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On irreducible divisors of iterated polynomials

Domingo Gómez-Pérez, Alina Ostafe and Igor E. Shparlinski

Abstract. D. Gómez-Pérez, A. Ostafe, A. P. Nicolás and D. Sadornil
have recently shown that for almost all polynomials f ∈ Fq[X] over the
finite field of q elements, where q is an odd prime power, their iterates
eventually become reducible polynomials over Fq. Here we combine their
method with some new ideas to derive finer results about the arithmetic
structure of iterates of f . In particular, we prove that the nth iterate of f
has a square-free divisor of degree of order at least n1+o(1) as n → ∞
(uniformly in q).

1. Introduction

For a field K and a polynomial f ∈ K[X ] we define the sequence:

f (0)(X) = X, f (n)(X) = f
(
f (n−1)(X)

)
, n = 1, 2, . . . .

The polynomial f (n) is called the nth iterate of the polynomial f .
Following [1], [2], [10], [11], and [15], we say that a polynomial f ∈ K[X ] is

stable if all of its iterates are irreducible over K.
Gómez-Pérez and Nicolás [7], developing some ideas from [16], prove that there

areO(q5/2(log q)1/2) stable quadratic polynomials over a finite field Fq of q elements
for an odd prime power q, where the implied constant is absolute. We also note that
in [8] an upper bound is given on the number of stable polynomials of degree d � 2
over Fq.

Here, we continue to study the arithmetic properties of iterated polynomials
and obtain several new results about their multiplicative structure.

First, we combine the method of Gómez-Pérez and Nicolás [7] with some new
ideas to show that, if q is odd, then for almost all quadratic polynomials f ∈ Fq[X ]
the number rn(f) of irreducible divisors of the nth iterate f (n) grows at least
linearly with n if n is of order at most log q. Our tools to prove this are resultants
of iterated polynomials, the Stickelberger’s theorem [19] and estimates of certain
character sums.
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For the values of n beyond this threshold, we use a different technique, related
to Mason’s proof of the ABC-conjecture in its polynomial version, see [13], [18], to
give a lower bound on the largest degree Dn(f) of the irreducible divisors of f (n).
It is interesting to recall that Faber and Granville [4] have used (in a different way)
the classical version of the ABC-conjecture for the integers to study the arithmetic
of elements in the orbits of polynomial dynamical systems over Z.

Note that our lower bound on Dn(f) is reminiscent of lower bounds on the
largest prime divisor of nonlinear recursive sequences over the integers, see [4], [10],
and [17].

Our approach and some results used to derive lower bounds on rn(f) andDn(f)
are readily combined to obtain the lower bound n1+o(1) as n → ∞ (uniformly in q)
on the largest degree of square-free divisors of f (n).

The outline of the paper is the following. In Section 2 we give the notation used
throughout the paper as well as collect some basic properties needed in the proofs
of the main results. In Section 3, we collect all results about discriminants and
then, in Section 4, we provide bounds on character sums related with discriminants
of iterated polynomials. In Section 5 we recall the result of Mason [13]. These
preliminary results are used in the following sections. More precisely, Section 6
contains an estimate of the number of distinct irreducible factors of a polynomial
iterate. In Section 7 we show that, if f �= fdX

d, then there is always an irreducible
factor of large degree for high order iterates of the polynomial f . Finally, in
Section 8 we combine both approaches and also use some of the previous results
to derive some nontrivial information about the arithmetic structure of f (n) that
applies to any n.

2. Notation

Let p be an odd prime number and let q = ps for some positive integer s. We
denote by Fq the finite field of q elements and by χ the quadratic character of Fq.

We use Fq[X ] to denote the ring of polynomials with coefficients in Fq. Polyno-
mials in this ring are denoted by the letters f , g and h. We usually use f0, . . . , fd
to represent the coefficients of a polynomial f ∈ Fq[X ], that is,

f = fdX
d + · · ·+ f1X + f0,

where fd �= 0 is the leading coefficient of f . As usual, f ′ denotes the formal
derivative of f ∈ Fq[X ].

Throughout the paper the implied constants in symbols ‘O’ and ‘ �’ may oc-
casionally, where obvious, depend on a small positive parameter ε but are absolute
otherwise (we recall that A = O(B) and B � A is equivalent to |A| � cB for some
positive constant c). Also, we write F (n) = o(G(n)) as n → ∞, which means that

lim
n→∞

F (n)

G(n)
→ 0.
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3. Discriminants and iterates of polynomials

We use the following well-known properties of the discriminant Disc (f) and the
resultant Res (f, g) of polynomials f, g ∈ K[X ], see [6], [20], that hold over any
field K.

Lemma 1. Let f, g ∈ K[X ] be polynomials of degrees d � 1 and e � 1, respectively,
with leading coefficients fd and ge, and let h ∈ K[X ]. Suppose that the derivative f ′

is a polynomial of degree k � d − 1 and denote by β1, . . . , βe the roots of g in an
extension field. Then we have:

i) Disc
(
f
)
= (−1)d(d−1)/2 fd−k−2

d Res(f, f ′);

ii) Res
(
f, g

)
= (−1)de gde

∏e
i=1 f(βi);

iii) Res
(
fg, h

)
= Res

(
f, h

)
Res

(
g, h

)
.

From the definition of the resultant, it is clear that two polynomials f and g
are coprime if and only if Res

(
f, g

) �= 0.
To study the discriminants of iterates of polynomials, it is necessary to have

a close-form formula for the resultant of polynomials under compositions. In [14],
the following chain rule for resultants is proved.

Lemma 2. Let f and g be as in Lemma 1 and let h ∈ K[X ] with deg h = � and
leading coefficient h�. Then

Res
(
f(h), g(h)

)
= (hde

� Res
(
f, g

)
)�.

It is clear from Lemma 2 that f and g are coprime if and only if for any
nonconstant polynomial h we have Res

(
f(h), g(h)

) �= 0 (note that this is also a
consequence of the Euclidean algorithm).

Also, Lemma 2 implies the following formula for the discriminant of polynomial
iterates.

Lemma 3. Let f ∈ Fq[X ] be a polynomial of degree d � 2 with leading coefficient
fd and nonconstant derivative f ′ of degree k � d−1. Suppose that γi, i = 1, . . . , k,
are the roots of the derivative f ′. Then, for n � 1, we have

Disc
(
f (n)

)
= (−1)d(d(d−1)/2+k) f

dn−1
d−1 ((k−1)dn+k dn−d

d−1 +2d)
d ((k + 1) fk+1)

dn

·Disc
(
f (n−1)

)d k∏
i=1

f (n)(γi).

Proof. Simple calculations show that the leading coefficient of f (n) is

(3.1) f
(dn−1)/(d−1)
d

and we also have

(3.2) deg
(
f (n)

)′
= k

dn − 1

d− 1
for n � 2.
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Indeed, one can prove this by induction over n and we show it only for deg(f (n))′

as the formula (3.1) for the leading coefficient of f (n) can be obtained using the
same idea. As deg f ′ = k, for n = 1 the formula (3.2) is true. We assume that (3.2)
is true also for the first n− 1 iterates. We have

deg
(
f (n)

)′
= deg

(
f ′ · (f (n−1))′(f)

)
= k + k d

dn−1 − 1

d− 1
= k

dn − 1

d− 1
.

Thus, applying Lemma 1 (i) we derive

Disc
(
f (n)

)
= (−1)d

n(dn−1)/2 f
dn−1
d−1 (dn−k dn−1

d−1 −2)
d Res

(
f (n), (f (n))′

)

= (−1)d
2(d−1)/2 f

dn−1
d−1 (dn−k dn−1

d−1 −2)
d Res

(
f (n), (f (n))′

)
.

(3.3)

Taking into account that
(
f (n)

)′
= f ′ · (f (n−1)

)′
(f) and applying Lemma 1 (iii)

and Lemma 2, we derive

Res
(
f (n), f (n)′) = Res

(
f (n), f ′ · (f (n−1))′(f)

)

= Res
(
f (n), (f (n−1))′(f)

)
Res

(
f (n), f ′)

=
(
f
kdn−1 dn−1−1

d−1

d Res
(
f (n−1),

(
f (n−1)

)′))d Res
(
f (n), f ′).

(3.4)

Using Lemma 1 (i), we derive

Res
(
f (n−1), (f (n−1))′

)

= (−1)d
2(d−1)/2 f

dn−1−1
d−1

(
−dn−1+k dn−1−1

d−1 +2
)

d Disc
(
f (n−1)

)
,

(3.5)

while by Lemma 1 (ii) we obtain

(3.6) Res
(
f (n), f ′) = (−1)kd ((k + 1)fk+1)

dn
k∏

i=1

f (n)(γi).

Substituting (3.5) and (3.6) in (3.4) and using (3.3), we finish the proof. �

We also note that a similar computation has been given by Jones and Manes
(see [12], Lemma 3.1 and Theorem 3.2) for iterated rational functions.

For a polynomial f = fdX
d + · · ·+ f1X + f0 ∈ Fq[X ] defined as in Lemma 3,

it is convenient to introduce the following notation

Gn(fd, . . . , f0) =

k∏
i=1

f (n)(γi), n � 1,

where γi, i = 1, . . . , k, are the roots of f ′, which is clearly a polynomial in fd, . . . , f0
and having the degree O(dn) in the variable f0. We need the following result, which
has been proved in [8], Lemma 5.2:
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Lemma 4. For fixed integers K�1 and k1, . . . , kμ such that 1 � k1 < · · ·< kμ � K,
the polynomial

μ∏
j=1

Gkj (fd, . . . , f0)

is a square polynomial in the variable f0 up to a multiplicative constant only for
O(d2Kqd−1) choices of f1, . . . , fd.

4. Bounds of some character sums

For an integer n we consider the sums

T1(n) =
∑
f0∈Fq

· · ·
∑

fd∈Fq

∣∣∣
n∑

�=1

χ
(
G�(fd, . . . , f0)G�+1(fd, . . . , f0)

)∣∣∣
2

,

T2(n) =
∑
f0∈Fq

· · ·
∑

fd∈Fq

∣∣∣
n∑

�=1

χ
(
fk�
d G�(fd, . . . , f0)

) ∣∣∣
2

,

with the quadratic character χ of Fq, where k is as in Lemma 3.

Lemma 5. Let f = fdX
d + · · · + f1X + f0 ∈ Fq[X ] be defined as in Lemma 3.

For any integer n � 1, we have

Ti(n) = O
(
n2dnqd+1/2 + n2d2nqd + nqd+1

)
, i = 1, 2.

Proof. Squaring and changing the order of summation, we obtain

T1(n) =
n∑

�,m=1

∑
fd∈Fq

· · ·
∑
f0∈Fq

χ (G�(fd, . . . , f0)G�+1(fd, . . . , f0)

· Gm(fd, . . . , f0)Gm+1(fd, . . . , f0)) .

Fix �,m, f1, . . . , fd and define the following polynomial in f0,

G�,m = G�(fd, . . . , f0)G�+1(fd, . . . , f0)Gm(fd, . . . , f0)Gm+1(fd, . . . , f0).

We consider the following three cases:

• If G�,m is not a square polynomial in f0, we use the Weil bound (see, for
example, Theorem 11.23 in [9]) and estimate the sum over f0 as O(dnq1/2).
In this case, for the n(n − 1) values of � �= m and the O(qd) choices of
f1, . . . , fd, the total contribution from all such terms is O

(
n2dnqd+1/2

)
.

• If � �= m and G�,m is a square polynomial, we use the trivial estimate q for
the sum over f0. By Lemma 4, G�,m is a square polynomial for O(d2nqd−1)
values of the fixed parameters f1, . . . , fd for each of the n(n− 1) pairs (�,m)
with � �= m. So, the total contribution from all such terms is O

(
n2d2nqd

)
.

• Finally, for each of the n pairs (�,m) with � = m, there are qd possible choices
for f1, . . . , fd. So, the total contribution from all such terms is O

(
nqd+1

)
.
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Combining the preceding observations, we obtain

T1(n) = O
(
n2 dn qd+1/2 + n2 d2n qd + n qd+1

)
,

and the first part of the result follows.
By the same argument (with some natural simplifications due to a simpler

shape of the sum T2(n)), we obtain the same estimate for T2(n). �

5. Polynomial ABC theorem and divisors of iterated poly-
nomials

Some of our results are also based on the Mason theorem [13] that gives a polyno-
mial version of the ABC conjecture, see also [18].

For a polynomial f ∈ Fq[X ], we denote the product of all monic irreducible
divisors of f by rad(f).

Lemma 6. Let A, B and C be nonzero polynomials over Fq with A+B + C = 0
and gcd (A,B,C) = 1. If degA � deg rad(ABC), then A′ = 0.

Recall that we denote the largest degree of irreducible factors of f (n) by Dn(f).
In order to apply Lemma 6 we need the following simple statement.

Lemma 7. For a nonconstant polynomial f ∈ Fq[X ],

Dn(f) � Dn−1(f) for n � 2.

Proof. Now assume that Dn−1(f) = D for some positive integer D. Let g ∈ Fq[X ]
be an irreducible divisor of f (n−1) with deg g = D. Then we obviously have
g(f) | f (n). Now, if g(f) has a root α ∈ Fqm then g has a root f(α) in Fqm too.
Because g is irreducible, we have m � deg g. Thus g(f) has an irreducible factor
of degree at least D. �

We denote by Δn(f) the largest degree of a square-free divisor of f (n). That
is, Δn(f) = deg rad(f (n)).

Lemma 8. For a nonconstant polynomial f ∈ Fq[X ],

Δn(f) � Δn−1(f) for n � 2.

Proof. Assume that

f (n−1) = A
s∏

i=1

gαi

i ,

where A is the leading coefficient of f (n−1) (see (3.1) for an explicit formula)
and g1, . . . , gs are the distinct monic irreducible divisors of f (n−1) of multiplicities
α1, . . . , αs, respectively, with

Δn−1(f) =

s∑
i=1

deg gi.
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Then

f (n) = A
s∏

i=1

gi(f)
αi .

As g1, . . . , gs are relatively prime, we see from Lemma 2 that the polynomials
g1(f), . . . , gs(f) are also relatively prime. Thus

Δn(f) =

s∑
i=1

deg rad(gi(f)).

As in the proof of Lemma 7 we see that deg rad(gi(f)) � deg gi, i = 1, . . . , s, which
concludes the proof. �

6. Growth of the number of irreducible factors under itera-
tion for small n

Let f ∈ Fq[X ]. We recall that rn(f) denotes the number of monic irreducible
divisors of f (n). Using the remark after Lemma 2, we have that if g1 and g2 are
two different irreducible prime factors of f (n), then g1(f) and g2(f) are coprime.

Clearly, this means that rn(f) is a nondecreasing function. Now, we show
that rn(f) grows at least linearly for n of order at most log q.

Theorem 9. For any fixed ε> 0, for all but o(qd+1) degree d polynomials f ∈Fq[X ],
we have

rn(f) � (0.5 + o(1))n,

when n → ∞ and L � n, where

L =
⌈( 1

2 log d
− ε

)
log q

⌉
.

Proof. Clearly we can discard qd polynomials f with f(0) = 0.
We consider first the case when d is even. In this case,

χ (G�(fd, . . . , f0)) = χ(Disc
(
f (�)

)
).

We apply Lemma 5 with n � L. Note that d2n = O(q1−2ε log d) and thus
T1(n) = O

(
nqd+1

)
. Therefore, the number of tuples (fd, . . . , f0) ∈ F

d+1
q with

∣∣∣
n∑

�=1

χ (G�(fd, . . . , f0)G�+1(fd, . . . , f0))
∣∣∣ � n2/3

does not exceed T1(n)n
−4/3 = O(qd+1n−1/3) = o(qd+1) when n → ∞.

Hence, we discard the o(qd+1) polynomials f = fdX
d+ · · ·+ f1X+ f0 ∈ Fq[X ],

which correspond to such tuples (fd, . . . , f0).

We also discard the polynomials f = fdX
d + · · · + f1X + f0 ∈ Fq[X ] corre-

sponding to tuples (fd, . . . , f0) for which

(6.1) G�(fd, . . . , f0) ·G�+1(fd, . . . , f0) = 0
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for some � = 1, . . . , n. Since each of the polynomials G� and G�+1 is a nonzero
polynomial of degree O(d�) = O(dn), for each � there are at most O(dnqd) pos-
sibilities for (fd, . . . , f0) ∈ F

d+1
q satisfying (6.1). Thus, we see that there are

O(n dnqd) = o(qd+1) such polynomials (note that since a zero polynomial is a
square polynomial this also follows from Lemma 4).

For the remaining polynomials, we have

χ (G�(fd, . . . , f0)G�+1(fd, . . . , f0)) �= 0,

and also ∣∣∣
n∑

�=1

χ (G�(fd, . . . , f0)G�+1(fd, . . . , f0))
∣∣∣ < n2/3.

Thus, for these polynomials we have

χ (G�(fd, . . . , f0)G�+1(fd, . . . , f0)) = −1

for n/2 +O(n2/3) values of � = 1, . . . , n. We now see from Lemma 3 that

(6.2) χ
(
Disc

(
f (�)

)) �= χ
(
Disc

(
f (�+1)

))

for n/2 +O(n2/3) values of � = 1, . . . , n.
Now we use the Stickelberger theorem (see [19] or the recent reference [3]) which

says that the number r� of distinct irreducible factors of f (�) satisfies r�(f) ≡ d�

(mod 2) if and only if Disc
(
f (�)

)
is a square in Fq.

By (6.2), the fact that the degree is even, and using the Stickelberger the-
orem [19], r�(f) and r�+1(f) have different parities for n/2 + O(n2/3) values of
� = 1, . . . , n. Since clearly r�(f) is nondecreasing, we have r�+1(f) > r�(f) for
such values of �. Thus,

rn(f) � n/2 +O(n2/3).

For odd d we note that r�(f) and r�+1(f) are of different parity when

χ
(
fk�
d G�(fd, . . . , f0)

)
= −1

and proceed in exactly the same way using Lemma 5 for the sum T2. �

7. Lower bound on the degrees of irreducible factors of iter-
ates for large n

Recall that for a polynomial f ∈ Fq[X ] we denote by Dn(f) the largest degree
of irreducible factors of f (n). We are now ready to prove the main result of this
section.

Theorem 10. Let f ∈ Fq[X ] be of degree d with gcd(d, q) = 1. Assume that
f �= fdX

d. Then

Dn(f) >
log(dn−1/2)

log q
.
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Proof. We fix an integer n and define D as the largest integer satisfying

(7.1) 2qD � dn−1.

Note that, if dn−1 < 2q, then log(dn−1/2) < log q and the bound is trivial. On
the other hand, if dn−1 > 2q then D � 1. We can also assume that n � 2 as
otherwise the bound is also trivial.

Now, from the definition of D we conclude that

D + 1 >
log(dn−1/2)

log q
.

We prove the statement by contradiction, so we suppose that

Dn(f) � D.

By Lemma 7 we have
Dn−1(f) � Dn(f).

This means that the polynomial f (n)f (n−1) factors as a product of irreducible
polynomials of degree at most D.

Any root of f (n) or f (n−1) belongs to Fqj with j � D. Then, the product

f (n)f (n−1) has at most
D∑
j=1

qj � 2qD

distinct roots.
Clearly, f has a root α �= 0 in some extension field of Fq, so G|f , where

G = X − α.
Furthermore, we can write

f (n−1) −G(f (n−1))− α = 0

and apply Lemma 6 with A = f (n−1), B = −G(f (n−1)) and C = −α. Using that
G(f (n−1)) | f(f (n−1)) = f (n) we derive

dn−1 < deg rad(G(f (n−1))f (n−1)) � deg rad(f (n)f (n−1)) � 2qD.

Hence we obtain dn−1 < 2qD, which contradicts the choice of D. �

8. Uniform bound

Note that Theorem 10 becomes nontrivial for n having about the same size as
those n for which Theorem 9 stops working. Hence, they can be combined in the
following result that provides some nontrivial information about the arithmetic
structure of iterates that applies to all n and q. Let, as before, Δn(f) denote the
largest degree of a square-free divisor of f (n).
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Theorem 11. If gcd(d, q) = 1, then, for any fixed ε > 0, for all but o(qd+1)
polynomials f ∈ Fq[X ] of degree d, for n � 1, we have

Δn(f) � n1−ε.

Proof. First, we note that by Lemma 3, Disc
(
f (n)

)
= 0 is possible only if

Disc
(
f (n−1)

)
= 0 or Gn(fd, . . . , f0) =

k∏
i=1

f (n)(γi) = 0.

Thus, as in the proof of Theorem 9 (where we count the number of solutions
to (6.1)), we see that for any fixed ε > 0, for all but o(qd+1) polynomials f ∈ Fq[X ]
of degree d, for every n � L with

L =
⌈( 1

2 log d
− ε

)
log q

⌉
,

we have Disc
(
f (n)

) �= 0 and thus Δn(f) = dn.

Therefore, for every n � q1/2, since by Lemma 8 we know that Δn(f) is mono-
tonic, for all but o(qd+1) polynomials f ∈ Fq[X ] of degree d we have

(8.1) Δn(f) � min{dn, dL} � n1−ε.

For n > q1/2, by Theorem 10, for all but O(q) = o(qd+1) polynomials f ∈ Fq[X ]
of degree d we have

(8.2) Δn(f) � Dn(f) � 1

log q
n � n

logn
� n1−ε.

Combining (8.1) and (8.2), we conclude the proof. �

9. Comments and open questions

We note that an analogue of Theorems 9 and 11 can also be obtained for almost
all monic polynomials. Probably the most interesting question is to extend the
bound of Theorem 9 to any n (beyond the current threshold n = O(log q)).

Although we do not know how to obtain such a result, we can construct some
examples of polynomials for which rn grows linearly (which, as we have mentioned,
appears to the expected rate of growth). Indeed, take any quadratic polynomial
f(X) = X2+2aX+a2−a ∈ Fq[X ] with a ∈ Fq and set γ = −a. Clearly f(γ) = γ.

Thus, f (n)(γ) = γ for any n = 1, 2, . . .. We now get from Lemma 3 that

Disc
(
f (n)

)
= (−1)n−1γ.

So, if −1 is a nonsquare in Fq (for example, for a prime q = p ≡ 3 (mod 4)), then
Disc

(
f (n)

)
is a square or a nonsquare depending only on the parity of n. Therefore,

for this polynomial we have rn(f) � n for any n � 1. A concrete example is given
by f(X) = X2 +X + 2 ∈ F3[X ] (we take a = 2 in the above construction).
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In [11] the critical orbit of a quadratic polynomial f is defined as the set
{f (n)(γ) | n � 2} ∪ {−f(γ)}, where γ is the root of the derivative. This co-
incides with the set

{Gn(f0, f1, f2) | n � 2} ∪
{ f2

1

2f0
− f2

}
.

It is certainly interesting to investigate various properties of the sequence un =
Gn(f0, . . . , fd) for fixed f0, . . . , fd ∈ Fq.

Currently, most of the known results concern only quadratic polynomials. For
example, the sequence un becomes eventually periodic when d = 2. If f ′ is an
irreducible polynomial of degree k, then Gn(f0, . . . , fd) = NormF

qk
/Fq

(f (n)(γ)) is

the norm of f (n)(γ) in Fq. Apart from these two cases, very little is known about
the sequence un for general polynomials f .

The sparsity, or number of monomials, is another important characteristic of
polynomials and it is certainly interesting to obtain lower bounds on the number
of monomials of the iterates f (n). For iterates of polynomials and even rational
functions over a field of characteristic zero such bounds can be derived from the
results of [5].

Finally, we note that similar questions can also be asked for iterates of rational
functions, which is yet another challenging direction of research.
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sition.
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