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A Fourier restriction estimate for surfaces of

positive curvature in R6

Faruk Temur

Abstract. We improve the best known exponent for the restriction con-
jecture in R

6, improving the recent results of Bourgain and Guth. The
proof is applicable to any dimension n satisfying n ≡ 0 mod 3.

1. Introduction

In [7] Stein posed the following well-known conjecture. Let S ⊂ Rn be a smooth,
compact hypersurface with positive definite second fundamental form and let σ be
its surface measure. Then, for p > 2n/n− 1 and f ∈ L∞(S, σ), we have

(1.1) ‖f̂dσ‖p ≤ Cp,S ‖f‖∞.

This conjecture is related to some other important problems in harmonic anal-
ysis and PDE such as the Kakeya conjecture, the Bochner–Riesz conjecture, and
the local smoothing problem; see [3], [6], [9], [14]. For n = 2 it is known to be true;
see [5]. For n ≥ 3 it is open despite much effort. The first progress towards this
case was the Tomas–Stein theorem, and gives p > 2(n+1)/(n− 1); see [12]. In [2]
Bourgain was able to go below this exponent. Wolff improved Bourgain’s result to
(2n2 + n + 6)/(n2 + n − 1); see [13]. Then in three dimensions Tao, Vargas, and
Vega further lowered this exponent, and more importantly they developed the bi-
linear approach which related this conjecture to restriction estimates for compact,
transverse subsets of hypersurfaces; see [10], [11]. The work of Tao in [8], which
was a bilinear estimate for compact transverse subsets of paraboloids, through this
bilinear method, verified the conjecture for p > 2(n+ 2)/n. This exponent is the
best one can obtain from that approach.

In [1], Bennett, Carbery, and Tao posed a multilinear version of the restriction
conjecture and solved it. Let S1, . . . , Sm ⊂ Rn be smooth compact hypersurfaces
that are transverse, that is for any choice of points {xi ∈ Si} we have |x′

1 ∧ · · · ∧
x′
m| > c where x′

i is the unit normal at xi, and c is some positive constant. Let σi
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be the surface measure of Si. Then for q > 2m/m− 1 and p′ ≤ q(m − 1)/m the
result of [1] implies

(1.2)
∥∥∥ m∏

i=1

f̂i dσi

∥∥∥
Lq/m(Rn)

�
m∏
i=1

‖fi‖Lp(Si).

This result by itself does not imply any progress towards the restriction conjecture,
but recently, in [4], Bourgain and Guth combining this with the idea of rescaling,
significantly improved the known exponents for n > 4. The exponents given in [4]
are for every n > 2 as follows:

(1.3)

p >
8n+ 6

4n− 3
if n ≡ 0 mod 3,

p >
2n+ 1

n− 1
if n ≡ 1 mod 3,

p >
4n+ 4

2n− 1
if n ≡ 2 mod 3.

For n = 3, 4 this does not give any improvement, but refining their analysis and
combining it with Wolff’s Kakeya maximal function estimate in [13], Bourgain and
Guth, for n = 3, improved the known exponent p > 10/3 to p > 33/10. The aim
of this paper is to show that this refined method can be used for n = 6 too, and
to calculate the improvement. We shall also make it clear how to use this strategy
for any dimension n ≡ 0 mod 3, though as the improvement is very small and
the process is very technical we will not calculate the improvement for general n.
We state the case in n = 6 as a theorem:

Theorem 1. Let S ⊂ R6 be a smooth, compact hypersurface with positive definite
second fundamental form and σ its surface measure. Then for p > 18/7− 2/735
and f ∈ L∞(S, σ) we have

(1.4) ‖f̂dσ‖p � ‖f‖∞.

Thus we have improved the Bourgain–Guth exponent by 2/735.
The rest of the paper is organized as follows. In Section 2, we describe the proof

by Bourgain and Guth of (1.3), and point out what allows us when n ≡ 0 mod 3
to improve this. In Section 3 we calculate explicitly the improvement for n = 6,
and at the end of that section, it will be clear to the reader that the process can
be repeated to obtain improvement for any n with n ≡ 0 mod 3.

2. The Bourgain–Guth argument

We first remark that standard ε-removal arguments allow us to derive Theorem 1
from the following theorem.
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Theorem 2. Let S ⊂ R6 be a smooth, compact hypersurface with positive definite
second fundamental form and let σ be its surface measure. Then, for p ≥ 18/7−
2/735, and f ∈ L∞(S, σ) we have

(2.1) ‖f̂dσ‖Lp(B(0,R)) � Rε ‖f‖∞.

While working in this localized setting we shall use the following version of (1.2)
proved in [1]: for S1, S2, . . . , Sm satisfying the same properties as described in
section 1, one has, for every ε > 0,

(2.2)
∥∥∥ m∏

i=1

f̂i dσi

∥∥∥
Lq/m(B(0,R))

� Rε
m∏
i=1

‖fi‖L2(Si)

for q ≥ 2m/m− 1.

We further remark that it suffices to prove Theorem 2 for ‖f‖∞ ≤ 1, and we
accordingly define Qp

R to be the best constant satisfying

(2.3) ‖f̂dσ‖Lp(B(0,R)) ≤ Qp
R.

This constant clearly is well defined by the crude estimate

‖f̂dσ‖Lp(B(0,R)) � Rn/p.

Thus we reduce to showing that Qp
R � Rε.

We continue with several lemmas, proofs of which can be found in [4]. The first
two lemmas rely on multilinear estimates from [1], while the third uses rescaling.

Let S be a compact, smooth hypersurface in Rn with positive definite second
fundamental form. For x ∈ S let x′ ∈ Sn−1 denote the unit normal to the surface
at the point x, and let Γ: Sn−1 → S be the Gauss map. Hence Γ(x′) = x. In what
follows we will use the notation

∮
E

to denote the average over the set E. Now we
are ready to state our first lemma.

Lemma 1. Let Ui ⊂ S, 1 ≤ i ≤ n, be small caps such that |x′
1∧· · ·∧x′

n| > c for all
xi ∈ Ui. Let Di ⊂ Ui, 1 ≤ i ≤ n, be discrete sets of 1/M -separated points for M
large. Then, for a bounded function a on S,

∮
BM

n∏
i=1

∣∣∣ ∑
ξ∈Di

a(ξ) e−ix·ξ
∣∣∣2/(n−1)


 M ε
n∏

i=1

( ∑
ξ∈Di

|a(ξ)|2
)1/(n−1)

,

where BM ⊂ Rn is a ball of radius M .

This lemma is a discretized version of (1.2), using the uncertainty principle
one replaces discrete sums with integrals of functions that are constant on 1/M
neighborhoods of points ξ, and then applies (1.2). For details see [4].

Lemma 2. Let 2 ≤ m ≤ n and let V be an m-dimensional subspace of Rn. Let
P1 . . . Pm ∈ S be points such that P ′

i ∈ V , for all 1 ≤ i ≤ m, and |P ′
1 ∧ · · · ∧ P ′

m| > c.
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Let U1, . . . , Um ⊂ S be small neighborhoods of P1, . . . , Pm. Let M be large and
let Di ⊂ Ui be sets of 1/M separated points ξ that satisfy the condition dist(ξ′, V )
< c/M . Then for fi ∈ L∞(Ui), we have∮

BM

m∏
i=1

∣∣∣ ∑
ξ∈Di

∫
|ζ−ξ|<c/M

fi(ζ) e
−ix·ζ dσ(ζ)

∣∣∣2/(m−1)

dx


 M ε
( ∮

BM

m∏
i=1

( ∑
ξ∈Di

∣∣∣ ∫
|ζ−ξ|<c/M

fi(ζ) e
−ix·ζ dσ(ζ)

∣∣∣2)1/(2m)

dx
)2m/(m−1)

.

To prove this lemma we first use the uncertainty principle to discretize it as in
Lemma 1, then by the hypothesis dist(ξ′, V ) < c/M and the uncertainty principle
make a dimensional reduction to Rm, and finally apply Lemma 1 in Rm. Again for
details we refer to [4]. Finally we state the following lemma, which follows from
parabolic rescaling.

Lemma 3. Let Uρ be a cap of radius ρ on S. Then∥∥∥ ∫
Uρ

f(ξ) e−ix·ξ dσ(ξ)
∥∥∥
Lp(BR)

≤ ρn−1−(n+1)/p Qp
ρR.

Now we are in a position to describe the Bourgain–Guth argument. Let f ∈
L∞(S) satisfy |f | ≤ 1 and let x ∈ BR. Let

Rε � Kn � Kn−1 � · · · � K1

be constants independent of f that will be specified later. Decompose S into
caps Un

α of size 1/Kn, and let ξnα ∈ Un
α . Thus∫

S

f(ξ) e−ix·ξσ(dξ) =
∑
α

e−ix·ξnα
∫
Un

α

f(ξ) e−ix·(ξ−ξnα)dσ(ξ) =:
∑
α

e−ix·ξnα T n
α f(x).

Take a function η ∈ S(Rn) with η̂(x) = 1 on B(0, 1) and η̂(x) = 0 outside B(0, 2).
Let ηr(x) =

1
rn η(x/r) so that

T n
α f(x) = T n

α f ∗ ηKn .

For fixed x, using the Bernstein inequality we can write

|T n
α f(x)| ≤

∫
|T n

α f(x− y)ηKn(y)| dy

�
∫

|T n
α f(x− y)ηKn(y)|1/n |T n

α f(x− y)ηKn(y)|(n−1)/n dy

≤
(∫

|T n
α f(x− y)ηKn(y)|1/n dy

) ∥∥T n
α f(x− ·)ηKn(·)

∥∥(n−1)/n

∞

�
(∫

|T n
α f(x− y)ηKn(y)|1/n dy

) ∥∥T n
α f(x− ·)ηKn(·)‖(n−1)/n

1 K1−n
n .
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Thus if |T n
α f(x)| is nonzero we can use division to write

(∫
|T n

α f(x− y) ηKn(y)| dy
)1/n

�
(∫

|T n
α f(x− y) ηKn(y)|1/n dy

)
K1−n

n .

Hence

|T n
α f(x)| �

(∫
|T n

α f(x− y) ηKn(y)|1/n dy
)n

Kn−n2

n .

This, of course, is trivial if |T n
α f(x)| = 0, so it is independent of the value of

|T n
α f(x)|. Taking the constant term inside the integral we obtain

�
( ∫

|T n
α f(x− y)|1/n 1

Kn
n

∣∣∣η( y

Kn

)∣∣∣1/n dy)n

.

Define ζ(y) = max|y−y′|≤1 |η(y′)|1/n and let ζr(y) :=
1
rn ζ(y/r). Then

|T n
α f(x)| �

(∫
|T n

α f(x− y)|1/n ζKn(y) dy
)n

=: cnα(x)

and ∣∣∣ ∫
S

f(ξ)eix·ξdσ(ξ)
∣∣∣ � ∑

α

cnα(x).

We have cnα(x1) ≈ cnα(x2) whenever |x1 − x2| < Kn.

For a fixed x we have two possibilities:

1.i) There exist α1, . . . , αn such that |ξ′1 ∧ · · · ∧ ξ′n| > c(Kn) for ξi ∈ Un
αi

and

cnαi
(x) > K−n

n max
α

cnα(x).

We can choose the same α1, . . . , αn for all x in a ball of radius Kn due to
the fact that cnα(x) are constant on balls of this size.

1.ii) The negation of this, namely there exists an (n−1)-dimensional subspace Vn−1

such that
cnα(x) ≤ K−n

n max
α

cnα(x)

if dist(Un
α , V̂n−1) � 1/Kn where V̂ stands for the image of V ∩Sn−1 under the

Gauss map. Since the cnα(x) are essentially constant on balls of radius Kn, on
such balls we can take the linear subspace Vn−1 to be the same for all x ∈ Un

α .

If 1.i) holds, then since the number of caps is comparable to Kn−1
n ,

∣∣∣ ∫
S

f(ξ) e−ix·ξ σ(dξ)
∣∣∣ � Kn−1

n max
α

cnα(x) � K2n−1
n

( n∏
i=1

cnαi
(x)

)1/n

,

and thus, letting B1.1 denote x ∈ BR satisfying 1.i),∫
B1.1

∣∣∣ ∫
S

f(ξ) e−ix·ξ σ(dξ)
∣∣∣pdx � K(2n−1)p

n

∑
α1,...,αn

∫
BR

( n∏
i=1

cnαi
(x)

)p/n

dx.
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Then by definition of cnαi
(x) and Hölder inequality we have

� K(2n−1)p
n

∑
α1,...,αn

∫
BR

( n∏
i=1

∫
|T n

α f(x− yi)|p/n ζKn(yi) dyi

)
dx

= K(2n−1)p
n

∑
α1,...,αn

∫
BR

( ∫ n∏
i=1

|T n
α f(x− yi)|p/n ζKn(yi) dy1 . . . dyn

)
dx.

By Fubini’s theorem

� K(2n−1)p
n

∑
α1,...,αn

∫ (∫
BR

n∏
i=1

|T n
α f(x− yi)|p/n dx

) n∏
i=1

ζKn(yi) dy1 . . . dyn.

Assuming p ≥ 2n/(n− 1), the inner integral of (2.2) satisfies

� Rε.

Hence the main expression satisfies

� K10n2

n Rε � R2ε.

The exponent 2n/n− 1 is the one prescribed by the restriction conjecture, thus in
this n-linear case we get the best possible exponent.

Now assume 1.ii) holds. Then, since the number of caps is comparable to Kn−1
n

we have∣∣∣ ∫
S

f(ξ) e−ix·ξ dσ(ξ)
∣∣∣ � ∣∣∣ ∫

{ξ:dist(ξ,V̂n−1)�1/Kn}
f(ξ) e−ix·ξ dσ(ξ)

∣∣∣ + 1

Kn
max
α

cnα(x)

= I + II.

Thus∫
B1.2

∣∣∣ ∫
S

f(ξ) e−ix·ξdσ(ξ)
∣∣∣pdx �

∫
B1.2

∣∣∣ ∫
{ξ:dist(ξ,V̂n−1)�1/Kn}

f(ξ) e−ix·ξdσ(ξ)
∣∣∣pdx

+
1

Kp
n

∫
BR

(
max
α

cnα(x)
)p
dx.

We first evaluate the contribution coming from II. We have

1

Kp
n

∫
BR

(max
α

cnα(x))
pdx ≤ 1

Kp
n

∑
α

∫
BR

(cnα(x))
pdx =

1

Kp
n

∑
α

‖cnα(x)‖pLp(BR),

where the summation is over all caps of size 1/Kn. Using first the Hölder inequality
and then Lemma 3 we have

‖cnα(x)‖pLp(BR) �
∫
BR

(∫
|T n

α f(x− y)|p ζKn(y) dy
)
dx

�
∫ ( ∫

BR

|T n
α f(x− y)|pdx

)
ζKn(y) dy � Kn+1−p(n−1)

n Qp
R/Kn

.
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Hence the contribution of II is bounded by

Kn(2−p)
n Qp

R/Kn
.

Since this is valid for all f , for an inductive argument aiming to bound Qp
R this is

harmless when p > 2.
To evaluate I we proceed as before, and decompose S into caps Un−1

α of ra-
dius 1/Kn−1 and let ξn−1

α ∈ Un−1
α . Then

∫
YV̂n−1,Kn

f(ξ) e−ix·ξ dσ(ξ) =
∑
α

∫
Un−1

α ∩YV̂n−1,Kn

f(ξ) e−ix·ξ dσ(ξ)

=:
∑
α

e−ix·ξn−1
α T̃ n−1

α f(x) ,

where
YV̂n−1,Kn

:= {ξ : dist(ξ, V̂n−1) � 1/Kn}.
On the other hand, let

T n−1
α f(x) =

∫
Un−1

α

f(ξ) e−ix·ξdσ(ξ).

Note a small difference between T̃ and T . The first is defined on an intersection of
caps with a strip, while the second on full caps. Defining ηKn−1 and ζKn−1 in the
same way as ηKn and ζKn , we write

c̃n−1
α (x) :=

( ∫
|T̃ n−1

α f(x− y)|1/(n−1) ζKn−1(y) dy
)n−1

,

cn−1
α (x) :=

( ∫
|T n−1

α f(x− y)|1/(n−1) ζKn−1(y) dy
)n−1

.

We shall need cn−1 in the next step of our process. Via the same arguments as in
in the definition of cnα we see that

|T̃ n−1
α f(x)| � c̃n−1

α (x), and |T n−1
α f(x)| � cn−1

α (x).

We again have two cases for a fixed x:

2.i) There exist α1, . . . , αn−1 such that |ξ′1∧· · ·∧ ξ′n−1| > c(Kn−1) for ξi ∈ Un−1
αi

,
and

|c̃n−1
αi

(x)| > K
−(n−1)
n−1 max

α
|c̃n−1

α (x)|.
Since cn−1

α are essentially constant on balls of size Kn−1 we can choose
α1, . . . , αn−1 the same for all x in such balls.

2.ii) The negation of this, namely there exists an (n − 2)-dimensional subspace
Vn−2 which can be chosen to be a subspace of Vn−1 such that

|c̃n−1
α (x)| ≤ K

−(n−1)
n−1 max

α
|c̃n−1

α (x)|

if dist(Un−1
α , V̂n−2) � 1/Kn−1. We can choose the same linear subspace Vn−2

for all x in a ball of size Kn−2.
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First assume 2.i) holds for a fixed x. Then

∣∣∣ ∫
{ξ:dist(ξ,V̂n−1)�1/Kn}

f(ξ) e−ix·ξ dσ(ξ)
∣∣∣ � K2n−3

n−1

( n−1∏
i=1

c̃n−1
αi

(x)
)1/(n−1)

.

If p ≥ 2(n − 1)/(n − 2) then we proceed to use the multilinear theory of [1] to
estimate:∫

B2.1

∣∣∣ ∫
{ξ:dist(ξ,V̂n−1)�1/Kn}

f(ξ) e−ix·ξ dσ(ξ)
∣∣∣p dx

� C(Kn−1)

∫
BR

( n−1∏
i=1

c̃n−1
αi

(x)
)p/(n−1)

dx,

where choices of c̃n−1
αi

of course depend on x. Clearly

� C(Kn−1)

∫
BR

( n−1∏
i=1

∑
αi

cnαi
(x)

)p/(n−1)

dx

� C(Kn)
∑

α1,...,αn−1

∫
BR

( n−1∏
i=1

cnαi
(x)

)p/(n−1)

dx,

and applying the same arguments as in case 1.i) we obtain

� C(Kn)R
ε � R2ε.

Thus we assume p < 2(n− 1)/(n− 2). In this case we have∮
B(a,Kn)

∣∣∣ ∫
{ξ:dist(ξ,V̂n−1)�1/Kn}

f(ξ) e−ix·ξ dσ(ξ)
∣∣∣pdx

≤ K
(2n−3)p
n−1

∑
α1,...,αn−1

∮
B(a,Kn)

( n−1∏
i=1

c̃n−1
αi

(x)
)p/(n−1)

dx,(2.4)

where the subspace Vn−1 remains the same for all x ∈ B(a,Kn). The choice of
α1, . . . , αn−1 remains the same only in balls of size Kn−1, but since the subspace
is the same, the caps Un−1

α are always chosen from those intersecting the set{
ξ : dist(ξ, V̂n−1) � 1/Kn

}
.

We will exploit multilinearity partially. Consider an individual integral from (2.4)
above; since p < 2(n− 1)/(n− 2) we have, by the Hölder inequality,

∮
B(a,Kn)

( n−1∏
i=1

c̃n−1
αi

(x)
)p/(n−1)

dx �
(∮

B(a,Kn)

( n−1∏
i=1

c̃n−1
αi

(x)
)2/(n−2)

dx
)r

,(2.5)
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where r := p(n−2)
2(n−1) . This, by the definition of c̃n−1

α , satisfies

�
( ∮

B(a,Kn)

( n−1∏
i=1

∫
|T̃ n−1

α f(x− yi)|1/(n−1)ζKn−1(yi) dyi

)2(n−1)/(n−2)

dx
)r

.

Using first the Hölder inequality then Fubini’s theorem we have

�
[ ∮

B(a,Kn)

( n−1∏
i=1

∫
|T̃ n−1

α f(x− yi)|2/(n−2)ζKn−1(yi) dyi

)
dx

]r

�
[ ∫ (∮

B(a,Kn)

n−1∏
i=1

|T̃ n−1
α f(x− yi)|2/(n−2)dx

) n−1∏
i=1

ζKn−1(yi) dy1 . . . dyn−1

]r
.

Now apply Lemma 2 to the inner integral to obtain

� Kε
n

[ ∫ (∮
B(a,Kn)

n−1∏
i=1

(∑
αi

|T n
αi
f(x−yi)|2

)1/(n−2)

dx
)n−1∏

i=1

ζKn−1(yi) dy1. . .dyn−1

]r

where the summation is over all αi such that Un
αi

⊂ Un−1
αi

and Un
αi

∩ V̂n−1 �= ∅.
Since p < 2(n− 1)(n− 2), by the Hölder inequality and Fubini’s theorem,

� Kε+(n−2)(p/2−1)
n

[ ∮
B(a,Kn)

( n−1∏
i=1

∫ (∑
αi

|T n
αi
f(x−yi)|p

)
ζKn−1(yi) dyi

)
dx

]1/(n−1)

� Kε+(n−2)(p/2−1)
n

[ ∮
B(a,Kn)

(∑
α

∫
|T n

α f(x− y)|pζKn−1(y) dy
)n−1

dx
]1/(n−1)

.

From the definition of cnα,

� Kε+(n−2)(p/2−1)
n

[ ∮
B(a,Kn)

(∑
α

∫ (
cnα(x− y)

)p
ζKn−1(y) dy

)n−1

dx
]1/(n−1)

� Kε+(n−2)(p/2−1)
n

[ ∮
B(a,Kn)

(∑
α

(
cnα(x)

)p)n−1

dx
]1/(n−1)

,

where the α in the summation is unrestricted. At this point we use the fact that
the sum inside is constant:

(2.6) � Kε+(n−2)(p/2−1)
n

∮
B(a,Kn)

∑
α

(
cnα(x)

)p
dx,

Integrating both sides over B2.1 we obtain∫
B2.1

( n−1∏
i=1

c̃n−1
αi

(x)
)p/(n−1)

dx

� Kε+(n−2)(p/2−1)
n

∫
BR

(∑
α

∫
|T n

α f(x− y)|p ζKn(y) dy
)
dx

� Kε+(n−2)(p/2−1)
n

∑
α

∫ (∫
BR

|T n
α f(x− y)|pdx

)
ζKn(y) dy.(2.7)



1024 F. Temur

Now we apply rescaling to obtain

� K(n−2)(1/2−1/p)+(n−1)/p−(n−1)+(n+1)/p+ε
n Qp

R � Kε+(n+2)/p−n/2
n Qp

R.

Thus we finally get∫
B2.1

∣∣∣ ∫
{ξ:dist(ξ,V̂n−1)�1/Kn}

f(ξ) e−ix·ξdσ(ξ)
∣∣∣pdx � C(Kn−1)K

ε+(n+2)/p−n/2
n Qp

R.

Choosing Kn suitably with respect to Kn−1 shows that p > 2(n+2)/n makes this
term acceptable. Thus we obtain the condition p > min(2n/(n− 1), 2(n+ 2)/n).

Next we proceed to handle 2.ii) in a similar way. We define c̃n−2 from intersec-
tions of caps with a 1/Kn−1 neighborhood of our subspace and cn−2 from full caps.
In our analysis c̃n−1 will then be replaced by c̃,n−1, and cn by cn−1. Continuing
this process gives the condition

(2.8) p > 2min
( k

k − 1
,
2n− k + 1

2n− k − 1

)
, for all 2 ≤ k ≤ n,

which gives (1.3). Here p should be greater than the minimum for all values
of 2 ≤ k ≤ n. Thus the condition is that p should be greater than the max-
imum of these minima. When n ≡ 0 mod 3 this maximum is attained only
at the value k = 2n/3 and it comes from the second term, thus has the value
2(4n+ 3)/(4n− 3). The value of the first term, then, is 4n/(2n − 3), which is
strictly greater than (8n+ 6)/(4n− 3). This is what allows us to improve the
exponent when n ≡ 0 mod 3. For the particular case of n = 6 we have

(2.9) p > 2min
( k

k − 1
,
13− k

11− k

)
, for all 2 ≤ k ≤ 6.

For k = 6, 5 the minimum comes from the first term, for other k from the second
term. The maximum of these minima comes from k = 4 and is 18/7. For k = 4
the first term gives 8/3 > 18/7 and in our refined analysis we shall exploit this.

3. Refined analysis

From the analysis of the last section, for a fixed x ∈ B(0, R) we can write

|Tf(x)| ≤ C(K6) max
i1,...,i6

(c6i1(x) . . . c
6
i6(x))

1/6

+

5∑
m=2

C(Km) max
Vm

m∏
k=1

(c̃m
ik (x))

1/m + C(K1) max
α

c2α(x).(3.1)

Here by ik we denote a cap of radius 1/Km in the m-linear term, Vm denotes
an m-dimensional subspace and V̂m the image of Vm ∩ S5 under the Gauss map.
Our idea is, as among these terms the 4-linear gives the worst exponent, iterating
this decomposition for smaller caps in that term we may obtain an improvement.
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We will also iterate the decomposition for the linear, bilinear, and trilinear terms.
To execute this idea we replace the terms we want to further decompose as follows.
Let Lm denote the caps j of size 1/Km+1 such that j ∩ V̂m �= ∅. The calculation
we did to bound (2.5) using Lemma 2 without the use of the Hölder inequality to
raise the exponent to p in (2.6) gives

[ ∮
B(a,K5)

4∏
k=1

(c̃ 4
ik(x))

2/3dx
]3/8

� Kε
5

( ∑
j∈L4

(c5j(x))
2
)1/2

,

where, on the right-hand side, x ∈ B(a,K5). Using this and the fact that c̃ 4(x)
are constant on balls of radius K4 we may write

(3.2)

4∏
k=1

(c̃ 4
ik(x))

1/4 = φ4 ·
( ∑

j∈L4

(c5j(x))
2
)1/2

,

where φ4 is constant on balls of radius 1 and satisfies(∮
B(a,K5)

(φ4)
8/3

)3/8

� Kε
5.

Notice that if sum on the right-hand side of (3.2) is zero then the left-hand side
is also zero, hence the function φ4 can be constructed simply by dividing the left-
hand term by the sum on the right when sum is not zero, and by setting it to zero
when it is. For the bilinear and the trilinear terms we have similarly

[ ∮
B(a,K4)

3∏
k=1

c̃ 3
ik
(x)dx

]1/3
� Kε

4

( ∑
j∈L3

(c4j (x))
2
)1/2

[ ∮
B(a,K3)

2∏
k=1

(c̃ 2
ik(x))

2dx
]1/4

� Kε
3

( ∑
j∈L2

(c3j (x))
2
)1/2

.

So we can find φ3 and φ2 that are constant on balls of unit size that satisfy

3∏
k=1

(c̃ 3
ik
(x))1/3 = φ3 ·

( ∑
j∈L3

(c4j(x))
2
)1/2

,

2∏
k=1

(c̃ 2
ik(x))

1/2 = φ2 ·
( ∑

j∈L2

(c3j(x))
2
)1/2

,

(∮
B(a,K4)

(φ3)
3
)1/3

� Kε
4,

( ∮
B(a,K3)

(φ2)
4
)1/4

� Kε
3.

Thus we can write

|Tf(x)| ≤ C(K6) max
i1,...,i6

(c6i1(x) . . . c
6
i6(x))

1/6 + C(K5)max
V5

5∏
k=1

(c̃ 5
ik(x))

1/5

+

4∑
m=2

Kε
m+1φm ·max

Vm

( ∑
j∈Lm

(cm+1
j )2

)1/2

+ C(K1)max
α

c2α(x).



1026 F. Temur

We shall iterate our decomposition for these caps j. We now describe this in a
general fashion. Let τ be a cap of radius δ. By first scaling to the unit scale, then
applying the decomposition, then scaling back we get

|Tf(x)| ≤ C(K6) max
i1,...,i6

(c6τ1(x) . . . c
6
τ6(x))

1/6 + C(K5)max
V5

5∏
k=1

(c̃ 5
τk(x))

1/5

+

4∑
m=2

Kε
m+1φτm ·max

Vm

( ∑
j∈Lm

(cm+1
η (x))2

)1/2

+ C(K1)max
α

c2τα(x).

Here, similar to what we have above by τk we denote caps that are of radius 1/Km

in the m-linear term, and the notation η denotes caps of radius 1/Km+1 in the
m-linear term. Furthermore we have φτm constant on boxes τ ′ dual to cap τ and
for boxes Km+1τ

′, ∮
B

φ8/3
τm � Kε

m+1.

These two are simple consequences of rescaling.

We iterate this decomposition except for the 6-linear and 5-linear terms in
the main decomposition. We clarify several points that arises from application
of this process. First of all from the second step onwards we actually apply the
decomposition not to expressions of type Tfτ but to cτ . This is a simple issue
to handle, and the right-hand side remains the same. To see this notice that all
terms on the right-hand side are already constant on balls exceeding the size of
averaging we need to pass from Tτ to cτ . Second, as we iterate, we will need to
multiply functions φτm arising on each step of the iteration. To investigate what
happens in this case, let φτk and φηl

be such functions arising in consecutive steps.
Thus φτk is constant on boxes τ ′ dual to the cap τ , and φη constant on boxes η′

dual to the cap η. As the η arise when we decompose τ , if we let τ be a δ cap, η is
a δ/Kl+1 cap. Now let B be a Kl+1η

′ box. One can, of course, decompose this

box into η′ boxes Bα; thus, since φ
8/3
ηl is comparable to a constant on a Bα box,∫

B

φ8/3
τk φ8/3

ηl
�

∑
α

φ8/3
ηl

∣∣∣
Bα

∫
Bα

φ8/3
τk ,

where we use the expression

φ8/3
ηl

∣∣∣
Bα

to denote evaluation of φ
8/3
ηl on an arbitrary point of Bα. The direction of a τ ′

box differs from that of a η′ only by an angle of δ, thus when it is decomposed,
the average over the larger box should be no greater than the maximum of the
averages over the smaller boxes. Hence∮

Bα

φ8/3
τk

� Kε
k+1,
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so we have∑
α

φ8/3
ηl

∣∣∣
Bα

∫
Bα

φ8/3
τk

�
∑
α

∫
Bα

φ8/3
ηl

∮
Bα

φ8/3
τk

� Kε
k+1

∑
α

∫
Bα

φ8/3
ηl

� Kε
k+1

∫
B

φ8/3
ηl

� Kε
k+1K

ε
l+1|B|.

This also shows that emerging cross terms will not lead to any problem in the
iteration process as the losses Kε

m+1 are proportionate to the size of the caps τm.
That is, if we divide a cap into larger caps, the number of steps we iterate our
decomposition increases, but since the losses incurred at each step are smaller this
does not lead to any problem. After this investigation we are ready to state the
final situation after iterating the decomposition,

|Tf | ≤ Rε max
R−1/2<δ<1

max
Eδ

[ ∑
τ∈Eδ

(
φτ max

τ1,...,τ6
(c6τ1 . . . c

6
τ6)

1/6
)2]1/2

+Rε max
R−1/2<δ<1

max
Eδ

[ ∑
τ∈Eδ

(
φτ (max

V4

5∏
k=1

c̃ 5
τk)

1/5
)2]1/2

+Rε max
E

R−1/2

[ ∑
τ∈E

(φτ cτ )
2
]1/2

,

where

1) in all terms Eδ is a collection of δ caps, with cardinality δ−3;

2) in the m-linear term τj ⊂ τ are caps of size δ/Km satisfying τj ∩ V̂m−1 �= ∅
and the linear independence condition;

3) for B a τ ′ box we have ∮
B

φ8/3
τ < Rε.

We shall estimate each of the terms above. For each of the m-linear terms with
m > 1 we proceed as follows. We first estimate the term in the Lp space with
the exponent given by (2.9) for k = m. Then we estimate at L18/7, which is the
maximum of the exponents given by (2.9) exactly in the same fashion. Using this,
we make a refined estimate using pigeonholing at the exponent 18/7 in two different
ways to obtain a small gain. Interpolation with the estimate at the exponent given
by (2.9) will determine the small improvement to the exponent 18/7. For the linear
term the process is similar but simpler. We start by estimating the 6-linear term.

3.1. Estimates on the 6-linear term

We consider the term

(3.3) max
Eδ

[ ∑
τ∈Eδ

(
φτ max

τ1,...,τ6
(c6τ1 . . . c

6
τ6)

1/6
)2 ]1/2

.

The inner maximum has no importance and we can fix c6τi . We wish to exploit the
fact that the Fourier transform of a function supported on a small cap is roughly
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constant on a tube dual to this cap. To make this precise we shall need some more
notation. Recall that we chose a function η ∈ S(Rn) with η̂(x) = 1 on B(0, 1) and
η̂(x) = 0 outside B(0, 2). Rescale this function to obtain a function υτi adapted
to a tube dual to the cap τi. Similarly obtain βτi by rescaling ζ. With υτi , βτi we
define b6τi in the same way that c6τi was defined on page 1019. Then

|Tfτi| � b6τi .

Convolving both sides with ζτi , and using the fact that the b6τi are actually constant
on balls of the size at which this averaging occurs, we obtain

c6τi � b6τi .

Thus we can estimate (3.3) by

max
Eδ

[ ∑
τ∈Eδ

(
φτ (b

6
τ1 . . . b

6
τ6)

1/6
)2]1/2

.

Assume |f | ≤ 1. We have

∫
BR

(b6τ1 . . . b
6
τ6)

2/5 =

∫
BR

( 6∏
i=1

∫
|Tfτi(x − y)|1/6δ/K6

βδ/K6
(y) dy

)12/5

dx,

and by the Hölder inequality

�
∫
BR

( 6∏
i=1

∫
|Tfτi(x− y)|2/5 βδ/K6

(y) dy
)
dx

=

∫
BR

( ∫ 6∏
i=1

|Tfτi(x− yi)|2/5 βδ/K6
(yi) dy1 . . . dy6

)
dx,

which, by Fubini’s theorem, becomes

=

∫ (∫
BR

6∏
i=1

|Tfyi,τi(x)|2/5 dx
) 6∏

i=1

βδ/K6
(yi) dy1 . . . dy6.

Of course, fyi are modulations of f . Now rescaling the inside integral to obtain
functions |gyi | ≤ 1 and caps U1, . . . , U6 of size 1/K6 satisfying the linear indepen-
dence condition we have

� δ5
∫ ( ∫

BR

6∏
i=1

|Tgyi,Ui(x)|2/5 dx
) 6∏

i=1

βδ/K6
(yi) dy1 . . . dy6.

Thus the multilinear theory of [1] applies to yield

� δ5Rε.
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With this in hand we proceed to estimate at the exponent 12/5 given by (2.9).
Using the Hölder inequality we have

[ ∑
τ∈Eδ

(
φτ (b

6
τ1 . . . b

6
τ6)

1/6
)2]1/2 ≤ |Eδ|1/12

[ ∑
τ∈Eδ

(
φτ (b

6
τ1 . . . b

6
τ6)

1/6
)12/5]5/12

� δ−1/4
[ ∑
τ∈Eδ

(
φτ (b

6
τ1 . . . b

6
τ6)

1/6
)12/5]5/12

,

Now τ ranges over a full partition into δ caps of S, and does not depend on the
particular choice of Eδ. Now let B stand for a τ ′ box. Since the b6τi are constant
on τ ′i boxes, we have∫

BR

(
φτ (b

6
τ1 . . . b

6
τ6)

1/6
)12/5 �

∑
B

(b6τ1 . . . b
6
τ6)

2/5
∣∣∣
B

( ∫
B

φ12/5
τ

)

�
∑
B

(∫
B

(b6τ1 . . . b
6
τ6)

2/5
)(∮

B

φ12/5
τ

)
� Rε

∫
BR

(b6τ1 . . . b
6
τ6)

2/5 � Rεδ5.

Using this we finally obtain

‖(3.3)‖L12/5(BR) � Rε δ−1/4.

On the other hand applying the same process and using the fact b6τi � δ5 to reduce
the exponent yields

‖(3.3)‖L18/7(BR) � Rε.

Now we begin the finer estimates. Let 0 < λ < 1 and define

gτ,λ = gτ1{gτ∼λδ5}, where gτ = (b6τ1 . . . b
6
τ6)

1/6.

Then ∫
BR

g
18/7
τ,λ < (λ δ5)18/7−12/5

∫
BR

g
12/5
τ,λ � Rε λ6/35 δ41/7.

Using this [ ∫
BR

max
Eδ

( ∑
τ∈Eδ

(φτ gτ,λ)
2
)9/7]7/18

� Rε λ1/15.

We pigeonhole one more time. Let 1 ≤ μ < ∞ and decompose

φτ =
∑

μ dyadic

φτ,μ

where
φτ,μ = φτ 1{φτ∼μ}, φτ,1 = φτ 1{φτ≤1}.

Then we have ∮
B

φ18/7
τ,μ ≤ μ−2/21

∮
B

φ8/3
τ,μ � Rε μ−2/21.
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and [ ∫
BR

max
Eδ

( ∑
τ∈Eδ

(φτ,μgτ,λ)
2
)9/7 ]7/18

� Rε λ1/15 μ−1/27.

We now estimate the left hand side of the inequality above in a different way.
Clearly we have

max
Eδ

( ∑
τ∈Eδ

(φτ,μgτ,λ)
2
)1/2

≤ μ
(∑

τ

g2τ,λ

)1/2

.

Now τ ranges over a full partition into δ caps of the surface S. We shall write
the right-hand side as convolutions of measures with tubes, and apply Kakeya
maximal function estimates. Since the separation between the directions of the
caps τ and τi are small we have

(3.4) (b6τi)
1/6 � (b6τi)

1/6 ∗ (δ71τ ′).

Hence

gτ �
∫ ( 6∏

i=1

(b6τi)
1/6 ∗ δ71τ ′

)
(z) (δ71τ ′)(x− z) dz �

∫
ω(z) (δ71τ ′)(x − z) dz.

By the definition of gτ,λ and (3.4) we have

g2τ,λ � ω2 1{ω�λ δ5}

However since the function ω is constant on tubes dual to τ we can write

g2τ,λ � δ7
∫
(ω2 1{ω�λ δ5})(z) 1τ ′(x − z) dz.

We wish to replace the expression

(ω2 1{ω�λ δ5})(z) dz

with a constant multiple of a probability measure, from which we will pass to the
Kakeya maximal function. To this end we estimate the total mass of this measure.

By Chebyshev’s inequality,∫
BR

ω2 1{ω�λ δ5}(x) dx �
( 1

λ δ5

)2/5
∫
BR

ω12/5(x) dx,

which is

�
( 1

λ δ5

)2/5
∫ (∫

BR

( 6∏
i=1

b6τi(x− zi)
)2/5

dx
)( 6∏

i=1

(δ71τ ′)(zi)
)
dz1 · · · dz6

� Rε λ−2/5 δ3.
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This puts us in a position to bring into play the Kakeya maximal function
estimate of Wolff, for we have

g2τ,λ � Rε δ10 λ−2/5

∫
1τ ′(x − y) dμτ ,

where dμτ is a probability distribution. From this and convexity we have

∥∥∥max
Eδ

( ∑
τ∈Eδ

(φτ,μgτ,λ)
2
)1/2∥∥∥

L18/7(BR)
≤ Rεμδ5λ−1/5

∥∥∥(∑
τ

1τ ′(x−yτ )
)1/2∥∥∥

L18/7(BR)

= Rεμδ5λ−1/5
∥∥∥(∑

τ

1τ ′(x−yτ )
)∥∥∥1/2

L9/7(BR)
,

where yτ is a choice of points in R6. Now we are ready to apply Wolff’s Kakeya
estimate from [13]. For δ-separated δ-tubes T this estimate gives∥∥∥∑

T

χT

∥∥∥
L4/3

� δ−1/2−.

Interpolating this with the trivial estimate at L1 yields∥∥∥∑
T

χT

∥∥∥
L9/7

� δ−4/9−.

We rescale the estimate since the sizes of our tubes vary. This gives for our tubes

∥∥∥∑
τ

1τ ′(x− yτ )
∥∥∥1/2
L9/7(BR)

� δ−44/9.

Thus finally

∥∥∥max
Eδ

( ∑
τ∈Eδ

(φτ,μgτ,λ)
2
)1/2∥∥∥

L18/7(BR)
� Rε μ δ1/9 λ−1/5 � Rε μ δ1/9 λ−9/5.

Combining our estimates we obtain

∥∥∥max
Eδ

( ∑
τ∈Eδ

(φτ gτ )
2
)1/2∥∥∥

L12/5(BR)
� Rε δ−1/4,

∥∥∥max
Eδ

( ∑
τ∈Eδ

(φτ,μgτ,λ)
2
)1/2∥∥∥

L18/7(BR)
� Rε min(μλ−9/5δ1/9, λ1/15μ−1/27)

� Rε δ1/(9·28).

Interpolating these gives the small improvement

2

735
.
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3.2. Estimates on the 5-linear term

We consider the term

(3.5) max
Eδ

[ ∑
τ∈Eδ

(
φτ

(
max
V4

5∏
k=1

c̃ 5
τk

)1/5 )2 ]1/2
.

This, as above, can be estimated by

max
Eδ

[ ∑
τ∈Eδ

(
φτ

(
max
V4

5∏
k=1

b̃ 5
τk

)1/5 )2 ]1/2

Taking the maximum over all V4 does not make any difference for our estimates
since our estimates will remain the same for all V4. Thus fix V4. Assume |f | ≤ 1.
Using rescaling as in 6-linear case one obtains

(3.6)

∫
BR

( 5∏
k=1

b̃ 5
τk

)1/2

≤ δ11/2 Rε.

With this we proceed as in 6-linear case. By the Hölder inequality,

[ ∑
τ∈Eδ

(
φτ

( 5∏
k=1

b̃ 5
τk

)1/5 )2 ]1/2
≤ |Eδ|1/10

[∑
τ

(
φτ

( 5∏
k=1

b̃ 5
τk

)1/5 )5/2 ]2/5

≤ δ−3/10
[∑

τ

(
φτ

( 5∏
k=1

b̃ 5
τk

)1/5 )5/2 ]2/5
.

Now τ ranges over a full partition into δ caps of S, and does not depend on the
particular choice of Eδ. Now let B stand for a τ ′ box. Since the b̃ 5

τk are constant
on τ ′i boxes, we have

∫
BR

φτ

( 5∏
k=1

b̃ 5
τk

)1/2

�
∑
B

( 5∏
k=1

b̃ 5
τk

)1/2∣∣∣
B

(∫
B

φ5/2
τ

)

�
∑
B

(∫
B

( 5∏
k=1

b̃ 5
τk

)1/2)( ∮
B

φ5/2
τ

)
� Rε

∫
BR

( 5∏
k=1

b̃ 5
τk

)1/2

� Rε δ11/2.

Using this we finally obtain

‖(3.5)‖L5/2(BR) � Rε δ−1/10.

On the other hand the same process yields

‖(3.5)‖L18/7(BR) � Rε.

Now we proceed to finer estimates. Now let

gτ,λ = gτ1{gτ∼λδ5} where gτ =
( 5∏

k=1

b̃ 5
τk

)1/5

.
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Then, by (3.6),∫
BR

g
18/7
τ,λ < (λ δ5)18/7−5/2

∫
BR

g
5/2
τ,λ � Rε λ1/14 δ41/7.

Using this, [ ∫
BR

max
Eδ

( ∑
τ∈Eδ

(φτ gτ,λ)
2
)9/7]7/18

� Rε λ1/36.

Decompose φτ exactly as before. Then we have[ ∫
BR

max
Eδ

( ∑
τ∈Eδ

(φτ,μgτ,λ)
2
)9/7]7/18

� Rελ1/36μ−1/27.

Now we estimate

max
Eδ

( ∑
τ∈Eδ

(φτ,μgτ,λ)
2
)1/2

using the Kakeya maximal function as in the 6-linear case. Clearly

max
Eδ

( ∑
τ∈Eδ

(φτ,μgτ,λ)
2
)1/2

≤ μ
(∑

τ

g2τ,λ

)1/2

,

where τ ranges over a full partition into δ caps of the surface S.

(̃b 5
τk
) 1/5 � (̃b 5

τk
) 1/5 ∗ (δ71τ ′).

Hence

gτ �
∫ ( 5∏

k=1

(̃b 5
τi)

1/5 ∗ δ71τ ′
)
(z) (δ71τ ′)(x − z) dz �

∫
ω(z) (δ71τ ′)(x− z) dz,

so

g2τ,λ � δ7
∫
(ω2 1{ω�λδ5})(z) 1τ ′(x− z) dz.

We have ∫
BR

ω2 1{ω�λδ5}(x) dx �
( 1

λ δ5

)1/2
∫
BR

ω5/2(x) dx,

which, by (3.6), yields

� (
1

λ δ5
)1/2

∫
BR

( ∫ ( 5∏
k=1

b̃ 5
τi(x − zi)

)1/2

dx
)( 5∏

k=1

(δ71τ ′)(zi)
)
dz1 · · · dz5

� Rε λ−1/2 δ3.

Hence,

g2τ,λ � Rε δ10 λ−1/2

∫
1τ ′(x− y) dμτ (dy).

Thus proceeding exactly as in the 6-linear case we have∥∥∥max
Eδ

( ∑
τ∈Eδ

(φτ,μgτ,λ)
2
)1/2∥∥∥

L18/7(BR)
� Rε μ δ1/9 λ−1/4 � Rε μ δ1/9 λ−3/4.
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Summarizing, our estimates yield∥∥∥max
Eδ

( ∑
τ∈Eδ

(φτgτ )
2
)1/2∥∥∥

L5/2(BR)
� Rε δ−1/10.

∥∥∥max
Eδ

( ∑
τ∈Eδ

(φτ,μgτ,λ)
2
)1/2∥∥∥

L18/7(BR)
� Rε min(μλ−3/4 δ1/9, λ1/36 μ−1/27)

� Rε δ1/(9·28).

Then interpolation yields that the improvement is

5

1764
.

3.3. Estimates on the linear term

For this term the caps have size R−1/2 so we can use more direct methods with-
out suffering any significant loss. One such method is using the fact that for a
function f supported on S we have, for every xn ∈ Rn,

‖f̂dσ‖L2(Rn−1×{xn}) ≈ ‖f‖L2(S).

This is referred to as conservation of mass in PDE literature. We briefly give the
calculation that leads to this result. Let x = (x, xn). Let S be parametrized by
ξn = φ(ξ). Then

‖f̂dσ‖2L2(Rn−1×{xn}) =
∫ ∣∣∣ ∫ f(ξ) e−i(x·ξ+xnφ(ξ)) dξ

∣∣∣2 dx
=

∫ ∣∣∣ ∫ f(ξ) exnφ(ξ) e−ix·ξ dξ
∣∣∣2dx.

Now the inner integral is the Fourier transform of f(ξ)exnφ(ξ), thus applying the
Plancherel theorem we have

=

∫
|f(ξ) exnφ(ξ)|2 dξ =

∫
|f(ξ)|2 dξ ≈ ‖f‖2L2(S).

To continue the estimation of the linear term we pass from the cτ to the bτ
variant as before. Thus for the L12/5 estimate we have∥∥∥[ ∑

τ∈E

(φτ cτ )
2
]1/2∥∥∥

L12/5(BR)
�

∥∥∥[ ∑
τ∈E

(φτ bτ )
2
]1/2∥∥∥

L12/5(BR)

� R1/8
[∑

τ

∫
BR

(φτ bτ )
12/5

]5/12
.

Here, on the right-hand side τ ranges over a partition into R−1/2 of all of S. Due
to size of our caps we have bτ � R−5/2. Using this and then conservation of mass
we obtain

� R1/8+ε.
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We estimate in L18/7 first without using the Kakeya maximal function estimate.
First decompose φτ into φτ,μ exactly as before. Then

∥∥∥[ ∑
τ∈E

(φτ,μ bτ )
2
]1/2 ∥∥∥

L18/7(BR)
≤ R1/6

(∑
τ

‖φτ,μ bτ‖18/7L18/7(BR)

)7/18

� R1/6
(
μ−2/21 R7/2+5/2−5/2·18/7+ε

)7/18 � Rε μ−1/27.

Now we shall estimate using Kakeya maximal function bounds. Again we will
first pass to probability measures, and then to the maximal function estimate.
Thus we write

bτ � bτ ∗R−7/2 1τ ′ and (bτ )
2(x) � R−7/2

∫
(bτ )

2(y) 1τ ′(x− y) dy,

and estimate using again conservation of mass∫
BR

(bτ )
2(x) dx � R−3/2.

Hence

(bτ )
2 � R−5

∫
1τ ′(x− y) dμτ ,

so∥∥∥[ ∑
τ∈E

(φτ,μbτ )
2
]1/2∥∥∥

L18/7(BR)
≤ μ

∥∥∥[∑
τ

(bτ )
2
]1/2∥∥∥

L18/7(BR)

� R−(7/4+3/4) μ
∥∥∥∑

τ

1τ ′(· − yτ )
∥∥∥1/2

L9/7(BR)
� R−5/2+22/9+εμ � R−1/18+εμ.

Interpolation shows that the improvement for this term is, as in the 6-linear
case,

2

735
.

Finally comparing the improvements, we get

min
( 2

735
,

5

1764

)
=

2

735

and thus we have Theorem 1.
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