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On a characterization of distributive rings via

saturations and its applications to Armendariz
and Gaussian rings

Ryszard Mazurek and Micha�l Ziembowski

Abstract. In this paper we apply Ferrero–Sant’Ana’s characterization
of right distributive rings via saturations to prove that all right distribu-
tive rings are Armendariz relative to any unique product monoid. As an
immediate consequence we obtain that all right distributive rings are Ar-
mendariz. We apply this result to give a new proof of the well-known
fact that all right duo right distributive rings are right Gaussian. We also
show that for any nontrivial unique product monoid S, the class of Ar-
mendariz rings relative to S is contained in the class of Armendariz rings,
and we present an example of a unique product monoid S for which this
containment is strict.

1. Introduction

Throughout this paper, R denotes an associative ring with unity. Recall that a
ring R is said to be right distributive if the lattice of right ideals of R is distributive,
i.e., (A + B) ∩ C = A ∩ C + B ∩ C for any right ideals A,B and C of R. Left
distributive rings are defined similarly. A ring R is called an Armendariz ring
if whenever the product of two polynomials over R is zero, then the products of
their coefficients are all zero, that is, for any f =

∑m
i=0 aix

i and g =
∑n

j=0 bjx
j ∈

R[x], if fg = 0, then aibj = 0 for all i and j. These rings were introduced
by M.B. Rege and S. Chhawchharia in [20], and the name for them was chosen
to honor E.P. Armendariz, who noted in [2] that all reduced rings satisfy this
condition. Armendariz rings, as well as their numerous generalizations (see [15]),
have recently been objects of intensive investigation.

The aim of this paper is to examine relationships between the classes of right
distributive rings and Armendariz rings. The main motivation for the study comes
from the theory of commutative rings. According to L. Fuchs, [8], commutative
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distributive rings are called arithmetical rings. It is well known that a commutative
domain is arithmetical if and only if it is Prüfer if and only if it is Gaussian (see,
e.g., [9]), where a commutative ring R is said to be Gaussian if

(1.1) c(fg) = c(f) c(g) for any f, g ∈ R[x],

with c(h) denoting the ideal of R generated by the coefficients of a polynomial
h ∈ R[x]. Thus in the commutative case, both arithmetical rings and Gaussian
rings generalize the important notion of a Prüfer domain to rings with zero di-
visors. When passing from commutative domains to all commutative rings, one
implication between the arithmetical and the Gaussian conditions remains valid;
namely if a ring is arithmetical then it is Gaussian (see Section 4 of [9]). As proved
by D.D. Anderson and V. Camillo in Theorem 1 in [1], a commutative ring is Gaus-
sian if and only if all its homomorphic images are Armendariz rings. Therefore,
since obviously homomorphic images of arithmetical rings are arithmetical, the
aforementioned result,

(1.2) R is an arithmetical ring ⇒ R is a Gaussian ring,

can be seen as an immediate consequence of the implication

(1.3) R is an arithmetical ring ⇒ R is an Armendariz ring,

which is explicitly outlined, for example, as Corollary 9.56 in C. Faith’s book [6].
In this paper we extend the result (1.3) to noncommutative rings. Namely we

show that for any ring R,

(1.4) R is a right distributive ring ⇒ R is an Armendariz ring.

In fact we will prove the much stronger result,

R is a right distributive ring(1.5)

⇒ R is an Armendariz ring relative to any u.p. monoid S,

where according to [13], a ring R is said to be Armendariz relative to a monoid S,
or S-Armendariz for short, if for any elements α =

∑
s∈S ass and β =

∑
t∈S btt

of the monoid ring R[S] (where s, t ∈ S and as, bt ∈ R), αβ = 0 implies asbt = 0
for all s, t ∈ S (the definition of a u.p. monoid is recalled at the beginning of
Section 4). Since the additive monoid S = N∪{0} of nonnegative integers is a u.p.
monoid and the monoid ring R[S] is isomorphic to the polynomial ring R[x], it
follows that (1.4) is a consequence of (1.5). To show that the result (1.5) is indeed
stronger than (1.4), we will construct an example of an Armendariz ring that is
not S-Armendariz for some u.p. monoid S.

One advantage of proving the implication (1.4) is that every property estab-
lished for Armendariz rings is automatically inherited by right distributive rings.
For example, the property that nilpotent elements of a right distributive ring R
form a (nonunital) subring of R, proved in Corollary 2 in [16], can now be seen as an
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immediate consequence of the same property for nilpotent elements of Armendariz
rings, proved in Proposition 4.5 in [15].

Another benefit of proving the result (1.4) is that it enlarges the stock of exam-
ples of Armendariz rings to include all known examples of right distributive rings.
Since the structure of right distributive rings is quite subtle, these examples can
be helpful in developing the theory of Armendariz rings.

Yet another benefit from proving (1.4) is a new proof of the well-known fact
that right duo right distributive rings are right Gaussian, which will be presented in
Section 4. This fact extends (1.2) to the noncommutative setting. Right Gaussian
rings were introduced in [17] by replacing each ideal c(h) in the condition (1.1)
with the right ideal cr(h) generated by the coefficients of a polynomial h ∈ R[x].

The paper is organized as follows. Section 2 is devoted to so-called saturations,
which are some special right ideals of a ring, used by M. Ferrero and A. Sant’Ana
in [7] to characterize right distributive rings in the spirit of a well-known char-
acterization by Jensen of commutative distributive rings. In Section 2 we point
out some links between the result of Ferrero–Sant’Ana and that of Jensen, and
collect properties of saturations needed in later parts of the paper. In Section 3
we give an alternative proof of the Ferrero–Sant’Ana result, which is then used in
Section 4 to prove that all right distributive rings are Armendariz relative to any
u.p. monoid. In Section 5 we show that for any nontrivial u.p. monoid S, the class
of Armendariz rings relative to S is contained in the class of Armendariz rings,
and we present an example of a u.p. monoid S for which this containment is strict.

2. Saturations of right ideals

In 1964, C.U. Jensen proved the following characterization of arithmetical rings
(i.e., commutative distributive rings).

Theorem 2.1. (Lemma 1 in [10]) A commutative ring R is arithmetical if and
only if for any maximal ideal M of R, the ideals of the ring of fractions of R with
respect to D = R \M are totally ordered by set inclusion.

Rings of fractions, as shown by the result of Jensen, are very useful tools
in studying commutative distributive rings. In the noncommutative setting the
situation is different, as for a right distributive ring R the ring of fractions with
respect to the complement D = R \ M of a maximal right ideal M of R may
not exist (see Section 7 of [19]). In [7] Ferrero and Sant’Ana have overcome the
problem by adjoining to any right ideal I of R its D-saturation

ID−1 = {r ∈ R : rd ∈ I for some d ∈ D}, where D = R \M,

and considering the lattice of D-saturations of right ideals of R instead of the
lattice of right ideals of the possibly nonexistent ring of fractions with respect
to D. They proved in Corollary 3.6 in [7] that a ring R is right distributive if
and only if for any maximal right ideal M of R the D-saturations of right ideals
of R are totally ordered by set inclusion. An alternative proof of this result will be
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given in Section 3. In the present section we explain why the result of Ferrero and
Sant’Ana is for noncommutative rings an adequate analogue of the result of Jensen.
Furthermore, since saturations play a crucial role in Section 4 in our proof that all
right distributive rings are S-Armendariz for any u.p. monoid S, we establish the
properties of saturations that will be needed in the proof.

Let R be a ring and let D be a multiplicative subset of R (i.e., D · D ⊆ D,
1 ∈ D, and 0 �∈ D). Then a ring RD is called a right ring of fractions of R with
respect to D if there exists a ring homomorphism ϕ : R → RD such that

(a) For any d ∈ D, ϕ(d) is an invertible element of RD.

(b) Every element of RD has the form ϕ(r)ϕ(d)−1 for some r ∈ R and d ∈ D.

(c) kerϕ = {r ∈ R : rd = 0 for some d ∈ D}.
It is well known (e.g. see Theorem 10.6 in [12]) that the ring R has a right ring

of fractions with respect to D if and only if the following conditions are satisfied:

(1) For any r ∈ R and d ∈ D, rD ∩ dR �= ∅.
(2) For any r ∈ R, if d′r = 0 for some d′ ∈ D, then rd = 0 for some d ∈ D.

If a set D ⊆ R satisfies property (1) above, then D is said to be right Ore, whereas
a set D ⊆ R satisfying property (2) is said to be right reversible.

A right ideal P of a ring R such that the complement D = R\P is a multiplica-
tive subset of R is said to be completely prime. In other words, a right ideal P of
a ring R is completely prime if P �= R and for any a, b ∈ R, ab ∈ P implies a ∈ P
or b ∈ P .

It is well known that any maximal right ideal M of a right distributive ring R
is a two-sided ideal of R (see Corollary 4 of Proposition 1.1 in [21]) and thus M
is completely prime. Hence the complement D = R \M is a multiplicative subset
of R. In fact we have the following result.

Proposition 2.2. (Theorem 7.7 (1) in [23]) If R is a right distributive ring and M
is a maximal right ideal of R, then D = R \M is a right Ore, multiplicative subset
of R.

Unfortunately, as the example constructed by G. Puninski in Section 7 of [19]
shows, the complement D = R \M of a maximal right ideal M of a right distribu-
tive ring R need not be right reversible, so right rings of fractions with respect
to D = R \M may not exist. Therefore, it is impossible to extend Jensen’s The-
orem 2.1 to right distributive rings simply by using right rings of fractions. To
overcome this difficulty we consider some special right ideals of a right distributive
ring R that exist independently of whether or notD = R\M is right reversible and,
in the case where D is right reversible, furthermore constitute a lattice isomorphic
to the lattice of right ideals of the right ring of fractions RD.

Let R be any ring and let D be any nonempty subset of R. Following [7], for a
right ideal I of R we define the saturation of I with respect to D, or D-saturation
of I for short, to be the set

ID−1 = {r ∈ R : rd ∈ I for some d ∈ D}
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(as is pointed out in [7], this notion has also been used by G. Törner and J. Zima
in [22] to study right distributive domains). Assume that D is a multiplicative,
right Ore subset of R. Then as proved in Proposition 2.4 below, for any right
ideal I of R the D-saturation ID−1 of I is a right ideal of R. Let

L = {ID−1 : I is a right ideal of R},
i.e., L is the set of all D-saturations of right ideals of R. Then ordered by inclu-
sion, L has a lattice structure, where for J,K ∈ L the meet and join are defined by

J ∧K = J ∩K and J ∨K = (J +K)D−1.

Assume for a moment that furthermore D is right reversible. Then the ring RD of
right fractions of R with respect to D exists. Let ϕ be the natural homomorphism
from R to RD. For any J ∈ L we set Ψ(J) = ϕ(J) ·RD, the right ideal generated
by ϕ(J) in RD. It is easy to verify that Ψ is a lattice isomorphism from the
lattice L of D-saturations of right ideals of R onto the lattice of right ideals of RD.
Hence the following result of Ferrero and Sant’Ana is an adequate generalization
of Jensen’s Theorem 2.1 to noncommutative rings.

Theorem 2.3. (Corollary 3.6 in [7]) A ring R is right distributive if and only
if for any maximal right ideal M of R, the saturations of right ideals of R with
respect to D = R \M are totally ordered by set inclusion.

An alternative proof of the Ferrero–Sant’Ana result will be given in Section 3.
Below we prove those properties of saturations that will be needed in Section 4 in
proving the main result of this paper, namely that all right distributive rings are
Armendariz relative to any u.p. monoid.

Proposition 2.4. Let R be a ring and let D be a multiplicative, right Ore subset
of R. Then:

(a) For any right ideal I of R and any n ∈ N, if a1, a2, . . . , an ∈ ID−1, then
there exists d ∈ D such that a1d, a2d, . . . , and ∈ I.

(b) For any right ideal I of R, ID−1 is a right ideal of R and I ⊆ ID−1.

(c) For any right ideals I, J of R,

J ⊆ ID−1 if and only if JD−1 ⊆ ID−1.

(d) For any right ideal I of R, (ID−1)D−1 = ID−1.

(e) For any right ideals I, J of R, if ID−1 ⊆ JD−1, then (aI)D−1 ⊆ (aJ)D−1

for any a ∈ R.

Proof. (a) The case where n = 1 is obvious. Assume n ≥ 2, a1, a2, . . . , an ∈ ID−1

and the property (a) is true for any n− 1 elements of ID−1. Then by the induc-
tive hypothesis there exists d′ ∈ D such that a1d

′, a2d′, . . . , an−1d
′ ∈ I. Since

an ∈ ID−1, for some d′′ ∈ D we have and
′′ ∈ I, and since D is right Ore, there

exist d̃ ∈ D and r ∈ R with d′d̃ = d′′r. Set d = d′d̃. Then d ∈ D, aid = (aid
′)d̃ ∈ I

for any i ∈ {1, 2, . . . , n− 1}, and and = (and
′′)r ∈ I.
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(b) If a ∈ I, then a · 1 ∈ I and 1 ∈ D, and thus a ∈ ID−1. Hence I ⊆ ID−1.
In particular, ID−1 �= ∅.

Let a1, a2 ∈ ID−1. Then by (a) there exists d ∈ D such that a1d, a2d ∈ I, and
since (a1 + a2)d = a1d+ a2d ∈ I, it follows that a1 + a2 ∈ ID−1.

Let a ∈ ID−1 and r ∈ R. Then ad ∈ I for some d ∈ D, and since D is right
Ore, rd1 = dr1 for some d1 ∈ D and r1 ∈ R. Since ard1 = adr1 ∈ Ir1 ⊆ I and
d1 ∈ D, ar ∈ ID−1.

(c) Assume J ⊆ ID−1, and let a ∈ JD−1. Then ad ∈ J for some d ∈ D, and
thus ad ∈ ID−1. Hence add1 ∈ I for some d1 ∈ D. Since dd1 ∈ D, a ∈ ID−1 and
thus JD−1 ⊆ ID−1.

Assume JD−1 ⊆ ID−1. Then (b) implies that J ⊆ ID−1.
(d) If a ∈ (ID−1)D−1, then ad1 ∈ ID−1 and ad1d2 ∈ I for some d1, d2 ∈ D.

Since d1d2 ∈ D, it follows that a ∈ ID−1 and thus (ID−1)D−1 ⊆ ID−1. The
opposite inclusion is a consequence of (b).

(e) Assume that ID−1 ⊆ JD−1, and let x ∈ (aI)D−1. Then xd1 = ai for
some d1 ∈ D and i ∈ I. Since I ⊆ ID−1 ⊆ JD−1, there exists d2 ∈ D such that
id2 ∈ J . Now for d = d1d2 ∈ D we have xd = (xd1)d2 = a(id2) ∈ aJ , and thus
x ∈ (aJ)D−1, which shows that (aI)D−1 ⊆ (aJ)D−1. �

We will consider mainly saturations with respect to complements of completely
prime right ideals. Such saturations have the following property.

Corollary 2.5. Let P be a completely prime right ideal of a ring R such that
D = R \ P is a right Ore subset of R. Then, for any element a ∈ R,

(a) if I is a right ideal of R and ID−1 � (aR)D−1, then ID−1 ⊆ (aP )D−1;

(b) if a ∈ (aP )D−1, then a ∈ 0D−1.

Proof. (a) Let x ∈ ID−1. Since ID−1 ⊆ (aR)D−1, there exist d ∈ D and r ∈ R
such that xd = ar. If r ∈ D, then since ar = xd ∈ ID−1 by Proposition 2.4 (b), it
follows from Proposition 2.4 (d) that a ∈ (ID−1)D−1 = ID−1, so aR ⊆ ID−1 by
Proposition 2.4 (b), and applying Proposition 2.4 (c) we come to the contradiction
(aR)D−1 ⊆ ID−1. Hence r �∈ D, so r ∈ P and the equality xd = ar implies
x ∈ (aP )D−1, as desired.

(b) Since a ∈ (aP )D−1, ad = ap for some d ∈ D and p ∈ P . Hence we have
a(d− p) = 0 with d− p ∈ D, and thus a ∈ 0D−1. �

3. A characterization of right distributive rings via satura-
tions

The main result of this paper is Theorem 4.1, which says that every right dis-
tributive ring is Armendariz relative to any u.p. monoid. As already mentioned,
the proof of the result applies the Ferrero–Sant’Ana characterization of right dis-
tributive rings via saturations established in Corollary 3.6 in [7]. For the sake of
completeness, we give below a self-contained proof of the characterization, which is
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different than the proof given by Ferrero and Sant’Ana in [7]. (Another reason for
including the proof is that our definition of a saturation is more general than that
in [7] and, furthermore, condition (iii) below differs slightly from the corresponding
condition (iii) in Corollary 3.6 of [7].)

Theorem 3.1. For any ring R the following conditions are equivalent:

(i) R is right distributive.

(ii) For any maximal right ideal M of R, the saturations of right ideals of R with
respect to D = R \M are totally ordered by set inclusion.

(iii) For any maximal right ideal M of R and any elements a, b ∈ R,

(aR)D−1 ⊆ (bR)D−1 or (bR)D−1 ⊆ (aR)D−1,

where D = R \M .

Proof. (i) ⇒ (ii) Assume R is right distributive and M is a maximal right ideal
of R. Then by Proposition 2.2, D = R \ M is a right Ore multiplicative subset
of R. Suppose there exist right ideals I, J of R such that ID−1 �⊆ JD−1 and
JD−1 �⊆ ID−1, and choose a ∈ ID−1 \ JD−1 and b ∈ JD−1 \ ID−1. Since R is
right distributive,

aR = aR ∩ (bR+ (a− b)R) = aR ∩ bR+ aR ∩ (a− b)R.

Hence a = c + ah, where c ∈ aR ∩ bR, h ∈ R, and ah = (a − b)r for some
r ∈ R. If h ∈ M , then 1 − h ∈ D, and since by Proposition 2.4 (b) we have
a(1 − h) = c ∈ bR ⊆ JD−1, it follows from Proposition 2.4 (d) that a ∈ JD−1, a
contradiction. If r ∈ D, then br = a(r−h) ∈ aR ⊆ ID−1 implies that b ∈ ID−1, a
contradiction. We are left with the case where h ∈ D and r ∈ M . Then r−h ∈ D,
and since a(r− h) = br ∈ bR ⊆ JD−1, we again obtain a contradiction a ∈ JD−1.
Hence for any right ideals I, J of R we have ID−1 ⊆ JD−1 or JD−1 ⊆ ID−1,
which proves (ii).

(ii) ⇒ (iii) This is obvious.
(iii) ⇒ (i) Assume (iii). We have to show that (A+ B) ∩ C = A ∩ C +B ∩ C

for any right ideals A,B and C of R. Obviously, A ∩ C + B ∩ C ⊆ (A + B) ∩ C.
To show the opposite inclusion, let r ∈ (A + B) ∩ C. Then r ∈ C and r = a + b
for some a ∈ A and b ∈ B. It is clear that the set

I = {x+ y : x, y ∈ R, rx ∈ A, ry ∈ B}
is a right ideal of R. Suppose I �= R. Then I ⊆ M for a maximal right ideal M
of R. Set D = R \M . Then by (iii) we have (aR)D−1 ⊆ (bR)D−1 or (bR)D−1 ⊆
(aR)D−1. If (aR)D−1 ⊆ (bR)D−1, then a ∈ (aR)D−1 ⊆ (bR)D−1, and thus
ad ∈ bR ⊆ B for some d ∈ D. However, then rd = (a + b)d = ad + bd ∈ B,
so d = 0 + d ∈ I ⊆ M , a contradiction. Similarly we get a contradiction if
(bR)D−1 ⊆ (aR)D−1. Hence I = R, and thus there exist x, y ∈ R with x+ y = 1,
rx ∈ A and ry ∈ B. Therefore, r = r(x + y) = rx + ry ∈ A ∩ C + B ∩ C, as
desired. �
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4. Right distributive rings are Armendariz relative to u.p.
monoids

In this section we will prove that every right or left distributive ring is Armen-
dariz relative to any u.p. monoid. Recall that a monoid S is said to be a unique
product monoid (a u.p. monoid for short) if for any two nonempty finite subsets
X,Y ⊆ S there exist x0 ∈ X and y0 ∈ Y such that x0y0 �= xy for every (x, y) ∈ X×
Y \ {(x0, y0)}; the element x0y0 is called a u.p. element ofXY = {st : s ∈ S, t ∈ Y }.
The class of u.p. monoids is quite large and important (e.g. it includes totally or-
dered monoids, submonoids of a free group, torsion-free nilpotent groups, and
a.n.u.p.-monoids; see [14] for the definition of the last notion), and u.p. monoids
have been considered in many papers (e.g. see [5], [14], [15], and [18]).

Theorem 4.1. Let R be a right or left distributive ring and let S be a u.p. monoid.
Then R is Armendariz relative to S.

The proof of the theorem will be based on the following observation.

Lemma 4.2. Let R be a ring and let P be a completely prime right ideal of R such
that D = R \ P is a right Ore subset of R and the saturations of right ideals of R
with respect to D are totally ordered by set inclusion. Let S be a u.p. monoid and
let α =

∑
s∈S ass, β =

∑
t∈S btt ∈ R[S] be such that αβ = 0. Then there exists

d ∈ D such that asbtd = 0 for any s, t ∈ S.

Proof. In the proof we adapt some ideas of the proof of Proposition 6.1 in [15]. For
any γ =

∑
s∈S css ∈ R[S], cs is called the s-coefficient of γ, and supp(γ) denotes

the support of γ, i.e., supp(γ) = {s ∈ S : cs �= 0}.
If α = 0 or β = 0, it suffices to take d = 1. Thus we can assume that α �= 0

and β �= 0. By Proposition 2.4 (a), to prove the result, it suffices to show that
asbt ∈ 0D−1 for any s, t ∈ S.

Since the saturations of right ideals of R with respect to D are totally ordered,
there exist s0 ∈ supp(α) and t0 ∈ supp(β) such that

(4.1) (asbtR)D−1 ⊆ (as0bt0R)D−1 for any s, t ∈ S.

Set

X = {x ∈ supp(α) : ∃u ∈ S (axbuR)D−1 = (as0bt0R)D−1} ,
Y = {y ∈ supp(β) : ∃ v ∈ S (avbyR)D−1 = (as0bt0R)D−1} .

Since S is a u.p. monoid and the sets X and Y are finite and nonempty (because
s0 ∈ X and t0 ∈ Y ), there exist x0 ∈ X and y0 ∈ Y such that x0y0 is a u.p.
element of XY . Since x0 ∈ X and y0 ∈ Y, for some u0, v0 ∈ S we have

(4.2) (ax0bu0R)D−1 = (as0bt0R)D−1

and

(4.3) (av0by0R)D−1 = (as0bt0R)D−1.
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Assume that (bu0R)D−1 ⊆ (by0R)D−1. Then (4.2), Proposition 2.4 (e) and (4.1)
imply that (as0bt0R)D−1 = (ax0bu0R)D−1 ⊆ (ax0by0R)D−1 ⊆ (as0bt0R)D−1, and
thus

(4.4) (ax0by0R)D−1 = (as0bt0R)D−1.

Since αβ = 0, looking at the x0y0-coefficient of αβ we obtain

(4.5) 0 = ax0by0 + c ,

where c is the sum of all products apbq with p ∈ supp(α), q ∈ supp(β), pq = x0y0
and (p, q) �= (x0, y0) (if no such par (p, q) exists, we set c = 0). Note that for such a
pair (p, q), since pq = x0y0 and x0y0 is a u.p. element of XY , and (p, q) �= (x0, y0),
we have p �∈ X or q �∈ Y . In either case, (4.1), (4.4), and the definitions of X
and Y imply that (apbqR)D−1 � (ax0by0R)D−1; so (apbqR)D−1 ⊆ (ax0by0P )D−1

by Corollary 2.5 (a), and thus

(4.6) apbq ∈ (ax0by0P )D−1.

Since by Proposition 2.4 (b) the set (ax0by0P )D−1 is a right ideal of R, we have
by (4.6) that c∈(ax0by0P )D−1, and thus (4.5) implies that ax0by0 ∈ (ax0by0P )D−1.
Hence by Corollary 2.5 (b) we have ax0by0 ∈ 0D−1, and thus by (4.1) and (4.4),
asbt ∈ 0D−1 for all s, t ∈ S in this case.

We are left with the case where (bu0R)D−1 �⊆ (by0R)D−1. Since the D-satu-
rations of right ideals of R are totally ordered, (by0R)D−1 � (bu0R)D−1 and we
have that (by0R)D−1 ⊆ (bu0P )D−1 by Corollary 2.5 (a). Hence Proposition 2.4 (e)
implies (av0by0R)D−1 ⊆ (av0bu0P )D−1, and from (4.1) and (4.3) we obtain

(4.7) asbt ∈ (av0bu0P )D−1 for any s, t ∈ S.

Applying (4.7) with s = v0 and t = u0, we obtain av0bu0 ∈ (av0bu0P )D−1, and by
Corollary 2.5 (b) we have that av0bu0 ∈ 0D−1. Now another application of (4.7)
yields asbt ∈ 0D−1 for all s, t ∈ S, which completes the proof. �

Proof of Theorem 4.1. Let R be a right distributive ring, let S be a u.p. monoid,
and let α =

∑
s∈S ass, β =

∑
t∈S btt ∈ R[S] be such that αβ = 0. Suppose that

asbt �= 0 for some s, t ∈ S. Then I = {r ∈ R : asbtr = 0} is a proper right
ideal of R. Thus there exists a maximal right ideal M of R such that I ⊆ M .
By Proposition 2.2, M is a completely prime right ideal of R and D = R \ M is
a right Ore subset of R, and by Theorem 3.1 the saturations of right ideals of R
with respect to D are totally ordered. Hence by Lemma 4.2 there exists d ∈ D
with asbtd = 0. Consequently d ∈ I and it follows that d ∈ M . This contradiction
completes the proof in the case where R is right distributive.

Assume now that R is a left distributive ring and S is a u.p. monoid. Then the
opposite ring Rop of R is right distributive and the opposite monoid Sop of S is
a u.p. monoid, and thus, as we already know, Rop is Armendariz relative to Sop.
Therefore, R is Armendariz relative to S. �
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By applying Theorem 4.1 to the additive monoid S = N ∪ {0} of nonnegative
integers, we obtain the following result.

Corollary 4.3. Every right or left distributive ring is Armendariz.

Recall that a ring R is said to be a right chain ring if the right ideals of R
are totally ordered by set inclusion (see [4]). Left chain rings are defined similarly.
Obviously, any right (resp. left) chain ring is right (resp. left) distributive and thus
the following two results are immediate consequences of Theorem 4.1.

Corollary 4.4. (Corollary 6.2 in [15]) Every right or left chain ring is Armendariz
relative to any u.p. monoid.

Corollary 4.5. (Corollary 6.3 in [15]) Every right or left chain ring is Armendariz.

For a ring R and a polynomial h ∈ R[x], let cr(h) denote the right ideal
of R generated by the coefficients of h. A ring R is said to be right Gaussian if
cr(fg) = cr(f)cr(g) for any f, g ∈ R[x]. The notion of right Gaussian rings, intro-
duced in [17], extends to the noncommutative setting the notion of a commutative
Gaussian ring. It is well known that every right Gaussian ring R is right duo, that
is, any right ideal of R is a two-sided ideal (see Lemma 1.4 in [17]). Below we
apply Theorem 4.1 to get a new and short proof of the following extension of the
result (1.2) to noncommutative rings.

Corollary 4.6. (Theorem 2.1 in [17]) Every right duo right distributive ring is
right Gaussian.

Proof. Let R be a right duo right distributive ring. Obviously, all homomorphic
images of R are right distributive and thus, by Theorem 4.1, they are Armendariz.
Now the result follows immediately from the known characterization of right Gaus-
sian rings as those right duo rings whose homomorphic images are all Armendariz
(see Theorem 1.5 in [17]). �

5. Armendariz rings relative to u.p. monoids are Armendariz,
but not conversely

In this section we show that for any nontrivial u.p. monoid S the class of S-
Armendariz rings is contained in the class of Armendariz rings, and we present an
example of a u.p. monoid S for which the containment is strict.

Proposition 5.1. If a ring R is S-Armendariz for some nontrivial u.p. monoid S,
then R is Armendariz.

Proof. Since S is nontrivial, we can choose t ∈ S\{1}. Let T be the submonoid of S
generated by t, i.e., T = {1, t, t2, . . . }. Since R is S-Armendariz, R is T -Armen-
dariz as well, and thus to show that R is Armendariz, it suffices to show that the
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monoid T is isomorphic to the additive monoid N ∪ {0}. In turn, to show this, it
is enough to prove that for any i, j ∈ N ∪ {0}, i �= j implies ti �= tj . Suppose that
i �= j but ti = tj , where without loss of generality we can assume that i > j. Then,
since each u.p. monoid is cancellative, we have tn = 1 for n = i− j ∈ N (note that
n ≥ 2, since t �= 1). Now for the subsets X = {1, t} and Y = {1, t, t2, . . . , tn−1}
of S we can easily see that there does not exist an element of S written uniquely
in the form xy with x ∈ X and y ∈ Y , contradicting that S is a u.p. monoid. �

By Proposition 5.1, all Armendariz rings relative to a nontrivial u.p. monoid
are Armendariz. In the example below we show that, in general, the converse is
not true.

Example 5.2. There exist a u.p. monoid S and a ring R such that R is Armen-
dariz but not S-Armendariz.

Let S be the monoid generated by s1, s2, s3, t1, t2, t3 with the following defining
relations:

s1t1 = s2t3, s1t2 = s3t1, s1t3 = s2t2, s3t2 = s2t1.

As it was shown by J. Krempa, S is a u.p. monoid (see Example 13 of Chapter 10
in [18]).

Let K = Z2 be the field of two elements and let R be the K-algebra generated
by y1, y2, y3 with the following defining relations:

y21 = y2y3, y1y2 = y3y1, y1y3 = y22 , y3y2 = y2y1,(5.1)

y23 = 0, yiyjyk = 0 for all i, j, k ∈ {1, 2, 3}.(5.2)

We will show that the ring R is Armendariz but not S-Armendariz. We will
show even more, namely that the ring R is power-serieswise Armendariz (in the
sense of [11]), i.e., for any power series f =

∑∞
i=0 aix

i, g =
∑∞

j=0 bjx
j ∈ R[[x]], if

fg = 0, then aibj = 0 for all i and j. Obviously, any power-serieswise Armendariz
ring is Armendariz.

Notice that by the defining relations (5.1), any product yiyj with (i, j) �= (3, 3)
can be represented as one of y2y3, y3y1, y

2
2 , or y2y1 (we use the right sides of the

defining relations (5.1) as representatives for the products). This and the diamond
lemma (see [3]) imply that every element a ∈ R can be uniquely written as a linear
combination over K of elements of the set B = {1, y1, y2, y3, y2y3, y3y1, y22 , y2y1}.
Hence the ring R is a Z2-algebra of dimension 8, so R has the additional feature
of being finite (of order 28). The coefficient from K with which 1 ∈ B appears
when a ∈ R is written as a linear combination of elements of B will be called the
constant term of a. It is clear that the set J of elements of R whose constant term
is equal to zero, is an ideal of R,

J2 = {k1y2y3 + k2y3y1 + k3y
2
2 + k4y2y1 : k1, k2, k3, k4 ∈ K}

and J3 = {0}. Hence if a ∈ R \ J (i.e., the constant term of a ∈ R is nonzero),
then a = 1+ j for some j ∈ J and thus a is invertible in R. Therefore, R is a local
ring and J is the unique maximal right ideal of R.



1084 R. Mazurek and M. Ziembowski

To show that the ring R is not S-Armendariz, we consider the elements α =
y1s1 + y2s2 + y3s3 and β = y1t1 + y2t2 + y3t3 of the monoid ring R[S]. Then
αβ = 0, but the product y1y1 of the s1-coefficient of α and the t1-coefficient of β
is nonzero. Thus R is not S-Armendariz.

Now we show that the ring R is power-serieswise Armendariz. Let

f =

∞∑
i=0

aix
i and g =

∞∑
j=0

bjx
j ∈ R[[x]]

be such that fg = 0, i.e.,

(5.3) (a0 + a1x+ a2x
2 + · · · )(b0 + b1x+ b2x

2 + · · · ) = 0.

To show that aibj = 0 for all i and j, we consider three cases.

Case 1: ak �∈ J or bk �∈ J for some k ∈ N∪{0}. Assume that ak �∈ J for some k,
and let k be minimal with this property. Then ak is an invertible element of R.
Furthermore, ai ∈ J for any i < k, and thus by considering the equation (5.3)
modulo the ideal

J [[x]] =
{ ∞∑

m=0

cmxm ∈ R[[x]] : ∀m cm ∈ J
}

of R[[x]], we obtain

(5.4) (akx
k+ak+1x

k+1+ak+2x
k+2+ · · · )(b0+b1x+b2x

2+ · · · ) ≡ 0 (mod J [[x]]),

and after canceling both sides of (5.4) by xk, we get

(5.5) (ak + ak+1x+ ak+2x
2 + · · · )(b0 + b1x+ b2x

2 + · · · ) ≡ 0 (mod J [[x]]).

Since ak is invertible in R, it is invertible modulo J , so the power series ak+ak+1x+
ak+2x

2 + · · · is invertible modulo J [[x]] in R[[x]]. Now it follows from (5.5) that
b0 + b1x + b2x

2 + · · · ≡ 0 (mod J [[x]]), and so bj ∈ J for any j. Hence aibj ∈ J2

for any i < k and any j, and thus

(a0 + a1x+ a2x
2 + · · ·+ ak−1x

k−1)(b0 + b1x+ b2x
2 + · · · ) ≡ 0 (mod J2[[x]]).

Therefore, (5.3) implies that

(ak + ak+1x+ ak+2x
2 + · · · )(b0 + b1x+ b2x

2 + · · · ) ≡ 0 (mod J2[[x]]).

Since ak is invertible in R, it is invertible modulo J2 as well, so it follows that
b0 + b1x+ b2x

2 + · · · ≡ 0 (mod J2[x]), and thus bj ∈ J2 for any j. Since J3 = {0},
it follows that

(a0 + a1x+ a2x
2 + · · ·+ ak−1x

k−1)(b0 + b1x+ b2x
2 + · · · ) = 0,

so from (5.3) we obtain

(ak + ak+1x+ ak+2x
2 + · · · )(b0 + b1x+ b2x

2 + · · · ) = 0.

Since ak is invertible in R, the power series ak + ak+1x+ ak+2x
2 + · · · is invertible

in R[[x]], and it follows that bj = 0 for any j. Thus aibj = 0 for any i and j.
The subcase of Case 1 where bk �∈ J for some k can be treated similarly.
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If the Case 1 does not occur, then ai ∈ J for any i and bj ∈ J for any j. Hence

in the remaining we assume that ai, bj ∈ J for all i and j.

In other words, we assume that for any i and j the constant terms of ai and bj are
equal to zero.

Case 2: Either ai ∈ J2 for any i ∈ N ∪ {0}, or bj ∈ J2 for any j ∈ N ∪ {0}. In
this case for any i and j we have aibj ∈ J3, so aibj = 0.

If neither Case 1 nor Case 2 occurs, then we have the following situation.

Case 3: There exist m,n ∈ N∪{0} such that am, bn ∈ J \J2. Let m be minimal
with am ∈ J \ J2, and let n be minimal with bn ∈ J \ J2. Then ai ∈ J2 for any
i < m, and bj ∈ J2 for any j < n, and since J3 = {0}, the equation (5.3) reduces to

(amxm + am+1x
m+1 + am+2x

m+2 + · · · )(bnxn + bn+1x
n+1 + bn+2x

n+2 + · · · ) = 0.

After cancelling both sides of the above equation by xm+n, we obtain

(am + am+1x+ am+2x
2 + · · · )(bn + bn+1x+ bn+2x

2 + · · · ) = 0.

For any i, j ∈ N ∪ {0}, if i < m or j < n, then we have aibj ∈ J3 = {0}, and thus
to prove that aibj = 0 for all i and j, we can assume that m = n = 0. Therefore,
we assume the equality (5.3) with a0, b0 ∈ J \ J2 and ai, bj ∈ J for all i and j, and
we have to show that aibj = 0 for any i and j.

Since a0, b0 ∈ J \ J2, there exist triples (k1, k2, k3), (l1, l2, l3) ∈ K3 \ {(0, 0, 0)}
and p, q ∈ J2 such that a0 = k1y1+ k2y2 + k3y3+ p and b0 = l1y1 + l2y2+ l3y3+ q.
Since fg = 0, we have

0 = a0b0 = (k1y1 + k2y2 + k3y3 + p)(l1y1 + l2y2 + l3y3 + q)

= (k1l1 + k2l3)y2y3 + (k1l2 + k3l1)y3y1 + (k1l3 + k2l2)y
2
2 + (k2l1 + k3l2)y2y1.

Hence in the equation above, all the “coefficients” of y2y3, y3y1, y
2
2 , and y2y1 are

equal to zero, and since R is a K-algebra of characteristic 2, we obtain the equa-
tions:

k1l1 = k2l3,(5.6)

k1l2 = k3l1,(5.7)

k1l3 = k2l2,(5.8)

k2l1 = k3l2.(5.9)

We consider two subcases.

Subcase A: k1 �= 0 and k2 �= 0. Then k1 = k2 = 1, so (5.6) and (5.8) imply
l1 = l2 = l3, and since b0 �∈ J2, it follows that l1 = l2 = l3 = 1. Hence k3 = 1
by (5.7). Therefore, a0 = y1+y2+y3+p and b0 = y1+y2+y3+q for some p, q ∈ J2.

Next we concentrate on the coefficients a1 and b1. Since a1, b1 ∈ J , we have

(5.10) a1 = u1y1 + u2y2 + u3y3 + s for some u1, u2, u3 ∈ K and s ∈ J2,
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and

(5.11) b1 = v1y1 + v2y2 + v3y3 + t for some v1, v2, v3 ∈ K and t ∈ J2.

Since fg = 0, from the x-coefficient of the product fg, we obtain

(5.12) a0b1 + a1b0 = 0

and thus

0 = a0b1 + a1b0

= (y1 + y2 + y3 + p)(v1y1 + v2y2 + v3y3 + t)

+ (u1y1 + u2y2 + u3y3 + s)(y1 + y2 + y3 + q)

= (v1 + v3 + u1 + u2)y2y3 + (v2 + v1 + u1 + u3)y3y1

+ (v3 + v2 + u1 + u2)y
2
2 + (v1 + v2 + u2 + u3)y2y1 .

Hence

v1 + v3 = u1 + u2,(5.13)

v2 + v1 = u1 + u3,(5.14)

v3 + v2 = u1 + u2,(5.15)

v1 + v2 = u2 + u3.(5.16)

From (5.13) and (5.15) it follows that v1 = v2, and thus v1+v2 = 0. Now we de-
duce from (5.14) and (5.16) that u1 = u2 = u3. Hence (5.13) implies v1 = v2 = v3.
Therefore, a1, b1 ∈ K(y1 + y2 + y3) + J2. Note that (y1 + y2 + y3)

2 = 0, hence

(5.17) [K(y1 + y2 + y3) + J2] · [K(y1 + y2 + y3) + J2] = {0},

and thus a1b1 = 0.
To get information on the coefficients a2 and b2, we look at the x2-coefficient

of the product fg = 0, obtaining that a0b2 + a1b1 + a2b0 = 0. Since a1b1 = 0, it
follows that a0b2+a2b0 = 0, and we are in the circumstances of the equation (5.12),
with a1 replaced by a2, and b1 replaced by b2. Hence, by the same argument as
above, we obtain that

a2, b2 ∈ K(y1 + y2 + y3) + J2,

and thus it follows from (5.17) that a1b2 = a2b1 = 0.
Next we look at the x3-coefficient of the product fg = 0, obtaining

0 = a0b3 + a1b2 + a2b1 + a3b0 = a0b3 + a3b0,

which implies that a3, b3 ∈ K(y1 + y2 + y3) + J2.
Continuing this way we obtain for any i and j that ai, bj ∈ K(y1+y2+y3)+J2,

and thus aibj = 0 by (5.17).
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Subcase B: k1 = 0 or k2 = 0. If k1 �= 0, then l1 = 0 by (5.6) and l3 = 0 by (5.8),
so also l2 = 0 by (5.7). This contradiction shows that k1 = 0, and similarly one
can show that k2 = 0. Since k1 = k2 = 0 and a0 ∈ J \ J2, it follows that k3 = 1,
and thus (5.7) and (5.9) imply l1 = l2 = 0. Hence l3 = 1, and thus a0 = y3 + p
and b0 = y3 + q for some p, q ∈ J2.

Next we look at the coefficients a1 and b1, which as in Subcase A can be written
in the forms (5.10) and (5.11), respectively. Now (5.12) gives

0 = (y3 + p)(v1y1 + v2y2 + v3y3 + t) + (u1y1 + u2y2 + u3y3 + s)(y3 + q) =

= v1y3y1 + v2y2y1 + u1y
2
2 + u2y2y3,

and v1 = v2 = u1 = u2 = 0 follows. Hence a1, b1 ∈ Ky3 + J2, and since

(5.18) (Ky3 + J2) · (Ky3 + J2) = {0},
we obtain a1b1 = 0. Following the same pattern as in Subcase A, we obtain that
ai, bj ∈ Ky3 + J2 for any i, j, and thus aibj = 0 by (5.18).
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