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A variation norm Carleson theorem for

vector-valued Walsh–Fourier series

Tuomas P. Hytönen, Michael T. Lacey and Ioannis Parissis

Abstract. We prove a variation norm Carleson theorem for Walsh–
Fourier series of functions with values in certain UMD Banach spaces,
sharpening a recent result of Hytönen and Lacey. They proved the point-
wise convergence of Walsh–Fourier series of X-valued functions under the
qualitative hypothesis that X has some finite tile type q < ∞, which
holds in particular if X is intermediate between another UMD space and
a Hilbert space. Here we relate the precise value of the tile type index to
the quantitative rate of convergence: tile type q of X is ‘almost equivalent’
to the Lp-boundedness of the r-variation of the Walsh–Fourier sums of any
function f ∈ Lp([0, 1);X) for all r > q and large enough p.

1. Introduction

The celebrated theorem of Carleson on the pointwise convergence of Fourier se-
ries [5] asserts that the partial sums of the Fourier series of an Lp-function converge
almost everywhere to the function for 1 < p < ∞. The usual strategy to prove this
result is to show that the Carleson operator, that is, the maximal partial sums of
the Fourier series of a function, is bounded on the corresponding Lp-space. Subtle
refinements of the Carleson theorem in [8] involve more refined notions than the
�∞-norm of the partial sums. One of these notions is the variation norm Carleson
theorem, proved in [20], which in particular shows the pointwise convergence of
the Fourier series of f without having to resort to a dense subset where this con-
vergence can be easily exhibited. Weighted versions of the corresponding results
for Fourier and Walsh–Fourier series have recently appeared in [11] and [10].

We point out that, in the scalar case, variational bounds for the Hilbert trans-
form as well as for more general Calderón–Zygmund operators have been obtained
for example in [3] and [4]. In [15] the authors study more singular operators such
as averages along lower dimensional sets and truncations of singular integrals with
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rough kernels. However, there is no complete characterization of the Calderón–
Zygmund kernels, say, that give rise to operators that obey variational bounds.
The question is subtle since a variational bound immediately implies the point-
wise converge of the truncations of singular integrals and it is known that this
convergence fails for some operators.1 In the vector-valued setup information is
even scarcer. For example it is natural to ask whether the Hilbert transform of
a function with values in a UMD Banach space obeys variational bounds. This
would be the vector-valued analog of the main result in [3] and, to the best of our
knowledge, its validity is not currently known.

A necessary condition for the validity of Carleson’s theorem for functions with
values in a Banach space is known to be that the target Banach space X has the
UMD property: X-valued martingale differences converge unconditionally in the
space. See for example [12], [25], and [24]. The first results on Carleson’s theorem
for vector-valued functions appear in [25] and [24] with the additional hypothesis
that the target Banach space X is a UMD space with an unconditional basis, or
more generally, that it is a UMD lattice. The corresponding result for Walsh–
Fourier series was proved for UMD lattices in [29]. Recently in [21], Parcet, Soria,
and Xu proved the weaker statement that the partial Fourier series of f ∈ Lp(T;X),
p > 1, satisfy SNf(x) = o(log logN) for a.e. x, in general UMD spaces X , thus
taking a step away from the lattice hypothesis. The first two authors of the current
paper finally proved the vector valued Carleson theorem for all known examples of
UMD spaces in [12]. Besides the UMD hypothesis, which is necessary, the proof
in [12] is based on a certain key assumption on the UMD space, namely that it has
finite tile type. The tile type assumption is a hypothesis of probabilistic flavor on
the geometry of X , which is easily seen to be stronger than usual cotype, although
we do not know at this moment if it is strictly stronger than the UMD property,
which is known to imply finite cotype.

The tile type hypothesis was introduced in [13] where it is shown that finite-
tile type implies that the partial sums of Walsh–Fourier series converge to the
function almost everywhere. Another hypothesis with a similar flavor was used
in [12] to show the corresponding result in the trigonometric case. In these two
papers, the prototypical examples of UMD Banach spaces with finite tile type
are the intermediate spaces X = [Y,H ]θ, that is, spaces X which are complex
interpolation spaces for some UMD Banach space Y and a Hilbert space H . This
class of Banach spaces includes for example all the UMD lattices but also the
Schatten ideals Cp, 1 < p < ∞, and in general all examples of UMD spaces
currently known that are not necessarily function lattices. However the tile type
turns out to be a qualitative hypothesis for the Carleson theorem: the exact value
of the tile type is irrelevant, it is only needed that it is finite.

This changes dramatically when one looks at models for vector-valued bilin-
ear Hilbert transforms, [14]. There the exact value of the tile types of the Ba-
nach spaces involved plays a crucial role in determining the range of inequalities
one can prove, and in fact one needs to stay ‘close enough’ to the Hilbert space

1The study of variational bounds for quite general Calderón–Zygmund operators is addressed
systematically in the paper [27] which appeared while the current paper was under review.
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tile type q = 2 to get any bounds on the Walsh model of the bilinear Hilbert
transform.2

In this paper we take up the investigation initiated in [13], and continued in [12]
and [14], concerning vector-valued extensions of Carleson’s theorem and related
issues, where the lattice assumption is completely avoided. In particular, this paper
is very much in the spirit of [13] since we study the variant of Carleson’s theorem,
due to Billard, [2], for Walsh–Fourier series. Building on the results from [13]
and [12], our purpose is to investigate whether the finite tile type hypothesis is
also necessary for the validity of a vector-valued Carleson theorem. We take a step
in this direction by characterizing the UMD Banach spaces for which the finite
tile type assumption is true in terms of the boundedness of a variational Carleson
operator. In particular we show that a variation norm version of Carleson’s theorem
for vector-valued Walsh–Fourier series, in the spirit of [20] and [11], is valid if and
only if the UMD Banach space satisfies the finite tile type hypothesis.

Furthermore, we manage to quantify the relation between the tile type of
the Banach space and the variation index in the variational Carleson theorem.
Although this is not possible in the usual formulation of the Carleson theorem,
the variational variant gives the correct framework for such a quantification. Thus
the variation index, which can be viewed as a quantification of the rate of con-
vergence of the partial Walsh–Fourier series, is intimately related to the tile type
of the UMD Banach space under consideration. We know from [12] that tile type
implies Carleson’s theorem. However we now see that the tile type condition is
essentially characterized by the validity of a variation norm Carleson theorem on
a UMD Banach space. The question whether Carleson’s theorem is valid on an
arbitrary UMD Banach space remains open however. Our method and general
strategy of proof is along the lines of [13], [11] and [20], using the time-frequency
analysis techniques and arguments introduced in [16].

The first thing we need to do in order to formulate our main results is to
describe what is the variation norm of a sequence. This norm plays a central role
throughout the paper.

Let 1 ≤ r ≤ ∞ and x = {xn}n∈N be a sequence of elements of a Banach space
(X, | · |). The r-variation of the sequence x is defined as

‖x‖Vr(X) := sup
K

sup
N0<···<NK

( K∑
j=1

|xNj − xNj−1 |r
)1/r

,

with the usual modification when r = ∞. Observe that the V∞-norm is essentially
the �∞-norm. If {fn}n∈N is a sequence of X-valued functions, fn : R+ → X , we
will also write

‖fn‖Lp(R+;Vr(X)) :=
( ∫

R+

‖fn(x)‖pVr(X)dx
)1/p

.

2There is another striking detail, that one can formulate vector-valued results that include
non-UMD Banach spaces; see Silva [26].
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Now, for f ∈ Lp([0, 1);X) for some 1 < p < ∞, consider the partial Walsh
sums

SNf(x) :=

N−1∑
n=0

〈f, wn〉wn(x),

where wn is the nth Walsh function on [0, 1). Precise definitions will be given in
Section 3. The variational Carleson operator is the nonlinear operator on the left
below. As we shall see in detail in §5 it can be controlled in the form

‖SNf(x)‖Vr � Cr,P1f(x) + C̃r,P2f(x)

where Cr,P1 and C̃r,P2 are linear operators defined in (5.1) in terms of notions
from time-frequency analysis which will be introduced in §3. The point of intro-
ducing these operators is that they linearize and control the variational Carleson
operator, and are more amenable to time-frequency analysis. Our main theorem
characterizes the tile type of a Banach space in terms of the boundedness of the
operator Cr,P1 or the operator C̃r,P2 .

Theorem 1.1. Let q ∈ [2,∞) and let X be a Banach space. Suppose that the
operator Cr,P, or the operator C̃r,P, satisfies

‖Cr,Pf‖Lr(R+;X) � ‖f‖Lr(R+;X),(1.2)

whenever q < r < ∞. Then X has tile type τ for all τ > q and, a fortiori, X has
cotype τ for all τ > q.

Conversely, suppose that the Banach space X has tile type τ for all τ > q.
Then for every f ∈ Lp(R+;X),

‖Cr,P1f‖Lp(R+;X) + ‖C̃r,P2f‖Lp(R+;X) � ‖f‖Lp(R+;X),

for max(q, p′(q − 1)) < r < ∞, with the implicit constant depending only upon
p, r, q, and the space X.

As a corollary we conclude a variational norm version of Carleson’s theorem
for vector-valued Walsh–Fourier series:

Theorem 1.3. Given q ∈ [2,∞), let X be a Banach space which has tile type τ
for all τ > q. Suppose that

max(q, p′(q − 1)) < r < ∞.

Then for every f ∈ Lp([0, 1);X),

‖SNf‖Lp([0,1);Vr(X)) � ‖f‖Lp([0,1);X),

with the implicit constant depending only upon p, r, q, and the space X.

Observe that for q = 2 the restriction on the integrability exponent becomes
p > r′ which is necessary in the scalar case of the Fourier analog of Theorem 1.3, [20].
Here we get a condition that becomes more stringent as X ‘moves away’ from the
Hilbert space case, quantified by the tile type.
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In the special case that X is an intermediate space, that is X = [Y,H ]θ is a
complex interpolation space for some UMD Banach space Y and a Hilbert spaceH ,
and 0 < θ < 1, it was shown in [13] thatX has tile type q = 2/θ. Thus Theorem 1.3
immediately applies to all intermediate spaces of this type. However, arguing
directly by interpolation we get a slightly stronger theorem:

Theorem 1.4. Suppose that X := [Y,H ]θ, 0 < θ < 1, is a complex interpolation
space between a UMD Banach space Y and a Hilbert space X. Set q := 2/θ.
Suppose that

max(q, p′q/2) < r < ∞.

Then for every f ∈ Lp([0, 1);X) we have that

‖SNf‖Lp([0,1);Vr(X)) � ‖f‖Lp([0,1);X).

where the implicit constant depends only on p, r, q, and the space X.

So far the only Banach spaces which are known to have finite tile type are
exactly the complex interpolation spaces of Theorem 1.4. From this point of view,
the weaker Theorem 1.3 seems uninteresting in comparison to Theorem 1.4. How-
ever, the formulation of Theorem 1.3 only assumes finite tile type. This provides
an indication that the finite tile type of a Banach space X could be a strictly
weaker hypothesis than that of X being a complex interpolation space.

The Fourier scalar variational Carleson theorem is related to a number of top-
ics, including variational estimates for singular integrals, [15]; refined estimates in
ergodic theory, [8], [7]; maximal inequalities, [19], and approaches to extensions
of results of Christ–Kiselev, [6], in spectral theory; see [20], Appendix C. Some of
these continue to be under active development, [18], [9]. At some point, these
topics might be ripe for investigation in the vector-valued case.

The rest of the paper is organized as follows. In section 3 we introduce tiles
and trees in the time-frequency plane and define the corresponding wave packets
in terms of appropriate Walsh functions. In section 4 we review the definition
of the tile type of a Banach space, adjusted to the needs of the present paper.
This definition is slightly weaker than the one in [13] but philosophically it is the
same. We also discuss several structural properties of the trees that one needs to
consider in the definition of the tile type and show that tile type q implies martin-
gale cotype q for any Banach space X . We also recall the vector-valued version of
Lépingle’s inequality which will play an important role later in the proof. In sec-
tion 5 we linearize the variational Carleson operator and introduce its variants Cr,P

which characterize the tile type of the Banach space X . We eventually linearize all
our operators and reduce the main theorem to the statements of Propositions 5.4
and 5.6. In Sections 6 to 8 we introduce all the necessary machinery from time-
frequency analysis and prove Proposition 5.6. The last section 9 is devoted to the
proof of Theorem 1.4. The proof uses complex interpolation between the full range
of r-variation inequalities, valid in any Hilbert space, and the ∞-variation bounds
for intermediate spaces from [13].
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2. Notation

Throughout the text c and C will denote generic positive constants that might
change even in the same line of text. We write A � B if A ≤ cB for some
numerical constant c > 0 and A � B if A � B and B � A. In this paper the
implicit constants that appear in various estimates may depend on the variation
index r, the integrability index p, the tile type index q and the space X itself, but
we typically suppress this dependence since it is of no importance. We denote by N
the set of nonnegative integers and by R+ the set of nonnegative real numbers.
Finally the dyadic subintervals of the positive real line are denoted by D. These
are the intervals of the form [n2k, (n + 1)2k) where n ∈ N and k ∈ Z. For any
interval ω with endpoints a < b we use the standard notation ω̊ := (a, b) for its
interior as well as the notations [ω) := [a, b) and (ω] := (a, b]. If no special notation
is used by convention we use ω = [ω) = [a, b).

For k ∈ Z we denote by Ek the conditional expectation with respect to dyadic
intervals of length 2k:

Ekf(x) :=
∑

I∈D, |I|=2k

1I(x)

|I|

∫
I

f(y)dy =:
∑

I∈D, |I|=2k

EIf(x);(2.1)

the dyadic maximal function is then Mf(x) := supk |Ekf(x)|. Finally, we denote
by BMO the dyadic BMO space on the positive real line, equipped with the norm

‖f‖BMO(R+;X) = ‖f‖BMO := sup
I∈D

1

|I|

∫
I

∣∣f(x)− 〈f〉I
∣∣dx,

where 〈f〉I := 1
|I|

∫
I
f . Note that, throughout the text, the notation |·| is used both

for the absolute value as well as for the norm of the Banach space X , depending
on context.

3. Walsh wave packets, tiles, and trees

A tile P is a dyadic rectangle of area 1 in the time-frequency plane R+ × R+,
namely

P = IP × ωP = IP × 1

|IP |
[n, n+ 1), n ∈ N, IP ∈ D,(3.1)

If P and P ′ are tiles we write P ≤ P ′ if IP ⊂ IP ′ and ωP ′ ⊂ ωP . Likewise, a
bitile P is a dyadic rectangle of area 2:

P = IP × ωP = IP × 2

|IP |
[n, n+ 1) =

1⋃
v=0

IP × 1

|IP |
[2n+ v, 2n+ v + 1).

Thus each bitile P = Pd ∪ Pu has a ‘down-part’ and an ‘up-part’ which are also
dyadic. Furthermore we write

P ≤u P ′ def⇐⇒ Pu ≤ P ′
u and P ≤d P ′ def⇐⇒ Pd ≤ P ′

d.
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The partial order for bitiles P and P ′ is then defined as P ≤ P ′ def⇐⇒ P ≤u P ′

or P ≤d P ′. A tree T is a collection of bitiles P for which there exists a top bitile T ,
which is not necessarily part of the collection, such that P ≤ T for all P ∈ T. Note
that in general a top of a tree is not uniquely defined. Similarly we say that T is
an up-tree if P ≤u T for all P ∈ T and some top T and a down-tree if P ≤d T for
all P ∈ T. Trivially any tree can be decomposed into an up-tree and a down-tree:

T = Tu ∪Td, Tu
def
= {P ∈ T : P ≤u T }, Td

def
= {P ∈ T : P ≤d T}.

The Rademacher functions are defined as

ri(x) := sgn sin(2π · 2ix) =
∑
k∈N

(
12−i[k,k+1/2)(x)− 12−i[k+1/2,k+1)(x)

)
.

If n ∈ N has the binary expansion

n =

∞∑
i=0

ni 2
i, ni ∈ {0, 1},

we define the nth Walsh function to be

wn(x) :=

∞∏
i=0

ri(x)
ni .

Observe that we recover the Rademacher functions from the Walsh functions by
w2i(x) = ri(x). It is well known and easy to see that the restrictions {wn1[0,1)}n∈N
constitute an orthonormal basis of L2(0, 1).

With these definitions at hand we now associate to each tile P ⊂ R+ × R+ a
wave packet wP as follows. First we write the tile P with respect to its time and
frequency components:

P = IP × ωP = IP × 1

|IP |
[n, n+ 1), IP ∈ D, n ∈ N.

The wave packet wP is now defined as

wP (x) :=
1

|IP |1/2
1IP (x)wn

( x

|IP |

)
=:

1

|IP |1/2
w∞

P (x).

Observe that wP is L2-normalized while w∞
P is L∞-normalized, hence the super-

script ∞. The Haar functions arise in the special case of wave packets correspond-
ing to tiles of the form P = I × |I|−1[1, 2):

hI(x) :=
1

|I|1/2 1I(x) r0

( x

|I|

)
= wI×|I|−1[1,2)(x).

Given a bitile P = Pd∪Pu we use the notations wPu and wPd
for the wave packets

associated with the up-part and the down-part of the bitile P , respectively.
If a collection of bitiles arises from a single up-tree then the following lemma

gives a very useful description of the wave packets in terms of the simpler Haar
functions. This lemma is taken from Lemma 2.2 in [13], where we also refer the
reader for the proof.
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Lemma 3.2. Let T be an up-tree with top T . For all P ∈ T we have

wPd
(x) = εPT · w∞

Tu
(x) · hIP (x),

where w∞
Tu

is the L∞-normalized wave packet associated to the up-part of the
top T and εPT ∈ {−1,+1} is a constant factor that depends only on P and T .
In particular we have that

〈f, wPd
〉wPd

= 〈f · w∞
Tu
, hIP 〉hIP · w∞

Tu
.

If T is a down-tree with top T we have a symmetric statement:

wPu(x) = ε̃PT · w∞
Td
(x) · hIP (x).

4. Tile type and cotype of a Banach space

The notion of the tile type of a Banach spaceX was introduced in [13] to show that
if a Banach space X has finite tile type then Carleson’s theorem for Walsh–Fourier
series is true for X-valued functions. More recently it was shown in [12] that a
variant of the tile type, adapted to Fourier wave packets, also implies Carleson’s
theorem for the trigonometric system. Here we give a definition which is similar
in spirit to that in §3 of [13]. The main difference is that we only consider very
special collections of trees in the definition of tile type. These are essentially the
trees generated by the selection algorithm in the size lemma, Lemma 7.5, and that
lemma is the only place in the proof where the tile type hypothesis is needed.
In fact the reader is encouraged to briefly go through the statement and proof
of the size lemma in order to gain some intuition on the definition that follows.
The reason for giving this weaker but more complicated definition of tile type is
that it allows us to prove a partial converse of the variational Carleson theorem
in Proposition 5.4, namely that the r-variational boundedness of a Carleson-type
operator implies that the space X necessarily has tile type τ for all τ > r.

4.1. Good collections of trees and tile type of a Banach space

We now describe the collections of trees that we want to consider in the definition
of tile type. Let T = {Tj}j be a finite collection of up-trees, each consisting of
finitely many bitiles, and set

P := {P : P ∈ Tj for some j} = ∪jTj .

Denote by c(I) the center of some dyadic interval I ∈ D. We will call the collec-
tion T u(p)-good if it has the following property:

There is a reordering of the trees {Tj}j and a choice of corresponding tops {Tj}j
such that {c(ωTj )}j is an increasing sequence and

Tj = {P ∈ P : P ≤u Tj and P � Tk for all k < j}.
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There is a symmetric definition of a good collection of down-trees, namely a col-
lection T of down-trees will be called d(own)-good if there is a reordering of the
trees {Tj}j and a choice of corresponding tops {Tj}j such that {c(ωTj )}j is a
decreasing sequence and

Tj = {P ∈ P : P ≤d Tj and P � Tk for all k < j}.

We say that a Banach space X has u-tile type q if the estimate

( ∑
T∈T

∥∥∥ ∑
P∈T

〈f, wPd
〉wPd

∥∥∥q
Lq(R+;X)

)1/q

� ‖f‖Lq(R+;X),

holds uniformly for all u-good collections T . Similarly, we say that a Banach
space X has d-tile type q if

( ∑
T∈T

∥∥∥ ∑
P∈T

〈f, wPu 〉wPu

∥∥∥q
Lq(R+;X)

)1/q

� ‖f‖Lq(R+;X),

uniformly, for all d-good collections T . It is actually not hard to see that the two
definitions of tile type, namely the one given with respect to u-good collections
and the one given with respect to d-good collections, are equivalent. This is the
content of the following lemma.

Lemma 4.1. A Banach space X has u-tile type q if and only if it has d-tile type q.

Proof. Assume that X has u-tile type q and let T be a d-good collection of down-
trees. Fix a choice of tops {Tj}j ordered so that the sequence of centers {c(ωTj )}j
is decreasing and

Tj = {P ∈ P : P ≤d Tj and P � Tk for all k < j}.

Let P be the collection of all tiles in T and define 2N := supP∈P supωP . For any
bitile P ∈ P, P = IP × |IP |−1[n, n+ 2), we define the transformation:

P 
→ P̃ := IP × [2N − (n+ 2)|IP |−1, 2N − n|IP |−1).

By the choice of N the transformation above maps bitiles P ⊂ R+×R+ into bitiles
P̃ ⊂ R+ × R+. Observe also that the down-part of a bitile P is mapped to the
up-part of the bitile P̃ and vice versa. Transforming the tops {Tj}j accordingly we

obtain a collection T̃ , consisting of up-trees, and a sequence of tops {T̃j}j which
together form a u-good collection. By the assumption that X has u-tile type q we
thus get

( ∑
T̃∈T̃

∥∥∥∑
P̃∈T̃

〈f, wP̃d
〉wP̃d

∥∥∥q
Lq(R+;X)

)1/q

� ‖f‖Lq(R+;X).

Once this estimate is established, the specific choice of tops {Tj}j is no longer
relevant. For each tree Tj it is clear that we can choose a top Sj with |ISj | =
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max� |IT�
|. Thus the number |ISj | does not depend on j. Applying Lemma 3.2 to

the tiles P̃ belonging to the up-tree T̃ with top S̃, we have

wP̃d
(x) = ε̃PS · hIS (x) · w∞

S̃u
(x) and wPu (x) = εPS · hIS (x) · w∞

Sd
(x).

Define 2m := 2N |IS | and note that this number does not depend on the specific
choice of tree T. In order to derive a relation between w∞

S̃u
and w∞

Sd
we write

S = IS × |IS |−1[n, n + 2) so that Sd = IS × |IS |−1[n, n + 1) and S̃u = IS ×
|IS |−1[2m − n− 1, 2m − n). We have

w∞
S̃u

(x) = 1IS (x)w2m−n−1(x/|IS |) = 1IS (x)w2m−1(x/|IS |)wn(x/|IS |)
= w2m−1(x/|IS |) · w∞

Sd
(x) =: φP(x) · w∞

Sd
(x),

where φP is a unimodular function that depends only on the collection P. Thus

‖f‖Lq(R+;X) �
( ∑

T̃∈T̃

∥∥∥ ∑
P̃∈T̃

〈f, wP̃d
〉wP̃d

∥∥∥q
Lq(R+;X)

)1/q

=
( ∑

T∈T

∥∥∥ ∑
P∈T

〈fφP, wPu〉wPu φP

∥∥∥q
Lq(R+;X)

)1/q

.

Replacing f by fφ−1
P in the previous estimate we conclude that X has d-tile type q.

The proof of the reverse implication is completely symmetric. �

Remark 4.2. In view of Lemma 4.1 we will henceforth say that a Banach space X
has tile type q whenever it has u-tile type or d-tile type q. We will also talk about
good collections T without specifying whether we are talking about u-good or d-
good collections. Furthermore, it is obvious that if a collection of trees can be split
into a finite number k of good collections then the tile type inequality still holds
for the original collection with some different constant depending on k. We will
then say that T is a k-good collection, or just a good collection if it is clear that
the number k does not depend on anything interesting.

The following lemma gathers some useful properties of good collections T and
is the main ingredient in the proof of the partial converse in Proposition 5.4.

Lemma 4.3. Let T = {Tj}Mj=1 be a good collection of up-trees and denote by P the

set of all bitiles in T . Let {Tj}Mj=1 be the collection of the corresponding tops from
the definition a good collection, ordered so that {c(ωTj )}j is increasing. We have
the following properties:

(i) The down-parts of the bitiles in T are disjoint:

if P, P ′ ∈ P and P �= P ′ then P ′
d ∩ Pd = ∅.

(ii) Let k(j, x) := maxk{1 ≤ k ≤ j : ITk
� x} with the understanding that max ∅

:= 0. For j ∈ {1, 2, . . . ,M} define the measurable functions Nj : R+ → R+
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as Nj(x) := c(ωTk(j,x)
). Let us also set N0(x) ≡ 0 for convenience. For any

fixed x ∈ R+ the sequence {Nj(x)}j is increasing. Furthermore, for each j
and x ∈ R+ we have

{P ∈ Tj : IP � x} = {P ∈ P : IP � x, Nj(x) ∈ [ωPu) and Nj−1(x) /∈ ω̊P }.

(iii) For 1 ≤ r < ∞ we have

∑
j

∥∥∥ ∑
P∈Tj

〈f, wPd
〉wPd

∥∥∥r

Lr(R+;X)

=

∫ ∑
j

∣∣∣ ∑
P∈P

〈f, wPd
〉wPd

(x)1{Nj(x)∈[ωPu ), Nj−1(x)/∈ω̊P }

∣∣∣rdx.
Proof. For (i) observe that if two bitiles P, P ′ ∈ P belong to the same tree T ∈ T
then we always have Pd ∩P ′

d = ∅ since T is an up-tree. Suppose now that P ∈ Tj

and P ′ ∈ Tk where Tj and Tk are two different trees in T . Assume, with the
aim of obtaining a contradiction, that Pd ∩ P ′

d �= ∅ so that IP ∩ IP ′ �= ∅ and
ωPd

∩ ωP ′
d
�= ∅. Then we have for example that ωPd

⊆ ωP ′
d
. However, since P

and P ′ are different tiles we must actually have that ωP ⊆ ωP ′
d
. Thus

ωTj ⊆ ωP ⊆ ωP ′
d
⊂ ωP ′ and ∅ �= IP ∩ IP ′ ⊆ ITj ∩ IP ′

which implies that P ′ ≤ Tj. We then get the following inequality for the centers
of ωTj and ωTk

:

c(ωTj ) < supωTj ≤ supωP ≤ supωP ′
d
= inf ωP ′

u
≤ inf ωTk,u

= c(ωTk
).

By the definition of a good collection we thus have that j < k so that P ′ � Tj, a
contradiction.

We now prove (ii). First note that for every fixed x ∈ R+ the sequence {Nj(x)}j
is increasing as a composition of increasing functions of j. In order to prove the
main claim in (ii) we fix x ∈ R+ and j ∈ {1 . . . ,M} and define the collections of
bitiles

S(j, x) := {P ∈ Tj : IP � x},
B(j, x) := {P ∈ P : IP � x,Nj(x) ∈ ωPu , Nj−1(x) /∈ ω̊P },

where Nj(x) is as in the statement of the lemma. We claim that S(j, x) = B(j, x).
If x /∈ ITj then both collections are empty; for S(j, x) this is because x /∈ ITj ⊇ IP
while for B(j, x) because Nj−1(x) = Nj(x) in this case.

It remains to verify the claim when x ∈ ITj in which case Nj(x) = c(ωTj ) and
Nj−1(x) ∈ {0, c(ωTk(j−1,x)

)}.
Let P ∈ S(j, x). Then x ∈ IP ⊆ ITj and by the definition of a good collection

we have that P ≤u Tj and P � Tk for any k ≤ j − 1. The condition P ≤u Tj

implies that Nj(x) = c(ωTj ) ∈ ωPu . If x /∈ ∪�≤j−1IT�
then Nj−1(x) = 0 which is

never in the interior of any frequency interval thus Nj−1(x) /∈ ω̊P in this case. On
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the other hand if x ∈ ∪�≤j−1IT�
we have that x ∈ ITk(j−1,x)

and P � Tk(j−1,x) since

k(j − 1, x) < j. Since x ∈ IP ∩ ITk(j−1,x)
�= ∅ we must have ωTk(j−1,x)

� ωP and
thus Nj−1(x) = c(ωTk(j−1,x)

) /∈ ω̊P . This proves the inclusion S(j, x) ⊆ B(j, x).

For the opposite inclusion assume that P ∈ B(j, x). Since x ∈ ITj we have that
Nj(x) = c(ωTj ) ∈ ωPu which is equivalent to ωTj,u ⊆ ωPu . Since x ∈ IP ∩ ITj this
shows that P ≤u Tj . Now it is not hard to see that P � T� whenever � < j. Indeed
suppose that we had P ≤ T� for some � < j. This would imply that x ∈ IP ⊆ IT�

and thus � ≤ k(j − 1, x) < j. Furthermore we would have ωT�
, ωTj ⊆ ωP so by the

convexity of the interval ωP and the fact that the sequence {c(ωTj )}j is increasing
we would conclude that Nj−1(x) = c(ωTk(j−1,x)

) ∈ ω̊P , contradicting the second
condition in the definition of B(j, x). This proves the inclusion B(j, x) ⊆ S(j, x)
and thus concludes the proof of (ii).

Finally part (iii) of the lemma is an obvious application of the identity S(j, x) =
B(j, x). �

In the following paragraphs of this section we will investigate how the tile type
condition relates to the classical cotype of a Banach space. For this we will need
to be able to view the dyadic intervals inside [0, 1) as the time intervals of bitiles
of a suitable good collection. This is the content of the following lemma.

Lemma 4.4. Let J be a finite collection of dyadic intervals in [0, 1) and define
2−N := minI∈J |I|.
(i) Let T := {I × [2N+1 − 2|I|−1, 2N+1) : I ∈ J }. Then T is an up-tree and

J = {IP : P = IP × ωP ∈ T}.

(ii) There exists a good collection of up-trees T = {Tj}Nj=0 such that T = ∪jTj

and

{I ∈ J : |I| = 2j−N} = {IP : P = IP × ωP ∈ Tj}, 0 ≤ j ≤ N.

(iii) For 1 ≤ r < ∞ and every f ∈ Lr([0, 1);X) we have the identity

N∑
j=0

∣∣∣ ∑
P∈Tj

〈w∞
J f, wPd

〉wPd
(x)

∣∣∣r =

N∑
j=0

∣∣∣ ∑
I∈J , |I|=2−j

〈f, hI〉hI(x)
∣∣∣r,

where w∞
J is a unimodular function that depends only on the collection J .

Proof. For (i) it is enough to notice that the tile T := [0, 1) × [2N+1 − 2, 2N+1)
satisfies P ≤u T for all P ∈ T. We now show (ii). For I ∈ J we set ωI :=
[2N+1 − 2|I|−1, 2N+1) and for all 0 ≤ j ≤ N we define the trees

Tj := {P = I × ωI : I ∈ J , |I| = 2j−N}.

We define an appropriate top Tj for each tree Tj by setting

Tj := [0, 2)× [2N+1 − 2N−j, 2N+1 − 2N−j + 1).
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Suppose that P = IP × ωP ∈ Tj for some j ∈ {0, 1, . . . , N}. Then

ωTj = [2N+1 − |IP |−1, 2N+1 − |IP |−1 + 1) ⊂ ωPu

and obviously we always have that IP ⊂ ITk
. Thus each Tj is a top of Tj and

hence each Tj is an up-tree. By construction the sequence {c(ωTj)}j≤N is strictly
increasing and furthermore the intervals ωTj are disjoint. We first show that the
collection {Tj}j≤N satisfies

Tj = {P ∈ P : P ≤u Tj and P �u Tk for all k < j},

whereP is the collection of all the bitiles contained in the treesTj . Let P ∈ Tj . We
already saw that P ≤u Tj . Furthermore for k < j we have that supωTk

≤ inf ωTj .
Observe however that inf ωTj = 2N+1−2N−j = 2N+1−|IP |−1 = ωPu since P ∈ Tj .
Thus supωTk

≤ inf ωPu which implies that P �u Tk whenever k < j. This proves

Tj ⊆ {P ∈ P : P ≤u Tj and P �u Tk for all k < j}.

Now assume that P ∈ {P ∈ P : P ≤u Tj and P �u Tk for all k < j}. Then we
have P ≤u Tj thus ωTj,u ⊆ ωPu which implies that 2N+1−|IP |−1 ≤ 2N+1−2N−j ⇔
|IP | ≤ 2j−N . We claim that in fact |IP | = 2j−N . Indeed, if |IP | ≤ 2(j−1)−N then
we would get that ωTj−1,u ⊆ ωPu and this in turn would give that P ≤u Tj−1 which
is a contradiction. Since P ∈ P and |IP | = 2j−N we get that P ∈ Tj .

Observe that if P ∈ Tj for some j then by construction P ∩ Tk = ∅ for all
k < j − 1. Thus we have P �u Tk ⇔ P � Tk for k < j − 1. We now split the
collection T into two collections by setting say T1 = {T2j}j and T2 = {T2j+1}j
and each collection Tν , ν = 1, 2, is good. This shows that the original collection T
is a 2-good collection.

For (iii), remember that the trees Tj share a common top T = [0, 1)×[2N+1−2,
2N+1). Thus, Lemma 3.2 implies that

∣∣∣ ∑
P∈Tj

〈f, wPd
〉wPd

(x)
∣∣∣ = ∣∣∣ ∑

P∈Tj

〈fw∞
Tu
, hIP 〉w∞

Tu
hIP

∣∣∣ = ∣∣∣ ∑
I∈J

〈fw∞
Tu
, hIP 〉hIP

∣∣∣,
which proves the claim in (iii) by setting w∞

J := w∞
Tu

and replacing f by fw∞
J . �

Finally we recall the main result proved in [13] concerning the tile type of an
interpolation space X . Observe that by Lemma 4.3 the down-parts of all bitiles
in a good collection T are disjoint; thus the following proposition is identical to
Proposition 3.1 in [13].

Proposition 4.5. For X to have tile type q it is necessary that X be a UMD space
and that q ≥ 2. If a UMD space has tile type q, it has tile type p for all p ∈ [q,∞).
Every Hilbert space has tile type 2, and every complex interpolation space [Y,H ]θ,
θ ∈ (0, 1), for a UMD space Y and a Hilbert space H has tile type 2/θ.
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4.2. Tile type implies cotype

We observe in this paragraph that the hypothesis that a Banach space X has tile
type q implies that the space X has Rademacher and martingale cotype equal to q.
We recall the relevant definitions.

Let 2 ≤ q ≤ ∞. We say that a Banach space X has (Rademacher) cotype q if(∑
j≥0

|xj |q
)1/q

�
∥∥∥∑

j≥0

rjxj

∥∥∥
Lq([0,1);X)

.

holds uniformly for all finite sequences {xj}j ⊂ X , where {rj}j are the Rademacher
functions on [0, 1).

On the other hand, we say that X has martingale cotype q ∈ [2,∞] (or M -
cotype q) if for all X-valued martingales {Mn}n we have(

E
∑
n≥0

|Mn −Mn−1|q
)1/q

�
(
sup
n

E|Mn|q
)1/q

.

Every Banach space trivially has cotype and M -cotype ∞. In general the notion
of M -cotype is stronger than that of cotype in the usual sense but the two no-
tions are equivalent in the case that X has the UMD property. Finally we note
that martingale cotype is equivalent to Haar cotype, meaning that it is suffices to
consider Haar martingales in the definition of M -cotype. See [22].

The following proposition shows that tile type implies M -cotype with the same
index.

Proposition 4.6. Suppose that the Banach space X has tile type q ≥ 2. Then X
is UMD and has M -cotype q.

Proof. The fact that tile type q implies the UMD property is already contained in
Proposition 4.5 but we include a proof here for the sake of completeness. It will
suffice to show that∥∥∥ ∑

I∈J
εI〈f, hI〉hI

∥∥∥
Lr([0,1);X)

� ‖f‖Lr([0,1);X),

where J is any finite collection of dyadic intervals inside [0, 1),
f ∈ Lr([0, 1);X), εI ∈ {−1,+1} and r is some fixed exponent in (1,∞). Be-

cause of the trivial estimate∣∣∣ ∑
I∈J

εI〈f, hI〉hI

∣∣∣ = ∣∣∣ ∑
I∈J ,εI=1

〈f, hI〉hI −
∑

I∈J ,εI=−1

〈f, hI〉hI

∣∣∣
≤

∣∣∣ ∑
I∈J ,εI=1

〈f, hI〉hI

∣∣∣+ ∣∣∣ ∑
I∈J ,εI=−1

〈f, hI〉hI

∣∣∣,
it will actually suffice to prove that∥∥∥ ∑

I∈J
εI〈f, hI〉hI

∥∥∥
Lr([0,1);X)

� ‖f‖Lr([0,1);X)
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whenever εI ∈ {0, 1}. However this amounts to showing that

∥∥∥ ∑
I∈J ′

〈f, hI〉hI

∥∥∥
Lr([0,1);X)

� ‖f‖Lr([0,1);X),

for any finite collection J ′ of dyadic intervals in [0, 1). Consider the up-tree given
by (i) of Lemma 4.4 applied to the collection J ′,

T := {I × [2N+1 − 2|I|−1, 2N+1) : I ∈ J ′},

where N is such that |I| ≥ 2−N for all I∈J ′. Setting g w∞
Tu

:= f we use Lemma 3.2
to write∥∥∥ ∑

I∈J ′
〈f, hI〉hI

∥∥∥q

Lq([0,1);X)
=

∫ ∣∣∣ ∑
P∈T

〈f, hIP 〉hIP (x)
∣∣∣q dx

=

∫ ∣∣∣ ∑
P∈T

〈g, wPd
〉wPd

(x)
∣∣∣q dx � ‖f‖qLq([0,1);X)

where in the last inequality we used the tile type hypothesis for the collection
consisting of the single tree T. This however is the UMD condition for Haar
martingales with r = q.

We will now show that X has martingale cotype q. By Lemma 4.4 we have for
every positive integer N that

N∑
j=0

∣∣∣ ∑
|I|=2−k

〈f, hI〉hI(x)
∣∣∣q =

N∑
j=0

∣∣∣ ∑
P∈Tj

〈w∞
N f, wPd

〉wPd
(x)

∣∣∣q,
where {Tj}Nj=0 is a good collection of up-trees. Since X has tile type q the right
hand side is controlled by ‖f‖Lq([0,1);X). Thus

∑
0≤k≤N

∥∥∥ ∑
|I|=2−k

〈f, hIP 〉hIP

∥∥∥q
Lq([0,1);X)

� ‖f‖qLq([0,1);X),

with the implicit constant not depending on N . This is the cotype condition for
Haar martingale differences which by [22] is equivalent to X having martingale
cotype q. �

4.3. Vector-valued Lépingle inequality

The variational Carleson theorem, in the scalar case, depends on certain jump
inequalities originally due to Lépingle in [17]. This fact has been recorded and well
understood in several papers, for example in [11], [20], and [15]. For the Banach
space case that we are considering we will need the appropriate vector-valued
extension proved by Pisier and Xu in [23]:
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Theorem 4.7 (Theorem 4.3 in [23]). Suppose that X has cotype τ for all τ > q.
Then we have Lépingle’s inequality for functions f ∈ Lp(R+;X)

‖Enf‖Lp(R+;Vr(X)) � ‖f‖Lp(R+;X),

for all r > q and 1 < p < ∞.

Here we remember that En is the conditional expectation with respect to a
dyadic interval of length 2n, as defined in (2.1). By Proposition 4.6 one can replace
the cotype τ > q hypothesis in Theorem 4.7 by the hypothesis thatX has tile type τ
for all τ > q. We will use this fact in what follows without further comment.

5. Linearization of the variational Carleson operator

In this section we linearize the variational norm of the partial Walsh–Fourier sums
of a function f , using more or less standard arguments as in [28], [13], [11], and [20].
We reduce the statement of Theorem 1.3 to an analogous statement about some
closely related linearized versions of the variational Carleson operator which are
more amenable to time-frequency analysis techniques and interpolation. We as-
sume the tile type hypothesis throughout the section in the statements of our
reduced theorems.

For any collection of bitiles P we define the operator

Cr,Pf(x) := sup
K,N0<···<NK

( K∑
j=1

∣∣∣ ∑
P∈P

〈f, wPd
〉wPd

(x)1{Nj∈[ωPu ),Nj−1 /∈ω̊P }

∣∣∣r)1/r

,(5.1)

where the supremum is taken over all positive integers K and all nonnegative
real numbers N0 < N1 < · · · < NK . There is a symmetric version, denoted by
C̃r,Pf(x), in which the down-tiles are replaced by up-tiles and the condition in the
indicator is replaced by Nj /∈ ω̊P , Nj−1 ∈ (ωPd

], namely:

C̃r,Pf(x) := sup
K,N0<···<NK

( K∑
j=1

∣∣∣ ∑
P∈P

〈f, wPu〉wPu(x)1{Nj∈(ωPd
], Nj−1 /∈ω̊P }

∣∣∣r)1/r

.

These operators are formed over all bitiles, namely, one only requires IP ⊂ [0,∞).

The second statement in Theorem 1.1 will be a consequence of the following
theorem for Cr,P and its symmetric analog for C̃r,P.

Theorem 5.2. Let X be a Banach space with tile type τ for all τ > q and let P
be any collection of bitiles. We have

‖Cr,Pf‖Lp(R+;X) �p,r,q ‖f‖Lp(R+;X),(5.3)

whenever q < r < ∞ and 0 < 1/p < 1/r′ − (q − 2)/r.
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Concerning the proof of this theorem, we focus on the operator Cr,Pf(x), using
in particular the partial order on bitiles and their organization into trees, among
other techniques. The main hypothesis is that the space X has finite tile type
arbitrarily close to some number q. The reader here should think of the tile type
hypothesis in the formulation given for families of up-trees, that is, in the equivalent
formulation of the u-tile type. For the operator, C̃r,Pf , the proof is completely
symmetric, in view of Lemma 4.1, where the role of the down tile Pd is analogous
to that of the up-tile, and vice-versa. For all the considerations concerning the
operator C̃r,Pf we switch our point of view to the formulation of the d-tile type.
Bearing this in mind it is routine to adjust the arguments in this paper, given for
the operator Cr,Pf , in order to give the corresponding proof for the symmetric

operator C̃r,Pf . We thus omit any further discussion concerning the proof of

Theorem 5.2 for the dual operator C̃r,Pf .

We briefly describe how to deduce Theorem 1.3 from Theorem 5.2.

Proof of Theorem 1.3. For integers 0 < ζ < ζ′, let Ωζ,ζ′ be the maximal dyadic
intervals ω ⊂ [ζ, ζ′). These intervals partition [ζ, ζ′), and moreover we have

Sζ′f − Sζf =
∑

P is a tile
IP⊂[0,1), ωP∈Ωζ,ζ′

〈f, wP 〉wP .

This follows from Corollary 8.3 in [28] and is a variant of the formula on p. 68-69

of [28]. Now, let Ω
u/d
ζ,ζ′ be comprised of those intervals ω ∈ Ωζ,ζ′ for which ω is

the up/down–half of its parent. Let P
u/d
ζ,ζ′ be the collection of bitiles such that

ωPu/d
∈ Ω

u/d
ζ,ζ′ , and IP ⊂ [0, 1). We then have

Sζ′f − Sζf =
∑

σ∈{u,d}

∑
P∈Pσ

ζ,ζ′

〈f, wPσ 〉wPσ .

We have P ∈ Pd
ζ,ζ′ if and only if IP ⊂ [0, 1), ζ /∈ ω̊P , and ζ′ ∈ [ωPu), conditions

in agreement with the conditions on Nj−1 and Nj in the definition of Cr,Pf . In the
symmetric case, we have P ∈ Pu

ζ,ζ′ if and only if IP ⊂ [0, 1), ζ ∈ (ωPd
], and ζ′ /∈ ω̊P .

All together, for any K, N0 < · · · < NK , we have

K∑
j=1

|SNj−1f − SNj |r =
K∑
j=1

∣∣∣ ∑
σ∈{u,d}

∑
P∈Pσ

Nj−1,Nj

〈f, wPσ 〉wPσ

∣∣∣r

�
∑

σ∈{u,d}

K∑
j=1

∣∣∣ ∑
P∈Pσ

Nj−1,Nj

〈f, wPσ 〉wPσ

∣∣∣r � (Cr,P1f)
r + (C̃r,P2f)

r ,

for some fixed collections of bitiles P1 and P2. Using Theorem 5.2, which is valid
for arbitrary collections P, and the pointwise inequality just proved, completes the
proof. �
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The first statement in Theorem 1.1 is the content of:

Proposition 5.4. Let X be some Banach space and suppose that for any collection
of bitiles P, the operator Cr,P, or the operator C̃r,P, satisfies the conclusion of
Theorem 5.2 with p = r,

‖Cr,Pf‖Lr(R+;X) � ‖f‖Lr(R+;X),(5.5)

whenever q < r < ∞. Then X has tile type τ for all τ > q and, a fortiori, X has
cotype τ for all τ > q.

Proof. We will prove the proposition assuming that the operator Cr,P is bounded
on Lr(R+;X) for all r > q. Let T = {Tj} be a u-good collection of up-trees.
By (ii) and (iii) of Lemma 4.3 there is an increasing sequence of integer valued
functions {Nj(x)}j , such that∑

j

∥∥∥ ∑
P∈Tj

〈f, wPd
〉wPd

∥∥∥r
Lr(R+;X)

=
∑
j

∥∥∥∑
P∈P

〈f, wPd
〉wPd

1{Nj∈[ωPu ), Nj−1 /∈ω̊P }

∥∥∥r
Lr(R+;X)

≤ ‖Cr,Pf ‖rLr(R+;X) �r ‖f‖rLr(R+;X),

since Cr,P is bounded on Lr(R+;X). If the hypothesis is true for C̃r,P we consider
d-good collections of trees and show the corresponding statement for the d-tile
type. The conclusion then follows by using the analogue of Lemma 4.3 for d-good
collections. �

Following [11] we consider the linearized version of Cr,P given by

CPf(x) = Cr,a,Pf(x) :=

K(x)∑
j=1

∑
P∈P

〈f, wPd
〉wPd

(x)1{Nj(x)∈[ωPu ), Nj−1(x)/∈ω̊P }aj(x),

where K,N1, . . . NK : R+ → R+ are arbitrary measurable functions and a = {aj}j
is a sequence of X∗-valued functions with

∑K(x)
j=1 |aj(x)|r

′
= 1. The expression for

the operator CP can be simplified by writing

CPf(x) =
∑
P∈P

〈f, wPd
〉wPd

(x)

K(x)∑
j=1

1{Nj(x)∈[ωPu ), Nj−1(x)/∈ω̊P }aj(x)

=
∑
P∈P

〈f, wPd
〉wPd

(x) aP (x),

where

aP (x) :=

K(x)∑
j=1

1{Nj(x)∈[ωPu ), Nj−1(x)/∈ω̊P }aj(x).
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The operator CP depends on both r and the choice of the sequence a, but we
suppress this fact in what follows in order to simplify our notation.

Note here that our assumption that X has tile type τ ∈ (q,∞) can be replaced
by the assumption thatX has tile type exactly q. This is because all our conclusions
are given in terms of open intervals with respect to p, r, and q. Via a standard
restricted weak-type interpolation argument, as for example in Chapter 3 of [28],
the proof of Theorem 5.2 reduces to the proof of the following statement.

Proposition 5.6. Suppose that X is a Banach space with tile type q ≥ 2. Let
F,E ⊂ R+ be measurable sets with |F |, |E| < +∞. Then there are major subsets
E′ ⊆ E and F ′ ⊆ F with either E′ = E or F ′ = F , such that, for all f : X → R+

with |f | ≤ 1F ′ , and all g : X∗ → R+ with |g| ≤ 1E′ , we have

|〈CPf, g〉| � |F |1/p |E|1/p′
,

whenever max(q, p′(q − 1)) < r < ∞.

Here we say that E′ ⊂ E is a major subset of E if |E′| ≥ 1
2 |E|.

Remark 5.7. Observe that

|〈CPf, g〉| ≤
∑
P∈P

|〈f, wPd
〉〈wPd

aP , g〉| =
∑
P∈P

εP 〈f, wPd
〉〈wPd

aP , g〉 = |〈C+
Pf, g〉|

for some choice of signs εP ∈ {−1,+1}, where

C+
Pf(x) :=

∑
P∈P

εP 〈f, wPd
〉wPd

(x) aP (x).

We will thus prove the estimate in Proposition 5.6 for the larger operator C+
P ,

which we rename CP, and require that P be any finite collection of bitiles P.

6. The tree lemma

Let P be a finite collection of bitiles. The density of the collection P is

density(P) := sup
P∈P

sup
P ′≥P

( 1

|IP ′ |

∫
IP ′

|g(x)|r′
∑

j: Nj(x)∈ωP ′

|aj(x)|r
′
dx

)1/r′

,

where we remember that Nj : R+ → R+ are measurable functions, q ≥ 2 is the tile
type of the Banach space X , and r > q. We define the size of a collection P to be

size(P) := sup
T⊆P up−tree

( 1

|IT |

∫ ∣∣∣ ∑
P∈T

〈f, wPd
〉wPd

(x)
∣∣∣qdx)1/q

.
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Lemma 6.1 (Tree lemma). For every tree T we have

‖gCTf‖Ls(R+) =
∥∥∑
P∈T

〈f, wPd
〉wPd

aP g
∥∥
Ls(R+)

� size(T) density(T) |IT |1/s,

for all 1 ≤ s ≤ r′.

We will prove the lemma for the case s = r′ which, by Hölder’s inequality,
implies the conclusion for 1 ≤ s ≤ r′ as well. Let J be the collection of maximal
dyadic intervals contained in IT that do not contain any IP , P ∈ T. The intervals
in the collection J form a partition of IT thus

‖gCTf‖Lr′(R+) =
( ∑

J∈J

∫
J

∣∣∣ ∑
P∈T,IP�J

εP 〈f, wPd
〉wPd

(x) aP (x)g(x)
∣∣∣r′ dx)1/r′

=
( ∑

J∈J

∥∥∥ ∑
P∈T,IP�J

εP 〈f, wPd
〉wPd

aP g
∥∥∥r′
Lr′ (J)

)1/r′

.

We set, for P ∈ T and j ≥ 1,

A(P, j) := IP ∩ {x : Nj−1(x) /∈ ω̊P , Nj(x) ∈ [ωPu)}.
We gather some auxiliary calculations in the following lemma.

Lemma 6.2. Fix a tree T and a top T of T and consider the partition of IT into
intervals J ∈ J . Let J ∈ J and denote by J (1) the dyadic parent of J . There exist
bitiles Q(J) ∈ T and P (J) = J (1) × ω(J) such that:

(i) Q(J) ≤ P (J) ≤ T .

(ii) For every j ∈ [1,K(x)] we have the pointwise inequality

1J 1A(P,j) ≤ 1{x: Nj(x)∈ω(J)}.

(iii) We have the estimate∫
J

|g(x)|r′
∑

j: Nj(x)∈ω(J)

|aj(x)|r
′
dx � |J | density(T)r

′
.

Proof. Fix some J ∈ J . Since J is maximal among intervals that contain no IP ,
P ∈ T, there is some bitile Q(J) ∈ T such that IQ(J) ⊆ J (1), where J (1) is the

dyadic parent of J . Observe that we must have J (1) ⊆ IT . Define the frequency
interval ω(J) with |ω(J)| = 2/|J (1)| and such that ωT ⊆ ω(J) ⊆ ωQ(J). Thus the

bitile P (J) := J (1) × ω(J) satisfies Q(J) ≤ P (J) ≤ T . This proves (i).
Now for all bitiles P ∈ T such that IP ∩ J �= ∅ we have J � IP by the

maximality of J which implies that |IP | ≥ |J (1)|. For every such P we thus have
∅ �= ωT ⊆ ωP ∩ ω(J) and so ωP ⊆ ω(J). We conclude⋃

P∈T: IP∩J �=∅
ωP ⊆ ω(J).

Let x be such that 1J(x)1A(P,j)(x) �= 0. Then IP ∩ J �= ∅ and Nj(x) ∈ ωPu ⊂ ωP

⊆ ω(J). The previous inclusion thus implies 1J1A(P,j) ≤ 1{x: Nj(x)∈ω(J)}.
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Finally, we have P (J) ≥ Q(J) and Q(J) ∈ T. Thus∫
J

|g(x)|r′
∑

j:Nj(x)∈ω(J)

|aj(x)|r
′
dx � |J | 1

|J (1)|

∫
J(1)

|g(x)|r′
∑

j:Nj(x)∈ω(J)

|aj(x)|r
′
dx

= |J | 1

|IP (J)|

∫
IP (J)

|g(x)|r′
∑

j:Nj(x)∈ωP(J)

|aj(x)|r
′
dx ≤ |J | density(T)r

′
,

by the definition of density. �

For τ ∈ {u = up, d = down} define the functions

FJ,τ (x) := 1J(x)g(x)
∑

P∈Tτ ,IP�J

εP 〈f, wPd
〉wPd

(x)aP (x)

= 1J(x) g(x)
∑

P∈Tτ ,IP�J

K(x)∑
j=1

εP 〈f, wPd
〉wPd

(x) aj(x)1A(P,j)(x).

Since every treeT can be written as a union of its up-partTu and its down-partTd,
we have the estimate

‖gCTf‖Lr′(R+) ≤
( ∑

J∈J
‖FJ,d‖r

′
Lr′(R+)

)1/r′

+
( ∑

J∈J
‖FJ,u‖r

′
Lr′(R+)

)1/r′

.

We estimate the two terms appearing in the previous sum separately.

Lemma 6.3. We have

( ∑
J∈J

‖FJ,d‖r
′

Lr′(R+)

)1/r′

� |IT |1/r
′
density(T) size(T).

Proof. The function FJ,d can be written as

FJ,d(x) = 1J(x)g(x)
∑

P∈Td,IP�J

∞∑
j=1

εP 〈f, wPd
〉wPd

(x)aj(x)1[j,∞)(K(x))1A(P,j)(x).

Now consider two pairs (j, P ) �= (j′, P ′) appearing in the previous sum, with
j, j′ ≥1 and P, P ′ ∈ Td such that IP , IP ′ � J . We claim thatA(P, j) ∩ A(P ′, j′)=∅.
Indeed, since Td is a down-tree we have ωTd

⊆ ωPd
∩ ωP ′

d
�= ∅ and thus the bigger

interval contains the smaller. For example we have ωP ′
d
⊆ ωPd

⇒ ωP ′ ⊆ ωP .

If j′ < j ⇔ j′ ≤ j − 1 and x ∈ A(P, j) then we have (x,Nj(x)) ∈ Pu and

(x,Nj−1(x)) /∈ P̊ . Since Nj(x) > Nj−1(x) we get that necessarily Nj−1(x) ≤
minωP . Thus

Nj′(x) ≤ Nj−1(x) ≤ minωP ≤ minωP ′ =⇒ Nj′ (x) /∈ ωP ′
u

=⇒ x /∈ A(P ′, j′).



1000 T. Hytönen, M. Lacey and I. Parissis

Suppose now that j′ > j ⇔ j ≤ j′−1. If x ∈ A(P ′, j′) then (x,Nj′ (x)) ∈ P ′
u and

(x,Nj′−1(x)) /∈ P̊ ′. Since Nj′ (x) ≥ Nj′−1(x) we must have Nj′−1(x) ≤ minωP ′ .
Thus

Nj(x) ≤ Nj′−1(x) ≤ minωP ′ = minωP ′
d
< minωPu

since ωP ′
d
⊆ ωPd

. Thus Nj(x) /∈ ωPu which implies that x /∈ A(P, j). In every case
we get that A(P, j)∩A(P ′, j′) �= ∅ ⇒ j = j′. However all the up-parts Pu, P ∈ Td,
are disjoint since Td is a down-tree, so we cannot have Nj(x) ∈ ωPu ∩ ωP ′

u
with

P �= P ′. We conclude that A(P, j) ∩A(P ′, j′) �= ∅ ⇒ (P, j) = (P ′, j′), as claimed.
The disjointness property of the A(P, j) implies that

|FJ,d(x)| ≤ |g(x)| sup
P∈Td
IP�J

sup
1≤j≤K(x)

|〈f, wPd
〉|

|IP |1/2
|aj(x)|1J(x)1A(P,j)(x)(6.4)

Furthermore, by the definition of size it is not hard to see that |〈f, wPd
〉/|IP |1/2 ≤

size(T), by testing the definition against a tree consisting of a single bitile P .
Combining this estimate with (ii) of Lemma 6.2 and (6.4) we get that, for any
fixed x,

|FJ,d(x)| ≤ size(T) |g(x)| sup
1≤j≤K(x)

|aj(x)|1{y: Nj(y)∈ω(J)}(x)

≤ size(T) |g(x)|
( ∑

j:Nj(x)∈ω(J)

|aj(x)|r
′)1/r′

.

Integrating the previous estimate raised to the power r′ yields

‖Fd,J‖r
′

Lr′(R+)
� size(T)r

′
∫
J

|g(x)|r′
∑

j:Nj(x)∈ω(J)

|aj(x)|r
′
dx

� |J | size(T)r
′
density(T)r

′
,

by Lemma 6.2, (iii). Since the collection J partitions IT , summing in J ∈ J gives

( ∑
J∈J

‖Fd,J‖r
′

Lr′(R+)

)1/r′

� size(T) density(T)
( ∑

J∈J
|J |

)1/r′

= |IT |1/r
′
size(T) density(T),

as we wanted. �

The proof for the up-part is more involved.

Lemma 6.5. We have( ∑
J∈J

‖FJ,u‖r
′

Lr′(R+)

)1/r′

� |IT |1/r
′
density(T) size(T).
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Proof. We fix some J ∈ J and x ∈ J so that FJ,u(x) �= 0. We use Lemma 3.2 in
order to write the function FJ,u in the form

FJ,u(x) = 1J(x) g(x)w
∞
Tu

(x)

×
∑

1≤j≤K(x)
j: Nj(x)∈ω(J)

∑
P∈Tu,IP�J

εP εPT 〈f, wPd
〉hIP (x) aj(x)1A(P,j)(x),

where εP εPT ∈ {−1,+1} and w∞
Tu

is unimodular and depends only on the upper
tile of the top T of T. Now for every 1 ≤ j ≤ K(x) with Nj(x) ∈ ω(J) , consider
the inner sum

∑
P∈Tu,IP�J

εP εPT 〈f, wPd
〉hIP (x) aj(x)1A(P,j)(x).(6.6)

Consider j and x such that 1A(P,j)(x) �= 0 in (6.6) and examine which bitiles
P ∈ Tu contribute to it. For such bitiles we must have Nj−1(x) /∈ ωP and Nj(x) ∈
ωPu . Now the frequency intervals ωPu , P ∈ Tu, all contain the top interval ωTu

and thus they are nested. This nestedness property implies that if Nj(x) ∈ ωP ′
u

is satisfied for some P ′ ∈ Tu then it will also be satisfied for all P ∈ Tu with
ωPu ⊃ ωP ′

u
. Likewise, all the ωP of bitiles P ∈ Tu that contribute to the sum

are nested since they all contain the top interval ωT . Thus, if Nj−1(x) /∈ ωP ′

for some P ′ ∈ Tu then the same condition will also be satisfied for all P ∈ Tu

with ωP ⊂ ωP ′ . We conclude that, for each x and j, the bitiles that contribute to
the sum are nested, their frequency intervals all contain some minimum frequency
interval ωx,j and are contained in some maximum frequency interval Ωx,j .

Now observe that the time intervals of these bitiles are also nested since they all
contain J . Since the area of each bitile is fixed we conclude that for every J ∈ J ,
x ∈ J and 1 ≤ j ≤ K(x), there are some dyadic intervals Ismall

x,j and I largex,j such
that

J ⊂ Ismall
x,j � I largex,j

and

∣∣∣ ∑
P∈Tu, IP�J

εP εPT 〈f, wPd
〉hIP (x) aj(x)1A(P,j)(x)

∣∣∣
=

∣∣∣ ∑
P∈Tu, Ismall

x,j �IP⊆Ilarge
x,j

εP εPT 〈f, wPd
〉hIP (x) aj(x)

∣∣∣.

In fact we will have that Ismall
x,j is the time interval corresponding to Ωx,j and

that I largex,j is the time interval corresponding to ωx,j . From this it is also not

hard to see that we also have the property I largex,j � Ismall
x,j+1 for each j. Using these
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observations and this notation we can now estimate

∣∣∣ ∑
P∈Tu, IP�J

εP εPT 〈f, wPd
〉hIP (x) aj(x)1A(P,j)(x)

∣∣∣
=

∣∣∣ ∑
P∈Tu, Ismall

x,j �IP⊆Ilarge
x,j

εP εPT 〈f, wPd
〉hIP (x) aj(x)

∣∣∣
≤

∣∣∣aj(x)w∞
Tu
(x)

(
EIsmall

x,j
− EIlarge

x,j

) ( ∑
P∈Tu

εP εPT 〈f, wPd
〉hIP

)
(x)

∣∣∣
=

∣∣∣aj(x) (EIsmall
x,j

− EIlarge
x,j

) (
w∞

Tu

∑
P∈Tu

εP 〈f, wPd
〉wPd

)
(x)

∣∣∣,

since |w∞
Tu

| = 1. The expectation operator EI is defined in (2.1).

Remember that E�f denotes the martingale of dyadic averages of f with re-
spect to dyadic intervals of length 2�. Summing over j ∈ [1,K(x)] for which
Nj(x) ∈ ω(J) and using Hölder’s inequality we get

|FJ,u(x)| ≤ 1J (x) |g(x)|

×
∑

1≤j≤K(x)
j: Nj(x)∈ω(J)

∣∣∣aj(x)(EIsmall
x,j

− EIlarge
x,j

)(
w∞

Tu

∑
P∈Tu

εP 〈f, wPd
〉wPd

)
(x)

∣∣∣

≤ 1J (x)|g(x)|
( ∑

1≤j≤K(x)
j: Nj(x)∈ω(J)

|aj(x)|r
′)1/r′

×
( ∑

1≤j≤K(x)
j: Nj(x)∈ω(J)

∣∣(E�j − E�′j )(w
∞
Tu

f̃)(x)
∣∣r)1/r

,

where �1, �2, . . . , �
′
1, �

′
2, . . . , are integers with |J | ≤ 2�1 < 2�1

′
< 2�2 < 2�2

′
< · · · <

2�j < 2�j
′
< · · · , and f̃ :=

∑
P∈Tu

εP 〈f, wPd
〉wPd

. Taking the supremum over all
such choices of integers �j and �j

′ for 1 ≤ j ≤ K and all positive integers K and
integrating over J gives the estimate

∫
J

|FJ,u(x)|r
′
dx ≤

∫
J

|g(x)|r′
∑

j: Nj(x)∈ω(J)

|aj(x)|r
′‖Ek(w

∞
Tu

f̃)(x)‖r′Vr

2k≥|J|
dx.

Here we write

‖bk‖Vr

2k≥A
:= sup

K
sup

�0<�1<···<�K
2�j≥A, j=0,...,K

( K∑
j=1

‖β�j+1 − β�j‖r
)1/r

.
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The function ‖Ekw
∞
Tu
f̃(·)‖Vr

2k≥|J|
is constant on J thus

‖FJ,u‖r
′

Lr′(R+)
≤

∫
J

{
|g(x)|r

′ ∑
j: Nj(x)∈ω(J)

|aj(x)|r
′

×
( 1

|J |

∫
J

‖Ek(w
∞
Tu
f̃)(z)‖Vr

2k≥|J|
dz

)r′}
dx

≤ |J | density(T)r
′
inf
J

[
M

(
‖Ek(w

∞
Tu

f̃)(·)‖Vr

)]r′
≤ density(T)r

′
∫
J

[
M

(
‖Ek(w

∞
Tu
f̃)(·)‖Vr

)
(y)

]r′
dy,

where in the second inequality we also used Lemma 6.2, (iii). Here we remember
that M is the dyadic maximal operator defined in §2. Now we sum over J ∈ J
and use the boundedness of M on Lr′ to get( ∑

J∈J
‖FJ,u‖r

′
Lr′(R+)

)1/r′

≤ density(T)
( ∫

IT

[
M(‖Ek(w

∞
Tu
f̃)(·)‖Vr (y)

]r′
dy

)1/r′

� density(T)
( ∫ [

‖Ek(w
∞
Tu
f̃)(y)‖Vr

]r′
dy

)1/r′

≤ density(T) ‖f̃‖Lr′(R+),(6.7)

where in the last inequality we have used the vector-valued Lépingle inequality
from Proposition 4.7. Observe that the use of Proposition 4.7 is allowed since
r′ < q′ ≤ 2 ≤ q < r. Now Lemma 3.2 allows us to write

‖f̃‖Lr′(R+) =
∥∥∥ ∑

P∈Tu

εP 〈f, wPd
〉wPd

∥∥∥
Lr′(R+)

=
∥∥∥ ∑

P∈Tu

εP 〈fw∞
Tu
, hIP 〉hIP

∥∥∥
Lr′(R+)

.

�
∥∥∥ ∑

P∈Tu

〈fw∞
Tu
, hIP 〉hIP

∥∥∥
Lr′ (R+)

,(6.8)

the last inequality following by the UMD property of X . By another use of
Lemma 3.2 and Hölder’s inequality we have∥∥∥ ∑

P∈Tu

〈fw∞
Tu
, hIP 〉hIP

∥∥∥
Lr′ (R+)

= |IT |1/r
′( 1

|IT |

∫
IT

∣∣∣ ∑
P∈Tu

〈f, wPd
〉wPd

(x)
∣∣∣r′dx)1/r′

≤ |IT |1/r
′( 1

|IT |

∫
IT

∣∣∣ ∑
P∈Tu

〈f, wPd
〉wPd

(x)
∣∣∣qdx)1/q

≤ |IT |1/r
′
size(T),(6.9)

by the definition of size. Combining (6.7), (6.8), and (6.9), we get( ∑
J∈J

‖FJ,u‖r
′

Lr′(R+)

)1/r′

� density(T) size(T) |IT |1/r
′
,

which is the desired estimate. �
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7. The size and density lemmas

Let X be a UMD Banach space with tile type q ≥ 2. In this section we recall the
standard selection algorithms in terms of density and size. In terms of density we
have:

Lemma 7.1 (Density lemma). Let P be a finite collection of bitiles and δ > 0.
Define density with respect to some function g : R+ → X∗ with |g| ≤ 1E, where
E ⊂ R+ is a measurable set of finite measure, and a sequence {aj(x)}j with∑

j |aj(x)|r
′
= 1. For a given Δ > 0, there exists a decomposition

P = Psparse

⋃ ⋃
j

Tj ,

where each Tj is a tree,
density(Psparse) ≤ Δ,

and for all dyadic J :

(7.2)
∑

j:ITj
⊂J

|ITj | ≤ Δ−r′ |E ∩ J |.

Remark 7.3. Estimate (7.2) encodes different types of information. Letting J
increase to R+, it shows that∥∥∥∑

j

1ITj

∥∥∥
1
=

∑
j

|ITj | ≤ Δ−r′ |E|.

On the other hand, it also shows that∥∥∥∑
j

1ITj

∥∥∥
BMO

� sup
J

1

|J |
∑

j: ITj
⊂J

|ITj | ≤ Δ−r′ sup
J

|E ∩ J |
|J | ,

where the supremum is over all dyadic J that contain at least one ITj .

Proof. We choose Psparse to be as big as possible

Psparse :=
{
P ∈ P : sup

P ′≥P

1

|IP ′ |

∫
IP ′

|g(x)|r′
∑

j:Nj(x)∈ωP ′

|aj(x)|r
′
dx ≤ Δr′

}
.

For every P ∈ P \Psparse there exists a bitile P ′ such that

|IP ′ | ≤ Δ−r′
∫
IP ′

|g(x)|r′
∑

j:Nj(x)∈ωP ′

|aj(x)|r
′
dx.

Among the chosen bitiles P ′ we call {Tk}k the bitiles that are maximal with respect
to the partial order ‘≤’. Now set

Tk := {P ∈ P \Psparse : P ≤ Tk}.
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It is clear that P \Psparse = ∪kTk. We have

∑
k: ITk

⊂J

|ITk
| ≤ Δ−r′

∑
k:ITk

⊂J

∑
j

∫
ITk

|g(x)|r′ |aj(x)|r
′
1{y: Nj(y)∈ωTk

}(x) dx

≤ Δ−r′
∑
j

∑
k:ITk

⊂J

∫
ITk

∩E∩{y: Nj(y)∈ωTk
}
|aj(x)|r

′
dx.

Now, for j fixed, the sets ITk
∩E ∩ {y : Nj(y) ∈ ωTk

}, k ∈ Z, are all contained in
E ∩ J and are pairwise disjoint for different k. Indeed if two of them intersected,
say for k1 �= k2, then the corresponding bitiles Tk1 and Tk2 would also intersect,
which contradicts their maximality. Summing first over k and then over j we get∑

k:ITk
⊂J

|ITk
| ≤ Δ−r′

∑
j

∫
E∩J

|aj(x)|r
′
dx ≤ Δ−r′ |E ∩ J |,(7.4)

since
∑

j |aj(x)|r
′
= 1. �

For the selection by size we prove a version of the standard size selection algo-
rithm.

Lemma 7.5 (Size lemma). Let P be a finite collection of bitiles and let X a Banach
space of tile type q ≥ 2. Define size with respect to some function f ∈ Lq(R+;X).
For a given ς > 0, there exists a disjoint decomposition

P = Psmall

⋃ ⋃
j

Tj ,

where each Tj is a tree,
size(Psmall) ≤ ς,

and, for dyadic intervals J ,

(7.6)
∑

j: ITj
⊂J

|ITj | � ς−q ‖f 1J‖qLq(R+;X)≤ ς−q |F ∩ J | if |f | ≤ 1F .

Remark 7.7. As in Remark 7.3, estimate (7.6) implies∥∥∥∑
j

1ITj

∥∥∥
1
� ς−q |F |,

∥∥∥∑
j

1ITj

∥∥∥
BMO

� ς−q sup
J

|F ∩ J |
|J | ,

where the supremum is over all dyadic J that contain at least one ITj .

The selection algorithm is contained in Proposition 6.1 of [13], but we briefly
outline it here for the reader’s convenience.

Proof. For every tree T we set

Δ(T)q :=
1

|IT |

∫ ∣∣∣ ∑
P∈Tu

〈f, wPd
〉wPd

(x)
∣∣∣q dx,
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where T is a top of T. We iterate the following selection algorithm. Consider
all maximal trees T inside P with Δ(T) > ς . Among them let T1 be one with
top T1 whose frequency interval ωT1 has minimal center. Replace P by P\T1 and
iterate. When no trees can be selected any longer the remaining collection, Psmall,
by definition satisfies size(Psmall) ≤ ς . Let {Tj}j be the selected trees. The top
time intervals ITj of the selected trees can thus be estimated by

∑
j:ITj

⊂J

|ITj | ≤
1

ςq

∑
j:ITj

⊂J

∥∥∥ ∑
P∈Tj,u

〈f, wPd
〉wPd

∥∥∥q
Lq(R+;X)

,

and we can replace f by f 1J , since wPd
is supported on IP ⊂ ITj ⊂ J . The

collection T := {Tj,u}j of the selected up-trees is a good collection by construction.
Thus the tile type property of X implies that the sum on the right-hand side of
the previous estimate can be estimated by ‖f 1J‖qLq(R+;X). We get

∑
j:ITj

⊂J

|ITj | � ς−q ‖f 1J‖qLq(R+;X)

as desired. �

Iterating the density and size lemmas we can write any finite collection as a
union of trees.

Lemma 7.8. Let P be a finite collection of bitiles, and define size with respect to
f : R+ → X with |f | ≤ 1F and density with respect to g : R+ → X∗ with |g| ≤ 1E .
Then P admits a decomposition

P =
⋃
n∈Z

⋃
j

Tn,j ∪Presidual,

such that

density(∪jTn,j) ≤ 2n/r
′ |E|1/r′ , size(∪jTn,j) ≤ 2n/q|F |1/q,

∑
j

|ITn,j | � 2−n,

and density(Presidual) = size(Presidual) = 0.

The following bounds are available under additional assumptions:

(1) If infx∈IP M(1F )(x) ≤ |F |/|E| ≤ 1 for all P ∈ P, then∥∥∥∑
j

1ITn,j

∥∥∥
BMO

� 2−n |E|−1.

(2) If infx∈IP M(1E)(x) ≤ |E|/|F | ≤ 1 for all P ∈ P, then∥∥∥∑
j

1ITn,j

∥∥∥
BMO

� 2−n|F |−1.
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Proof. Since P is a finite collection of bitiles there exists some positive integer no

such that

density(P′) ≤ 2no/r
′
|E|1/r

′
, size(P′) ≤ 2no/q |F |1/q.

We apply Lemma 7.1 with Δ = 2(n0−1)/r′ |E|1/r′ to write

P′ = P′
1

⋃ ⋃
j

Tj

with

density(P′
1) ≤ 2(no−1)/r′ |E|1/r

′
and

∑
j

|ITj | ≤ (2
no−1

r′ |E|1/r
′
)−r′ |E| = 2 · 2−no .

We also have that∥∥∥∑
j

1ITj

∥∥∥
BMO

� (2
no−1

r′ |E|1/r′)−r′ sup
J

|E ∩ J |
|J | � 2−no |E|−1 sup

J
inf
x∈J

M(1E)(x),

where the supremum is over J that contain at least one ITj , therefore at least one IP
with P ∈ P. The maximal term is always bounded by 1, and under assumption (2)
also by |E|/|F |.

We reduce the size of the collection in a similar fashion. We apply the size
lemma with ς = 2(no−1)/q|F |1/q to P′

1 to write

P′
1 = P′

1,1

⋃ ⋃
j

T̃j

with

size(P′
1,1) ≤ 2

no−1
q |F |1/q and

∑
j

|IT̃j
| � (2

no−1
q |F |1/q)−q‖f‖qLq(R+;X) � 2−no .

Under the additional assumptions, we also have that∥∥∥∑
j

1IT̃j

∥∥∥
BMO

� (2
no−1

q |F |1/q)−q sup
J

|F ∩ J |
|J | � 2−n0 |F |−1 sup

J
inf
x∈J

M(1F )(x),

where the supremum is over all dyadic J that contain at least one top IT̃j
, hence

at least one IP , P ∈ P. The maximal term is always bounded by 1, and under the
assumption (1) also by infx∈J M(1F )(x) ≤ infx∈IP M(1F )(x) � |F |/|E|.

Altogether, we find that {Tno,j}j := {Tj}j ∪ {T̃j}j satisfies∑
j

|ITno,j | � 2−no

and∥∥∥∑
j

1ITno,j

∥∥∥
BMO

�
{
2−n0(|E|−1 + |F |−1 · |F |/|E|) � 2−no |E|−1, under (1),

2−n0(|E|−1 · |E|/|F |+ |F |−1) � 2−no |F |−1, under (2).
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Since the density and size of any subcollection of P′ cannot increase, we also have

density(∪jTno,j) ≤ 2no/r
′ |E|1/r′ and size(∪jTno,j) ≤ 2no/q |F |1/q.

We iterate this procedure until the residual collection has density and size equal
to 0. �

Remark 7.9. In what follows the collection Presidual will be ignored. In fact,
every P ∈ Presidual can be considered as a tree with a single bitile, and this tree
will have both size and density equal to 0. By the tree lemma these trivial trees
do not contribute anything to the estimate for CP.

We record some additional size estimates that will allow us to obtain some
initial control on the size of the collections we will consider.

Lemma 7.10. Let P be any collection of bitiles and define the density with respect
to some function g : R+ → X∗ with |g| ≤ 1E and the size with respect to some
function f : R+ → X with |f | ≤ 1F . We have that density(P) ≤ 1 and size(P) � 1.

The following bounds are available under additional assumptions:

(1) If infx∈IP M(1F )(x) � |F |/|E| ≤ 1 for all P ∈ P, then

size(P) � |F |
|E| .

(2) If infx∈IP M(1E)(x) � |E|/|F | ≤ 1 for all P ∈ P, then

density(P) ≤
( |E|
|F |

)1/r′

.

Proof. The proof of the density estimate by 1 is completely trivial, while the proof
of the size estimate by 1 is in Lemma 7.1 of [13], and relies on the UMD property
of X .

Under the assumption (2), the density satisfies

density(P) ≤ sup
P∈P

sup
P ′≥P

( 1

|IP ′ | |IP
′ ∩ E|

)1/r′

≤ sup
P∈P

inf
x∈IP

M(1E)(x)
1/r′ ≤

( |E|
|F |

)1/r′

.

Under the assumption (1), a standard argument using Lemmas 3.2 and 7.11 (below)
gives the size bound asserted in this case; for the details of this argument see for
example the proof of Lemma 7.3 in [13]. �

The following lemma, which we referred to above, is a BMO-type of estimate
and is contained in Lemma 7.2 of [13].

Lemma 7.11. Let J ⊆ {I ∈ D : infy∈I Mf(x) ≤ λ} be a finite collection of
dyadic intervals and let K be a dyadic interval. Then, for all 1 ≤ p < ∞ ,∥∥∥ ∑

I∈J ,I⊆K

〈f, hI〉hI

∥∥∥
LP (R+;X)

≤ λ |K|1/p,
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8. Proof of Proposition 5.6

We need to prove that for every pair of measurable setsE and F with |E|, |F | < +∞
there exists subsets E′ ⊂ E, and F ′ ⊂ F such that either E′ = E or F ′ = F , and

|〈CPf, g〉| � |F |1/p |E|1/p′

for max(q, p′(q − 1)) < r < ∞ and for all |f | ≤ 1F ′ and |g| ≤ 1E′ . By dilation
invariance we can assume that 1 < |E| ≤ 2.

Case 1: |F | ≤ 1. Let

G := {M(1F ) > 4|F |}.

Then |G| ≤ 1/4 by the weak (1, 1) bound on M and thus E′ := E \G can be taken
as a major subset of E. We have

〈CPf, g〉 =
∑
P∈P

εP 〈f, wPd
〉〈wPd

aP , g〉 =
∑

P∈P, IP�G

+
∑

P∈P, IP⊆G

.

The second sum vanishes since each wPd
is supported on IP ⊆ G while g is sup-

ported on E′ ⊆ Gc. Hence it suffices to consider any collection P′ ⊆ {P ∈ P :
IP � G} and prove the corresponding bound for CP′ in place of CP. Ob-
serve that for all P ∈ P′ we have that IP � G so that infx∈IP M(1F )(x) ≤
infx∈IP \GM(1F )(x) ≤ 4|F | by the construction of G. Thus we are now in the
situation that infx∈IP M(1F )(x) � |F | � |F |/|E| for all P ∈ P′, for which several
useful bounds were obtained in the previous section.

We now apply the decomposition given by Lemma 7.8 to the collection P′.
Recalling the bounds density(P′) ≤ 1 and size(P′) � |F | from Lemma 7.10, and
the estimates of Lemma 7.8, we can write

density(Tn,j) � min(1, 2n/r
′
), size(Tn,j) ≤ min(|F |, 2n/q|F |1/q),

∑
j

|ITn,j | � 2−n.

Applying Lemma 6.1 with s = 1 we get

|〈CPf, g〉| =
∣∣∣ ∫ ∑

P∈P

εP 〈f, wPd
〉wPd

(x) aP (x) g(x) dx
∣∣∣

≤
∑
n∈Z

∑
j

∫ ∣∣∣ ∑
P∈Tn,j

εP 〈f, wPd
〉wPd

(x) aP (x) g(x) dx
∣∣∣

�
∑
n∈Z

∑
j

|ITn,j | size(Tn,j) density(Tn,j)

�
∑
n∈Z

min(|F |, 2n/q|F |1/q) min(1, 2n/r
′
)
∑
j

|ITn,j |

�
∑
n∈Z

2−nmin(|F |, 2n/q|F |1/q)min(1, 2n/r
′
).
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We estimate the previous sum as follows:

|〈CPf, g〉| � |F |1/q
∑

n: 2n≤|F |q/q′
2n(1/q−1/r) + |F |

∑
n: |F |q/q′<2n≤1

2n(1/r
′−1) + |F |

∑
n:1<2n

2−n

� |F |1−(q−1)/r + |F | � |F |1/p.

In the last approximate inequality we used

1− q − 1

r
=

1

p
+

1

p′
− q − 1

r
>

1

p

and the hypothesis |F | ≤ 1.

Case 2: |F | ≥ 1. Let G := {M1E > 8|F |−1}, and set F ′ := F \ G. By
the weak (1, 1) inequality for the dyadic maximal function M we can conclude
that F ′ is a major subset of F . Hence it suffices to consider any finite collection of
bitiles P′ ⊂ {P ∈ P : IP �⊂ G} and prove the corresponding bound for CP′ . Thus
the collection P′ has the property that infx∈IP M(1E) � |E|/|F | � |F |−1 for all
P ∈ P′, and several estimates from the previous section become available.

We again apply the decomposition given by Lemma 7.8 to the collection P′.
Lemma 7.10 now provides the bounds density(P′) � |F |−1/r′ and size(P′) � 1;
combined with the estimates of Lemma 7.8, this leads to

density(Tn) � min(|F |−1/r′ , 2n/r
′
), size(Tn) ≤ min(1, 2n/q), Tn := ∪jTn,j ,

and

(8.1)
∥∥∥∑

j

1ITn,j

∥∥∥
1
=

∑
j

|ITn,j | � 2−n,
∥∥∥∑

j

1ITn,j

∥∥∥
BMO

� 2−n|F |−1.

Interpolation between the last two estimates gives the further bounds

(8.2)
∥∥∥∑

j

1ITn,j

∥∥∥
τ
� 2−n|F |−1/τ ′

, ∀ τ ∈ [1,∞).

For fixed n we estimate

∣∣〈CTnf, g, 〉
∣∣ ≤ ∑

j

∫
1ITn,j

(x)
∣∣∣ ∑
P∈Tn,j

εP 〈f, wPd
〉wPd

(x) g(x) aP (x)
∣∣∣ dx

≤
∫ [∑

j

1ITn,j
(x)

]1/r[∑
j

∣∣∣ ∑
P∈Tn,j

εP 〈f, wPd
〉wPd

(x) g[x) aP (x)
∣∣∣r′]1/r′dx

≤
∥∥∥[∑

j

1ITn,j

]1/r∥∥∥
Lτ

·
∥∥∥(∑

j

∣∣ ∑
P∈Tn,j

εP 〈f, wPd
〉wPd

gaP
∣∣r′)1/r′∥∥∥

Lτ′

=: A ·B,(8.3)
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for τ ≥ r, which we will eventually choose ‘large enough’. We note that the function
inside the norm in B is supported in E and τ ′ < r′. Thus, Hölder’s inequality and
Lemma 6.1 imply

B ≤ |E|1/τ
′−1/r′

(∑
j

∥∥∥ ∑
P∈Tn,j

εP 〈f, wPd
〉wPd

g aP

∥∥∥r′
Lr′

)1/r′

� size(Tn) density(Tn)
(∑

j

|ITn,j |
)1/r′

� min(2n/q|F |1/q, 1) min(2n/r
′
, |F |−1/r′)2−n/r′

= min(2n/q|F |1/q, 2−n/r′ |F |−1/r′).(8.4)

Using (8.2) with τ replaced by τ/r > 1 we estimate A as follows:

A =
∥∥∥(∑

j

1ITn,j

)1/r∥∥∥
Lτ

=
∥∥∥∑

j

1ITn,j

∥∥∥1/r
Lτ/r

� 2−n/r |F |1/τ−1/r.(8.5)

By (8.3), (8.4), and (8.5), we get for all τ > r that∣∣〈CTnf, g〉
∣∣ � 2−n/r |F |1/τ−1/r min(2n/q |F |1/q, 2−n/r′ |F |−1/r′).

Summing over n ∈ Z thus gives∑
n∈Z

∣∣〈CTnf, g〉
∣∣ � ∑

2n≤|F |−1

2n(1/q−1/r)|F |1/τ−1/r+1/q +
∑

2n>|F |−1

2−n|F |1/τ−1

� |F |1/τ ≤ |F |1/p

by taking τ ≥ max(p, r), and recalling that |F | ≥ 1.

This concludes the proof of Proposition 5.6 and thereby of Theorems 5.2 and 1.1.

Remark 8.6. It is of some importance to note a subtle difference between the way
we derive the estimates (8.1) in the present paper and the way such estimates have
been derived in the scalar case in the literature. For example, in [20], [11], and [10],
only the tops of trees produced by the size lemma are shown to satisfy the BMO
estimate in (8.1). To deal with this problem the standard approach is to collect all
the trees produced by the size and density lemmas and ‘pass them through’ the size
lemma once more. This double application of the size lemma guarantees the BMO
estimate. One however needs to argue that after the second application of the size
lemma, the L1-estimate persists. This is done by complementing the size lemma
with a certain efficiency estimate, stating that if a collection is already a union of
trees, P = ∪jTj , and the size lemma decomposes P into a union of some other trees

{T̃k}k, then
∑

k |IT̃k
| �

∑
j |ITj |; that is, the size lemma is shown to be the most

efficient algorithm in selecting trees and their tops when decomposing P. In the
vector-valued case we have not managed to produce such an efficiency estimate
for the size lemma, which is strongly dependent on the tile type of the Banach
space X . Instead, we directly produce BMO estimates, both for trees selected by
size, as well as for the ones selected by density.
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9. Interpolation

In this section we discuss the proof of Theorem 1.4. This is a simple interpolation
argument between the Hilbert space-valued case for the r-variation and the UMD
valued case for the ∞-variation, that is the main result from [13].

Proof of Theorem 1.4. Let X be a UMD Banach space of the form X = [Y,H ]θ for
some 0 < θ < 1 and set q =: 2/θ. From [13] we have that the Carleson operator
maps Lp([0, 1);X) into itself for all 1 < p < ∞. This can be rewritten in the form

‖SNf‖Lp([0,1);�∞(X)) � ‖f‖Lp([0,1);X), 1 < p < ∞.

On the other hand we have for any Hilbert space H the following variation norm
Carleson theorem:

‖SNf‖Lp([0,1);Vs(H)) � ‖f‖Lp([0,1);H), s > 2, s′ < p < ∞.

This follows, for example, from Theorem 1.3, although in the special case of a
Hilbert space one could just repeat the scalar proof. We first use the reiteration
theorem, as in Theorem 3.5.3 of [1], to write

X = [Y,H ]θ = [[Y,H ]δ, H ]ω,

with θ = (1 − ω)δ + ω. In our considerations one should think of δ → 0. Now fix
1 < p < ∞ and interpolate between Lp([0, 1); �∞([Y,H ]δ)) and Lp([0, 1);Vs(X)).
As in p. 501 of [23], we have

[�∞([Y,H ]δ),Vs(H)]ω ⊂ Vsω ([[Y,H ]δ, H ]ω) = Vsω (X),

where
1

sω
=

1− ω

∞ +
ω

s
⇐⇒ sω =

s

ω
,

and θ = (1 − ω)δ + ω. From this we get that

‖SNf‖Lp([0,1);Vr(X)) � ‖f‖Lp([0,1);X)

whenever r > 2/θ = q and r > p′q/2. �
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