proof of Theorem 5.2. Let (C, A, W) be the welding structure in R?® associated to X
as in Proposition 4.1. As a preliminary step, we fix, for every 0 < g < gv, a cube-
with-handles T, of genus g in R3.

Step 1: We straighten the boundary components of the condensers.

Let ¢ = (A, B) be a condenser in €. We fix a point zp € R3 x {1} for each
component D € C(B) so that the cubes-with-handles T, +zp are pairwise disjoint,
where gp is the genus of D. Fix also a regular neighborhood E of dA in R? so
that EN B = () and an embedding f: EU B — R3 x {0,1} such that f(9A) =
OT,, C R3 x {0} and f(D) =Ty, +2p C R3 x {1} for each D € C(B). Then, by
Lemma 5.3, there exists a PL-homeomorphism h.: R® — R® such that h.(0A) =
OT,, C R3 x {0} and he(D) = Ty, + zp for every D € C(B).
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Homeomorphisms h. induce a new welding structure with the condensers C=
{(he(A),he(B)): ¢ € C}, the atlas A = {hc, opy: H € C(X)}, and the weldings
‘W defined by € and A. o

We denote the new structure (€, A, W) in R® again by (C,.A, W), and the new
condensers, charts, and weldings again by c, pp, and Y g = @ o 901_{} respec-
tively.

Step 2: We now straighten the weldings from Step 1 to translations while
expanding the collection of condensers.

Let ¢: 0A; — 0Bs be a welding in W between the condensers (A, By) and
(A2, Bs) in C. Let D € C(Bz) be the component receiving 1, that is, 1(0A;) = 0D.
Since D and A; have the same genus, we may fix a translation 7,: 04; — 9D.
Set

W = {7 }yew-

We will add to € a new condenser for each welding in W and modify the existing
charts in A. This new atlas has W as the collection of induced weldings.

FIGURE 5. The construction of a new condenser, cy.

We first define the new condensers. Let ¢: dA; — 0Bs be a welding in ' W
between the condensers (A;, B1) and (A4s, B2) in €. Fix a one-sided collar F of
OA; in Ay \ By and an open set U C R® satisfying A1 NU C E. By the Klee trick
(Lemma 5.3), there exists a homeomorphism f,,: R'6 — R16 5o that fy|A;\U = id
and fy|0A; = 7'1;1 o). We set ¢y = (fy (A1), B1), and note that By C A; \ U and
thus fy|B1 = id. We define

C=CU{cy: Y e W}

Since #C + #W < oo, € is a finite collection of condensers satisfying (S1).

We finish the proof by defining the atlas A. For H’ € C(X) with level (H') = 0,
we define ¢y =cpr and @ =¢@pr. Suppose now that H' € C(X) has level at least 1
and let H € C(X) be the cube-with-handles satisfying H'€C(H N Xievel ()+1)-
Let g HYE _y ¢ and OH )2 cpy be the corresponding charts in A,
and ¥ = ¥y, g the welding induced by ¢x and ¢p/. We define ¢pr = ¢y and set
G s H'UE cfpiff by the formula fy o ¢gs. Define

A= {¢n}mwecix)-
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To check that weldings induced by charts in A are inAW, let H € C(X) and H' €
C(H N Xievel (m1)+1) be as above, and define ¢y = (Ap, Byr). Since ¢p|0H' =
o |0OH', we have

Gu 0 G |0Am = pr oy o fJ;H/ 0Aw = o Fom 0Am =71y, .-

Thus weldings are in W and satisfy (S2).

Step 3: To obtain condensers satisfying condition (S3) we first apply a transla-
tion and a scaling in R? (with the same scaling constant) to all condensers in € so
that the assumptions of Lemma 5.4 are satisfied. Then we apply Lemma 5.4 and
change the atlas accordingly. O

FIGURE 6. A condenser in a rigid structure.

6. Modular embeddings

In this section we discuss embeddings of decomposition spaces of finite type into
Euclidean spaces. Given a welding structure, we first introduce the notion of a
modular embedding of R?/G into a Euclidean space, which respects the quasisim-
ilarity type of that structure. This embedding defines a geometrically natural
modular metric on the decomposition space R3/G.

It has been shown in the previous section that a defining sequence of finite type
admits a rigid welding structure. Theorem 6.2 proves the existence of a modular
embedding with respect to any rigid structure.

Given a welding structure (€,.A, W) on a decomposition space (R3/G,X) of
finite type with 0 < A < 1 and n > 3, we say that an embedding 0: R?/G — R" is
A-modular (with respect to (€, A, W)) if fomg|(R3\ Xo)=id and there exists L > 1
so that

(6.1) fomgowy : cHl  R"

is a (\¥, L)-quasisimilarity for every H € C(X}) and k > 0, that is, the following
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diagram commutes:
. (pH .
Hdlff T C(Ii—llff

7rc;|Hdiffl j@owGogo;Il

Given a A-modular embedding #: R?/G — R™ with respect to a welding struc-
ture (C, A, W), we define the A\-modular metric dyg on R*/G by

(6.2) do(z,y) = [0(x) — O0(y)l;

here | - | is the Euclidean norm on R™.

We need the notion of compatible atlases to compare the modular metrics
induced by modular embeddings with respect to two different welding structures.
Welding structures (C, A, W) and (€', A’,W’) on X are said to have compatible
atlases if there exists L > 1 so that

diff |, _diff /)diff
H

(6.3) @}{ogp;{l|c s = (cly

is L-bilipschitz for every H € C(X), where homeomorphisms ¢g: HUE — cHf
/

and %1 HY — (c)3 are charts in A and A’, respectively.

Lemma 6.1. Let (R3/G,X) be a decomposition space of finite type and let \ €
(0,1). Suppose (C;, Ai,W;), i = 1,2, are welding structures on X having com-
patible atlases, and let 0;: R®/G — R™: be A-modular embeddings associated to
(€;, A;, Wy), respectively. Then path metrics cfgl and 6292 on R3/G are bilipschitz
equivalent.

Proof. Since (C1,A1,W1) and (Cq, A2, Ws) have compatible atlases, there exists
L > 1 so that, for every H € C(X),
i = ¢h o (pr) " (cp)

is L-bilipschitz, where ¢t : HU — (c? )4 is the chart for H in A; for i = 1,2.

Since #; and 0 are A-modular embeddings, we also have constants L and Lo
so that 6; o mg o (¢iy) ! is a (A¥, L;)-quasisimilarity for each H € C(X}) and
every k > 0.

Let H € C(X). We define

> ()

O = 02 0 07101 (ma (HY™)): 01 (n (HYT)) — 0a(ne(HIT)).

Since
O = (0207 0 (03) ") ot o (Gromg o (i) )7,
0r is LLqLo-bilipschitz.

Let Q=(R3/G)\7c(X o). Since Oy is uniformly bilipschitz on each 0; (r (H4f)),
we observe that 03067 |61(Q) is a bilipschitz map in the path metric from 6 () to
02(Q). Since 6;(R3/G) is the closure of 61 (), we observe that #5067 " is bilipschitz
in the path metric from 6;(R?/G) to 62(R3/G). The claim now follows. O
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We state the modular embedding theorem with respect to a given rigid welding
structure as follows.

Theorem 6.2 (Modular embedding theorem). Let (R3/G, X) be a decomposition
space of finite type and let (C, A, W) be a rigid welding structure on X. Then
for every 0 < X\ < 1, there exists a A\-modular embedding 0: R®/G — R™ where
n > 16, whose image (R3/Q) is quasiconvex in the Euclidean metric. Moreover,
there exists L = L(0) > 1 so that, any two distinct points x,y € O(R3/G) are
contained in an L-bilipschitz image of a closed Euclidean 3-ball of radius |x — y|.

The proof of the modular embedding theorem is divided into two parts. First
we consider a tree Treey derived from the combinatorial structure of the defining
sequence X and a bilipschitz embedding of Treey into some Euclidean space R?.
In the second part, we obtain an embedding of R?/G into R16*¢ by gluing reshaped
and rescaled condensers in a rigid welding structure provided by Theorem 5.2. This
gluing is guided by the embedded structural tree Treey.

6.1. Combinatorial trees

Let R3/G be a decomposition space with a defining sequence X = (X},). We denote
by Treey the tree with vertices C(X) and unoriented edges (H, H'), where H €
C(Xy) and H € C(H N Xj41).

Given H, H' € C(X), we define

(6.4) px(H,H") = max{level (H") € Z: HUH' C H" € C(X)}.

Since Treey is a tree there exists a unique shortest chain H = Hy,...,Hy, = H' so
that (H;, H;11) is an edge in Treey for every ¢ = 1,...,¢ — 1. In particular, there
exists a unique index iy = io(H, H') so that level (H;,) = px(H, H').

Given A > 0 we define the metric J) on Treey by the formula

{—1

6/\([{7 Hl) _ Z )\min{level (Hi),leVEI(Hi+1)}7
i=1

where H, H' € C(X) and the sum is taken over the shortest chain H = Hy, ...,
Hy, = H'. The metric 4; is the standard graph distance on Treey. The definition
of the metric 0, immediately yields a distance estimate

(6.5) APxULHY) < 5 (g H') < ¢ Apx(HLH)

for all H,H' € C(X), H # H', where C' = C(\).
This distance estimate implies that the metric trees (Treey,dy), A > 0, are
quasisymmetrically equivalent. We record this observation in the following lemma.

Lemma 6.3. Let A\;, 2 > 0. The identity map (Treex,dy,) — (Treex,dy,) is
n-quasisymmetric with n(t) = CtP, where p =log Aa/log A1 and C = C(\1, A2).
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The metric trees (Treey,dy) embed bilipschitzly into Euclidean spaces. Recall
that (eq,...,e,) is the standard basis of R™ for n > 1.

Lemma 6.4. Let (R?/G, X, (C, A,W)) be a decomposition space of finite type and
let0 < A < 1. Then there existn = n(X,\) and amap ex: C(X) — {e1,...,en} s0
that the map ¥: (Treex,d)) — R™ defined inductively by 9(Xo) = 0 and ¥(H') =
I(H)+Neex(H') for H € C(Xy) and H' € C(HNXk11), is a bilipschitz embedding.

Proof. Let my > 0 be the smallest integer satisfying

(6.6) SN < 1/4,

j=1

Since X has finite type, there exists n depending on € and mg, thus depending

on X and ), so that
k+2mg

#( U cxinm) <n
i=k

for all K > 0 and H € C(X}). We fix a map ex: C(X) — {e1,...,e,} so that if
ex(H) = ex(H') then the graph distance 6, (H, H') satisfies 61 (H, H') > myg

We show now that the mapping ¢: Treex — R, defined in the statement, is a
bilipschitz embedding.

Let H H' € C(X) and let H = Hy,...,H; = H’ be the unique shortest chain.
Let I; ={i: 1 <i</{,i#io(H,H )and ex(H;) =¢;} for j =1,...,n. Then

-1 n
O(H) = 0(H') = 3 0(H:) = 0(Hipn) = S (3 + (0(H:) —9(H)),

where 7 is either i + 1 or i — 1 such that level (H;) = level (H;) + 1. The positive
sign is chosen when ¢ =4 + 1, and the negative sign is chosen when ¢ =i — 1.
By orthogonality,

o) — o) = (2| 32 = o) — o[ )

j=1 i€l

Since ¥(H;) — 9(H;) = Nevel(Hide, for i € I;, we have

3 ks 5 ks
— 7 < ) — ~ < — J
T | D0 (0(H) — 0(H)| < S,
i€l
where k; = min{level (H;): ¢ € I;}. Since
px(H,H') =min{k;: 1 <j<n} -1,

we have

§)\PX(H,H')+1 < |19(H) B 19(H/)| < M )\px(H,H’)+1.
4 - - 2
Thus, by (6.5), ¢ is bilipschitz. O
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6.2. Bending and reshaping of condensers

Suppose that ¢ = (A4, B) is a condenser in a rigid welding structure in R™ for some
m > 4 and that e: C(B) — {€m+1,--.,Emin} is an injection, where (e1, ..., €min)
is an orthonormal basis of R™*", We say that a bilipschitz PL-homeomorphism
be,e: R™T™ — R™*™ is a bending of ¢ by e if

1. bee|0A =1id,
2. bee|D: x> x+ e(D) for every D € C(B), and
3. beo(int cdif) € B? x (0,1) x R™+7—4,

Bendings of ¢ by e can be found easily.
Let k>4 and A € (0,1). We define the A-reshaping s»: R¥ — R¥ to be

S\ (1’, tv y) = (C(t)l’, tv y)

for (z,t,y) € R? x R x R¥=* where

A, t>1,
ct)=4 1—-(1-Nt, 0<t<1,
1 t<o0.

6.3. Proof of the modular embedding theorem

To prove Theorem 6.2, we construct first an auxiliary sequence of PL submani-
folds (M) of a fixed Euclidean space which tends to a PL submanifold M.,. The
image of the embedding 6|7 (R?\ X, ) will be the manifold M. This embedding
is then extended to R3/G by continuity.

Assume, as we may by Theorem 5.2, that (C, A, W) is a rigid welding structure
for X in R'6.

Auziliary sequence (Mj). Let ex: C(X) — {e1641,...,€16+n} be the map and
let 9: Treex — {0} x R™ be the embedding defined in Lemma 6.4, with a natural
shift of coordinates; recall that 9¥(Xy) = 0.

We enumerate the cubes-with-handles in C(X') by Hy, H, ... so that Hy = X,
and if H; € C(Xy) then H;y1 € C(Xj) UC(Xkt1). We may assume that the
condenser cog = (Ap, Bp) is in € and that the charts ¢x, : Xgiff — cgiﬂ are chosen
so that Ay = Xy and ¢x,|0Xo = id. We write ¢; = (4;, B;) for the condensers
cy, € € and denote by ¢; the charts g, : HIT — ¢ in A for i > 0.

Submanifolds (M;) will be constructed by gluing together bended and reshaped
condensers {c;: i > 0} guided by the embedded tree ¥(Treey).

We start by defining the directions for bending. Given ¢ > 0, we denote by
®;: C(H; N Xievel (m,)+1) — C(B;) the bijection between components induced by
charts g, so that ®;|0H" = o, |0H' for H" € C(H; N Xicyel (7,)+1). Furthermore,
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we define €’: C(B;) — {€1641,---,€164n} by € =ex o ®; 1.

D,
C(H; N Xievel (11,)+1) ——— C(By)

lincl. le/"

C(X) Pye {e16+41, - €164n}

We then fix a family of bendings {b; = b, . : R16T™ — R¥6+™: > 0}. To ensure
that the collection {b;: i@ > 0} of bendings is finite, we require b; = b; when
(ciye) = (cj,e?). Thus, the bendings in {b;,i > 0} are uniformly bilipschitz.
Fix a constant Cy > 0 so that B5*"(Cy) contains all the condensers in C.
Let M_; = (R*\ Xo) x{0} C R* C R'® C R¥*™ and let f_; : R*\ Xy — R!6+"
be the natural inclusion. We define My by

My = M_; U cdiff

and an embedding fy: R?\ X; — R+ by 0y|R?\ X = 6_; and 90|X51i1cf = ©¥x,-
Suppose now that we have defined manifolds M_, ..., M;_; and embeddings
9_1,...,9]‘_1 so that, for i = —1,...,j—1,

1. M; = M;_1 U fi(c) where H; € C(Xy,), fi is the quasisimilarity
and w; is a point in RC satisfying |w;| < Co D o<r<k; A3 and

2. the embedding 6;: (R*\ Xo)U(HEFU. ..U HIF) — M; is defined by 6;](R?\
X()) U (.Z-T[(()iii:f y---u Hldif{) = 91',1 and 61|H,Ldlﬂ = f,L O Vi

We construct the set M; and the embedding 6; as follows. Suppose that H; €
C(X}) and that H;, i < j, is the unique cube-with-handles in C(Xj_1) with the
property H; € C(H;NX}), and let ¢ = gpingj_l be the welding map from c; to c{iff.
Since (€, A, W) is a rigid structure, 1 is a translation = — x + v, in R, where
vy € RO (vy,e4) = 1, and |vy| < Cp as in the construction. By the induction
hypothesis, fi|i(0H;) is a similarity

z = N+ Ney (Hp) + 9(H;) +w;i = N 4+ 9(H;) + wg;

here we use the facts that b;|p;(0H;) = €' (H;) = ex(H;) and the reshaping sy on
0y, (Hj;) is a scaling by A. We set f; to be the quasisimilarity

T +— )\k(S)\ o b])(l‘) + 19(Hj) + )\k’Uw + w;.

Set also w; = )\kvw + w; € RS, and note that by the induction hypothesis that
lwi| < CoXpcrcn A

Since c; is a condenser in a rigid structure and (vy,es) = 1, we have that
M;_1 N f;(c;) is a common boundary component of M;_q and f;(c;). Thus M, =
M;_1Uf;(c;) is a connected manifold with boundary satisfying (1) in the induction
hypothesis.
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Now we define the embedding 6;: (R® \ Xo) U (H# U - U Hj‘-hff) — Mj by
formula 6;|R* U (HST U - .- UH8E) = 60, 4 and 0;|H{T = fj 0 p;. This completes
the induction step.

Construction of M. Define now the limit manifold M., by

My = J M;
§>0

and the limiting embedding 0o : R?\ Xoo — Moo by 0| M; = 0.

Since there exists C' > 0 so that diam §(H) < C \* for every H € C(Xy), the
components of M—oo\ M are singletons. Thus 0., o 7T51 extends to a homeomor-
phism 0: R3/G — M.

Note that 6 o g o <p;1: c?iff — R16+7 ig g (Nevel (H) | [)_quasisimilarity, for a
constant L > 1 depending only on the family of bendings {b;: ¢ > 0} and n. Thus
0 is a A-modular embedding.

Metric properties of O(R?/G). We show now the last claim in the statement:
given z,y € 0(R3/G), there exists an L'-bilipschitz map h: B3(|z —y|) — (R?/G)
so that z,y € h(B3(|z — y|)), where L' = L'(§) > 1. In particular, §(R?/G) is
quasiconvex.

It suffices to consider the case x,y € 0(ma(R®\ X&)); the other cases are
obtained by similar arguments.

We observe, by the (Alvel (H), L)-quasisimilarity of the mappings fomg 090;1 and
the finiteness of condensers in €, the following. If H and H' are condensers in C(X)
satisfying H4 N H'4 £ () then any two points  and y in 0(7g(HY U H/4T))
can be connected by a PL-curve contained in a 3-cell in 6(7g (H4 U H/4)) that is
L’-bilipschitz equivalent to a Euclidean ball of diameter |z — y|, where L’ depends
only on the data. In particular, the claim holds in this case.

We now assume x € 0(ng(HYU)), y € 0(ng(H'Y)) and HE N A4 = (). Let
H = Hy,...,H; = H' be the unique shortest chain in Treey joining vertices H
and H', and py(H, H') = min{level (H) € Z: HU H' ¢ H € C(X)}. Then by the
construction of the embedding 6, there exists C = C(0) > 1 so that

(6.8) CINXULHEYD) <y < ¢ AP (FLHT)

There exist C' = C’(f) > 1 and points = = g, ...,z = y with z; € 0(rg(HIM))
so that each z;, 1 < i < £ — 1, is contained in a 3-cell D; C 0(rg(HI)) which
is L'-bilipschitz equivalent to B3(Aevel (7)) and so that

C«/—lAlevel (H;) < |mi _ -ri+1| < C)\level(Hi)

for 0 <i < /¢ —1. Consequently,

—1
Dz =i < Cle -yl

i=0

By the argument for the previous case, we find PL 3-cells E; C mg(HME U H;ﬂl_f{)
that are L'-bilipschitz equivalent to B3(|z; — z;4+1|) and contain the points x; and
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z;11 in their interiors in 7o (HIT U HUT), respectively. It is now easy to find a
PL 3-cell E C Uf;ll D; U Uf:& E; that is L'-bilipschitz equivalent to B(|x — y|)
and contains the points x and y. This concludes the proof of Theorem 6.2.

Remark 6.5. The fact that any two points x,y in §(R?/G) are contained in a
3-cell in §(R3/G) that is L-bilipschitz equivalent to a Euclidean ball of diameter
|z — y|, yields that §(R?/G) has the Loewner property. We formulate this more
precisely in Section 7.4.

7. Semmes spaces

In this section we discuss quasiconvexity, Ahlfors regularity, linearly locally con-
tractibility, and the Loewner property of the modular metrics provided by the
modular embedding theorem as listed in Theorem 1.2.

Definition 7.1. Let (R3/G, X) be a decomposition space of finite type, let (€, A,W)
be a rigid welding structure for X, let : R?/G — R™ be a modular embedding
associated to (€, A, W) as in Theorem 6.2, and let dyp be a A-modular metric asso-
ciated to 0. A metric space (R?/G, dy) is called a Semmes space if dy is bilipschitz
equivalent to dy. In this case we say d is a Semmes metric with a scaling factor X.

At times we say that (R3/G, X, (€, A, W), 0,d,) is a Semmes space in order to
emphasize the relation to between the structure, the embedding, and the metric.
Product spaces R?/G x R™ carry the natural product metric dy ,,, defined by

(71) d)\,m((m,u)v (y,v)) = d/\(lﬂ,y) + |u - U|

for (z,u) and (y,v) in R?/G x R™.

We observe that the metric space (R®/G,dy) is quasiconvez; indeed, O(R?/G)
is a quasiconvex set in R™ by Theorem 6.2. By quasiconvexity and Lemma 6.1 we
have the bilipschitz equivalence of the modular metric spaces associated to rigid
welding structures with compatible atlases. We record this observation as a lemma.

Lemma 7.2. Let A € (0,1) and suppose that (R3/G, X, (C;, Ai, W;), 0;,dg,) are
A-modular metric spaces, i = 1,2. The metrics dp, and dg, are bilipschitz equiva-
lent if the rigid welding structures (C1, A1, W1) and (Ca, A2, Wa) have compatible
atlases.

7.1. Metric properties

We list some elementary metric and measure theoretic properties of Semmes spaces
in the following remarks and the subsequent lemma. Let (R?/G, X, (€, A, W), 0, dy)
be a Semmes space.

Remark 7.3. By quasiconvexity of dy, the path metric space (RS/G,JQ) is a
Semmes space. Similarly, the path metric space (R3/G,d)) of (R?®/G,d)) is a
Semmes space.
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Remark 7.4. By modularity of the embedding # and quasiconvexity of the metric
dy there exists a constant C' = C(dy) so that

1 \px(H.H") < dy(z,y) < O \px (HH")
for 2 € ng(HY) and y € ng(H'4) whenever H, H' € C(X) and H4fn /4t — ¢,

Remark 7.5. By the finiteness of the welding structure (C, A, W) and the qua-
sisimilarity property (6.1) of modular embeddings, there exists C' > 1 so that for
every k > 0 and H € C(Xy),

1. C-'\F < disty, (9nc(H),dnc(H')) < CXN<, if H' € C(X), H' ¢ H and
H' # H;

2. C~I\F < diamg, neHIE < C Nk,
3. C7INE < H3 (re(HYM)) < O N%F; and
4. C7'r3 <M (Ba, (z,7)) < Cr2, if Bay(x,7) C 7o(Xp—1\ Xpt2)

Observe also that components of mg(Xoo) are singletons in (R3/G,dy). Thus
7 (Xoo) is 0-dimensional.

Lemma 7.6. Let (R3/G, X, (C,A,W),0,dy) be a Semmes space. Then there exists
C > 1 so that

(7.2) C~INF < diamg, e H < C Nk,

for every k>0 and H € C(X}).
If, in addition, N3yx < 1, then "Hi (76¢(Xoo)) = 0 and there exists C > 1 so
that

(7.3) CTINF < W] (neH) < C N
for every k > 0 and H € C(Xy).
Proof. Since

TcH = U U 7o (H'M),

i>k H'€C(X;NH)

we have, by connectedness and Remark 7.5 (2),

CTIAF < diamg, H < diamg, H <Y CX < /AR,
i>k
Similarly, we have that
Mo, (ra(H) = Hi, (na(Xeo NH) + Y Y HY, (7g(H™YT)).
i>k H'€C(X;NH)
Suppose now that A\3yx < 1. Then, by (7.2),

Hi (1e(X)) < limsup Z (C' A3 < G limsup A% = 0.
20 &elxn i—0
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By Definition 4.2 and Remark 7.5 (3), there exist ko > 1 and C' > 1 so that

C*l)\?)k: S Z Z Hg)\(ﬂ_g(Hldiﬁ)) S ZC)‘SZ’YZY_k S C)\?)k:

i>k H'€C(X;NH) i>k

for k > kg. After replacing C' by another constant that depends only on C, A, ko,
and the upper growth 7., we may obtain (7.3) for all k¥ > 0. This concludes the
proof. O

Remark 7.7. We observe that, by Remark 7.5 and Lemma 7.6, the number

{distdA (rq(0H), mq(H \ HM)) } '

X7 RE0 mec(xi) N
is strictly positive. Furthermore, we may fix ey = ex(dy) < £/10 so that the
neighborhood Ny, (1¢(0H), e\ (7)) is contained in a regular neighborhood of

7q(OH) in ma(Xievel (7)—1) \ 76 (Hievel (H)+1)-

7.2. Ahlfors regularity

The Ahlfors regularity of Semmes spaces follows as in [19], Lemma 3.45. We discuss
the details for completeness of the exposition.

Proposition 7.8. Let (R3/G, X, (C,A,W),0,d,) be a Semmes space, and suppose
that 0 < M3yx < 1. Then the space (R®/G,dy) is Ahlfors 3-reqular, and the spaces
(R?/G x R™,dy ) are Ahlfors (3 + m)-regular for m > 1.

Proof. Tt suffices to show that (R®/G,dy) is Ahlfors 3-regular. Then the Ahlfors
(3+4m)-regularity of spaces (R*/G x R™, d ,,,), m > 1, follows by taking products.
By the bilipschitz invariance of Ahlfors regularity, we may assume that d) is
the metric dy defined by a A-modular embedding 0: R3/G — R6*", To simplify
the exposition, we assume that Xo = B3, and set X_; = B3(0,A™7) for j > 0.
To show that

(7.4) clr < "Hi (Ba, (z,7)) < Cr3

for all balls By, (z,7) in (R3/G,dy), we consider two cases: (a) z € mg(R3\ X),
and (b) z € 1¢(Xoo).

We first consider case (a). Assume that z € 7¢(Xo \ Xoo), and suppose x €
ne(HY) and H € C(X;). By Remark 7.5(1), there exists a constant C; =
C1(dy) € (0,1) so that if r < C1AF then By, (z,7) C 76 (Xg—1\ Xr+2). By (7.2) of
Lemma 7.6, there exists a constant Cy = Cy(dy) > 1 so that if » > CyA\* then
ma(H) C By, (x,r).

Case (b) follows from (a). Indeed, since mg(R3 \ X ) is dense in R?/G, given
r € 76(Xa) and r > 0 there exists y € 7g(R?\ X ) so that dy(x,y) < r/2.
So B, (y,7/2) C Ba, (z,7) C Ba, (y,2r), and (7.4) follows by (a).

For 0 < r < C1\F, the claim follows from Remark 7.5 (4).
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For 7 > Co Ak, we fix m € Z so that A™*+1 < < \™. Then, by Remark 7.5 (1),
there exist an integer C5 = C3(dy) > 0, and cubes-with-handles H' € C(X,4¢;)
and H" € C(X,,—c,) so that

ne(H') C By, (z,7) C g (H").
Then, by (7.3) in Lemma 7.6, there exists C' = C(dy) > 1 so that
CTINTES) < (By, (z,7)) < CA3m=Cs),

In the remaining subcase C1\* < r < C9A\F, By, (x,7r) contains the ball
B, (x,C1\F) and is contained in a cube-with-handles in C(Xx_c¢,) for some Cy =
C4(dx) > 0. Then (7.4) follows by combining Remark 7.5 and (7.3) in Lemma 7.6.
This concludes the proof. O

7.3. Linear local contractibility

In this section we show that a Semmes space (R3/G, (Xk)k>0,(C,A,W),0,dy) is
linearly locally contractible if X is locally contractible. Recall that a defining
sequence X = (X}) is locally contractible if components of X}y are contractible
in X for k> 0.

The linear local contractibility of (R®/G,dy) is a necessary condition for the
existence of a quasisymmetric parametrization of (R?/G, dy) by a Euclidean space.

Proposition 7.9. Let (R3/G, X, (€, A, W), 0,dy) be a Semmes space having locally
contractible defining sequence X. Then, for every m > 0, (R3/G x R™,dy ) is
linearly locally contractible.

As before, we assume as we may that Xo = B and X_; = B3(0,A77) for j > 0.

Proof. Since X_j, is a 3-cell for k > 0, the components of 7¢ (X}.+1) are contractible
in m¢(X%) for every k € Z by Lemma 3.1.

Special case: Assume that m =0 and y € 76(R?\ Xoo); so y € HY for some
H € C(X}). We consider this case in two parts.

By the uniform quasisimilarity of the modular embedding 6, there exist con-
stants Cy = Cp(dy) > 1 and Cy = C1(dy) > 0 with the property: if 0 < 7 < C1\*
there exists a 3-cell E C mg(Xk—1 \ Xg+2) satisfying

de (y,r) CEC de (y,C()?“)-

Hence By, (y,7) contracts in By, (y, Cor) if 7 < C1\F.
Suppose now that r» > Cy\F. We fix cubes-with-handles H', H" € C(X) satis-
fying H C H' Cc H",

level (H') = min{level (K): K € C(X), By, (z,r) C na(K))},

and
level (H") = level (H') — 1.
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Then By, (y,r) C mg(H’) and, by Lemma 3.1, 7 (H’) contracts in 7g(H"). By Re-
mark 7.5 and Lemma 7.6, there exists Cy = Ca(dy) > 1 so that diamg, (rg(H")) <
Cyr. Thus ng(H"”) C B, (y,Car), and By, (y,r) contracts in By, (y, Car). This
concludes the proof of this special case.

General case: Let x = (y,v) € mg(R3) x R™, where m > 0. Let r > 0. To show
that there exists C' = C(dxm) > 1 so that every ball By, ,, (z,7) is contractible
in By, . (z,Cr), we consider the two cases (a) z € mg(R?*\ Xo) x R™ and (b)
S Wg(Xoo) x R™,

We consider first case (a), that is @ = (y,v) € 7g(R?\ X&) x R™ with
y € mg(H") and H € C(Xy). Then By, (z,7) contracts in Bq, (y,Cr)x
(v + [=r,r]™). Thus By, ,,(x,r) is contractible in By, ,, (z,(C + /m)r) and the
claim follows.

Case (b) follows from (a). Indeed, there exists z € mg(R? \ Xo) x R™ so
that dx . (x,2) < r/2. Hence By, ,, (x,r) is contained in a ball By, , (z,2r) that
is contractible in By, , (2,2Cr) C Bq, , (x,4Cr), where C = C(dxm) is as in
case (a). O

7.4. Loewner property

In this section, we briefly list some other analytical properties of Semmes spaces.
We refer to [19], [18], and [9] for definitions and background. Assume in what
follows that (R®/G,d,) is Ahlfors 3-regular.

From the proof of the modular embedding theorem (Theorem 6.2) we see that
any pair of points z,y € R3/G is contained in a uniformly bilipschitz image of the
Euclidean ball B3(|z — y|). This property is the same as in Lemma 3.70 of [19] for
self-similar spaces. The argument of Proposition 10.8 in [19] can now be applied
almost verbatim to show that (R®/G,dy) supports a (1,1)-Poincaré inequality as
formulated in (10.9) of [19]. Since the space R?/G is PL outside g (Xoo), the
Poincaré inequality can be formulated in terms of generalized gradients (upper
gradients). We refer to Appendix C of [18] for a detailed treatment.

Ahlfors 3-regularity, quasiconvexity, and the (1, 1)-Poincaré inequality together
imply that (R3/G,d,) is a Loewner space in the sense of Heinonen and Koskela;
see Theorem 5.7 in [9]. A metric measure space (X, d, ) of Hausdorff dimension @
is a Loewner space if there exists a function ¢: (0,00) — (0,00) so that

Modg (B, F) > ¢(A(E, F. X))
whenever F and F' are disjoint continua in X, where

dist(E, F)
min{diam E, diam F'}’

A(E,F,X) =

and Modg(E, F) is the @Q-modulus of the family of paths connecting E and F
in X.

Suppose now that the space (R3/G x R™,dy ) is Ahlfors (3 + m)-regular
and homeomorphic to R3+™ for some m > 0. Then (R3/G x R™, d) ,,) supports a
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(1,1)-Poincaré inequality by a theorem of Semmes for manifolds (Theorem B.10 (b)
in [18]). Thus (R?®/G x R™,d ) is a Loewner space by the aforementioned the-
orem of Heinonen and Koskela. Recall that the Loewner property is a necessary
condition for the quasisymmetric parametrizability; see Tyson [22].

7.5. Quasisymmetric equivalence of Semmes metrics

In this section we prove the quasisymmetric equivalence of the Semmes metrics on
(R3/G, X) associated to different welding structures and scaling factors.

Proposition 7.10. Let (R?/G, X, (C;, A;, W;), 0;,dy.) be two Semmes spaces with
1 = 1,2 and A,y € (0,1). Suppose that (C1,A1,W1) and (Ca, A2, Ws) have
compatible atlases. Then id: (R?/G,dy,) — (R3/G,dy,) is quasisymmetric.

Proof. Assume, as we may, that Xy = B? and define X_; = B3(0,A77) for j > 0.
Since 7¢(R? \ X4 ) is dense in R?/G and the metrics dy, are bilipschitz equiv-
alent to modular metrics dy, for i = 1,2, respectively, it suffices to show that there

exists a homeomorphism 7: [0,00) — [0,00) so that, for all distinct points z, y,
and z in 7g(R3 \ Xo),

10a(2) — 02(0)] _(16:(x) — 0:(0)]
(7:5) oo —oe) < m@=ac)

We divide the proof into different cases depending on the relative distances
between the points z, y, and z. For brevity, say that points z and y in 7 (R3\ X o)
are close if there exist H, H' € C(X) so that {x,y} C ng(HY U H'Y) and the
common boundary HY 0 H'4F £ () Otherwise, we say that points « and y are far.

Let z, y, and z be distinct points in 7g(R? \ X).

Case T: Suppose that at least two pairs of points in the set {z,y, z} are close.
Then there exist H, H', H" € C(X) so that HYf n g'diff £ ¢ prdift o prdift
# 0, and {z,y,2} C me(HM u A" U H"4E) - Then, by quasiconvexity of the
metrics dy,, compatibility of the atlases, and modularity of the embeddings 6;,
there exists C; = C1(01,62) > 0 so that (7.5) holds with n = 7, where n;(¢) = C4t.

Case 1I: Suppose that the points x, y, and z are far from each other. Then,
by Remark 7.4, there exists Cy = C3(61,62) > 0 so that (7.5) holds with 1 = 72,
where 72(t) = Cat? and p = log A2/ log ;.

Case III: Suppose now that there exists only one pair in {z,y, z} where the
points are close and that points in the other two pairs are far. We have three
subcases.

Case TI1.1: Suppose that y and z are close. Then x and y are far and x and z
are far. So there exists C' = C(6y,02) > 0 so that

1 0e) b))
C = o) —bi(z) =€

for ¢ = 1,2. Thus (7.5) holds with n = n3, where n3(t) = Cst with C5 =
03(91,92) > 0.
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Case T11.2: Suppose now that x and z are close and let H, H' € C(X) be such
that {z, 2} C nre(HU U H'4T) and HYE N {4 £ (). Then, by modularity of the
embeddings ; and 0, there exist C' = C(6y,62) > 1 and w € mg(HM U H'HH) 50
that

min{|0;(x) — 0;(w)|, |0:(z) — 0;(w)|} > %diam Hi(WG(Hdiﬁ U H'diﬁ))

fori=1,2.
Following the argument for cases I and II, there exists Cy = C4(61,602) > 0 so
that
|02(x) — b2 (w)| 101 (x) — 61 (w)|
ey 72 ) <o A et St |
mae e = (B a )
and
020) 00 _ ., (Inlo) —Ou)]
|02(x) — O2(w)| — |01(x) — 61 (w)]

where the homeomorphisms 7; and 7, are as in cases I and II.
Thus

|02(2) — b2 (y)| _ 102(x) — ba2(y)| |02(2) — O2(w)|
|02(x) = 02(2)  |02(2) — O2(w)] [02(2) — 02(2)]

)
(y I) (|91 (w)l)

|01 (z) — 01
§0104772(|0 x)f@ w)| |61 *91(2”
01(z) = 01 (y)| 102(x) = 02 (w)]|
sclc4n2(0| () g()|>”1(c|91() 91(2)I>’

Thus (7.5) holds with n = n3, where ns(t) = C; Can1(Ct) n2(Ct).

Case II1.3: The remaining case is that « and y are close. Let H, H' € C(X) be
such that {z,y} C mo(HYE U H'IT) and HIE N /3 £ (). As in Case I11.2, there
exist C = C(01,02) > 1 and w € ng(HYUE U H'4) 50 that

(7.6) min{|0;(x) — 0;(w)|, |0:(y) — 0;(w)|} > é diam ei(ﬂg(HdiH U H'diff)).
Furthermore, there exists C5 = C5(01,62) > 0 so that
|62(x) — b2(y)| _ |01 () — 61(y)| |01 (2) — 61 (w)|
|02(2) — 02(2)] =G (|91(9€) - 91(’w)|) 2( |01(x) — 01(2)] )
By (7.6) and the assumptions on {z,y, 2z}, we have that
(10 )] 104@) 6] 04~y _
{|91(I) = 01(2)]" |01(z) = Or(w)] (01 () — 01(2)] } =C
where €7 = C’(0y,02). Assume first that
|01 (x) — 61 (y)| |01 () — 01 (y)[\1/?
DEEATE e

Then
[02(x) = Oa(y)| 0v(@) = 01w\ /2, o
|02(x) — 02(2)] < Csm (|g1(m)791(2)|) 12(C")-
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The case

01(2) = 02 (w)] _ (101(x) — 01 ()| /2
o =ne < (m@=ao)

is similar. So (7.5) holds with 7(t) = Cs max{n (t'/2)n2(C"), 71 (C")n2(t'/?)}. This
concludes consideration of Case III.2 and the proof. O

8. A sufficient condition for quasisymmetric parametrization

In this section we consider the existence of a Semmes metric dy on R?/G such that
(R3/G,dy) is quasisymmetrically equivalent to R3. A sufficient condition for the
parametrizability is the existence of a flat welding structure.

Definition 8.1. We say that (C, A,W) is a flat welding structure if C is finite,
condensers € are in R3, and weldings W are similarities.

The existence of a flat welding structure leads to a modular embedding 6
of the decomposition space R3/G into R*, which in turn shows a strong form
of the quasisymmetric parametrizability of §(R3/G), in particular, §(R?/G) is a
3-dimensional quasiplane in R*.

Theorem 8.2. Suppose that (R3/G,X) is a decomposition space of finite type
whose defining sequence X has a flat welding structure (C, A, W). Suppose also
that the components of Xpy1 are contractible in Xy for every k > 0. Then there
exists Ao € (0,1) depending on (C, A, W) satisfying the following conditions. For
each A € (0,Xo), there is a A-modular embedding 0: R®/G — R* with respect
to this structure, so that the embedded set O(R®/G) C R* is Ahlfors 3-regular,
linearly locally contractible, and quasisymmetric to R3. Furthermore, there exists
a quasisymmetric map f: R* — R* so that f(R?) = 0(R?/G).

It is easy to see that every flat welding structure on a defining sequence of
finite type induces a rigid welding structure with a compatible atlas, in the sense
of (6.3). The converse is not always true; an obvious criterion can be given as
follows.

Lemma 8.3. Let X be a defining sequence of finite type and let (C, A, W) be a rigid
welding structure on X in R®. Suppose that for every c = (A, B) € C there emists
a PL embedding h.: A — R? so that he|DA and he|D are (Euclidean) similarities
for each component D of B. Then X admits a flat welding structure.

All but the last claim in Theorem 8.2 can be proved by appealing to a rigid
welding structure (€', A, W) compatible with the given flat structure (€, A,'W).
However, in order to extend the quasisymmetric map R? — 0(R3/G) to a quasisym-
metric homeomorphism of R*, we will need to repack the condensers in (C, A, W).
The idea of repacking is adapted from Semmes’s excellent packages for self-similar
decomposition spaces ([19], Definition 3.2).
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Let dy be a A-modular metric induced by an embedding 6: R3/G — R* as in
Theorem 8.2. By Lemma 8.3, the path metric dp associated to dp is bilipschitz
equivalent to the path metric associated to the Semmes metric (with the same
scaling A) derived from a compatible rigid structure (€', A’,'W'). Thus dp is a
Semmes metric and (R3/G, X, (€, A, W), 0, dp) a Semmes space; we write dy for dp.

In view of Theorem 8.2, there exist defining sequences which do not admit
flat welding structures. Indeed, by Theorem 8.2, the existence of a flat welding
structure yields quasisymmetric parametrizability. Thus, for example, the standard
defining sequences associated to the Whitehead continuum and to the Bing double
do not admit flat welding structures.

8.1. Unlinking and repacking

As a preliminary step for the proof of Theorem 8.2, we discuss homeomorphisms
of R* that unlink and repack condensers in R3.
Let K C R? be a cube-with-handles. We define

K* = K x [~ diam K, diam K] C R*,

where diam K is the Euclidean diameter of K. If B is a pairwise disjoint union
of cubes-with-handles, we set B* = Jyccp) K™ Suppose (A, B) is a condenser
in R3. We will also call (A*, B*) a (4-dimensional) condenser.
Let ¢ = (A, B) be a condenser in R? with diam A =1 and A € (0,1). We say

a PL-embedding p.: (R®\ A) U B — R? is a A-repacking of c if there are pairwise
disjoint Euclidean balls {bp C int A: D € C(B)} such that

) pellt A4 =

(ii) pc|D is an orientation-preserving similarity, and

(iii) pe(D) C int bp and diamp.(D) = A,

for each component D of B.

Let ¢ be a condenser in R? with diam A = 1. We denote by A, the supremum
of A > 0 so that ¢ admits a A\-repacking. Note that A\, > 0, since repackings exist
for all sufficiently small A > 0.

Let @ be a finite collection of condensers in R?, with diam A = 1 for every
c = (A,B) € C. We denote by Ae the supremum of A > 0 so that every c € C
admits a A-repacking. We call A\e¢ the repacking constant of C.

Definition 8.4. Let ¢ = (4, B) be a condenser in R? with diam A = 1. We say
that a PL-homeomorphism P,: R* — R* is a *-stable A\-repacking of ¢ in R® (or
of the condenser (A*, B*)) if

1) P.|(R*\ A) U B is a A-repacking of c,

2) P.|R*\ A* =id,

3) P.|D* is an orientation preserving similarity for each component D of B,
)

4) in particular, P.(B*) = P.(B)*.
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Lemma 8.5. Let ¢ = (A, B) be a condenser in R® with diam A = 1. If the
components of B are contractible in A, then, for every 0 < XA < A, there exists a
*_stable A\-repacking P.: R* — R* of c.

Proof. Let p.: (R®\ A)U B — R? be a A-repacking of the condenser ¢ = (A, B).
Fix d € (0,1) so that

B"U (pe(B))" C int (A x [—d, d]),

and set I = [—d, d].

As a preliminary step, we construct for every D € C(B) a PL-homeomorphism
fp: R* — R* with the properties that fp|R*\ (A x I) = id and that fp|D* is an
orientation-preserving similarity satisfying fp|D = pc|D and fp(D*) = p.(D)*.

Given D € C(B), let bp = B*(zp,rp) C A be the Euclidean ball containing
pe(D) as in (iii). Since pc|D is a similarity, it extends to a similarity pp: R? — R3
with a scaling constant pp. Denote again by pp: R* — R* the extension (z,t) —
(pp(x), ppt).

Fix a core Rp of D. Since D* is a regular neighborhood of Rp and Rp is
contractible in A, there exist, by the Penrose-Whitehead-Zeeman lemma (see Sec-
tion 3.2), PL 4-cells Ep and EJ, in A x I so that

D* cint Ep C Ep Cint Ej, C E}, Cint (A x I).

We fix zp € int Ep and ep > 0 so that B4(zD,2€D) C Ep, and choose a number
r'h € (rp, Ac). Thus

pp(D*) C b}y € B3(xp,rh)* Cint (A x I).

By standard isotopy results, we may fix two PL self-homeomorphisms hp and
7p of R* with the following properties. Since Ep and EY, are 4-cells, there ex-
ists an orientation-preserving PL homeomorphism hp: R* — R* so that hp|R*\
(A X I) = id, hD(ElD) = B4(ZD,2€D), hD(ED) = B4(ZD,ED), and hD(D*) C
B*(zp,ep/2), and so that hp|D* is a scaling followed by a translation. Further-
more, there exists a PL-homeomorphism 7p: R* — R* such that 7p|R*\ (A x I) =
id, 7p(B*(2p,2¢p)) = B3(zp,rn)*, and 7p(B*(zp,ep)) = b}, and so that
7p|hp(D*) is an orientation preserving similarity that maps hp(D*) onto pp(D*).

Therefore, the PL homeomorphism fp = 7p o hp satisfies fp|R*\ (A x I) = id
and fp|D* is the similarity pp|D*.

We will combine the homeomorphisms fp, D € C(B), defined above as follows.
First, the components of B are raised to different levels in R x (d,1) € R* by
a homeomorphism g; of R*. Next, one component at a time, each D € C(B) is
lowered to {x4 = 0}, where the homeomorphism fp may be applied, and then the
image pp(D) is raised to the previous level. The composition of these maps is a
homeomorphism go of R%. Finally, all raised pp(D) are descended to {4 = 0} by
a homeomorphism g5 L of R%. The *-stable A-repacking of ¢ is defined by

Pc:g3_10920g1.
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We now give the details.

For every DeC(B), fix dp € (d,1) so that dp # dp- for different components D
and D" in C(B); fix also § > 0 so that the intervals [dp — 0,dp + d] are pairwise
disjoint and contained in (d,1). Let p = ¢/(4d) and set Jp = [dp — 6/4,dp + 6/4]
for every D € C(B). We fix a PL-homeomorphism g;: R? x R — R? x R so that
g1|R*\ A* = id and gi(z,t) = (z,pt + dp) for (z,t) € D x I and D € C(B).
In particular,

gl(D*) C gl(D X I) =D xJp

for every D € C(B).

The homeomorphism g3 is defined similarly as g1, with (A, UDec(B) pp(D)) in
place of (A, B) and with d,,,(py=dp, so that the PL-homeomorphism gs: R*—>R*
satisfies g3|R* \ A* =id and

93(pp(D)*) C g3(pp(D) x I) C pp(D) x Jp

for D € C(B).

Having ¢g1 and g3 at our disposal, we construct a PL-homeomorphism go as
follows. For every D € C(B), let (p: R — R, be a piecewise linear increasing
function so that {p(t) = pt +dp for t € I, and (p(t) =t for |[t| > 1. Let also
¢p: R — R* be the PL map (z,t) + (z,(p(t)). Then {p|D* = g;|D* and
Eplpp(D)" = gslpp(D)* for every D € C(B).

Since fp|R*\ (A x I) = id, we have

€p o fpo&p ((RY\ (A x (dp —§/4,dp +6/4))) = id

for every D € C(B). Thus the mapping go: R* — R* defined by taking the
composition (in any fixed order) of £p o fp 0551 for all D € C(B), is a well-defined
PL-homeomorphism satisfying g2|R* \ A* = id. Moreover,

g3 0og20qi|D* = (g5 0€p)o fpo(épt 0g1)|D* = fp|D* =pp|D*

is a similarity. Since p.|D = pp|D, P. = g3 ' 0 g2 0 g1 is a *-stable repacking
of c. 0

8.2. Proof of Theorem 8.2

Let (€, A, W) be a flat welding structure on the defining sequence X, and assume
that diam A = 1 for all ¢ = (A, B) € €. We also assume that Xg = Hy = Ap,,
where cy, = (An,, Bp,) is the condenser associated to Hy, and that the corre-
sponding chart satisfies ¢, |0Ho = id.

We enumerate the cubes-with-handles in C(X) by Hg, Hq, ... so that if H; €
C(Xy) then Hjy1 € C(Xj)UC(Xgy1). This enumeration induces natural orderings
on condensers, charts, and weldings as well. Write c; = (A4;,B;) = cg, for
condensers in € and ¢; = ¢g, : deiﬂ — c?iﬁ for the charts in A for j > 0.

Let k; = level (H;), and let ¢(j) be the index of the parent of Hj;, that is,
level (Hq(J)) = k‘j — 1 and H; ¢ C(Hq(j) ﬂij).
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Let w;j = @q(;) © <p;1 be the welding of (A;, B;) to its parent (Ay(;y, By(j)), for
J > 1. Since w; is a similarity and By;) C R3, w;(A;) is a component of Byjy-
We extend w; to a similarity w;: R* — R* by (z,t) — (w;(x), A\;t), where ); is the
scaling factor of w;. We call the extended w; a welding of (A}, B}) to (A:;(j) , B;(j) ),
and note that w;(A%) = w;(A4,;)* is a component of B .
I I . a(7) . .
We construct now cumulative welding maps and repacked cumulative welding

maps. We define the cumulative welding maps w; by wy = id and
Wj = Wy(j) © Wj

for j > 1.
Since w;|0A; = @q(j) © <p;1|8Aj, we have

(8.1) Wj 0 j|0H; = y(j) 0 wj o j|0H; = g5y © @q()|OH;

for j > 1, and wg o @o|0Hy = id.
Since w; is a similarity, w;(A;) is a component of ;) (By(;)) and

W; (A7) = g (w;(A})) C g5 (Byjy)-

It follows by induction that the images w;(Aj \ B}) are pairwise disjoint for j > 0.
Then

(8.2) RO\ F = R\ X3) U Uy (47 B))

j=1

is a disjoint union, where

F= 0 (Ufi(4)): (4;,B)) € €071 (4) = Hj € C(X0)}).
k>0

Since diamw;(A;) — 0 as j — oo, the components of F' are points.

Now we define repacked cumulative welding maps w;. Let 0 < A < Ae. We
show first that the components of B, are contractible in A;. Let D € C(B;).
Since <pj_1(5'D) is the boundary of a component of H; N Xievel (,)+15 <pj_1(0D) is
contractible in H;. Thus 9D is contractible in A;. Let Rp be a core of D that is
contained in a collar 2p of 9D in D. Since Qp retracts to 0D, Rp is contractible
in A;. Thus D is contractible in A;.

Using Lemma 8.5, we fix a collection of *-stable A-repackings {P.: R* —
R*: ¢ € C}. For simplicity, denote the *-stable repacking for c; = (A;, B;)
by P; = P, for j > 0; note that there are only finitely many distinct mappings
in {P;: j >0}.

Associated to the welding maps w;: R* — R* for j > 1, and the *-stable
repackings P; for j > 0, we define w;: R* — R* by

Wj = Wq(j) ©wj o P;

for 7 > 1 and set wy = Fy.
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Since the *-stable repacking P; is a similarity on D* for each D € C(B;) and
P;(A}) = Aj, we know that w; o P;(A}) C By, and that w;|D” is a similarity
for every D € C(Bj). Therefore wy(;) o w;|A} is a similarity, and w;|A} \ B} is a
composition of an L-bilipschitz map P; with a similarity for every j > 0. Indeed,
the mapping w;|A4; is L) -Lipschitz for every j > 0, where L is the maximum of
the Lipschitz constants of *-stable repackings {P.: ¢ € C}.

Since Pj|0A; = id, we have, as in (8.1),
(83) Wj 0 ¢;|0H; = Wy(j) © Pq()|0H;

for j > 1, and wg o wo|0Hy = Py o po|0H = id.
Since w;(A;) is a component of Wy(;)(By(;y) for each j > 1 and the image sets
w; (A} \ By) are pairwise disjoint for j > 0, we obtain a disjoint union

(8.4) R\ F = @\ X)U Uy (45 \ B)).

with
F= 0 (U{@s(A): (45, B5) € €7 (A7) = Hy € C(X)}).

As in the case of F, the set F is totally disconnected.

Having (8.3) and (8.4) at our disposal, we define an embedding 0, : R3\ X, —
R* by 00 |R?\ X = id and t9oo|HJ9iiff = w;op; for j > 1. Furthermore, 6, descends
(and then extends) to an embedding 6: R3/G — R* so that #(rq(Xo)) = F.
The A-modularity of 6 with respect to (€, A, W) follows directly from the uni-
form quasisimilarity of the cumulative repacked welding maps @w;. The space
(R3/G, X, (C,A,W),0,dg) is linearly locally connected and Ahlfors 3-regular for
sufficiently small .

It remains to construct a quasisymmetric map f: R* — R?* so that f(R3) =
9(R3/G). Since P;j|0A3 = id, we have

for every j > 1. Thus the map fo: R\ F' — R*\ F, defined by
Foclt; (A5 \ B}) = w; 0 i (A} \ Bj)

for j > 1 and fo|R*\ Aj = id, is a well-defined homeomorphism. Since Fand F
are totally disconnected, fso extends to a homeomorphism f: R* — R*.
Since f|R?\ Ag = 0|R3\ X( and

fotjop| X =1 0wt oty 0| XTI = b 0 ;| X = g | X

for every j > 0, we have

f(R?) = 0(R®/G)
by continuity.
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Since w; o lf);1|1f)j (47) is a (L,,uj)—quasisimilaliity for some p; > 0 and for
every j > 0, the homeomorphism f..: R*\ F' — R*\ F is quasiconformal. Moreover,
the homeomorphisms f;: R* — R, defined by

FiRE\ 1 (A7) = foo R\ 5 (A7)

and
N - A1
filw; (AT) = w; 0wy " |b; (A7),
are uniformly quasiconformal. Therefore there exists a homeomorphism n: [0, 00) —

[0, 00) so that the homeomorphisms f; are n-quasisymmetric. Since f = lim;_, f;,
f is n-quasisymmetric. This completes the proof of Theorem 8.2.

Remark 8.6. The quasisymmetric map f: R* — R* in Theorem 8.2 can be taken
to be the identity in a neighborhood of infinity, that is, there exists R > 0 so
that f|R*\ B*(R) = id. Thus the quasisymmetric map f: R* — R* extends
naturally to a quasiconformal map f: S* — S§* and f(S*) is the one point com-
pactification of f(R3). Thus the embedding : R®/G — R* extends to an embed-
ding S?/G — S*. So 0(S?/G) is a quasisphere, that is, 0(S*/G) = f(S?), where
f:S* = $* is a quasiconformal map.

In view of Theorem 8.2, geometrically different quasispheres built this way exist
in abundance.

9. Circulation

In this section we introduce the notion of the circulation of a union of cubes-with-
handles based on longitudes and meridians. This concept of circulation will be
used in estimating the conformal moduli of surface families.

9.1. Meridians and longitudes

Recall that a simple closed curve S! — 9B? x S! on the boundary of a torus
B2 x S! is called a meridian of B2 x S* if it is homotopic to the loop €% — (e%, 1),
on 0B2 xS'. In particular, a meridian is contractible in B2 x S! but not in OB? x S.

A noncontractible loop in the solid torus B2 xS' is called a longitude of B2 xS'.
A longitude is nontrivially linked with every meridian, that is, given a longitude o
and a meridian o of B? x S then o(S') N ¢(B?) # O for every ¢: B> — B? x St
satisfying ¢|0B? = a.

Let X be a disjoint union of cubes-with-handles. We call a simple closed PL
curve a: St — 90X a meridian of X if [a] # 0in 71(0X) and [a] = 0 in m; (X); that
is, av is not contractible on X but there exists a map ¢: B2 — X so that ¢|0B? =q.

Suppose a: S! — 90X is a meridian of X. Departing slightly from the standard
notion of a mapping of pair (C, D) — (E, F), we denote by ¢: (B?,0B?) — (X, «a)
a mapping ¢: B? — X that satisfies ¢|0B? = a. Let

£(X,a) = the collection of all maps ¢: (B?, 0B?) — (X, a).
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Let 0 = 01+ - -+ 0p be a PL 1-chain in a union of cubes-with-handles X, where
0;: S' — X are PL maps fori = 1,...,k ; and let |o| = Ule o;(S) be its carrier.
We say that o is a longitude in X if |o| N ¢(B?) # 0 for all ¢: (B2, 0B?%) — (X, )
and all meridians « of X. Heuristically, a longitude is a 1-cycle in X that is linked
with every meridian of X. We let

(9.1) ¥(X) = the family of all longitudes of X.

Suppose that Hy, ..., Hy are pairwise disjoint cubes-with-handles, then
d

(9.2) E(UHi>:{al+...+ad:aiEZ(Hi),lgz’gd}_
i=1

9.2. Circulation with respect to meridians

Let H be a cube-with-handles, let X be a finite union of cubes-with-handles in
int H, and let a: S! — OH be a meridian of H. The circulation of X in H with
respect to the meridian « is defined to be

9.3 irc(X,a, H) = i i N ¢(B?)).
(9.3) cire(X,o, ) = min | min #(lr] N 6(B)

FI1GURE 7. Circulations having values 1 and 2 with respect to a.

Let (R3/G, X, (€, A, W)) be a decomposition space of finite type. We call a
meridian of any cube-with-handles in X' a meridian of X. We denote this family
of meridians by M(X).

Definition 9.1. Let (R?/G, X, (C, A, W)) be a decomposition space of finite type.
Meridians a: S! — 9H and o’: St — 9H' in M(X) are related by the atlas A if
the charts oy and @g have the same target condenser in € and 301_11 opg od is
homotopic to o on 0H.

Given a meridian « in X,
(9.4) Ma(X;a) ={a’ € M(X): a and o are related by atlas A}

is called the set of meridians in X related to o by A.
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Definition 9.2. Let (R?/G, X, (C, A, W)) be a decomposition space of finite type.
We say that the order of circulation of X is at least w, w > 0, if there exist a
meridian og € M(X) and a constant C' > 0 such that for every £ > 0 there exist
K >k > 0 with ¥ — k > ¢, a cube-with-handles H € C(X}), and a meridian
a: St — OH in M4 (X; ) that satisfy

(9.5) cire(Xp N H,a, H) > C =",

The homotopy property of a collection of meridians translates to geometric
finiteness in the corresponding Semmes space after fixing a simple PL-representative
for each homotopy class.

Lemma 9.3. Let (R®/G,X,(C,A,W),0,dy\) be a Semmes space and let oy €
M(X). Then there exists L = L(dx, ) > 1 so that for every meridian o: St —
OH in M4 (X;ap) there exists a meridian 8 of H homotopic to o in OH so that
ng o B: St — (R3/G,dy) is a (N )| L)-quasisimilarity.

We record the observation that a quasisimilar meridian has a quasisimilar collar.
The claim follows directly from properties of the metric dy ,,, and the definition of
the constant €, in Remark 7.7.

Lemma 9.4. Let (R3/G, X, (€, A, W), 0,dy) be a Semmes space and let H € C(X).
Suppose o: S* — OH is a ()\leve1 (H), L)-quasisimilar meridian on H. Then, for
each m > 0, there exists a (V') | L'\ _quasisimilarity

sa: (B x 81 {0} x §') = (Nay (1 (0H), N ), (g 0 a) x {0})),
where L' > 1 is a constant depending only on m,dy and L.

Given a defining sequence X = (X}) and a union Y of a nonempty subcollection
of cubes-with-handles in C(X}), we call

(9.6) S(Y,X)={oeX(Y): |o| C Xp\ Xpp1}

the set of longitudes of Y relative to X. This subfamily X( Xy NH, X) of (X NH)
can be used to determine the circulation cire(Xy N H, o, H).

Lemma 9.5. Let k>0 and H € C(X}), and let o be a meridian of H. Then

irc(Xp NH,a, H) = i i N (B>
cire( Xk o, H) ¢e??,a)aez<£{%fz,x>#(la| (B7))

for k' > k.
Proof. Let o =01+ -+ 0 € (X NH) and ¢ € E(H, a) be chosen so that
#(lo| N ¢(B?)) = circ(Xp N H, a, H).

We claim that there exists a homeomorphism h of X N H, equal to the identity
on (X NH),sothat hoo =hooy+---+hooy € X(Xp NH,X).
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For every component Hy,..., Hy of Xp N H let g; be the genus of H; and let
pi: V7'S' — H; be a core of H;. Let R = |, pi(V?S'). By considering an
isotopy of Xy N H if necessary, we may assume that R N o] = (). Then there
exists a regular neighborhood X of R so that (X N H) \ X is homeomorphic to
O(Xw NH) x[0,1) and |o| C (X% NH)\ X. Then there exists a homeomorphism
h of X, N H, isotopic to the identity, so that h((Xy N H)\ X)N X411 =0 and h
is the identity on O(Xjy N H). Hence hoo € ¥(Xp N H, X).

We extend the homeomorphism h by the identity on H \ Xjy/. Then ho ¢ €
E(H, o) and

#(|hoa| Nh(6(B?))) = #(lo| N ¢(B?)) = cire(Xy N H,a, H).

The claim follows from (X N H, X) C E(Xw N H). O

9.3. Intersections in decomposition spaces

When R?/G is a manifold factor, the circulation of cubes-with-handles in R3 can
be estimated from above by the intersection number of longitudes and interior
essential components of maps in the decomposition space R?/G, instead of R3.
The following proposition deals with this subtle, technical point.

In the following, IT: R3/G x R™ — R3/G is the projection map (z,v) — .

Proposition 9.6. Let (R3/G, X) be a decomposition space, let a: St — OH be a
meridian of H € C(X), and let ¢: B> — ngH be a map satisfying (|0B? = mg o .
Suppose that R?/G x R™ is homeomorphic to R3T™ for some m > 0. Then

#(ra(|o]) N ¢(B?)) > cire(Xp N H, o, H)
for all k' > level (H) and every longitude o € L(X N H, X).
The proof is based on the following approximation lemma.

Lemma 9.7. Under the hypotheses of the proposition, for every k' > k there
exists a map ¢: B2 — H so that mg o ¢|Q = (|Q, where Q is the component of
(" YreH\ 7 (Xy)) that contains OB2.

Proof. If ((B*) N7 (X ) = 0 for some K > 0 then we may take ¢ = 75" o, since
76|R3 \ Xk is a homeomorphism. The conclusion follows. Thus we may assume
that ((B?) N7ma(Xk) # 0 for all K > 0.

We fix a homeomorphism f: R3/G x R™ — R3T™ and a number R > 0 so that
f(¢(B?)) C B3*™(R). Let B' = B3*™(R + 1), B= B3 (R + 2), and

- %min{l,dist(f(ﬂ'g(anz_H) « R™) N B, f(r6(Xps2) x R™) A B)}.

Since ¢ and f|f !B are uniformly continuous, we may fix § > 0 so that |f({(z)) —
f(¢(y))| < ¢e/5 for all z,y € B? satisfying |z — y| < 6.
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We fix K > k' + 2 so that the diameters of components of (7! (7¢(Xk)) are at
most §/2. Let Qx be the component of (7}(R?/G \ (X)) that contains OB
Then Q C Q.

Since 7 is a homeomorphism near the boundary of Xy, we may use the
transversality and the PL-structure in R? to modify ¢ in a neighborhood of 7 (90X k)
in 7(Xg42) in such a way that the components of (! (75 (90X )) are topological
circles, that |f(¢(x)) — f(¢(y))| < €/4 for all |z — y| < &, and that f(((B?)) C
B3+m(R + 5)’

For each component C of 00y, except for the outermost boundary B2, we
denote by w the 2-cell in B? enclosed by C, thus C = Ow, and define a map
b w — R3T™ extending f o (|0w as follows.

Let 7: w — B2 be a homeomorphism and fix a point yo € f(¢(dw)). Define
b w — R3T™ 50 that ¢, (771(0)) = yo and

bule) = (1= @)oo + r@)If o¢or (D). a2 7700),

Then ggw|8w = fo(|0w. Since diamdw < § we have diam f({(0w)) < /4,

diam(o,, (w)) < &, and ¢, (w) C B; since ((dw) C 7q(0X k), we have ¢, (dw)) C
f(re (X 42) x R™) N B'. Therefore

dist(d (w), f(ra(0Xp 1) x R™))
> dist (o, (W), f(16(0Xpr41) X R™)) — diam (¢, (w))
> min{1, dist(¢,, (0w), f (16 (0 X 11) x R™) N B)} — diam (¢, (w)) > 3e.

Thus ¢u(w) C f(ra(Xp 1) x R™). B
We define a map ¢: B> — R? by ¢|Qx = 7@1 0 (| and Plw =TTo f~1 o ¢,
on every 2-cell w bounded by a component of 9 \ 9B?. Since m¢|R* \ Xk is a
homeomorphism and ¢, |0w = f o (|0w, the map is well-defined and continuous.
Since ¢(B?) is connected, ¢(B?) C H, and since Q C Qx, ¢|Q = 75" o ¢|Q.
The claim follows. o

Proof of Proposition 9.6. The map ¢: B> — H constructed in Lemma 9.7 belongs
to £(H;«) and satisfies mg o 9|2 = ¢|2. Then, by Lemma 9.5,

#(C(B*) N g (|o]) > #(6(B%) N o) > cire(Xy N H,a, H)

for every o € X(Xyr N H, X). The claim follows. O

9.4. Virtually interior essential components

Let Q be a 2-manifold with boundary, let M be an n-manifold with boundary,
and let ¢: (Q,00) — (M,0M) be a map. Following Daverman ([6], pp. 73-74),
we say that ¢ is interior inessential if there exists a map ¢': Q — IM so that
@'|0Q2 = ¢|0; if no such map exists, we say that ¢ is interior essential.
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If ¢: (2,0Q) — (M,0M) is interior essential and €2 is a submanifold of a
2-cell D so that 0D C 02, we say that ¢ is wvirtually interior essential if there
exists a map ®: D — M so that ®|Q2 = ¢ and &(D \ Q) C IM.

Let X be a defining sequence for a decomposition space. Given H € C(X}),
a meridian « of H, and k" > k, denote by E(H, «; Xj) the collection of maps
¢: (B?,0B%) — (H, a) such that ¢(B?) is transverse to 0X,. Given ¢ €E(H, a; Xpr),
we say that a component w of ¢~ X is virtually interior essential with respect
to Xy if plw: (w,0w) — (Xir,0Xp) is virtually interior essential. We denote
by I'(¢, Xx) the set of virtually interior essential components of ¢~ Xyr.

Remark 9.8. The circulation circ(Xy N H, v, H) is closely related to the minimal
number of essential components among all maps in £(H, a; Xy/). In fact,

irc(Xp NH,a, H) > i I'(¢, Xir).
cire( Xy, o )_¢€£(Ig}£xkl)# (¢, Xpr)

Indeed, given ¢ € E(H,a; Xy) and 0 € X(Xp N H), it follows from the
definition of longitudes that |o| N ¢(w) # O for every w € T'(¢, Xpr). Thus

#(|lol N ¢(B?)) > #T(¢, X)-

10. Circulation and a modulus estimate for walls

Suppose that (R?/G, X, (C,.A,W),0,dy) is a Semmes space. Let Y be the union
of a nonempty subcollection of cubes-with-handles in C(X}), and let m > 0 and
a > 0. We call carriers of (1 + m)-chains in the collection

S™(Y, X, a) = {Jo] x [~a.a]™: o € (Y, X)}

m-walls over Y of height a relative to X. Note that these walls do not meet
Xoo X R™ and that 7g|R3 \ X is a homeomorphism. We denote by

S™(Y, X, a) = (ne % id)(S™(Y, X, a))

the corresponding collection of m-walls in the decomposition space R?/G x R™.
The main result of this section is an upper bound for the conformal modulus
of an m-wall family in terms of circulation. This, together with a lower bound in
terms of growth, yields a necessary condition for the existence of a quasisymmetric
parametrization. Our result extends the second part of Proposition 4.5 in [12].

Theorem 10.1. Let (R?/G, X, (C, A,W),0,dy) be a Semmes space, let a: St —
OH be an (\*, L)-quasisimilar meridian of H € C(X4), and let m > 0. Suppose
that f: (R3/G x R™, dy ) — R3T™ is n-quasisymmetric. Then there exist A =
A(n,dx,m,L) >0 and C = C(n,dx,m, L) so that

1 )(3+m)/(1+m)

Modsim ( f(S™( X N H, X, AN))) <
oz (f( (X MH, X, )\)))_C(Circ(Xk/ﬁH,a,H)

+
1+m

for all k' >k + 1.
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We begin with an intersection lemma which contains the gist of the proof; the
number €y in the statement is the constant defined in Remark 7.7.

Lemma 10.2. Suppose g: (R3/G x R™,dy ) — R3T™ is n-quasisymmetric. Let
a: St — OH be a meridian of H € C(X) and let 3: S' — R3/G x R™ be a
map homotopic to mg o o in Ng, , (7c(0H), exAlevel(H) /3) with, the property that
g(B(Sh)) = 0B? x {0} C R% x RY*™. Then there exist § = §(n,dxm) > 0 and
A= A(ng-1)>1 so that

(10.1) #(g(w) N (B + ) > cire(Xp N H,a, H)

for every k' > level (H), m-wall w € ™(Xp N H, X, AN D) " and j € {0} x
B+m(5) € R? x RI+™,

N X
TGO«

FIGURE 8. An example of (10.1), where m =0, k =0, and k¥’ = 1.

Proof. Let k = level (H). We show first that dist(dB?, g(rg(Xk+1) x R™)) is
bounded from below by a positive constant depending only on 1 and A.

Since B(S") C Na, ,, (16(OH),ex\*/3) C 7¢(R? \ Xg11) x R™ and g(B(S')) =
OB?, we may fix x € B(S!) and z € 7g(Xky1) x R™ so that

l9(2) — g(2)| = dist(IB?, g(7c(Xit1) x R™)).

We also fix y € (S') so that dy m(z,y) = di(z,y) = max,cgs) da(z,y’). Since
z,y € Ng, . (1c(0H),exA¥) and projection I1(z) € ma(Xk41), we have, by qua-
sisymmetry and Remark 7.5,

19(2) — 9(1)| < n(—ji’:g’ii) l92) — 9(2)|

diamd%m (Ndx,m (Wg(aH), E)\)\k)) _
= n(disth” (Naw O, reXey) 9@ ~ 9
< n(C(drm)) lg(x) = g(2)]-

Choose 2’ € B(S!) so that g(2’) and g(z) are antipodal on dB2. Then,

9(0) - o)) < (222D ) = gt0)] < () o) ~ 9oL
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Thus
2
n(1) n(Cdxm))

Since g is n-quasisymmetric, we may fix § € (0, (n(1)n(C(dxm)))~ 1), indepen-
dent of k, so that

(10.2) dist(9B?, g(rg (Xpt1) x R™)) >

(10.3) g~ (0B? x B"™(8)) C Na, . (7c(0H), exA\¥).

We prove now (10.1). Let ¥’ > k and j € {0} x B (§); define ¢; : (B2, 0B?) —
R3/G x R™ to be the map ¢;(z) = g~ (x + j).

By the definition of ey, Ny, (7g(0H),exA\F) C R?/G is contained in a regular
neighborhood of 7¢(0H). In view of (10.2) and (10.3), the projection I o ¢;|0B?
is homotopic to 7 o a in Ny, (mg(OH),exA\F) C R3/G and there exists a map
¢: (B?,0B?) — (rq H, mgoa) so that ¢|Q = Iog; |, where Q = (Ilog;) ™ (1 (Xx/)).

Note, from Proposition 9.6, that

#(ra(|o]) N ¢(B?)) > cire(Xp N H, o, H)
for every o € (X N H, X). Thus

#(g(nc(lof) x R™) N (B + )

#((ma (o) x R™) Ng™ (B +j))
(me(|o]) x R™) N ¢;(B%))

o) NT1o; (B%))

e (lo]) N ¢(B?))

cire(Xp NH, o, H)

Y

TG

(
#(
#(
#(

—~

v

for all 0 € (X} N H,X). This concludes the proof in the case m = 0.
Suppose now m > 1. It suffices to find A = A(n) > 1 so that

(10.4) ¢;(B%) C R3/G x [~ AN, ANF]™.

1

Let 2 € OB? and y € B2. By quasisymmetry of g~!, we have

6 (y) — ds(x)| = |97 (y+34) — g " (= + )|

ly — | 1) — g Yt i
< ([ o 0 o)

ly — = 24171\ 1 -1
<n (o) e ()l e =o'
<ng-1(1)ny-1(2) diamg, ,, gil(cp)'IB%z).

Since
9~ (0B®) = 8] C N, ,, (ra(0H), exA"),

(10.4) holds with A = C(A)ng-1(1)ng-1(2). The claim now follows. O
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The proof of Theorem 10.1 is based on Lemma 10.2 and unknotting properties
of quasisymmetric tubes; see Propositions 11.1 and 11.3.

Proof of Theorem 10.1. We first consider the case m > 1. Let a: S! — 0H be the
(A¥, L)-quasisimilar meridian in the statement of the theorem and let &' > k + 1.
We assume, as we may, that cire(Xy N H, o, H) > 0. So

#(|o| N p(B?)) > cire(Xp N H, o, H)

for all o € (X N H, X) and all maps ¢: (B?,0B2) — (H, ).

By Lemma 9.4, there exists an (\*, L’)-quasisimilar, thus 7-quasisymmetric,
embedding »: B2t xS! — Ny, . (7¢(0H), exA¥/3) so that (0, z) = (rgoa(z),0)
for z €S, where the constant L’ and the homeomorphism 7’ : [0, 0o) — [0, o0) depend
only on dy,m and L. Recall that Ny, , (7¢(0H), exA*) C e (R \ Xpy1) xR™.

Set T = f o x(B*™ x S') c R3**™ and h = f o » By Proposition 11.1,
there exist an n’-quasisymmetric map x: R3+t™ — R3T™ /" = 0"(m,n,n’), and
a constant dg = dp(m,n,n’) > 0 so that x(T') contains the tubular neighbor-
hood N3+tm(9B2 25) of OB? in R**™ and that x o f o 7g o a: St — R3*+m
is homotopic in x(T) to the identity map id: OB?> — R? x R*™. Set g =
flox toidgssm|St: St — R?/G x R™. Thus we have

B2t+m x Sl

/ e R3/G x R™
\ I

R3+m 5 X R3+m

where both diagrams commute and the maps mg o o and [ are homotopic in
x(B2t™ x S1).

Note that x o f: R?/G x R™ — R3*™ is n/’-quasisymmetric for some 5" =
0" (n,n").

Since 3 is homotopic to T o a in s(B*™™ x S') C Ny, . (7 (0H),exA*/3) and
dist(OB2, x o f(ma(Xpy1) x R™)) > 28y, we can find, by applying Lemma 10.2 to
g = x o f and setting § = d¢, a constant A = A(n"’, m) so that

(10.5) # (x(f(w)) N (B? +j)) > cire(Xp NH, o, H),

for every w € " (X, X, AN) and j € {0} x B (6).

Using (10.5) we estimate the conformal modulus of the m-wall family x o
FE™( X, X, ANF)) in R3T™ . Set J = {0} x B"*™(dy). By the co-area formula,
we have, for w € EA]”L(Xk/,X,A/\k), that

H“m(x(f(w))) > 1T (x(f(w)) N (B® x B (80)))
/ # (x N (B% +5)) dH™™(j) > cire(Xw N H, a, HYHF™ ().
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Thus
1

CifC(Xk/ OH,Q,H) Hler(J)X]B?xJ)

p =
is an admissible function for the family y(f (2™ (Xx, X, ANF))), and

Mod% (X(fim(Xk/,X,A/\k))) < / p(3+m)/(1+m) dy3t™

R3+m

2 (B HT () ! e
= HmAL(J)B+m)/(14m) (circ(Xk/ N H,Q,H))

1 (3+m)/(14m)
circ(Xk/ﬂH,OéaH)> .

< C(80,m) (

This concludes the proof for m > 1.
In the case m = 0, we apply Proposition 11.3 to the mapping h = f o » and
the 3-manifold M = f(ng(H)). Otherwise the proof is the same. O

11. Quasisymmetric tubes

In Proposition 11.1 we quantify Zeeman’s unknotting theorem to provide a qua-
sisymmetric unknotting of quasisymmetric tubes in R, n > 4. In Proposition 11.3
we apply Dehn’s Lemma to treat the unknotting in R3.

Proposition 11.1. Let m > 1, let h: B*>t™ x S — R3T™ be an n-quasisymmetric
embedding, and let T = h(B?T™ x S'). Then there exist an 1'-quasisymmetric
homeomorphism x: R3T™ — R3™ n/ = 5/ (m,n), and a constant g = do(m,n) >
0 so that

(1) x(T) contains the tube N3T™ (B2, 8y) in R3T™,
(1)" in particular, dB? + j C x(T) for j € {0} x B**™(§) C R?* x R™™  and
(2) xoh|({0} x St) is homotopic to the identity map id|0OB? in x(T).

Here B2t™ xS has the natural Euclidean metric inherited from R2T™ x R? =R3+™,
We first state a bilipschitz version of Zeeman’s theorem on unknotting a PL
1-sphere in §7 for ¢ > 4. Since the claim follows from Theorem 5.6 and Corollary 5.9
in [16] almost directly, we omit the details.
For the statement, let £ € Z, and m > 1. Given wy,...,w, € (1/0)Z3*t™, we
set w = (wy,...,wy,), and let v, be the piecewise linear curve [wq, w1 ] U [wy, wa] U
U [wp—1,wp] in R3*™, Given R > 0, we also denote by J(R,¢,m;n) the
collection of Jordan curves in {v,, C B3 (R): w € ((1/£)Z3F™)"}.

Lemma 11.2. Let R > 1, { € Zy, m > 1, and n > 3. Then there exists
Lo = Lo(R, ¢, m,n) so that given v € J(R,{,m;n) there exists an Lo-bilipschitz
map x: R3F™ — R3+™ satisfying x(v) = 0B?(diam~) x {0} C R? x R1T™,
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Proof of Proposition 11.1. Set S! = {0} x S'. Then, by quasisymmetry,
diam h(S") < n(5)dist(h(S"), dT).

Indeed, set k = dist(h(S'),0T) and choose z € S* and y € J(B2T™ x S) so
that |h(z) — h(y)| = k. Then

|2’ —
ly — |

(@) = h(@)] < (=) |h(y) — h(@)| < n)k
for all 2/ € SL.

We fix an orientation of h(S') and choose points zg, 21, ..., 2, = 2o on h(S')
as follows. Let zg be any point on h(S!). After z; has been chosen, let z; 11 be the
last point z on the subarc of h(S') starting at z; and ending at 2o according to
the orientation, so that |z — z;| = /100 if such a point exists; otherwise, we have
|z0 — zi| < //100 and in this case we remove the already defined value of z; and
set n =4 and z, = z9. We show next that n < ng for some ng = no(n) > 0.

Let s; = h™'(2;) € S* for 0 < i < n — 1. Then there exists an i so that
|s; — sit1| < 2m/n; for this particular 4,

51100 < [z - 2] < (22D ) < (o) < (1 /m)n(s)
(=si) — sil
Hence |s; — s;y1| > Co, where Cy depends on 7, and n < 27/Cj.
We next fix points w; € (k/(1000y/mng))Z3T™ so that |w; — 2| < k/500 and
let v be the polygonal path [wo,w1] U [wy, wa] U- -+ U [wy_1,wp].
By replacing the points w; with points in

(1/(1000v/3 + mng))Z*+™ N B3 (2, k/500),

we may assume that v is a Jordan curve. Indeed, if v is not a Jordan curve,
then there exist indices ¢ and j, i > j, so that (w;, w;11) N (wj, wj41) # 0. Since
B3t™(z;,1/500) contains more than n3™™ points in (k/(1000v/3 + mng))Z3+™
and there are at most ng(ng — 1)/2 directions between the points wy, ..., wy,
there exists w' € B3T™(z;, £/500) so that (w;, w') N (wg, wry1) = O for all k < 4.
We remove all the intersections inductively on 1.

Since Maxyeuw;,w; 1) dist(w, z;) < £/40, we have max,e dist(w, h(S)) < £/40.
Thus dist(y,0h(T)) > 39x/40.

Let ¢: R3T™ — R3*™ be a linear transformation t(x) = —wo + x/k which
maps 7 into B3 (n(5)). Then

u(y) € J(2n(5),1/(1000v3 + mng), m;n).

By Lemma 11.2, there exists an Lg-bilipschitz, therefore n’-quasisymmetric, home-
omorphism y’ of R3+™ so that x/(v(v)) = 0B?(diam ¢(vy)) C R? x R'*™ where 7’
depends only on 7(5), m, and ng. Then x = (diam(y))~1x o is also n’-quasi-
symmetric. Since n < ng and ng depends only on 7, we have that n’ = n'(m,n).
The existence of the constant dg follows from quasisymmetry of xy and geometry
of B2+™ x St. O
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Proposition 11.3. Let M be a PL 3-manifold with boundary in R3. Suppose
h: B? x St — R3 is an n-quasisymmetric embedding with the properties that h
embeds {0} x S' into OM and h|({0} x S*) is null-homotopic in M. Let T =
h(B? x S'). Then there exist an 0’ -quasisymmetric homeomorphism x: R® — R3,
n =1n'(n), and a constant 69 = do(n) > 0 so that

(1) x(T) contains the tube N3(9B?,do) in R3,
(1) in particular, OB* + j C x(T) for j € {0} x [~do, 0] C R? x R, and
(2) xoh|({0} x SY) is homotopic to the identity map id|OB? in x(T).

Proof. Let a: St — M be the map x + h(0, ). Then, by assumption, « is simple
and null-homtopic in M. We show first that « is an unknot. It suffices to show
that there exists an embedding 7: B> — M for which 7|0B? = a.

Since « is null-homotopic, there exists an extension &: B2 — M of a. Since M
is a PL manifold with boundary, 9M has a collar in M; see Corollary 2.26 in [16].
Thus we may assume that dB? has a neighborhood A in B? for which 4|4 is an
embedding and &@~*(&(A)) = A. Thus the conditions of Dehn’s Lemma (see, e.g.,
Chapter 4 of [13]) are satisfied and there exists an embedding 7: B* — M so that
7|0B? = a.

To unknot quantitatively, we follow the proof of Proposition 11.1 almost ver-
batim. Let xk = dist(h(S'),dT) and ng(n) be as in the proof of Proposition 11.1.
Then there exists a polygonal Jordan path

v = [wo, w1] U [wi, wo] U- -+ U wp—1,wo]

with vertices w; € (k/(1000v/3 4+ mng))Z3+t™ so that maxye, dist(w, h(S')) <
k/20 and dist(vy,9h(T)) > 19k/20. Therefore v is PL-isotopic to h({0} x S!)
in h(T). We may now fix a scaled Ly = Lo(n, m,ng)-bilipschitz, therefore n’-
quasisymmetric, homeomorphism x: R* — R? so that x(h(S')) = 0B?, as in the
proof of Proposition 11.1. Conditions (1) and (2) in the statement now follow by
quasisymmetry. O

12. Growth and a modulus estimate for walls

The main result in this section is a lower bound on the conformal modulus of a
m-wall family, which corresponds partly to the first claim of [12, Proposition 4.5].

Proposition 12.1. Suppose (R?/G, X, (C, A, W),0,d) is a Semmes space. Let
k>0, let Y be a collection of cubes-with-handles in C(X}) of positive genus, and
let Y be their union. Let m > 0. Then the conformal modulus of m-walls satisfies

(12.1) Modsim (3™(Y, X, a)) > C ((#y)(%)mffmm/mm)

1+m

for every a > 0 and a constant C = C(C, W, A,m) > 0.
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To obtain the estimate, we first fix a collection of cubes-with-handles H =
{Ho,H1,...}, one for each genus, and a special family of longitudes in each H, as
follows.

Let Q(z,r) = [x1 — o1 + 7] X [x2 — ryz2 + 7] C R? for = (71,22) € R?
and r > 0 and denote the origin of R? by O. Set Hy = Q(O, 1) x [0, 1].

For each ¢ > 0, fix points {p1,...,pq} in Q(O,1 —1/(10g)) having pairwise
distances at least 1/(20g). Let Q4 = Q(O,1) \ U;(int Q(pi, 1/(100g))) and Hy, =
Qg x [0,1]. Then H, is a cube-with-g-handles. For every 0 < ¢t < 1/(100g) and
every 0 < s < 1, fix a PL I-cycle ¢/ ; in H, having

(90,1 —t)U@Q(pl,lol—Og +1) U-~-U6Q(pg,ﬁ +1)) x {s}

as a carrier.

Lemma 12.2. Given g > 0, the 1-cycles Uf,s defined above are longitudes of Hg
for all 0 <t < 1/(100g) and 0 < s < 1. Moreover, if w is a 2-manifold in B? and
¢ (w,0w) = (Hg,dHy) is virtually interior essential, then ((w) N |of | # 0.

Proof. We denote Q = Qy, H=H, = Q, x [0,1], and 0y s = o7 .

To show that o, is a longitude, let a: S* — OH be a meridian of H and
¢: (B%,0B?) — (H,a) a map. We claim that ¢(B?) N |0y | # 0.

Consider first the case t = 0. Suppose aiming at a contradiction that there is an
s € (0,1) so that ¢(B*)N|og 5| = 0. After postcomposing ¢ with a homeomorphism
from H \ |og_s| onto H\ (992 x [0,1]), we may assume that ¢: (B?, 0B?) — (H,Q x
{0,1}). Suppose that ¢(0B?) C Q x {1}. Since ¢ is interior essential, ¢(OB?) is
not trivial in 71 (2 x {1}). Hence ¢(9B?) is not trivial in m1(Q x [0,1]) = m1(H).
Since ¢(B?) C H, this is a contradiction.

We next prove the second statement in the lemma for ¢ = 0. Let ¢: (w, w) —
(H, OH) be the given map. Since ( is virtually interior essential, it has an extension
¢': D,, — H satisfying ¢/(D,, \w) C 9H, where D, is the 2-cell in B? with w C D,,
and dD, C Ow; see Section 9.4. After applying a homotopy to ¢’ which leaves
¢'|0D,, fixed, we may assume that ¢'(Dy) N IH = ¢'(0D,) N OH. Since ¢’ is
interior essential, ('(Dy,) N |og,s| # 0 for all s € (0,1). Since ¢'(0D,) C ((dw),
¢(Ow) N]og,s| # 0. Since (|Ow = ('|0w, the claim follows.

We now verify ¢(B?) N |oys| # 0 in the case 0 < t < 1/(100g) for a given
s € (0,1). Let € be the planar closed region with boundary |oy |, and Hy s =
O x[s8/2, (1+5)/2] a cube-with-g-handles contained in H. Note that |0, 5| C OH, 5.
Since H\ H; s is a regular neighborhood of OH in H, (b_lHt,s contains a component,
say w’, on which ¢lw’: (W', 0w’) = (Hy,s, OH; ) is virtually interior essential. Then,
by the argument above, ¢(w’) N |0t s| # () and hence ¢(B?) N |oy 5| # 0. This proves
the claim.

The second statement in the case t > 0 follows from the same argument
for t = 0. O

Proof of Proposition 12.1. By passing to a bilipschitz equivalent metric if neces-
sary, we may assume that dy = dg, where  is a A-modular embedding R3/G — R".
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As a preliminary step, we fix for every ¢ = (4., B.) € €, a PL-homeomorphism
& Ac — Hy,, where gc is the genus of Ac. Since € is finite, the mappings & are
uniformly bilipschitz, and there exists te € (0,1/(100g)) so that

&e(Be)N |Ug,cs =0
for every 0 <t <te,every 0 < s <1, and c € C.

We fix a special family of longitudes for each Hy in 3 and an induced family
of longitudes on X" as follows. For each g > 0, let

Y(Hy, H) ={of,: 0<t <re, 0<s<1};

and for g = 0, define X(Ho, H) = 0.
By Lemma 12.2, these 1-cycles are longitudes of Hy. Define for every H € C(X)
an induced family of longitudes of H by

S(H,X,5) = {¢p}' o0&, (0): 0 € (Hy,,, F0)},
where gy is the genus of H and oy : HH — ¢ @
By (9.2), every l-cycle in Y of the form

Ttsfzso Och Uts)

Hey

is the chart map in A.

0<t<teand0<s<1,is alongitude of Y. Set
SY,X,H)={n,: 0<t<te and 0 < s <1},

and
Y, X, Ha) = {|7| x [—a,a]™: T € X(Y, X, H)}

the collection of corresponding m-walls over Y of height a.

Since E™(Y, X, H;a) C ¥™(Y, X;a), it suffices to show that the estimate (12.1)
holds for the surface family ¥™(Y, X, 5 a) = (n¢ x id) (X™(Y, X, H; a)).

Before continuing, we observe that, since the embedding 6 : R3/G — R" is
A-modular, there exists L = L(C, A, W) > 1 so that for every k > 0 and every
H € C(Xk), the map

CH - 7TG0<)0H O§ |§CH( dlff) ch( dlff) — 7T-G(}Idiff)

and its extension &, (cHf) x R™ — (7g(H) x R™, d ) defined by

(it (@,2) = (16 0 o 0 &0, (), AF2)

are (\*, L)-quasisimilarities.

In the following estimation of the modulus of surface families, we denote by Hf
and by H? the S-dimensional Hausdorff measures with respect to dy , and the
Euclidean metric, respectively.
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Suppose that p is an admissible Borel function for (Y, X, H;a) on R3/G x

R™ that is,
/ p d’HHm >1
76 (|7e,s]) X [—a,a]™

for every 7 s € L(Y, X, H). We assume, as we may, that p is supported in mg (Y \
Xpy1) X [-a,a]™
We have, for every 0 <t < te and every 0 < s < 1, that

> | po (i dHIH™
Hey \afyf\x[f)\*ka,)\*ka]""
> Z/ de1+m:/ pdHI™ > 1,
Hey Cu(lofH |x[=A—*a,A"Fa]™) 7 (|74,s]) X [—a,a]™
Thus

> / po Cu AT

Hey g X[=A"ka, x"ka]m
>C >/ po G AHEE™) a2
[0,te]x[0,1] N frey o |x[~A—Fa,A~Fa]m
(12.2) > C'te A\~FIFM)

where C' depends only (C, A, W).
Let p = (34+m)/(1 +m). Then, by (12.2),

) / (po Cur)P dHZTT™

Hey g X[=A"Fa,x"ka]m
1-p
> (3 HE(Hyy ¢ [-AFa A ™))
HeYy
p
(X / poCu dHT)
Hey g X[=A"Fa, x"ka]m

(12.3) > C(#y)l P(\ _ka)m(l—P))\—k(l-‘rm)p — C(#y)l—p/\—k(m—i—p)am(l—p)’
where C' > 0 depends only on m and (C, A, W).

Since (g is a (AF, L)-quasisimilarity, Cﬁl is LA\"*-Lipschitz. By a change of
variables,

/ pramsT = / (poCu) o Cyt dHF™
e (H)X[—a,a]™ g (H)x[~a,a]™

2N 34+m
= (7)) (po P AHZT™,
L Hgpy X[=A"ka,X"Fa]™
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for every H € Y. Since p is supported in 7g(Y \ Xp41) X [—a,a]™, we have

PP dHET™ = / pr AHTT
/R?'/GXR"" 0 me(Y\Xkt1)x[~a,a]™ ’

> (/L)Y /H o Apolu)dH™
Hey g X[=A7ka,A"ka]m

> O(#)17P MEG+m) gm(1=p) \=k(m+p) — ¢ () (a/Ne)™)' 77

where C' depends only on m and (€, A, W). The claim follows. O

13. A necessary condition for quasisymmetric parametriza-
tion

The existence of a quasisymmetric parametrization of (R3/G x R™, dy ,,,) by R3+™
requires a balance among the growth, circulation and the scaling factor of the
Semmes space. We prove this result in this section.

Theorem 13.1. Let (R?/G, X, (C, A, W), 0,dy) be a Semmes space, and let m > 0.
Assume that X has order of growth at most v and order of circulation at least w.
Suppose that there exists a quasisymmetric homeomorphism (R3/G x R™ dy ) —
R3+™ . Then

AT B2 <

We obtain now Theorem 1.3 as a corollary.

Proof of Theorem 1.3. Since w® > 42 > 1, we may fix A so that w™1/2 < X\ < y~1/3,
On the one hand, My < 1, so (R3/G x R™,d, ,,) is Ahlfors (3 +m)-regular for all
m > 0. On the other hand,

A™ C"}(3er)/2 > 7,

so there are no quasisymmetric homeomorphisms (R?/G x R™,dy ) — R3*t™ for
any m > 0. The linear local contractibility follows from Proposition 7.9. O

To combine the modulus estimates in Sections 10 and 12, we need a one-sided
comparison between the modulus of a wall family and the modulus of a quasisym-
metric image of the same family. The proof of Proposition 4.1 in [12] for the
case of the Whitehead continuum applies almost verbatim to the Semmes spaces
R3/G x R™; we omit the details.

Proposition 13.2. Suppose f: R3/G x R™ — R3*™ s an n-quasisymmetric
homeomorphism, and Y s the union of a monempty subcollection of cubes-with-
handles in C(Xy) for some k > 1. Then there exists C = C(n) > 0 so that, for
a>0,

Modgsm (£™(Y, X, a)) < CModsin F(E™(Y, X, a)).

1+m +m
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Proof of Theorem 13.1. Let ag € M(X) be a meridian as in Definition 9.2. In view
of Lemma 9.3, when considering a lower bound for the circulation, we may restrict
to a subcollection M of M4 (X; ag) consisting of uniformly quasisimilar meridians.
Since the order of circulation of X' is at least w, there exists C' > 0 so that for
each ¢ > 1, there exist k, k' >0, k¥ —k >, H € C(X}), and a: S' — OH in M so
that
cire(Xp NH, o, H) > Cwh' =¥,

Let f be an n-quasisymmetric mapping (R*/G x R™,dy ) — R3™™. From
Lemma 9.3, Theorem 10.1, Proposition 12.1, and Proposition 13.2 it follows that

/ _ 1 P
C(Xp N H)(AN )" A ™)' 7 < ¢ )

(#C (X ) ) ) - circ(Xp NH,a, H)/ ’

where p = (34+m)/(1+m); C > 0 depends only on (€, A, W), A\, and m; and A is

the constant defined in Theorem 10.1. Since the order of growth of X is at most

7, there exists C = C'(C, W, A, m,n, ap) > 1 such that

W =R < O (cire(Xp N H, o, H))P < C(#C(Xp 0 H)(ANF)m A=K m)P~!
< C(,yk/—k)\km)\—k/m)p_l < ¢ \E=F)m(p=1) (K =k)(p=1)

as ¢ — 0o. Thus
A™ P/ (P—1) < Cl/(k'*k)fy < Cl/ffy7

as ¢ — o0o. The claim now follows. O

14. Local parametrizability

In this section we consider a local version of Theorem 13.1 that compares growth
and circulation in parallel along a sequence of blocks of (X}) targeting a point
x € 71¢(Xoo). Theorem 14.3 below can be used to detect the quasisymmetric
nonparametrizability of some Semmes spaces, undetected by Theorem 13.1.

Let (R3/G, X, (C, A, W)) be a decomposition space of finite type. Given x €
76(Xw), we denote by (Hp(z)) the unique sequence in C(X) for which = €
me(Hi(z)) and Hp(z) € C(Xj) for every k > 0. We call (Hy(z)) the branch
of X at x.

We denote by M(X,z) the collection of all meridians on the branch (Hy(z))
of X at z. Given a meridian a9 € M(X, z), we write

MA(X,J),O(O) = MA(X,O(()) ﬂM(X,x),

where M4 (X; ap) is the collection of meridians in X related to ag by A defined
in (9.4).

Definition 14.1. At a point z € 7¢(Xo ), we say that the order of circulation of X
is at least w > 0 and the order of growth of X is at most v < oo concurrently if the
following holds. There exists a meridian ag € M(X, z) and constants Cy,Cy > 0
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such that for every ¢ > 0 there exist &’ > k > 0 with £/ — k > £ and a meridian
a: S' — OHk(x) in M (X, x;a0) satisfying

cire(Xp N Hy(z), o, Hy(2)) > Cyw® —F,

and )
#C( Xy N Hy(x)) < CoyF =k,

Remark 14.2. By mixing the steps in the constructions of the Whitehead con-
tinuum and of Antoine’s necklace, we may build a defining sequence X having
the following property. Sequence X has order of growth at most v and order
of circulation at least w and, moreover, w® < ~2. Nevertheless, at each point
x € mq(Xoo), & concurrent pair (w(x),y(z)), as defined in 14.1, may be chosen so
that w3(z) > 72(x).

Theorem 14.3. Let (R®/G, X, (C,A,W),0,dy) be a Semmes space and let x €
76(Xoo). Suppose at x, X has order of growth at most y(x) and order of circulation
at least w(x) concurrently. If for some § > 0 and a neighborhood U of x there exists
a quasisymmetric embedding (U x (—8,8)™,dx m) — R3T™ then

(14.1) A (z) B2 < ().

Sketch of the proof. The only essential modification to the proof of Theorem 13.1
is related to the application of a local version of Theorem 10.1.

Let U C R3®/G be an open set containing z and f: (U x (—4,0)™,dxm) —
R3+™ be a quasisymmetric embedding. We may fix a ball B3T™(f(x),70) in
f(U x (=4,6)™), and an integer ko > 0 so that mg(Hg,(z)) x [=Ako, \Fo]™
U x (=6,6)™. Under these choices of parameters, the quasisymmetric unknotting
of images of meridians (Proposition 11.1 and Proposition 11.3) can be performed in
B3t (f(x),r0). Thus the proof of Theorem 10.1 can be carried over to the defining
sequence (Xi)g>k,- We omit the straightforward modifications of Theorem 10.1
and the related lemmas in Sections 10, 11, and 12. O

15. Singular fibers of Semmes spaces

In this section, we consider an application of Theorem 14.3 to a question on the
quasisymmetric equivalence of product spaces (R3/G x R, dy 1) for 0 < A < 1.

Let (R?/G,(Xy),dy) be a Semmes space and m > 0. A point x € R3/G is
said to be (quasisymmetrically) A-singular of index m if there is no quasisymmet-
ric homeomorphism from any neighborhood of (x,0) in R?/G x R™ to a subset
of R3*™: in this case, {#} x R™ C R3/G x R™ is called a singular fiber. We
denote by sing, ,,(R?/G) the set of A-singular points of index m and note that
singy ,,(R3/G) is a closed subset of m¢ (X0 ).

A quasisymmetric map (R3/G x R™,dy ) — (R3/G' x R™,d, ) between
two Semmes spaces induces a homeomorphism from sing, ,,(R*/G) x R™ to
sing,, ,,,(R?/G") x R™. For m = 1, the induced map is bilipschitz on nonisolated
fibers.
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Theorem 15.1. Let (R?/G, (X},),dy) and (R3/G', (Yy),d,,) be two Semmes spaces,
letm > 1, andlet f: (R®/GXR,dxm) — (R3/G'xR,d,, m) be an n-quasisymmetric
map. Then

f(Sing)\,m(Rn/G) X R) = Singu,m (R3/Gl) x R.

Furthermore, if m = 1 and A is the collection of accumulation points in
singy 1 (R*/G), then f|A x R is Lo-bilipschitz for some Lo > 1.

By quasisymmetry, the bilipschitz rigidity of the singular fibers yields the nest-
ing of corresponding branches. We formalize this observation in the next theorem.
As an application of this result, we obtain the quasisymmetric inequivalence of
(R3/Bd x R',dy 1) and (R3/Bd x R, dy 1) for A # X and 1/2 < X < 1; see
Theorem 1.5 in the introduction. We postpone this discussion to Section 17.

Theorem 15.2. Let 0 < A < pu < 1, let (R?/G, (Xy),dy) and (R3/G', (Yy),d,)
be Semmes spaces, and let f: (R3/G x R,dx1) — (R3®/G’' x R,d, 1) be an n-
quasisymmetric map. Let x € Sing)“l(R:i/G) be an accumulation point. Then, for
any ¢ > 0, there exists ko = ko(n,dx, d,,¢) > 0 so that

f(ra(Hi (7)) x R) C mer(Hr1e(y)) x R

for all k > ko, where y = proj f(z) is the image of f(x) under the projection
proj: R3/G' xR — R3/G’, and (Hy(x)) and (Hy(y)) are the branches of X = (Xj,)
and Y = (Y}) at x and y respectively.

We begin with some auxiliary results on lines in metric spaces. Let (X, d) be
a metric space. We say that L C X is a line if L is isometric to R. We say that a
line L is parallel to a line L' if there exists a > 0 so that dist(p, L') = a for every
p € L; in this case, L’ is also parallel to L and dist(L, L’) = a.

Lemma 15.3. Suppose f: X — Y is an n-quasisymmetric map between two metric
spaces that maps two given parallel lines L and L' to parallel lines fL and fL'.
Then there exists C = C(n) > 1 so that

i diStY(fL, fL/) dlStY(f(p), f(q)) <C diStY(fL, fL/)
C distx(L,L') distx (p, q) - distx (L, L")

<

for all p,q € L with distx (p,q) > distx (L, L").

Proof. Suppose that the points p,q € L have distance distx (p,q) > distx (L, L').
Since L is a line, there exist points p = pg,...,pr = g on L so that

distx (L, L") < distx (pi, pi—1) < 2distx (L, L")

for all 1 < i < k. Since the lines L and L’ are parallel, the lines fL and fL’ are
parallel, and f is n-quasisymmetric, there exists Cyp = Cp(n) > 1 so that

Cio disty (fL, fL') < disty (f(pi), f(pi-1)) < Codisty (fL, fL')

for all 1 <14 < k. Since L and fL are lines, the claim follows by summing. O
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Corollary 15.4. Let f: X =Y be an n-quasisymmetric map between two metric
spaces that maps two given parallel lines L and L' to two parallel lines fL and fL'.
Suppose, in addition, that f maps a sequence (L;) of lines parallel to L tending
to L to a sequence (fL;) of lines parallel to fL tending to fL. Then there exists
C=C(n) >1 so that

1 disty (L, /1) _ disty (F(p), f()) _ , disty (L, /L)
C distx(L,L') — distx(p,q) ~ distx (L, L")

forp,q e L.

Proof. Calculations using Lemma 15.3 show that there exists a constant C' > 1 so
that

1 disty (fL, fL') - disty (fL, fL;) <C disty (fL, fL')

C distx(L,L') — distx(L,L;) — distx (L, L")

for every i > 0.
Given p,q € L, we fix a line L; so that distx (L, L;) < distx(p,q). The claim
now follows by applying Lemma 15.3 again. O

Proof of Theorem 15.1. The first claim is clear.

Suppose next that f: R?*/G x R — R3/G’ x R is quasisymmetric and z €
sing, ;(R?/G) is an accumulation point. We choose a point 2’ in sing, ; (R*/G)
so that dx1(z,2') > 3 diamsing, ;(R?/G), and let L and L’ be the singular fibers
{z} x R and {2’} x R, respectively. In view of Corollary 15.4,

1 _ dist(f(p), f(9)

- ' <C
Co = distyxi(p,q)  — 0

for all p = (z,s) and ¢ = (,t) in the singular fiber {z} x R, where Cy > 1 depends
only on the data and not on x.

Let p = (z,s) and w = (y,r) € sing, ;(R*/G) x R, and set ¢ = (x,t), where
t is defined by t = r +dx1(x,y) if r > s and by t = r — dx 1(z,y) if r < s. So,
disty 1 (p, w) = distx 1 (p, ¢). By n-quasisymmetry,

1 _ disty1(f(p), f(w))

- <n(l).
a0 < Tster (7o), F@) "
onee dist1 (/(p), f ()
1 ist, 1(f(p), f(w
< My < C 1
Con(1l) — disty 1 (p, w) < Con(1)
The second claim now follows. O

Proof of Theorem 15.2. By properties of the Semmes metric (see Section 7.1),
there exist C; > 1 and C5 > 1 so that

diamg, , (1¢(T)) < C1N! ()
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and
- ]_ ’
distq, , (sing,, ,(R*/G') N7 (T'), Omr (T')) > o plevel ()
2
for every T € C(X) and T € C(D).
Let Ly > 1 be the constant in Theorem 15.1. Since A < p, we may fix £ > 0
and kg > 0 so that
L001C277(1))\k < ,ukJre

for k > k.

Since f({z} xR) = {y} xR, f({z} xR) C f(re(Hk(2)) xR)N(7e (Hi (y)) xR)
for k, k' > 1. From Theorem 15.1 and the n-quasisymmetry, it follows that for any
k 2 kOa

disty (f(Org(H(x)) x R), f({z} x R)) < Lon(1) diamg, , 7a(Hr(z))
< LoCin(1)A" <y /Cy < dista, , (Omcr (Hy4(y)) x R, {y} x R),

where disty (f(0rq(Hik(z)) x R), f({z} x R)) is the Hausdorff distance between
f(Orq(Hy(x)) x R) and f({z} x R) in the Semmes metric d, ;. Thus

Flr(Hi(x)) x R) C s (Hyre(y)) x R.

This concludes the proof. O

16. Necklaces

As an application of Theorem 8.2 we prove the existence of quasisymmetric parame-
trization for decomposition spaces associated with an Antoine necklace when the
chains are long. For the statement, we introduce some terminology.

Let I > 3. A union UiI:1 T; of pairwise disjoint tori T7y,...,Tr in R3 is called
a chain if T; U T, is a Hopf link if |i — j| = 1 or {i,j} = {1,I}, and an unlink
otherwise.

Suppose T a torus in R? and Uilz1 T; is a torus chain contained in int T in such
a way that there is a homeomorphism h: T — B? x S! satisfying h(0T) = 0B? x S
and having the property that arguments of p(h(T;)) are contained, for each i =
1,...,I, in [27i/1,2n(i +4/3)/I]. Here p: B?> x S! — S! is the projection map
(x,s) = s. In this case, we say |J;_; T; is a necklace chain in T.

Let ¢;: U — U; be PL-homeomorphisms from a neighborhood U of T onto
mutually disjoint neighborhoods U; of T;,1 < i < I, satisfying T; CU; C T C U.
The initial package (T, T1,...,Tr; ¢1,...,¢r) yields a defining sequence X = (X},)
and a decomposition space, called an Antoine’s I-necklace space, R?/G; see Sec-
tion 4.2. It is easy to see that the diameters of components of X can be arranged
to tend to zero. Thus the components of X, are singletons and R?/G is homeo-
morphic to R3.

As discussed in Section 4.2, the initial package induces a welding structure for
the I-necklace space R3 /G, therefore for each A > 0, a modular embedding of R? /G
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and a Semmes metric dy on R?/G. The Semmes spaces (R3/G, dy) associated with
necklaces are linearly locally contractible because the tori T; are contractible in T,
and these spaces are Ahlfors 3-regular when \31 < 1.

The existence of a quasisymmetric parametrization is proved in the following.

Theorem 16.1. For every I > 10, there exists a Semmes metric d on the de-
composition space R®/G associated to an Antoine I-necklace so that (R®/G,d) is
quasisymmetric to R3.

The proof of Theorem 16.1 relies on the possibility of fitting a necklace chain of
length I in a torus, using only tori all similar to the larger one; we find it easier to
fit a rectangular chain in a rectangular torus than to fit a round chain in a round
torus.

16.0.1. Rectangular necklaces. Let 0 < A < b < a. We define

Ro(a,b,\) = [f§,a+§] X [—5 b+§],

2 2 2’ 2
s = (- 2) (ho-2)
and
T(a,b,\) = (Ry(a,b,\) \ B_(a,b, \)) x [— % %}

Let L(a,b) = 0([0,a] x [0,b]) x {0} be the boundary of the rectangle [0,a] x
[0,b] x {0}. We say T'(a,b, A) is a torus with length a + X\, width b+ X, thickness
A, and core L(a,b).

Let T'=T(a,b,\). We say that components of

OT N (R x {=A/2,b+ A/2} x R) and 9T N ({—A/2,a+ A/2} x R?)
are the long and short faces of T, respectively. We call the components of
T N (R* x {=X/2,A/2})

the boundary annuli of T'.
We call the 3-cells

[-3era]x[-5:3]x [-5:3) wa [-Gerg]x p-g043]x [-5:3]
the long sides (front and back) of T, and similarly
ELRST NS P S MR AL

the short sides (left and right) of T.
We say that a torus T in R? is a rectangular torus if there exist a similarity
g:R* 5 R®and 0 < A < b < a so that T = g(T(a,b,\)). Furthermore, T is
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(p,q,r)-oriented if g = hoO, where h is a similarity of the form « — px+v,u > 0,
and O is an orthogonal transformation taking the standard basis (e, ez, e3) to
(ep,eq,er). We call the images of the long (resp. short) sides (resp. faces) of
T(a,b, \) the long (resp short) sides (resp. faces) of T.

In what follows we use the following three types of tightly fitted torus pairs.
Let T=T(A, B,1) and let 7" = g(T(a,b, \)) be an oriented torus contained in T
We say that T is tightly fitted in T if one of the following conditions holds:

1. T"is a (1,2, 3)-oriented torus contained in a long side of T', so that each long
face of T” intersects 9T

2. T" is a (1, 3, 2)-oriented torus contained in a long side of T', so that the long
faces of T” are contained in the boundary annuli of T’

3. T'" is a (2,1, 3)-oriented torus contained in a short side of T', so that each
long face of T" intersects 9T and the short faces of T' are contained in the
long faces of T.

If T is either a (1,2,3) or (1,3, 2)-oriented torus, we have the relations
(16.1) a+A<A+1, b+A=1 and 2\< L.

If 77 is (2,1, 3)-oriented,

(16.2) a+A=B+1, b+A=1 and 2\<1.

Proposition 16.2. Suppose I > 10. There exist A > B > 1 and a; > b; >
Ai, (1 <4 < 1) satisfying

a; _bi N\

A B 1’
and the tori T and T;, 1 < i < I, are congruent to T(A, B,1) and T(a;,b;, \;),
respectively, such that the union | J, ., ; T; is a necklace chain in T.

Theorem 16.1 now readily follows from this proposition and Theorem 8.2.

Proof of Theorem 16.1. Let I > 10 and let T, Ty,...,T; be the tori constructed
in Proposition 16.2. Let ¢;: R? — R? be similarity maps = + Az + v; so that
¢;(T) =T, for 1 <i < I. Then the initial package (T, T1,...,Tr, ¢1,...,¢5) gives
rise to a natural self-similar welding structure in R? as in Section 4.2. The claim
now follows from Theorem 8.2. O

Proof. We construct for each I > 10, a torus T' = T'(A, B, 1) and a chain (J, ., ; T}
which consists of tori all similar to 7" and is tightly fitted in T'.

Since the tori in the chain are pairwise disjoint, there exist similarity maps
hi: R® — R3, z +— px + v;, with p € (0,1) and v; € R3, so that the new chain
Uilz1 h;(T;) is contained in the interior of T'. Hence tori hq(T1),. .., hy(T) satisly
the claims of the proposition.

It remains to construct tori 7T, T1,...,T; with aforementioned properties.
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Case 1. Suppose [ = 4k > 12. Then I = 2K + 2 for some odd integer K > 5.
We seek A > B > 2 and a > b > 2 satisfying

a b A
A B U
and mutually disjoint tori T;, 1 < ¢ < 2K 42, which are congruent to T'(a, b, A) and
contained in T'(4, B, 1) so that | JT; forms a necklace-chain positioned as follows.
Tori T1 and Tk 42 are (2,1, 3)-oriented tori tightly fitted in the two short sides
(left and right) of T'(A, B, 1) with cores lying on the plane {3 = 0}. The tori T; are
(1,3, 2)-oriented for even i, and T; are (1, 2, 3)-oriented for odd indices i # 1, K +2.
The tori T5,Ts,...,Txy1 are tightly fitted in the front side of T'(A, B, 1),
with the cores of T, Ty, ..., Tk+1 lying in the plane {x9 = 0} and the cores of
T5,T5,...,Tk lying in {x5 = 0}. The tori Tk+3, Tk+t4,...,Tox+o are tightly fit-
ted in the back side of T'(4, B, 1), with the cores of Tk 13, Tk+5,...,Tok+1 lying
in the plane {2 = B} and the cores of Tx 4, Tk t4,...,Tax lying in the plane
{.1‘3 = 0}
Since the necklace-chain Ufil T; is tightly fitted in T'(A, B, 1),

(16.3)

(16.4) a+AX=B+1 and b+A=1.
Since the tori T7 and T5, of thickness A, are linked,
(16.5) 3N < 1.

In order to fit the linked chain T3 UT5U...UTk o in a long side of T'(A, B, 1), we
seek € and ¢ in (0,1/10) so that

(16.6) A+1=K(a+ ) — (K—=1)2+e)A+2(1+0)A,
(16.7) a+A>2(2+e)A,
(16.8) 1> (340)A

Note that K(a+ ) — (K —1)(2+¢€)A is the total length of the union ToUT5U---U
Trt1, with (K —1)(2 4 €)X measuring the K — 1 overlaps and (1 + §)\ measuring
the distance from the chain to either short face of T'(A, B,1). Conditions (16.7)
and (16.8) are imposed to allow room for linking between consecutive tori in the
union Ty UTo U -+ U Tk o.

We now check that (16.3) to (16.8) can be realized with proper choices of
A,B,a,b, \ e, and 6. By (16.3) and (16.4), we have the relations

(16.9) A+1=X? and B+l=a+A=\""
Furthermore, by (16.6) and (16.9),
(16.10) 2(K —2)A% — (26 — (K — 1)e)A\*> = KA+ 1=0.

Let 0 < € < 1/(5K), to be fixed later, and fix § = (K — 1)e/2. Then (16.10)
becomes

(16.11) 2(K —2)N\* — KA+1=0.
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It is now easy to check that (16.11) admits a solution A € (0,3/10). We now
choose € so small that (16.7) and (16.8) hold. The parameters A, B, a, and b are
now uniquely determined by (16.9) and (16.3).

Case II. Suppose that [ = 4k 4+ 2 > 10. Then I = 2K + 2 for an even
K > 4. Again we will fit a necklace-chain U?ffrz T;, consisting of tori all similar
to T(A, B, 1), in the torus T'(A, B, 1).

Since K is even, the linking condition forces 77 and Tk o to have different
(p, q, r)-orientations and unequal sizes. Let T} be a (2, 1, 3)-oriented torus tightly
fitted in the left side of T'(A, B, 1) with the core lying on the plane {x5 = 0}, and
let T2 be a smaller (2,3, 1)-oriented torus (not tightly fitted) in the right side
of T(A, B,1) with its core lying on the 2-plane {z; = A}.

As in Case I, we choose T; to be (1,3,2)-oriented when i # K + 2 is even
and T; to be (1,2,3)-oriented when i # 1 is odd. The tori Ts,T5,..., Trk4+1 will
be tightly fitted in the front side of T'(A, B,1) with the cores of T5,Ty,..., Tk
lying on the plane {z2 = 0} and the cores of T5,T5,...,Tk11 lying on {x3 = 0}.
Tori Tk 43, Trt4a, ..., Toxyo will be tightly fitted in the back side of T(A, B, 1)
with the cores of Tki3,Tk+5,--.,Tox+1 lying on the plane {z3 = B} and cores
of T4, Tk+6,---,Tok+2 lying on the plane {x3 = 0}. Furthermore, one short
face of Tk 11 and one short face of Tk 3 are placed in a common short face of
T(A,B,1).

The tori T;,1 <i < 2K + 2 and i # K + 2, are congruent to T'(a,b, A) and the
torus T 12 is congruent to a smaller T'(a’,d’, \'); all are similar to T'(A, B, 1).

It is straightforward to check that numbers A > B > 1, a > b > A > 0, and
a’ > b > X >0 can be found so that Ufil T; is a chain tightly fitted in 7. We
omit the details.

Case III. Suppose that I > 11 is odd. Then I = 2K + 3 for some K > 4.
For K even, there exist, by Case I, numbers A, B,a,b, and \ and tightly fitted
tori T, ..., Togyo in T = T(A, B,1) so that tori T4, ..., Tox 1o are congruent to
T(a,b,\). For K odd, we have, in addition, parameters a’,b’, and A" so that the
tori T4, ..., Tok 42 are congruent to either T'(a,b, ) or T'(a’,b’, \'). Let € > 0 and
0 > 0 be the parameters appearing in these constructions. We rename the first
torus T as Tg.

The plan is to replace the tori Ts, T5, Ty congruent to T'(a, b, \) by four tori ¢y,
ta, t3, t4 congruent to a smaller torus T'(a”,b”, \”) which is similar to T'(a, b, A).
The new collection Ty, t1,te,t3,t4,T5, ..., Tox 2 forms the necklace chain for the
case [ = 2K + 3.

Denote by Fy the rotation in R® about the z;-axis by an angle 6, so that
Fy(R? x {0}) = Py, where Py is the plane {3 = x5 tan 6} in R3. Recall that Ty is
a (2,1,3)-torus and T is a (1,2, 3)-torus with cores lying on the plane Fy.

For j = 1,...,4, let t; be a translate of Fy;./5(T'(a”,b”,\")) in the direc-
tion of x1, where the translation will be fixed later. Then the core of t; lies on
the plane Pyj,/5; and the planes containing the cores of two consecutive tori in
{To,t1,t2,t3,ts, T5} form an angle 27/5.

The numbers A > B > 1,a>b> X >0, and ' >V > X > 0 are retained
from the previous cases. To realize the plan, we need to choose a’/ > b" > X' > 0
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satisfying a” /A = b"/B = X"/1 < A, so that the 4 new tori ¢1, 2, t3, t4 can be fitted
lengthwise in the space vacated by 715,73, and T to form a necklace chain. The
calculations leading to these choices are routine and tedious; we omit the details.
This completes the proof. O

17. The Bing double and the Whitehead continuum revisited

The construction of the space R3/Bd associated to the Bing double is illustrated
and discussed in Daverman’s book (see Example 1, pp. 62-63 in [6]) and in an
article of Freedman and Skora [8]. See the original article [1] or [4] for a highly
nontrivial shrinking procedure that leads to a homeomorphism R?/Bd ~ R?.

We fix an initial package consisting of three tori T, Ty, and T in R3 so that T}
and T5 are linked in 7' but not in R? as in Figure 9-1 of [6], and we fix the home-
omorphisms ¢;: T — T;. Denote by X = (Xj) the defining sequence induced by
the initial package as described in Section 4.2, by Bd the (cellular) decomposition,
and by R3/Bd the decomposition space.

Semmes showed (Theorem 1.12c in [19]) that R3/Bd admits a metric d so that
the space (R®/Bd,d) is quasiconvex, Ahlfors 3-regular, and linearly locally con-
tractible and it supports certain Sobolev and Poincaré inequalities that are crucial
for analysis, but this space is not quasisymmetric to R?. Semmes’s construction of
the metric d served as a model for the modular metrics defined in Section 7; it is
easy to verify that d is bilipschitz equivalent to a modular metric.

The nonexistence of a quasisymmetric homeomorphism (R?/Bd,d) — R? is
based on a lemma of Freedman and Skora on essential intersections (Lemma 2.4
in [8]).

We state their lemma in the following.

Lemma 17.1. Let Ty and T, be solid tori embedded in B> xS' as in the Bing double
construction. Let (P,0P) C (B? x S',0B? x S!) be an embedded connected planar
surface representing the generator of the relative homology group Hs(B? xSt, 0, 7).
Suppose P and Ty U Ty meet in transverse general position. Then for i =1 or 2,
PNT; must contain at least two surfaces which represent generators of Hy(T;,0,7Z).

Using the notion of circulation, Lemma 17.1 can be interpreted as follows.

Lemma 17.2. Let R3/Bd be the decomposition space associated to the Bing double
Bd and let X = (Xi) be the defining sequence associated to the initial package
(T7 Ty, 1o, d)lv d)?) Then

cire(Xg, T; ) > 2F

for every k > 0 and every meridian o on T'.
The Freedman—Skora lemma yields that the defining sequence X of the Bing

double has order of circulation at least 2; in fact the order of growth of X is
exactly 2. Theorem 1.4 now follows from Theorem 13.1.



956 P. PANKKA AND J.-M. Wu

By the Freedman-Skora lemma, the concurrent pair (y(x),w(z)) defined in
Section 14 can be taken to be (2,2) for every = in mpq(Bds ). From Theorem 14.3,
it follows that

1. any open subset of (R®/Bd, dy) which intersects mpq(Bdeso) is not quasisym-
metrically embeddable in R? for any 0 < A < 1;

2. every point in mpq(Bdeo) is A-singular (of index 1) for 1/2 < A < 1.
We finish the proof of Theorem 1.5 using the second fact.

Proof of Theorem 1.5. Suppose there is a quasisymmetric homeomorphism f:
(R3/Bd x R,dy1) — (R3/Bd x R,dy 1) for some X € (1/2,1) and A € (0, \).
Let X = (Bdg) be the standard defining sequence for the Bing double, and write
Bd =, Bdk. By Theorems 14.3 and 15.1,

(17.1) mBa(Bdso) = singy ; (R®/Bd) = sing,, ; (R*/Bd).

Since mp4(Bds) is a Cantor set, every point is an accumulation point. By The-
orem 15.2, given ¢ > 0 there exists kg > 0 so that

f(’]TBd(Bdk) X R) C ’/TBd(Bdk+g) x R

for all & > ko. Since mpq(Bdy) has 2 components and mgq(Bdyie) has 28+
components, we conclude that there exists a component 7" of Bdy, so that

ma(T) x RN f(ma(Bde) x R) = 0.
This contradicts (17.1). O

We refer to [12] for the nonexistence of the quasisymmetric parametrization of
R3/Wh x R™, where Wh is the Whitehead continuum. We merely note that the
homological argument of the Freedman—Skora lemma was used in [12] to obtain a
version of the intersection lemma and to show that the standard defining sequence
for the Whitehead continuum has order of circulation at least 2. Since the order
of growth of the Whitehead continuum is 1, we can use Theorem 13.1 to recover
the nonexistence of quasisymmetric parametrizations of (R3/Wh x R™ dy ,,). In-
deed, as shown in [12], (R®*/Wh x R™ d ,,) is not quasisymmetric to R3+t™
for A > 2= (+m)/(2m)

18. Bing’s dogbone

The decomposition space R?/Db associated with Bing’s dogbone [2] was the first
known example of a decomposition space which is not homeomorphic to R3 but
whose product with a line, (R3/Db) x R, is homeomorphic to R*; see [3].

Bing’s dogbone space R?/Db is constructed as follows. Let A be a PL cube-
with-2-handles standardly embedded in R3, and let A;, Ay, A3, and A4 be four
cubes-with-handles of genus 2 embedded in the interior of A as illustrated in Fig-
ure 1, p. 486, of [2].
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Let ¢;j: U — U; be PL-homeomorphisms from a neighborhood U of A onto
mutually disjoint neighborhoods U;,1 < i < 4, of A; satisfying A; CU; C A C U.
The intersection -

Db= U ¢a(4)
k=0 €Sy
is called Bing’s dogbone, where ¢o = ¢a, © -0 ¢qo, and a = (ag,...,ax) €
{1,2,3,4}*. The decomposition R?/Db is topologically different from R?® even
though each nondegenerate component of Db is a tame arc [2]. On the other hand,
(R3/Db) x R is R*.

The initial package (A, A1,..., A4, b1, ..., ¢4) yields a defining sequence Xpy, =

(Xk): Xo=A and

4
Xiy1 = Ql ba(Xk)

for k > 0. Hence Xj = ,cs, ®a(A). The initial package induces a welding
structure (Cpy, Apb, Wph) on the defining sequence Xpy; in particular C consists
of a single condenser (A, U}_; A;). See Section 4.2 for details.

Theorem 18.1. Let (R3/Db,dy) be a Semmes space associated to the defining
sequence Xpy and the welding structure (Cpp, Apn, Wpp). Suppose m > 1 and
o~ (Fm)/m X\ < 272/3 Then (R®/Db x R™,dx.,,) is Ahlfors (3-+m)-regular and
linearly locally contractible, but it is not quasisymmetrically equivalent to R3T™,

The Ahlfors regularity follows from Proposition 7.8, since X has order of
growth 4. The linear local contractibility follow from Proposition 7.9, since every A;
is contractible in A.

To show that (R?/Db) x R™ is not quasisymmetric to R3+™, we estimate the
order of circulation of X in A from below.

As in Figure 1 of [2], let C7 and C5 be two disjoint 3-cells in A so that the
handles of UA; are sorted into two groups, and each group consists of four pairwise
linked handles, one from each A;, and is contained in one of the 3-cells Cy or Cs.
Then C; UCy U A1 U Ay and C; U Co U As U Az is a pair of solid tori in A.

The arrangement of cubes-with-handles UA; is understood as follows. We fix
essential 2-disks Dy, Do, and D3 in A as in Figure 1 of [2]. These disks have the
property that if h: R? — R? is a homeomorphism that is identity outside A then

1. h(A1) Uh(As) and h(A2) U h(As) intersect both Dy and D,
2. h(A1) Uh(As) and h(As) U h(Ay) intersect both Dy and D3, and
3. h(A1) Uh(Az) and h(As) U h(Ay) intersect both Dy and Ds.

We use topological properties of the initial package to show the following esti-
mate of Freedman—Skora type. This estimate implies that the order of circulation
of X is at least 4. This together with Theorem 13.1 proves Theorem 18.1.

Lemma 18.2. Let v be a meridian of A that is isotopic to D1 on OA. Then
(18.1) cire(Xy, v, A) > 471

for every k > 1.
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Proof. As a preliminary step, we define tori 7€ and T as follows
T =CiUCoUA UA; and T =CpUCy U Ay U As.

Then
Agi UAgs C (T C Ay and  Ago U Ags C (TX), C Ag,

where Ay = 0o A, (TO)g = 0o(T9) (TX)o = ¢o(TX), and o € {1,2,3,4}F.

Note that tori (79); U(T?)4 are linked in T the way that the two first stage
tori are linked in the 0-th stage torus as in the construction of the Bing double.
Note also that the same can be said about the linking of (7%); U (T%), in T,
(T9)o U(T9)3 in T, and (TX)y U (TX)3 in TX.

Therefore for every a € {1,2,3,4}*, the tori (T9)a1 U (T9)as are linked in
(T9), the way the first stage tori are linked in the Oth stage torus as in the Bing
double, and the same can be said about the linking of (7)1 U(TX )4 in (T9),,
(T2 U (T a3 in (TX), and (TX) a2 U (TX)a3 in (TX),.

This linking property has the following consequences.

(I) If f: (B2,0B?) — (A,0D;) is map with the property f(0B?) = 0D;, then
f(B?) intersects both T and T virtually interior essentially. Indeed, let @Q
be a 3-cell in R? so that QN A C 04, QN OD; = (), and so that QU A is a
torus. We write 7' = Q U A. Since a core of T is also a core of T, we have
that f(B?) intersects T virtually interior essentially. The same argument
applies also to T.

(IT) Suppose (2 is a 2-manifold in B? and f: (Q,09) — (T°,07°) is a virtually
interior essential map. Then by the standard argument of filling T¢ with
2-disks, we have that f has an virtually interior essential intersection with
Aj U Ay; see e.g. the proof of the wildness of Antoine’s necklace in Proposi-
tion 5, pp. 73-74 of [6]. The same can be said about 7% and Ay U As.

The circulation estimate (18.1) follows from the claim below and the relation
between the number of essential intersections and the circulation stated in Re-
mark 9.8.

Claim. Let f: (B2, 0B?) — (A, 0A) be an interior essential map so that f(9B?)
is isotopic to D1 on OA. Then f(B2?)NX}, has at least 4% virtually interior essential
components. It remains to verify the claim.

Let ¢: {1,2,3,4} — {O, X} be the map defined by ¢(1) = ¢(4) = O and
§(2) =¢(3) = X, and let ¥ = ¢ x --- x¢: {1,2,3,4}* — {O, X }* be the product
map. Set S, = {1,2,3,4}*, %) = {0, X}*, and s (w) = (¢¥)~1(w). Note that, for
w = (wi,...,w) € Ty,

sp(w) = (M) Hw) = {(a1,...,ar) €Sk, aj € H(w;) for all 1 < j < k},

$0 Sk = Uyexn, sk(w) is a disjoint union.

For each k > 1, we sort the 4% cubes-with-handles in X} into 2* mutually
disjoint groups as follows. If k = 1, the two groups are X;(0) = {A;, A4} and
X1(X) = {A2, As}. Suppose k > 2. Define, for w € X,

Xi(w) ={As 1 a € si(w)},
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50 Xi = Uyes, Xi(w) is a disjoint union of 2¥ groups.

Fix a w € X. We will focus on the 2* cubes-with-handles in Xj(w) and con-
sider a finite defining sequence associated with this particular w = (wy, wa, ..., wy)
as follows. Set

Zo=A, Z1= Twl) and Zj = Uaesj-,l(wl,wz,m,wj,l)(ij)a
for 2 < j < k. Note that
Zj+1 N (ij)a = (ij+1)ai1 U (Tu]j+1)04i2’

where {i1,4i2} = ¢~ (w;), for every (T%7), in Z;.

Let f: (B2 0B%) — (A4,0A) be an interior essential map so that f(9B?) is
isotopic to 9Dy on 0A. By applying a homotopy near 0A, we may assume that
f(B%) NOA = 0D;. Then, by (I), f(B?) intersects both T¢ and TX virtually
interior essentially. In particular, f(B?) N Z; has at least one virtually interior
essential component.

In view of the linking relation (of the Bing double type) between tori in consec-
utive generations, we may apply the lemma of Freedman and Skora (Lemma 17.1)
iteratively to conclude that f(B?) N Zj, has at least 2*~! virtually interior essential
components.

The tori in Zj are pairwise disjoint and each torus contains two cubes-with-
handles in Xj,(w). It follows from (II) above that f(B?) N X (w) has at least 251
virtually interior essential components.

The claim follows by summing over w € Y. This completes the proof of the
theorem. O
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