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Uniqueness of area minimizing surfaces
for extreme curves

Baris Coskunuzer and Tolga Etgü

Abstract. Let M be a compact, orientable, mean convex 3-manifold with
boundary ∂M . We show that the set of all simple closed curves in ∂M
which bound unique area minimizing disks in M is dense in the space
of simple closed curves in ∂M which are nullhomotopic in M . We also
show that the set of all simple closed curves in ∂M which bound unique
absolutely area minimizing surfaces in M is dense in the space of simple
closed curves in ∂M which are nullhomologous in M .

1. Introduction

The Plateau problem investigates the existence of an area minimizing disk (or
surface) with a given boundary curve in a given manifold M . Besides the solution
of this problem, there have been many important results on the regularity and
embeddedness of solutions, and on the number of solutions. In this paper, we
focus on the number of solutions and give new uniqueness results.

The main question along this line is if, for a given curve, there is a unique area
minimizing disk or surface in the ambient manifold M . The first result about this
question was obtained by Radó in the early 1930s. He showed that if a curve can
be projected bijectively to a convex plane curve, then it bounds a unique minimal
disk [13]. In 1973, in [12], Nitsche proved uniqueness of minimal disks for boundary
curves with total curvature less than 4π. Then, Tromba [14] showed that a generic
curve in R3 bounds a unique area minimizing disk. Morgan [11] proved a sim-
ilar result concerning absolutely area minimizing surfaces. Later, White proved
a very strong generic uniqueness result for fixed topological type in any dimen-
sion and codimension [15]. In particular, he showed that a generic k-dimensional
Cj,α-submanifold of a Riemannian manifold cannot bound two smooth, minimal
(k + 1)-manifolds of equal area.

Mathematics Subject Classification (2010): Primary 53A10; Secondary 57M50.
Keywords: Plateau problem, area minimizing surfaces, minimal surfaces, mean convex 3-mani-
folds, uniqueness.



1136 B. Coskunuzer and T. Etgü

In [2], the first author proved generic uniqueness results for both versions of
the Plateau problem under the condition that H2(M ;Z) = 0. In this paper, we
generalize these results by removing the assumption on homology. Our techniques
are simple and topological. The first main result is the following:

Theorem 3.1. Suppose that M is a compact, orientable, mean convex 3-manifold.
Let E be the set of simple closed curves on the boundary of M which are nullhomo-
topic in M , and let U ⊂ E comprise those curves that bound unique area minimizing
disks in M . Then U is not only dense but also a countable intersection of open
dense subsets of E with respect to the C0-topology.

The second main result is a similar theorem for absolutely area minimizing
surfaces:

Theorem 4.1. Suppose that M is a compact, orientable, mean convex 3-manifold.
Let F be the set of simple closed curves on the boundary of M which are nullho-
mologous in M , and let V ⊂ F comprise those curves that bound unique absolutely
area minimizing surfaces in M . Then, V is not only dense but also a countable
intersection of open dense subsets of F with respect to the C0-topology.

For natural generalizations of these results to the smooth category see the last
section of this paper.

The “lens” technique introduced in [2] to prove generic uniqueness results does
not generalize to manifolds with nontrivial homology, mainly because, in general,
the disks or surfaces need not be separating in M , hence one cannot construct a
canonical neighborhood (lens) NΓ = [Σ−

Γ ,Σ
+
Γ ] which contains all area minimizing

disks (or surfaces) for a given nullhomotopic (or nullhomologous) Γ ⊂ ∂M . Pro-
vided that these neighborhoods exist and are disjoint for disjoint curves on the
boundary, a summation argument which involves the thickness (or volume) of NΓ

would give the desired uniqueness results. But these lenses are the key element in
the proof, and without them, the whole argument collapses.

In the disk case, in general, we still have the disjointness of the area minimizing
disks for disjoint boundaries by [9]. Even though we can not construct disjoint
lenses NΓ for a given curve Γ ⊂ ∂M as in [2] because of nontrivial homology, when
we consider the behavior of area minimizing disks near the boundary, we still get
disjoint canonical neighborhoods (lens with a big hole) near ∂M for disjoint curves,
and the summation argument in [2] works. Hence the proof of Theorem 3.1 can
be achieved with a modification of the original argument in [2].

On the other hand, in the surface case, we do not have the disjointness of
the absolutely area minimizing surfaces for disjoint boundaries when the ambient
manifold has nontrivial second homology [3]. Hence, the arguments we used in the
disk case do not work here either. In order to prove the result in the surface case,
we use a completely new approach. The main idea of the proof is as follows. First,
we isometrically embed the original manifold M into a larger manifold M̂ . Then,
we utilize the fact that for any separating curve γ in an absolutely area minimizing
surface Σ in M , γ bounds a unique absolutely area minimizing surface S ⊂ Σ in M
in the following way. For any simple closed curve Γ ⊂ ∂M , consider a nearby simple
closed curve Γ̂ in M̂−M . Then, if Σ̂ is an absolutely area minimizing surface in M̂
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with ∂Σ̂ = Γ̂, then the curve Γ′ = Σ̂ ∩ ∂M will be a uniqueness curve in ∂M
near Γ. This shows density in the surface case. Having this density result, we can
adapt the summation argument in [2] to finish the proof of Theorem 4.1.

Note that this argument using an imbedding in a larger manifold can easily be
adapted to the disk case to reprove all the results in Section 3, hence the results
in [2], too. Note also that the mean convexity of M is crucial in employing this
approach (See Remark 4.5).

The organization of the paper is as follows: In the next section we cover some
basic results which will be used later. Section 3 contains the proof of Theorem 3.1.
In section 4, we prove the analogous result regarding absolutely area minimizing
surfaces. Section 5 is devoted to further remarks.

2. Preliminaries

In this section, we review the basic results which will be used in subsequent sections.

Definition 2.1. Let M be a compact Riemannian 3-manifold with boundary.
Then M is called mean convex (or sufficiently convex) if the following conditions
hold:

• ∂M is piecewise smooth.

• Each smooth subsurface of ∂M has nonnegative curvature with respect to
an inward normal.

• There exists a Riemannian manifold N such that M is isometric to a sub-
manifold of N and each smooth subsurface S of ∂M extends to a smooth
embedded surface S′ in N such that S′ ∩M = S.

We call a simple closed curve extreme if it is on the boundary of its convex
hull. Our results apply to the extreme curves as the convex hull naturally satisfies
the conditions above. Note that a simple closed curve in the boundary of a mean
convex manifold M is called a weak extreme or an H-extreme curve.

Definition 2.2. An area minimizing disk is a disk which has the smallest area
among disks having a given boundary. An absolutely area minimizing surface
is a surface which has the smallest area among all orientable surfaces (with no
topological restriction) having a given boundary.

Now we state the main facts which we use in the following sections.

Lemma 2.3 ([9], [10]). Let M be a compact, mean convex 3-manifold, and let
Γ ⊂ ∂M be a simple closed curve nullhomotopic in M . Then there exists an area
minimizing disk D ⊂ M with ∂D = Γ. All such disks are properly embedded in M ,
i.e., their boundaries are in ∂M , and they are pairwise disjoint. Moreover, area
minimizing disks spanning disjoint simple closed curves in ∂M are also disjoint.

Note that the claim in the last sentence in Lemma 2.3 is known as the Meeks–
Yau exchange roundoff trick. The main idea is as follows. If two area minimizing
disks D1 and D2 with disjoint boundaries intersect, the intersection will contain a
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closed curve β. Let Dβ
i ⊂ Di be the smaller disk bounded by β. Then, by

swapping Dβ
1 and Dβ

2 , we get a new area minimizing disk D′
1 = (D1 −Dβ

1 ) ∪Dβ
2

with a folding curve β. Pushing D′
1 along the folding curve β to the convex side

decreases area which contradicts with D′
1 being area minimizing.

An analogous statement for absolutely area minimizing surfaces is obtained by
combining the following results.

Theorem 2.4 ([5], [1], [6]). Let M be a compact, strictly mean convex 3-manifold
and let Γ ⊂ ∂M be a nullhomologous simple closed curve. Then there exists an
absolutely area minimizing surface Σ ⊂ M with ∂Σ = Γ, and each such Σ is smooth
away from its boundary and is smooth around points of its boundary where Γ is
smooth.

Hass proved the following statement for closed 3-manifolds. It can be general-
ized with a slight modification of his argument. This lemma can be regarded as
the adaptation of Meeks–Yau exchange roundoff trick to the surface case.

Lemma 2.5 ([7]). Let M be an orientable, mean convex 3-manifold, and let Σ1

and Σ2 be two homologous, properly embedded, absolutely area minimizing surfaces
in M . If ∂Σ1 and ∂Σ2 are disjoint or the same, then Σ1 and Σ2 are disjoint.

Proof. Since Σ1 and Σ2 are in the same homology class, they separate a codimen-
sion-0 submanifold M ′ from M , and Σ1 ∪ Σ2 ⊂ ∂M ′. Then, Σ1 and Σ2 separate
each other [7]. Let Σ1 \ Σ2 = S+

1 ∪ S−
1 , and Σ2 \ Σ1 = S+

2 ∪ S−
2 . Assuming

∂S−
1 = ∂S−

2 = Σ1 ∩ Σ2 (S+
1 and S+

2 are the components containing ∂Σ1 and ∂Σ2

respectively), Σ′
1 = (Σ1 \ S−

1 ) ∪ S−
2 would be another absolutely area minimizing

surface in M with boundary ∂Σ1. This is because Σ1 and Σ2 are absolutely
area minimizing surfaces, and ∂S−

1 = ∂S−
2 implies |S−

1 | = |S−
2 |. However, Σ′

1 is
singular along Σ1∩Σ2 which contradicts the regularity theorem for absolutely area
minimizing surfaces [4]. �

Now, we state a lemma about the limit of area minimizing disks in a mean
convex manifold.

Lemma 2.6 ([8]). Let M be a compact, mean convex 3-manifold and let {Di}
be a sequence of properly embedded area minimizing disks in M . Then there is a
subsequence of {Di} which converges to a countable collection of properly embedded
area minimizing disks in M .

3. Uniqueness of area minimizing disks

This section is devoted to the proof of the following theorem.

Theorem 3.1. Suppose that M is a compact, orientable, mean convex 3-manifold.
Let E be the set of simple closed curves on the boundary of M which are nullho-
motopic in M , and let U ⊂ E comprise those curves that which bound unique area
minimizing disks in M . Then U is not only dense but also a countable intersection
of open dense subsets of E with respect to the C0-topology.
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Remark 3.2. In the proof of this theorem we ignore the curves in E that bound
area minimizing disks in ∂M . This is justified by the fact that a curve γ in the
interior of an area minimizing disk D ∈ ∂M cannot bound a properly embedded
area minimizing disk D′ since swapping the disk in D bounded by γ with D′

and rounding off (the exchange-roundoff trick) would give a disk with the same
boundary as D but with strictly smaller area than D. In particular, such a curve γ
is clearly an interior point of U .
Proof. For each Γ ∈ E fix an annular neighborhood AΓ ⊂ ∂M and a properly
embedded annulus A′

Γ ⊂ M with ∂AΓ = ∂A′
Γ as in Lemma 3.3, i.e.,

• AΓ ∪A′
Γ bounds a solid torus in M , and

• if the boundary of a properly embedded area minimizing disk D ⊂ M is
essential in AΓ, then D intersect A′

Γ in a unique essential simple closed curve
(see Figure 1).

Figure 1. For any γ ⊂ AΓ ⊂ ∂M , any area minimizing disk D with ∂D = γ intersects A′
Γ

in a unique essential curve α. The grey region represents the solid torus T in M with
∂T = AΓ ∪A′

Γ.

For an essential simple closed curve γ in AΓ, let R
Γ
γ denote (as in Lemma 3.5)

the smallest annulus in A′
Γ which contains the intersection of A′

Γ with all the area
minimizing disks spanning γ. Note that γ ∈ U if and only if |RΓ

γ | = 0, where | · |
denotes the area.

First we will prove that U is dense in E . Let Γ ∈ E , and foliate AΓ by essential
simple closed curves {Γt : t ∈ [−ε, ε]} such that Γ0 = Γ. By Lemma 3.4, the
regions RΓ

Γt
and RΓ

Γs
in A′

Γ are disjoint for s �= t. Therefore,

∑
t∈[−ε,ε]

|RΓ
Γt
| < |A′

Γ| < ∞ .
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Hence |RΓ
Γt
| > 0 only for countably many t ∈ [−ε, ε], i.e., Γt bounds a unique

area minimizing disk for uncountably many t ∈ [−ε, ε]. Since we began with an
arbitrary Γ ∈ E , this proves that U is dense in E .

To prove that U is the intersection of countably many open dense subsets of E let

Un = {γ ∈ E| there exists Γ ∈ E such that γ is essential in AΓ and |RΓ
γ | < 1/n}

for every n ∈ Z+. Observe that U = ∩n∈NUn, and in particular, each Un is dense.
It remains to show that every Un is open. Let γ ∈ Un, choose Γ ∈ E such that γ
is essential in AΓ with |RΓ

γ | < 1/n, and choose an annular region R in A′
Γ with

|R| < 1/n whose interior contains RΓ
γ . Since U is dense in E , there is a sequence

{γn} of pairwise disjoint, essential curves in AΓ converging to γ such that each γn
bounds a unique area minimizing disk Dn in M . We can arrange that all these
curves are in a prescribed component of AΓ \γ. By Lemma 2.6, the sequence {Dn}
has a subsequence converging to a countable collection of area minimizing disks
spanning γ. This implies the existence of essential curves γ+ and γ− in AΓ such
that

• the curves γ+ and γ− are contained in different components of AΓ \ γ,
• each of γ± bounds a unique area minimizing disk D±, and
• D± ∩ A′

Γ ⊂ R.

Let Aγ be the open annulus in AΓ bounded by γ±, and let Vγ be the set of all
simple closed curves essential in Aγ . Note that Vγ is an open neighborhood of γ
in E . Moreover, Vγ ⊂ Un because D+ ∪D− separates the solid torus bounded by
AΓ∪A′

Γ, and an area minimizing disk spanning any α ∈ Vγ has to be disjoint from
D+ ∪ D−, forcing RΓ

α to remain inside R. This proves that Un is open in E and
finishes the proof. �

In the rest of this section we will prove the lemmas used in the proof of Theo-
rem 3.1.

Lemma 3.3. For every Γ ∈ E, there exist annuli AΓ and A′
Γ with common bound-

ary, the former a neighborhood of Γ in ∂M and the latter properly embedded in M ,
such that AΓ ∪ A′

Γ bounds a solid torus in M and any properly embedded area
minimizing disk in M spanning an essential curve in AΓ intersects A′

Γ in a unique
essential curve.

Proof. Given Γ ∈ E , we choose an annular neighborhood AΓ and a solid torus
neighborhood NΓ ⊃ AΓ of Γ in ∂M and M , respectively. Although we shrink the
annular neighborhood as we proceed, we abuse notation by continuing to denote
it by AΓ. Note that, by [9], we can choose AΓ sufficiently small that there is an
area minimizing annulus A in M with boundary ∂AΓ. If there is such an area
minimizing annulus A that is properly embedded, then let A′

Γ be A. Otherwise AΓ

is the unique area minimizing annulus with boundary ∂AΓ, and we will now explain
how to construct A′

Γ in this case.
Let Γ+ and Γ− denote the boundary components of AΓ, letD

± be area minimiz-
ing disks spanning Γ±, and let {γ±

n } be sequences of disjoint simple closed curves in
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the interior of D± converging to Γ±. Let M̂ be the component of M \ (D+ ∪D−)
that contains Γ. Note that M̂ is mean convex as the D± are minimal, and the
γ±
n can be regarded as simple closed curves in ∂M̂ . Therefore, by choosing AΓ

sufficiently small and n sufficiently large, we can guarantee that there is an area
minimizing annulus An in M̂ spanning γ+

n ∪ γ−
n . Let A′

Γ be the union of An and
the obvious (area minimizing) annuli in D± between γ±

n and Γ±.
Before we proceed, we will prove that for sufficiently small AΓ and sufficiently

large n, An is an area minimizing surface not only in M̂ but also in M . Assume
that there is an annulus A′

n ⊂ M such that ∂A′
n = ∂An = γ+

n ∪γ−
n and |A′

n| < |An|.
Since An is area minimizing in M̂ , A′

n cannot be embedded in M̂ . Without loss of
generality, assume that A′

n ∩ (D+ \ γ+
n ) �= ∅. Any component α of A′

n ∩D+ has to
be essential in A′

n, since otherwise we could swap the disks bounded by α in A′
n and

in D+ to get a contradiction, using the exchange-roundoff trick. If a component α
of A′

n ∩ D+ and γ+
n are concentric in D+, then we get a contradiction (again by

the exchange roundoff trick) by swapping the annular regions between γ+
n and α

in D+ and in A′
n. Therefore any component α of A′

n∩D+ has to be essential in A′
n

and nullhomotopic in D+ \Dn, where Dn denotes the disk in D+ bounded by γ+
n .

Consider the annulus A′′
n in A′

n with ∂A′′
n = α∪γ+

n and the disk Dα in D+ bounded
by α. Note that the disk D = A′′

n∪Dα bounds γ+
n hence |Dn| ≤ |D| ≤ |A′′

n|+ |Dα|.
The facts that Dα is a subset of D+\Dn and the sequence {γ+

n = ∂Dn}n converges
to Γ+ = ∂D+ imply that |Dα| can be made arbitrarily small. Hence to get a
contradiction, all we need to do is make AΓ sufficiently small and n sufficiently
large, forcing |A′′

n|+ |Dα| < |Dn|.
Now we have defined A′

Γ regardless of whether AΓ bounds a properly embedded
area minimizing annulus in M or not. Note that A′

Γ is properly embedded in M ,
∂A′

Γ = ∂AΓ, and A′
Γ ∪ AΓ bounds a solid torus T in M (at least when we choose

AΓ small enough to ensure that A′
Γ remains in the solid torus neighborhood NΓ

of Γ). Also note that A′
Γ is either area minimizing or it is the union of three area

minimizing annuli glued along γ±
n .

In the rest of the proof, we will show that for any properly embedded area mini-
mizing disk Dγ spanning an essential curve γ in AΓ, Dγ∩A′

Γ is the unique essential
curve in A′

Γ: First, since γ is essential in AΓ, it is also essential in the solid torus T
and cannot bound any surface in T . Therefore Dγ has to intersect A′

Γ. Moreover,
any component α of Dγ ∩A′

Γ has to be an essential curve in A′
Γ since otherwise we

could swap the disks bounded by α in Dγ and in A′
Γ to get a contradiction using

the exchange-roundoff trick.

Now, assume that Dγ ∩ A′
Γ has two components α1 and α2. These curves

cannot be concentric in Dγ since, otherwise, again by using the exchange-roundoff
trick, we would get a contradiction with the area minimizing property of Dγ after
swapping the annular regions between the αi in Dγ and in A′

Γ. We eliminate the
remaining possibility of nonconcentric αi by choosing AΓ with sufficiently small
area compared to that of an area minimizing disk DΓ spanning Γ. Let α be
any component of Dγ ∩ A′

Γ and Dα be the disk in Dγ bounded by α. We have
the following inequalities by area minimizing properties of Dγ , DΓ, D

+, and that
of A′

Γ (or, depending on the construction of A′
Γ, AΓ and An, and the convergence
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of {γ+
n } to Γ+):

|Dγ |+ |AΓ| > |D+| , |D+|+ |AΓ| > |Dγ | ,
|DΓ|+ |AΓ| > |D+| , |D+|+ |AΓ| > |DΓ| ,

|Dα|+ |A′
Γ| > |D+| , |AΓ| ≥ |A′

Γ| .
It follows that

|Dγ \Dα| = |Dγ | − |Dα| < |D+|+ |AΓ| − |Dα| < |A′
Γ|+ |AΓ| ≤ 2|AΓ| .

Assuming that the components α1 and α2 of Dγ ∩A′
Γ are not concentric in Dγ ,

we get

|Dγ | = |(Dγ \Dα1) ∪ (Dγ \Dα2)| < |(Dγ \Dα1)|+ |(Dγ \Dα2)| < 4|AΓ| .
Hence

|Dγ | > |D+| − |AΓ| > |DΓ| − 2|AΓ|
leads to

|DΓ| < 6 |AΓ|
which is impossible once we choose |AΓ| sufficiently small since |DΓ| is independent
of this choice. �

In the Lemma 3.4 and Lemma 3.5, we fix an arbitrary Γ ∈ E and annuli AΓ

and A′
Γ as in Lemma 3.3.

Lemma 3.4. Let γ and γ′ be disjoint, essential simple closed curves in AΓ, let D1

and D2 be distinct properly embedded area minimizing disks in M bounding γ, let
αi = Di ∩ A′

Γ, and let R ⊂ A′
Γ be the annulus bounded by α1 and α2. Then any

area minimizing disk in M spanning γ′ is disjoint from R.

Proof. Observe that each of the disks D1 and D2 separates the solid torus T
with ∂T = AΓ ∪Γ± A′

Γ into two pieces. Since D1 ∩ D2 = γ ⊂ ∂T , D1 ∪γ D2

separates T into three pieces, and R is “half” (the annulus (D1 ∪γ D2) ∩ T being
the other “half”) of the boundary of the “middle” piece T0. Note that T0∩AΓ = γ,
therefore γ′ does not intersect T0. If an area minimizing disk spanning γ′ were to
intersect R, this would force it to intersect either D1 or D2, but this is impossible
since properly embedded area minimizing disks with disjoint boundaries do not
intersect by Lemma 2.3. �

Lemma 3.5. For every simple closed curve γ which is essential in AΓ and bounds
a properly embedded area minimizing disk in M there is a subset RΓ

γ of A′
Γ such

that

(1) the intersection of A′
Γ and any area minimizing disk spanning γ belongs

to RΓ
γ ,

(2) RΓ
γ is an annulus if γ /∈ U ,

(3) RΓ
γ is a simple closed curve if γ ∈ U , and

(4) if γ and γ′ are disjoint, so are RΓ
γ and RΓ

γ′ .
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Proof. If γ ∈ U , then the definition of RΓ
γ is obvious and (3) is a consequence

of Lemma 3.3. Assume that γ /∈ U , and consider all the curves obtained as the
intersection of A′

Γ with an area minimizing disk spanning γ. Let RΓ
γ be the union of

all the annuli bounded by any pair of such curves. Claims (1) and (2) hold by
definition and the connectedness of RΓ

γ . Claim (4) is a consequence of Lemma 3.4.
�

4. Uniqueness of absolutely area minimizing surfaces

This section is devoted to the proof of the following theorem.

Theorem 4.1. Suppose that M is a compact, orientable, mean convex 3-manifold.
Let F be the set of simple closed curves on the boundary of M which are nullho-
mologous in M , and let V ⊂ F comprise those that bound a unique absolutely area
minimizing surface in M . Then, V is not only dense but also countable intersection
of open dense subsets of F with respect to the C0-topology.

Remark 4.2. In order to prove this theorem, one might want to use a method
similar to that used in the disk case. However, the crucial step in this method is
Lemma 2.3, i.e., the area minimizing disks D1 and D2 in M bounding the simple
closed curves Γ1 and Γ2 in ∂M are disjoint provided that the curves Γ1 and Γ2

are disjoint, and this is not true in the absolutely area minimizing surfaces case.
There exist disjoint H-extreme curves which bound intersecting absolutely area
minimizing surfaces [3].

Remark 4.3. As in the disk case, we will ignore the curves in F that bound
absolutely area minimizing surfaces in ∂M (See Remark 3.2).

Proposition 4.4. V is dense in F with respect to the C0-topology.

Proof. Assume otherwise. Then there is a simple closed curve Γ with a neighbor-
hood Nε(Γ) in ∂M such that any simple closed curve Γ′ ⊂ Nε(Γ), i.e., d(Γ,Γ

′) < ε
in the C0-metric, bounds at least two absolutely area minimizing surfaces Σ′

1

and Σ′
2 in M .

This implies that an absolutely area minimizing surface Σ in M with ∂Σ = Γ
cannot lie in ∂M . Indeed, since M is mean convex, by the maximum principle,
Σ∩∂M = Γ. This is because if Σ ⊂ ∂M , then for any simple closed curve α near Γ
in Σ ⊂ ∂M , αmust bound a unique absolutely area minimizing surface. Otherwise,
if α bounds Σ1 ⊂ Σ and another absolutely area minimizing surface Σ2 in M , then
Σ′ = (Σ \ Σ1) ∪ Σ2 would be yet another absolutely area minimizing surface with
boundary Γ since |Σ| = |Σ′|. However, there is a singularity along α in Σ′. This
contradicts the regularity theorem for absolutely area minimizing surfaces [4].

Now, embed M into a larger 3-manifold N isometrically as in Definition 2.1,
i.e., M is isometric to a codimension-0 submanifold of N . We abuse the nota-
tion and denote this submanifold by M . For every δ > 0, let Mδ denote the
δ-neighborhood of M in N .



1144 B. Coskunuzer and T. Etgü

For each j ∈ Z+, consider a sequence of curves {Γ̂j
i}∞i=1 in M1/j \ M which

converges to Γ as i tends to ∞. For every i, j ∈ Z+, let Σ̂
j
i be an absolutely area

minimizing surface in M1/j with ∂Σ̂j
i = Γ̂j

i . For each j, by Federer’s compactness

theorem [4], a subsequence of {Σ̂j
i}i converges to an absolutely area minimizing

surface Σj in M1/j with ∂Σj = Γ. As a further consequence of compactness, the
sequence {Σj}∞j=1 has a subsequence converging to an absolutely area minimizing
surface Σ in M with ∂Σ = Γ.

Claim: There exists j ∈ Z+ such that Σj ⊂ M , and hence Σj is an absolutely
area minimizing surface in M1/k for every k ≥ j.

Proof of the Claim: Assume that Σj\M �= ∅ for all j. Now, replace the sequence Σj

with the sequence Σj
M = Σj ∩ int(M) which also converges to Σ. Since int(Σ) ∩

∂M = ∅ by assumption, we can assume that Σj
M is connected by ignoring the

smaller pieces if necessary. Now consider Γj = ∂Σj
M in ∂M . If Γj = Γ for infinitely

many j, then a sequence of interior points of Σj ’s would converge to a point in ∂M ,
contradicting the assumption that int(Σ)∩∂M = ∅. Therefore Γj is distinct from Γ
(but can intersect it) for all but finitely many j. On the other hand, Γj converges
to Γ since Σj

M converges to Σ. Hence for sufficiently large j, Γj ⊂ Nε(Γ) and by
assumption, Γj bounds in M at least one absolutely area minimizing surface S2

other than S1 = Σj
M (see Figure 2). By swapping S1 and S2 in Σj , we get a

new surface Σ̃j = (Σj \ S1) ∪ S2 which has the same area as Σj . Hence, Σ̃j is
an absolutely area minimizing surface in M1/j with boundary Γ. However, Σ̃j

is singular along Γj which contradicts the regularity theorem for absolutely area
minimizing surfaces [4]. This finishes the proof of the claim.

Figure 2. Σj is the absolutely area minimizing surface in M1/j with ∂Σj = Γ. S2 is
another absolutely area minimizing surface with ∂S2 = ∂(Σj ∩M).

Now, to finish the proof of the proposition, we get a contradiction as follows.
By using the claim above, fix a positive integer j such that Σj ⊂ M . Then Σj

is an absolutely area minimizing surface in M with ∂Σj = Γ. Let Σi = Σ̂j
i ∩M ,

and Γi = ∂Σi = Σ̂j
i ∩ ∂M . Then Σi converges to Σj and Γi converges to Γ

since Σ̂j
i converges to Σj (as i approaches to ∞). Therefore for sufficiently large io,

Γio ⊂ Nε(Γ), and consequently, Γio bounds at least one other absolutely area
minimizing surface Σ′

io in M beside Σio by the assumption.
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Let Σ̃j
io

= (Σ̂j
io
\Σio)∪Σ′

io
. Since Σ̃j

io
has the same area and boundary as Σ̂j

io
,

it is also an absolutely area minimizing surface in M1/j . However, it is singu-
lar along Γio contradicting the regularity theorem for absolutely area minimizing
surfaces [4]. �

Remark 4.5. The mean convexity of M is crucial in the proof above. If M was
not mean convex, then it is easy to construct examples where for any j ∈ Z+, the
absolutely area minimizing surface Σj ⊂ M 1

j
satisfies ∂Σj = Γ and Σj ⊂ M 1

j
−M .

One can simply take a 3-manifold M which is not mean convex, and the absolutely
area minimizing surface Σ with boundary Γ ⊂ ∂M completely lies in ∂M , i.e.,
Σ ⊂ ∂M . Then, for such a manifold, Σ̂j

i ∩M might be empty for any i, and the
whole argument collapses (See also Remark 4.3).

Proposition 4.6. V is a countable intersection of open dense subsets of F with
respect to the C0-topology.

Proof. Let Γ ∈ V be a uniqueness curve, i.e., Γ ⊂ ∂M bounds a unique absolutely
area minimizing surface Σ inM . Let {Γ+

i } be a sequence of pairwise disjoint simple
closed curves in V which converges to Γ. We also assume that every Γ+

i is on the
same (say positive) side of Γ, i.e., A+

i ⊂ A+
j when i > j, where A+

i = [Γ,Γ+
i ] is the

annular component of ∂M \ (Γ ∪ Γ+
i ) for any i.

For each i, there exists a unique absolutely area minimizing surface Σ+
i in M

with ∂Σ+
i = Γ+

i . By the compactness theorem, a subsequence of {Σ+
i }, which, by

abuse of notation, will also be denoted {Σ+
i }, converges to Σ which is the unique

absolutely area minimizing surface in M with boundary Γ.
Take a tubular neighborhoodN(Σ) � Σ×(−1, 1) of Σ inM . Since Σ+

i converges
to Σ, there exists an N0 such that for any i ≥ N0, Σ

+
i ⊂ N(Σ) and Γ+

i is isotopic
to Γ in ∂N(Σ). Unlike the disk case, a priori we do not know thatΣ+

i ∩ Σ = ∅
even when Γ+

i ∩Γ = ∅ (see Remark 4.2). However, since Γ+
i separates the annulus

∂N(Σ) for i ≥ N0, Σ
+
i separates the product neighborhood N(Σ). Therefore, for

i ≥ N0, Σ
+
i is in the same homology class as Σ, and consequently, by Lemma 2.5,

Σ+
i and Σ are disjoint (See Figure 3 left). We denote the component ofM \(Σ∪Σ+

i )
whose boundary contains A+

i by M+
i = [Σ,Σ+

i ].

Claim: There existsN1 ≥ N0 such that for i > N1, any absolutely area minimizing
surface S whose boundary is C0-close and isotopic to Γ in A+

i is contained in M+
i .

Consequently, S is in the same homology class with Σ, by the arguments above
(See Figure 3 right).

Proof of the Claim: Assume otherwise, i.e., for any i > N0, we can find a sequence
of absolutely area minimizing surfaces Si in M with ∂Si ⊂ A+

i and Si � M+
i . If Si

and Σ+
N0

are disjoint, then Σ separates Si since Σ
+
N0

∪Σ separates M , but by using
the swapping argument above, we get a new absolutely area minimizing surface S′

i

with singularity along Si ∩ Σ contradicting regularity. The assumption that Si is
disjoint from Σ leads to a similar contradiction. Therefore we have a sequence
of absolutely area minimizing surfaces Si in M such that for every i ≥ N0, Si

intersects both Σ and Σ+
i .
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Figure 3. On the left: for i ≥ N0, Σ
+
i is in the same homology class as Σ, and conse-

quently, Σ+
i and Σ are disjoint. On the right: any absolutely area minimizing surface S

with ∂S ⊂ [Γ
N−

1
,Γ

N+
1
] is in the same homology class as Σ, and hence any such S and S′

are disjoint whenever ∂S ∩ ∂S′ = ∅.

Since ∂Si converges to Γ, and Γ is a uniqueness curve, by the compactness theo-
rem, after passing to a subsequence if necessary, Si converges to Σ. However, since
Si ∩ Σ+

N0
�= ∅ for any i > N0, and Σ+

N0
is compact, the limit of the sequence {Si}

must have a limit point on Σ+
N0

. Since Σ+
N0

∩ Σ = ∅, this is a contradiction. The
claim follows.

Obviously, a similar statement holds for the “negative side” of Γ. Therefore,
every uniqueness curve Γ in V , has a tubular neighborhood AΓ in ∂M such that
all absolutely area minimizing surfaces in M with boundary isotopic to Γ in AΓ

are in the same homology class. In particular, any two distinct absolutely area
minimizing surfaces with the same boundary in AΓ are disjoint by Lemma 2.5.
Similarly, any two absolutely area minimizing surfaces with disjoint boundaries
in AΓ are also disjoint.

Now, we will show that V is a countable intersection of open dense subsets. We
will follow the arguments proving the main theorem of [2]. Above, we showed that
for any simple closed curve Γ in V , there is a neighborhood NΓ (corresponding to
the curves isotopic to Γ in AΓ above) in the C0 topology such that for any Γ′ ∈ NΓ,
an absolutely area minimizing surface S with ∂S = Γ′ is in the same homology
class as Σ, where Σ is the unique absolutely area minimizing surface in M with
∂Σ = Γ. This implies that any two absolutely area minimizing surfaces with
disjoint or matching boundaries in NΓ must be disjoint. Now, let G =

⋃
Γ∈V NΓ.

As V is dense in F by Proposition 4.4, G is open dense in F .
The rest of the proof is along the same lines as the proof of Theorem 3.2 in [2],

more precisely the part regarding Claim 2. Here we give an outline and refer
the reader to [2] for further details. For each α ∈ G, we can construct a canonical
neighborhood Ωα = [Σ−

α ,Σ
+
α ], (the region between “extremal” absolutely area min-

imizing surfaces Σ−
α and Σ+

α with ∂Σ±
α = α) which contains every absolutely area

minimizing surface in M with boundary α. By construction, Ωα is independent
of NΓ and depends only on α. By the disjointness of absolutely area minimizing
surfaces with boundary in G, if α ∩ β = ∅, then Ωα ∩ Ωβ = ∅. Also, if α is a
uniqueness curve, then Σ+

α = Σ−
α and Ωα = Σ±

α should be regarded as a degenerate
region (with no thickness).
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Let sα be the volume of Ωα and define Ui = { α ∈ G | sα < 1
i } for each i ∈ Z+.

Note that V is contained in every Ui since sα = 0 for every α ∈ V , by definition.
In particular, Ui is dense in F . Moreover, V =

⋂∞
i=1 Ui, by construction. Finally,

by using the arguments similar to those in the proof of Theorem 3.2 in [2], one can
prove that Ui is open in G, hence in F . �

Remark 4.7. Notice that in the proof of Proposition 4.6, we show that for any
simple closed curve Γ ∈ V , there exists an annular neighborhood AΓ of Γ in ∂M ,
such that any absolutely area minimizing surface with boundary in AΓ must be
in the same homology class as the unique absolutely area minimizing surface with
boundary Γ (see Figure 3 right). This is interesting in its own right, and shows
local constancy of the homology classes of absolutely area minimizing surfaces in
some sense.

5. Further remarks

The density and genericity results in Sections 3 and 4 are about C0 simple closed
curves in ∂M with C0-topology. Note that the arguments in these results easily
generalize to the smooth case. In particular, let Ek be the set of Ck simple closed
curves in ∂M which are nullhomotopic in M . Then Theorem 3.1 generalizes to
Uk = U ∩ Ek in the C0-topology. Moreover, this implies that if ∂M smooth, then
U∞ is dense in E in the C0-topology. In other words, when ∂M is smooth, then
for any C0 nullhomotopic simple closed curve Γ in ∂M , there exists a C∞ simple
closed curve Γ∞ which is close to Γ in the C0-topology such that Γ∞ bounds a
unique area minimizing disk in M . Similar results holds for the absolutely area
minimizing surface case, too. It might be interesting to study these questions in
Ck-topology.

We should note that the generic uniqueness results in [15] are not directly
related with our results. In [15], for a fixed (m− 1)-manifold X , White shows that
a generic element in Cj,α embeddings of X into Rn bounds a unique absolutely
area minimizing m-manifold in Rn ([15], Theorem 7). In particular, this result
implies that a generic Cj,α simple closed curve in R3 bounds a unique absolutely
area minimizing surface [11]. White’s result also generalizes to closed manifolds of
any dimension (see Section 8 in [15]). However, it does not generalize to manifolds
with boundary (see the remarks in Section 8 in [15]). Hence, although it implies
generic uniqueness for the curves in the interior of the manifold, it does not imply
even the existence of a uniqueness curve in ∂M . In this sense, White’s results are
not directly related with the results in this paper. On the other hand, it might
be interesting to generalize White’s techniques to manifolds with boundary, and
hence to solve the generic uniqueness question in the smooth category mentioned
above.
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Turkey.

E-mail: bcoskunuzer@ku.edu.tr
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