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A weak type bound for a singular integral

Andreas Seeger

Abstract. A weak type (1,1) estimate is established for the first order
d-commutator introduced by Christ and Journé, in dimension d > 2.

1. Introduction

Let K be regular Calderén—Zygmund convolution kernel on R%, d > 2, i.e. K € &,
is locally bounded in R?\ {0} and satisfies

(11) K@) < Ala| 2 #0,

and, for some ¢ € (0, 1],

(12) w4 h) — K()| < AJIF |2 if Ja] > 2/A];
moreover

[Kloo < A< 0.

Let a € L*>®°(R%). The so-called d-commutator T = T|a] of first order associated
with K and a is defined for Schwartz functions f by

1
Tlalf(0) = poo. [ Ko=) [ also+ (1= s)y) ds ) dy.
0
In dimensions d > 2 this definition yields a rough analog of the Calderén commu-
tator [1] in one dimension. Christ and Journé [3] proved that T" and higher order
versions extend to bounded operators on LP(R?), for 1 < p < co. We prove that
the first order d-commutator is also of weak type (1,1).

Theorem 1.1. There is Cy < oo so that for any f € L*(R?) and any a € L>®(R?),

iug)\meas({:c e R?: |T[a]f(z)| > )\}) < C’dA% log(g) llal] s HfHLl(Rd) .
>
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In dimension two this result has recently been established by Grafakos and
Honzik [6] (assuming € = 1). Their approach relies on a method developed in [2], [4]
and [7] for proving a weak type (1,1) bound for rough singular convolution oper-
ators. A dyadic decomposition T'[a] = Y T} is used on the kernel side, and the
argument relies on the fact that in dimension two the kernels of the operators
T7T; have certain Holder continuity properties. This argument is no longer valid
for higher dimension. It is conceivable that for d > 3 one might be able to develop
the more complicated iterated T*T arguments introduced by Christ and Rubio de
Francia [4] and further extended by Tao [11], but this route would lead to substan-
tial technical difficulties and we shall not pursue it. Our approach is different and
relies on an idea introduced in [8]. An orthogonality argument for a microlocal
decomposition of the operator is used. The implementation of this idea in the
present setting is more complicated in the convolution case as the Christ—Journé
operators can be viewed as an amalgam of operators of generalized convolution
type (for which there is a suitable calculus of wavefront sets) and operators of
multiplication with a rough function.

Notation. We write & < & to indicate that & < C&; for some ‘constant’ C' that
may depend on d. We also use the notation <y to indicate dependence on other

parameters N. We denote by f or Ff the Fourier transform of f, defined for
Schwartz functions by f(&) = [ f(y) e %9 dy.

This paper. In §2 we outline the proof of Theorem 1.1 with the three technical
propositions 2.2, 2.3, 2.4 proved in §3, §4, §5, respectively. In §6 we shall mention
some open problems.

2. Decompositions and auxiliary estimates

We may assume that A < 1, |ja|lee < 1 and write T = T[a]. Fix f € LY(R?).
We use the standard Calderén—Zygmund decomposition of f at height A (see [10]).
Then
f=g+b=g+ ) bq
QEN

where ||glloc < A, [lgll1 S || f]l1, each bg is supported in a dyadic cube @ with
sidelength 2%(?) and center Y@, and Q) is a family of dyadic cubes with disjoint
interiors. Moreover [bgll1 < A|@Q| for each Q € Qx and Y hcq QI S A7 £

For each @ let Q* be the dilate of @ with same center and L(Q*) = L(Q) + 10,
and let E' = Jgeq, @+ Then also

meas(E) < A7l

Finally, for each @, the mean value of by vanishes:

/bcz(y) dy = 0.
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Since T is bounded on L? (cf. [3]) we have, as in standard Calderén—Zygmund
theory,

ITgll3 < 1707222 913 < gl llgllse < Allglh

the estimate for the good function g. By Chebyshev’s inequality,
{z e R?: [Tg(x)| > A/10}[ < 100A~2(|Tg[l3 <A gl S A7 fa-

We use a dyadic decomposition of the kernel. Let ¢ be a radial C* function,
so that ¢(x) =1 for |z| <1 and p(x) =0 for |z| > 6/5. Let

Kj(w) = (p(2772) — (277" 12)) K (x)

so that K = Y7 K in the sense of distributions on R?\ {0} and K is supported in
the annulus {2 : 277! < |z| < £27}. Let T} be the integral operator with Schwartz
kernel

K(x fy)/o a(sx + (1 — s)y) ds.

For m € Z let

Bn= > bo.
QEN
L(Q)=m

Observe that for each j and m the function 7} B,, belongs to L', and that
supp(TjB,) C E, m > j.
Moreover, for each n,
D ITBi—all S M1
J
and thus, if
n(e) = 10°de " log,(2e71)

we have by Chebyshev’s inequality

meas ({z € RY Z Z |T; Bj—n ()| > A/10})

0<n<n(e) J
(2.1) < e Hog(2e™HATH | f]1-

It thus suffices to show that Zn>n(€) ( Zj Tij,n) converges in the topology of
(L' + L?)(R?\ E) and satisfies the inequality

(2.2) meas({m eRNE: Y |3 1Bj_u(a)] >4)\/5}> < AYIf|h

n>n(e) J
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Finer decompositions

We first slightly modify the kernel K; and subtract an acceptable error term which
is small in L!. In what follows assume n > n(e) as defined above. Let

(2.3) {(n) = [2logy(n)] +2 and f.(n) = [2e"logyn] + 2.

Let @ be a radial C§° function supported in {|z| < 1}, and satisfying [ ®(z)dz = 1.
Let ®,,(z) = 274 ®(27™2). Define

K;L = Kj * q)jfég(n) .

Then K7 is supported in {x : 2772 < |z| < 27%2}, and, by the regularity assump-
tion (1.2),

K — K2y < 2= Gtetm)d //mj-l-zm K;(z) — K;(x — h)| dz dh
2972 || <292
(2.4) <o telne <=2,

By differentiation and (1.1)
(2.5) 0° K (z)] < C. 9—id 9(l(n)—j)lal

Let ¥, € C>(R) be supported in (n=2,1 — n~2), such that ¥, (s) = 1 for s €
[2n72,1 — 2n~2], and such that the derivatives of 1J,, satisfy the natural estimates

(2.6) 9N ]lo < Cn 2N .

We then let 77" be the integral operator with Schwartz kernel

K} (z —vy) /19"(5) a(sz+ (1 —s)y)ds.

The following lemma is an immediate consequence of estimate (2.4) and the support
property of 9.
Lemma 2.1. The operator T; — T} is bounded on L', with operator norm

ITj = T}l rspr Sn72.

Lemma 2.1 implies

meas ({ x: Z | Z(Tij_n(m) —T}'Bj_n(z))| > )\/10})
) J

n>n(e

A S ST By~ T By

n>n(e) J

SATY e Y Byl £ A7l

n>1 7

IN

1
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and therefore it is enough to show

(2.7) meas({x: S S TTB (@) > %A}) <AL -

n>n(e) J

For the proof of (2.7) we subtract various regular or small terms from the
operators T7'. Let £(n) be as in (2.3) and denote by Pp, the convolution operator
with convolution kernel @, (defined following (2.3)). We have:

Proposition 2.2. Forn > 1,
1Pty T) Bjnll1 S n~>logn||Bj_nl|1 .

The proposition will be proved in §3. It yields

meas ({m cRI\E: Z | ZPj,nM(n)Tj"Bj_n(x)” > )\/10})

n>n(e) J
S10A DY S NP o) T Bl
n>n(e) Jj
SATY e 210gnZHBJ allt SATHF I
n>1

and thus we need to consider the term

(2.8) > Z b)) TP B ()

n>n(e)

and estimate the measure of the set where |(2.8)| > 3A/5. We will have to exploit
the fact that the integral fol a(sz + (1 — s)y)ds smooths the rough function a in
the direction parallel to x — y, and use a microlocal decomposition which we now
describe.

Let 1/10 < v < 9/10 (say v = 1/2), and let ©,, be a set of unit vectors such
that if v # v/, v,/ € ©,, then |v — /| > 274777 and assume that ©,, is mazimal
with respect to this property. Note that

card(@©,) < 2md=1

For each v we may choose a function X, , on C*(S9~1) with the property that
Xnw(T) >0, Xn(0) = 1if [0 —v| < 273777 %, ,(0) = 0 if |0 — v| > 27277,
and such that for each M € N the functions 2-""MY,, , form a bounded family
in CM(S9=1). For each 6 there is at least one v such that X, ,(8) = 1, by the
maximality assumption. Moreover, by the separatedness assumption the number
of v € ©,, for which X, () # 0 is bounded above, uniformly in 6 and n. Define,
for v € ©,,
Xn u(m) — %TL,VECEAID .
' Z,/e@n Xnw (2/|2])
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Then Y, cq Xnw(x) =1 for every z € R\ {0} and by homogeneity we have the
following estimates for multi-indices a and = # 0,

(v, v>)MXn,z/(l')| < CM|.Z‘|_M ,
10X (@)] < Ca21| 7100
Let K" (x) = K} (x)xn, () and let T;"" be the operator with Schwartz kernel

K" (x —y) /ﬂn(s) a(sz+ (1 — s)y) ds.

ey

vEO,
Let ¢ € C*°(R) so that ¢(u) =1 for |u| < 1/2 and ¢(u) = 0 for |u| > 1 and define

the singular convolution operator &,,,, by
Snuf(€) = (2 (r,€/1€]) F(6).

The terms involving (I — &, ,) Jn ¥ can be dealt with by L! estimates. In §4
we shall prove:

We then have

Proposition 2.3. Forn > n(e) and v € O,

N R S

For the rougher terms involving 6W,Tj""j we shall use a weak orthogonality
argument from [8] to prove the following L? estimate.

Proposition 2.4. For n > n(e),

H Z Z —n+L n))6n1/Tn7 Bj n

veO®,, J

5 27" A fa -

Given these two propositions we can finish the outline of the proof of Theo-
rem 1.1. Namely by Chebyshev’s inequality,

meas ({:c Z Z n+é(n))T Bjn(x | > %)‘}>

n>n(e) J

< A H Z Z Z —n+L n)) (I_ Gn,u) Tjn’VBj_n )

n>n(e) vEO, J

2

Z Z Z —n+L n))GnuT” VB] n 5

n>n(e) vEO, J

+ 25)\*2’

and by Propositions 2.3 and 2.4 and Minkowski’s inequality this is bounded by
ot ||f||1(z n~227 0D card(0,) + Y 2*%5) <AL -
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3. Proof of Proposition 2.2
Let Q € Q) with L(Q) = j — n. We apply Fubini’s theorem and write

X [/q)j,nﬁ(n)(x —w) Kj'(w —y)a(sw + (1 - s)y) dw} dyds .
Changing variables z = w + 1=2y we get

P o) Tj'bq () = /ﬂn(s)/a(sz)/Ai’;’s(y) bo(y)dydzds,

where
‘Af i 8( ) (I)j—n+€(n)(

*y) Kj'(z —y/s).

We expand A7>*(y) about the center yg of @ and in view of the cancellation
of bg we may write

| n+é(n)T bQ )
< [[1oatsratsa| [ (4550 - 435 () botw) dyfa ds.

Using
AT () — AT (50) = (y — v, / VAT (yg + oy — ) do)

one obtains after applying Fubini’s theorem

1
1Py ety T ()]s < diam(Q) / / 19, (5)
/|bQ |/|Kn _yQ+0y yQ)|dZdy

F 1P ppeny |1 / b (y)] / g’VKJn(Z - MH dz dy} dsdo .

1-—
% IV 1

Now use [|[VK?||; < 27974 and fol |9, (5)|s71ds < logn. Since diam(Q) < 27—
we obtain

||ijn+é(n)TjanH1 5 logn [Q_E(n) + 265(n)—n] Hanl 5 ’I’L_2 logn ”bQHl

Finally we sum over all @ € Q) with L(Q) = j—n to obtain the asserted bound. O
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4. Proof of Proposition 2.3

Let @ € Q) with L(Q) = j —n, and let ygo be the center of . Fix a unit
vector v, and let 7> be the projection to the orthogonal complement of v, i.e.

7t (z) = x — (z,v)v. In view of the support properties of the kernel it suffices to

show that, for n > n(e),

@) 0 = P = S T S n7227 D gl

under the additional assumption that the support of a is contained in
{y: [y —yo.n) <2774, |m, (y —yo)| < 27H47™7d }.

Note that with this hypothesis

(4.2) @l oo < 274711,

We introduce a frequency decomposition of a. Let ¢ be a radial C'*° func-
tion as in §2, but now defined in &-space, so that ¢(¢) = 1 for |§] < 1 and
¢(§) = 0 for [{| = 6/5. Define 51 (£) = ©(2%¢) — p(2F+1E); then By is supported in
{&:27F 1 < g < 62 k1. Let 6 be a radial C*° function so that 6 is supported in
{£&:1/3< )¢ < 3/2} and ﬁ( )=1for 1/2 < |¢| <6/5, and define ﬁk(f) = ﬁ(2k§)
Then 6kgk = k. Define convolution operators Vi, Ay and /N\k with Fourier multi-
pliers ¢(2%.), By and By, respectively; then AyAy = Ay and, for every m € Z, the
identity operator is decomposed as I = V,,, + Zk<m Ay.

For fixed y € @ we define an operator fK actlng on a by

o) = K@ 9) [0(s)atse + (1 - ) ds

so that
(4.3) T" “bo(x /bQ K [a](z) dy .
We use dyadic frequency decompositions and split
(I =6nu) (I = Pj_niem) T;""bq

(4.4) =S A = S0 Ry (1~ Pyaiay) / ba(y) K™ a] dy

k1

and then further split in (4.4)

(45) a = ij—n+€(n) a—+ Z Ay, a
ka<j—n-+e(n)

We prove three lemmata with various bounds for the terms in (4.4) and (4.5).
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Lemma 4.1.
| [ o055V, wremal du], € n72 27740 gl

Proof. We use the cancellation of by to estimate the left-hand side by
[ b0l [ 15651V sl @) = K55, V;-ayal@)] dody.
For y € Q we may estimate
/ |fKZ’; [‘/j—n-i-é(n)a] (x) - :K;L,ZIQ [‘/j—n-&-@(n)a](m” dx < 51 (y) + 52 (y) y

where
E1(y) = IVt / K (2 — y) — K™ (& — yq)| da

and, abbreviating
F?{nJrZ(n) (J), Y, Z)

= /0 {(y = yq, VF[p(2I 7™ )] (sz + (1 = ) (yq + oy — yq)) — 2)) do,

&, is given by

£a(0) = [ 15 (@ =)l [ 10,05} [ 10l T2, (o.2) s d.
Now by (2.5), and since |9y xn. (z)] < 277 |2| 71 we get
£ < = vl [ VAl S 27 (2005 4 73] g-m(d-D),
Notice that for n > n(e) and v > 1/10 we have 2% < 277 and thus we see that
Ealy)] £ 27700,
Moreover,

&) S IEG 11 ly = yol [[VF e/ )],
< 27n'y(d71) 2j7n 2n7j7€(n) < 27n'y(d71) 7172 )

Integrating in y, we get
/(|51(y)| +1E))) bow)ldy S 27" V0= b,

and the assertion follows. O



970 A. SEEGER

Lemma 4.2. Lety € Q and a be as in (4.2).
(i) Let ky > ko + £(n) 4+ 10. Then

| Ak, Ky [Aw,al I, <Cn2” md=1) min{1, p2d+2N gny glkz—jtny)NY

(i) Let k1 < ko — 10. Then

[[Aks 3G [Araalll, + ([ Ak, G Visall|,
< CN 2—n'y(d—1) min{l, ony 2(k1—k2)d 2(k1 —j+n'y)N} )

Proof. Clearly || X7 [a]ll1 < 277(@=1 | g| o, and since the operators Aj and Vj

are uniformly bounded we get the bound O(27"7(¢=1) in (i) and (ii). We seek to
prove the two other bounds for Ay, X [Ay,a] in the two cases k1 < kg — 10 and
k1 > ko+£(n)+10. In (ii) the correspondmg estimate for Ay, X [Vi, a] is entirely
analogous and will be omitted.

We use the Fourier inversion formula for a and for the convolution kernel of Ay, ;
write

Ay K [Agya) (2 e / U (s / / Brer (€) B () a(n)

% [/ ei(<$—uf,f)+(sw+(1—8)ym))KTW(w —y)dw | dé dnds
‘7 b

and integrate by parts with respect to w and &. The integral can then be rewrit-
ten as!

i((z—w,&)+(sw+(1=s)y,m))
( 61@2 €
2

s Mg Nl[ﬁkl()lﬁ sl (A VK w—y)
* (14 22k — w[2)M: w | d§dnds,

and we choose N7 = [d/2] + 1. Note that for s € supp(d,),

2= k2=t()if ky > ko 4 £(n) + 10
— 2 C(ky, k = ’
€= sml 2 Clkr bz, m) {2k12 if k1 < ko — 10.
Now (27F19¢)N2 8, = O(1) and a computation yields
(I = 27251 A )M By, ()1€ — sm|722]| S [C ke, ko, )] N2
Moreover
|‘(7Aw)N2K;LV|‘1 < 2—2N2j (22N2n'y + 22N2€5(n)) Q—n'y(d—l)

< 2—n'y(d—1) 22N2(”’Y—j) .

IThanks to Xudong Lai who pointed out an inaccuracy in the original version of this and
another formula.
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We integrate in 7 and use that the measure of the support of By, is O(27%2%).
Then we integrate in x and £ and use that

/ /(1+272k1|x7w|2)7N1 drdé = O(1).
supp (B, )

Using (4.2) we then get
||Ak:1 :K;L,Z/[Akza]ul §N2 27k2d Ha”oo ||(7A)N2K;L7UH1 [C(klv k?vn)]72N2
- 2dt(n)=ny(d=2) 9(2No=d)(k2—j+t(n)+n7) if |y > ky + £(n) + 10,
~N2 2—17(d=2) 9(2N2—d)(k1—j+ny) 9(ki—k2)d  if . < ko — 10.

If we put N = 2N, — d this gives the asserted bound for [|Ag, K} [Ay,al|,. For

k1 < ko — 10 the corresponding expression with Ay, replaced by Vi, is estimated
in exactly the same way. O

Lemma 4.3. Let ko — 10 < ky < ko + £(n) + 10. Then

[ Ak, (I = &)X [k, a1

< On27m(d=1) min{1, n2(N+d)/e o(d+3)ny 2(k1*j+n7)N}

for every y € Q.

Proof. We may again assume that (4.2) holds. Define the convolution operator
Sn,v by

Smvg(n) = (2" n (v, n/[nl)) §(n)
and split a = S™"a + (I — S™")a. We shall prove the two estimates

(4.6)  [1Ak, (I = &™) K [Ar, 5™ al [
< Oy n —HDIN+d) giny g(ki—k2)d 9(ki—j+ny)N
and

(A7) Ak (I = &™) K5 [Ag, (I — S™¥)a][ly < Cyn=54 247 k=i tnm)N

These imply the somewhat weaker bound asserted in the lemma.

Proof of (4.6). Set
Dy (€) = By (§) (1 — 9270 ™>(w, &/€1)))

and write
(2m)%7 A, (I — &™) K57 [Ag, 8™ a] ()
- / Ba(s) / b () B (1) S 172 (v, /) ()

% [/ el‘((l—w,fH(sw+(1—8)ym))KJTW(U} —y)dw | d€dnds.
w
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If (¢,7m) is in the support of the amplitude then for n > 10*°

(€ = sn. )| > €I/ Igl. )] = Il [(n/Im], v)]
> €] (2*"7*1 nd — 9lki—ka|[+2 9—ny ?12)
(4.8) > |¢]27™ 1 (0P — 8. 2{MH10p2) > o—ki=ny 5

Now we can integrate by parts as in the proof of Lemma 4.2, except that we
use the directional derivative (v, V,,) instead of A,. The above integral is then
estimated by

[ 1Beiiacniioen=2w. )

!([ _ 27%1A5)N1 [ bry n,v(€) ]

(E—sn,v) 2
(1 — 22k — |2)M2

(0, Vo) 2K (w0 — )| duw d dipds
Observe that

|aév3bk1,n,y(§)| < Cy, (Qn'yn—5)N3 9k1Ns
and thus

(4.9) ‘(1 — 2 2A )M [%} ‘ < Cy, (2770~%)2N1 (9= (kutnn)5) =N,
— 81,V
Moreover,
H<V’ VM>N2KJ7}»VH1 < Ch, 9(le(n)=j) N2 9g—ny(d—1)

We assume 2N > d, integrate in  and £, and use (4.8). Then we obtain

1Ak, (I = &™) K5 [Ak, ™ al |1

£e(n)=j)N2 9—nvy(d—1
(@SN (] gkt 2O 20D
> (2—Fk1=nyp5)N2

SleNQ

We use (4.2) and that the support of  — B, (n) has measure O(27%2%). Thus the
expression in the previous displayed inequality can be crudely estimated by

CNhNQ n(2€_174)N2710N1 277/‘/(2]\]17(14’2) 2(k)17}€2)d 2(k17j+n'y)(N27d)

and, if we chose the integer Ny € {(d+1)/2,(d+2)/2} and N = Ny — d, we
obtain (4.6).

Proof of (4.7). Set
gkg,n,u(n) = ﬁkz (77) (1 - ¢(2n7n72<y) 77/|77|>))

and write

(2m) Ay (1 = &™) Ky [Ag, (1 — S™)a] ()

/Kn’/ w—=1y / bk;l,nl/ bkg,nl/( ) ( )

/19"(5) e zmw )+ (swt(=s)ym) gs| d¢ dn dw .
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Now if w — y € supp(K;"") then Wﬁ:i\ —v| <27 and if 5 € Supp(gk%n’,,) we
get

= g = =yl () — 31 277) > w =yl ol 27 (4n® — 1)
and hence
(4.10) |<U} —, 77>| > 9j—ke—ny—4 n2.

Integration by parts with respect to s yields
(2m) Ay (I = ™)K (A, (I — 5™V )a](2) =
v ~ 7 (I - 272k1A )Nlbk? »’ﬂ,l/(g) i({(x—w
[t =) [[anbnm T

1422k g —

iNs gis(w— yn)
/19<N3> ¢ s| de dn dw .
(w—y, N

We apply this with Ny > d/2 and, using (4.2), (4.9), and (4.10), obtain

[ Ay (1 — &™) K Ay (I — 8™)ay
[0y
(2j—k2 —n’y—4n2)N3

—2—10N; 2n’y(2N1—d+2) 2(k2—j+n’y)(N3—d) .

SN (270702 IKT | 27524 @] o
5N1,N3 n

Inequality (4.7) follows if we choose N = N3 —d and Ny € {(d+1)/2,(d + 2)/2}.
O

Proof of Proposition 2.3, conclusion. Let, for fixed n, v and j, and for a fixed cube
Q € Q) with L(Q) =7 —n,

Ty = R (I = Py i (T = 61,) | / ba(y) Ky Vi emyal dy|
and

Ilkhkz = kal (I P n+4(n)) Akl (I Gn v /bQ :Kn U[Akz ]( ) dy} .
By (4.4) and (4.5) it is enough to show that

(4.11) lefkll\ﬂrz Yo Mkl S 072277 Y bg s

k1 ko<j—mn+eL(n)
We have

(4-12) ||Ak1 (I - Gn,u)”LlﬁLl <C
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uniformly in n, v and k1, and using the support and cancellation properties of the
kernel of I — P;_,4¢(n) We also have

(4.13) 1Ak, (T = Ponpe)llzi szt S min{1, 277 H00=hy

Lemma 4.1 together with (4.13) and (4.12) immediately gives

(4.14) > 12y 11 S =2 27770 b1
k1>j—n+£€(n)—10

It remains to verify that the other terms satisfy better bounds, namely

(4.15) > e+ > ks

k1<j—n+€(n)—10 k1 ko<j—nm+L(n)

< Oy nlV 24zn on(=DN 151,

for all N, and suitable A; < 10d/e and Ay < 10. Choose N = 100d. Taking
into account that v < 9/10 one can check that the bound in (4.15) is dominated
by Cn=2277@=D|bg||; for all n with n~ logn < 10~%/d, which is satisfied for
n > n(e).

For the terms involving I, , with k; > j —n + ¢(n) + 10 we get by the second
estimate in part (i) of Lemma 4.2, with ks = j — n + £(n),

> [t

k1<j—n+£(n)—10
<y 9—nvy(d—2) Z 9(k1—j+n—Lt(n))d o(k1—j+ny)N b1
k1<j—n+£(n)—10
Sn 27 2007 N g .

Next consider », . [[I1y, k|1 where the ks-summation is extended over ky <
j—mn+4£(n). For ky > j —n+ ¢ — 10 we can sum a geometric series in kq, with a
uniform bound, due to (4.13). By Lemma 4.2, part (i)

Z HII}C1J€2H1

. k1>j—n+£€(n)—10
(kl’kz)'k2<rnin{k1 —£(n)—10,j—n+(n)}

< 27nw(d72) n2d+2N Z 2(k27j+nw)N||bQH1
ka<j—mn+L(n)
< 2—n’y(d—2) n2d+4N Qn('y—l)N ||bQ||1 ,

and by Lemma 4.3

S Mkl S bl fn) n?®F /e giny 3™ gk mgEn)N
k1>j—n+€(n)—10 k1<j—n+2¢(n)+10
k1—£(n)—10<ky<ki+10
ka<j—mn+L(n)

< Il logla) 42176,
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The case ko > k1 + 10 does not occur when ky > j — n + £(n) — 10 because of
the restriction k2 < j —n + £(n). Thus in all cases of (4.15) which involve the
restriction k1 > j — n + £(n) — 10 we obtain the required estimate.

Now sum the terms |[I1j, k|1 with k1 < j —n + ¢(n) — 10. By Lemma 4.2,
part (i),

Y My pll g e 2mmte=n R gl N gy

k1<j—n+€(n)—10 (k kt)_k1<jfn+€(n)710
ko<ki—€(n)—10 BR2) o <k —£(n)—10

< n2d+2N 27n'y(d72) Qn('yfl)N HbQHl :

(k1,k2):

by Lemma 4.2, part (ii),

> 111k, ks ||1

. k1<j—n+€(n)—10
‘k1410<ke <j—n+4£(n)—10

< 27n’7(d72) Z 2(k1*j+n“r)N Z 2<k17k2)d||bQH1 7
k1<j—n+£€(n)—10 ko>ki1+10

(k1,k2)

< 2N 27 (@2 gnO=DN 1y

and finally, by Lemma 4.3,

> 1 Tk s |11 S log(n)n® D/ 24mr %y gk =N g

(k1 ks): k1<j—n+£€(n)—10 k1<j—n+£(n)
B2 e —0(n)—10<ka <k1+10

< p2INHD(ETHD) gdny gn(r=DN o1

This finishes the proof of (4.15). O

5. Proof of Proposition 2.4

We use a slightly modified version of an argument in [8]. The main observation is
that, for fixed n > 0, we have

(5.1) sup » (2" 0 (v, &/[€]))] S 2" b

£#0 vEO,

To see this it suffices, by homogeneity, to take the supremum over all £ € S¢~ 1.
Now if [¢] =1 and ¢(2"7n=5(f,&)) # 0 then the distance of v to the hyperplane &
is at most Cn®2™™7 and since the vectors in ©,, are ¢2~™7-separated there are
O(2"(4=2)n5) such vectors, hence (5.1) holds.

From (5.1) it follows that

2
H Y G D (= Pimnstn) T} B

veO, J

2
5 2""/(‘1—2) n5 Z H Z(I — Pj7n+é(n))Tjn7VBj_" 2
veo, J
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and since #0,, < 27741 the asserted inequality is a consequence of

2
S 27D £y

(5.2) H Z(I - Pj—vL—',—é(vL))T]‘mVBj*”‘
J

for each v € ©,,.
For the proof of (5.2) the cancellation of B;_,, plays no role. Let

Hy’y(x) —9Jd X, n.o (x).
J
where
TJEV = {i[ : |<I’V>| < 2J+27 |£€ - <:L'»V>| < 2J+277n}'
Then from (1.1) we get
|(I - ijn%(n)) T;WBj—n(mH S H;‘W * | Bj—n| ().

Therefore

2
H Z(I - Pj—n+é(n)) Tjnﬂijfn )
J

52Z/|Bj,n(x)| S CHM « HY # |Bi_pn(x)| da.
J

i<j
Observe that ||[H""||; < 27" meas(]"") < 27741 and thus
H;L’U * Hzn’y(ﬁl)) 5 2_n’Y(d_1) 2_jd X;Jn,u(l‘)

where 7;"" is the double of 7. Hence, for each z € R? and j € Z,

STHP w HY % |Bi_y|(x) £ 27 @ D7 |Bi—n(y)| dy

~n,v
i<y i<j YTt

szt S S [o)ds

i<j QeNx:
L(Q)=i—n
QN(a+7")£0

< 27md=D 9=3d \ meas(7Y) < 272D )
~Y J ~Y

Here we have used ||bg |1 S A|Q], and the disjointness of the interiors of the cubes @
in Q. Thus we get the estimate

2
< 9—2ny(d—1) y Bi_,
s Bl

H Z(I - Pj—n—i—é(n))TjnWijn
J J

which yields (5.2). O
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6. Open problems

6.1. Principal value integrals
Let L
i@ = [ Kew) [ el (0= ds Sy
T—y|>r 0

Our proof shows that the operators T, are of weak type (1, 1), with uniform bounds;
moreover, for f € L, T, f converges in measure to T'f where T is weak type (1,1).
However it is currently open whether the principal value lim, o 7, f(z) exists for
almost every » € R?. By Stein’s theorem [9] this is equivalent to the open question
whether the maximal singular integral sup,~ |7 f| defines an operator of weak

type (1,1).

6.2. Principal value integrals for rough singular convolution operators

The question analogous to 6.1 is open for classical singular integral operators
with rough convolution kernel Q(y/|y|)|y|~¢ where Q € Llog L(S% 1), d > 2 and
Jga-1 Q(0)do = 0. These operators are known to be of weak type (1,1), [8], but

the a.e. existence of the principal value integrals is open even for € L°°(S91).

6.3. Christ—Journé operators

Let F € C**(R), let K be a Calderén-Zygmund convolution kernel, and let a €
L>°(R%). Christ and Journé [3] showed that the operator defined for f € C§°(R?)
by

Tf(x) —p.v./F(/O1 a(sx + (1 fs)y)dt> K(z—vy) f(y)dy

extends to a bounded operator on LP(R%), 1 < p < oo. It would be interesting to
get the weak type (1, 1) inequality for nonlinear F', in dimension d > 2.
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