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Boundary values of harmonic gradients
and differentiability of Zygmund
and Weierstrass functions

Juan J. Donaire, José G. Llorente and Artur Nicolau

Abstract. We study differentiability properties of Zygmund functions and
series of Weierstrass type in higher dimensions. While such functions may
be nowhere differentiable, we show that, under appropriate assumptions,
the set of points where the incremental quotients are bounded has maximal
Hausdorff dimension.

1. Introduction and main results

It was a widespread opinion among most of the mathematicians of the nineteenth
century that a continuous function should be differentiable on a substantial set of
points. For that reason, the first constructions of continuous nowhere differentiable
functions on the real line —which go back to the end of the nineteenth century—
were not accepted without reservations. However, the existence of such patholog-
ical functions was a crucial breakthrough not only in the foundation of modern
function theory but also in the future development of probability and physics. The
first example of a continuous nowhere differentiable function is probably due to
B. Bolzano (1830), who used a geometrical construction. However by the time
Bolzano’s example was published (1930) Weierstrass had already presented his
construction in the Royal Academy of Berlin (1872, published in 1875). Some
years earlier, Cellérier (1860, published in 1890) gave the first example by using a
trigonometric series
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where a > 0 is a sufficiently large number. Given b > 1 and 0 < o < 1, Weierstrass
proved that the continuous function

foalz) = i b~ cos(2mb™x)

n=0

is nowhere differentiable provided that 0 < o < 1—log(1 + 37/2)/logb and b > 7 is
an odd integer. In 1916, Hardy (][9]) proved that the last restriction in Weierstrass’s
result was superfluous in the sense that f;, o is nowhere differentiable as soon
as b > 1 and 0 < a < 1. This is best possible and the extreme case o = 1 is the
most delicate one.

During the twentieth century, a number of different geometric and analytic
constructions of continuous nowhere differentiable functions have been obtained.
See [18] for a historical survey of the subject.

For 0 < a < 1, denote by Lip,(R?) the Hélder class of bounded functions
f: R? — R for which there exists a constant C' = C(f) > 0 such that |f(x)—f(y)| <
Clz —y|® for any z,y € R%. A standard trick in the theory of lacunary series gives
that f, o € Lip,(R) if 0 < @ < 1. On the other hand, a classical theorem of
Rademacher (1919) says that any function in the Lipschitz class Lip, (R?) is differ-
entiable at almost every point. This implies in particular that f; 1 cannot be locally
Lipschitz on any interval. However, f; 1 belongs to the so called Zygmund class.
A bounded continuous function f : R? — R is in the Zygmund class A, (RY) if

ap L@ 1) + @ =) =2/ @)
z,h |h|

= [[fll+ < o0,

where the supremum is taken over all z € R? and all h € R?\ {0}. The Zygmund
class is intermediate between the Holder classes in the sense that Lip,(RY) C
A (RY) C Lip, (R?), for any 0 < a < 1. We also introduce the small Zygmund
class \,(R?) consisting of all bounded continuous functions f : R — R such that

f(z+h) + fl@—h) = 2/()|
" h]

— 0 as|h|—0.

Apart from its relation to Weierstrass functions, the Zygmund class is a conve-
nient substitute of the Lipschitz class in some problems in harmonic analysis. See
[1], [12], [13], [15], and [17] for connections between Zygmund classes, probability
and other areas of analysis.

The main purpose of this paper is to discuss the behavior of the incremental
quotients of a certain natural class of functions in the Zygmund class. We will
need some notation. Given a function f : R? — R, define the sets

P (o D 1]
(1.1) D(f)f{ € B! : limsup a

(1.2) Do(f) = {x € R? : fis differentiable atz} .

<oo},
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In [19], it was pointed out that if f € A.(R) (resp. f € A.(R)) then D(f)
(resp. Do(f) ) must be dense on any interval. On the other hand, from the classical
theory of lacunary trigonometric series (see [20]) we have m1(D(fp1)) = 0 where,
hereafter, m, denotes d-dimensional Lebesgue measure. From a metric point of
view, the definitive answer in dimension d = 1 was obtained in 1989 by Makarov

(see [13] and [14]).

Theorem A (Makarov).
1) If f € Au(R) then Dim(D(f)N1I) =1 for any interval I C R.

2) If f € \c(R) then Dim(Do(f) N1I) =1 for any interval I C R.

Here and hereafter, Dim denotes Hausdorff dimension. Points in D(f) are
sometimes called slow points of f (see [11] for a version of Theorem A in the case
of Brownian motion). The authors asked whether D(f) (respectively Dy(f)) should
also have maximal Hausdorff dimension if f € A.(R?) (respectively f € \.(R?)).
In previous work ([7]) they showed that this is not the case: the right dimension
is 1 and this is the best that can be said in general.

Theorem B ([7]).
1) If f € A (RY) then Dim(D(f) N Q) > 1 for any cube Q C R?.

2) If f € A(R?) then Dim(Do(f) N Q) > 1 for any cube Q C R?.
3) There is f € M\(R?) such that Dim(D(f)) = 1.

In this paper we will mainly focus on differentiability properties of Weierstrass
type functions. Our method can be presented in two steps: i) give sufficient
conditions on a function f € A,(R?) implying that Dim(D(f)) = d; ii) show
that a certain class of Weierstrass type functions satisfies the previous sufficient
conditions.

Regarding i), our method is based on a principle that has been known for a
long time: there is a correspondence between the differentiability properties of a
function f: R? — R and the boundary behavior of VF: Riﬂ — R where
F: R‘iﬂ — R is the Poisson extension of f to the upper half-space Riﬂ. See the
results in Section 2. Let F': R‘iﬂ — R be a harmonic function. We say that the
gradient vector field VF': Riﬂ — R9*+1 is Bloch (resp. little Bloch), written
VF € B(RTM) (resp. VF € By(REH)) if

(Sup)y |HF(x,y)| < oo,
x,y

where HF (z,y) = D(VF(z,y)) is the Hessian of I at (x,y) and the supremum is
taken over all (z,y) € Rt (resp. sup, y |HF(z,y)|| — 0 as y — 0). Geometri-
cally, the Bloch condition says that the oscillation of VF in regions of Rf‘l of a
fixed hyperbolic diameter is uniformly bounded (see Proposition 2.1).
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For harmonic F : Riﬂ — R, define, analogously to (1.1) and (1.2):

(1.3) D(VF) ={z e R* : limsup,, o |[VF(z,y)|] < oo},
(1.4) Do(VF) ={z € R? : lim,_,o VF(,y) exists }.

Then Theorem A can be deduced from the following stronger result of Makarov
(see Section 5 of Chapter II in [14]).

Theorem C. Let F : Ri — R be a harmonic function.
1) If VF € B(R%), then Dim(D(VF)N1I) =1 for any interval I C R.

2) If VF € By(R%), then Dim(Do(VF)NI) =1 for any interval I C R.

Corollary 2.4 says that D(f) = D(V,F), where V,F denotes the tangential
component of VF. Consequently Theorem C is stronger than Theorem A since
the result affects the two derivatives and not only dF/0x. A decisive feature in
the proof of Theorem C is that, since d = 1, VF' is an anti-analytic function so in
particular HF'(x,y) is a conformal matrix for each (z,y). That means that VF
distorts in the same way in different directions, a fact which plays a role in the
proof of Theorem C.

More generally, we say that a smooth mapping G: Q — R", Q C R"™ is quasi-
regular if there exists a constant 0 < K < oo such that

(1.5) max |DG(z)(e)| < K ‘rglnzri |DG(x)(e)]

le]=1

for any x € Q. Quasiregularity implies that, infinitesimally, G distorts about the
same in the different directions. See [2], [16] for an account on the theory of quasi-
regular mappings, under much milder regularity assumptions. If F' is harmonic
in Ri then VF is quasi-regular with constant 1. On the other hand, in dimensions
greater or equal than 3, K =1 in (1.5) implies that DG(x) is a conformal matrix
in which case G is in fact a linear conformal transformation by a classical result of
Liouville (see [16]). In Section 4 we will use a weaker notion of quasi-regularity. Let
F: Rf‘l — R be a harmonic function. We say that VF' is weakly quasiregular
if there exist an integer N > 2 and v > 1 such that VF satisfies 1/N-weak
quasiregularity condition with constant ~,

(1.6) / max |(HF)e(z,y)|* de dy < ~* min/ |(HF)e(z,y)|* dz dy
Ci/n(Q) Cyi/n(Q)

le|=1 le]=1

for any cube Q@ C R? of sidelength 1(Q), where Cy,n(Q) = Q x [I(Q)/N,1(Q)] C
Rf‘l is the 1/N-Carleson box associated to the cube Q C R, HF(x,y) is the Hes-
sian of F' at (z,y) and the maximum and the minimum are taken over all unitary
vectors e € R, Obviously, quasiregularity is stronger than weak quasiregularity,
in the above sense. Our first main result says that, assuming weak quasi-regularity,
Theorem C can be generalized to any dimension.
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Theorem 1. Let F : R‘iﬂ — R be a harmonic function. Assume that VF is
weakly quasiregular.

1) If VF € BREM) then Dim(D(VF) N Q) = d for any cube Q C R™.
2) If VF € BO(RiH) then Dim(Do(VF) N Q) = d for any cube Q C R

As explained above, we obtain the following consequence which should be com-
pared with Theorem B.

Corollary 2. Let f : R? — R be a bounded continuous function and let F be its
Poisson extension to Rf‘l. Assume that VF is weakly quasireqular.

1) If f € A(RY) then Dim(D(f) N Q) = d for any cube Q C R?.
2) If f € \(R?) then Dim(Do(f) N Q) = d for any cube Q C R4,

The rest of the results deal with specific examples of Zygmund functions given
by Weierstrass series. We have adapted ideas from a recent paper of Y. Heur-
teaux ([10]) where he studies the nowhere differentiability of Weierstrass-type func-
tions on the real line.

For € > 0, let C1¥(R?) be the class of bounded functions f : R? — R for which
there exists a constant C' = C(f) > 0 such that |f(z + h) + f(x — h) — 2f(z)| <
C|h|**e for any z,h € RY. When 0 < & < 1, the class C1¢(R?) consists of
the differentiable functions whose first partial derivatives belong to the Hdlder
class Lip, (R%). Also C%¢(RY) is the class of functions whose first partial derivatives
are in C1¢(R?). Let ¢ : R? — R be a function of class C1¢(R?) which is 1-periodic
in each coordinate, that is,

O(xr,.. . e+ 1, 2q) = d(a, ..., 24)

for any x = (x1,...,24) € R% and for each i = 1,...,d. For b > 1 define the
Weierstrass function associated to b and ¢ by

o0

(1.7) foo(@) =D b p(b"x).

n=0

In dimension d = 1, Y. Heurteaux has proved in [10] that either f; 4 € C(R)
(and hence it is differentiable at every point) or f; 4 is nowhere differentiable. This
dichotonomy extends easily to dimension d > 1. Heurteaux also gives the following
sufficient condition.

Theorem D. Letd =1 and b > 1 and let ¢ and fy 4 be as above. Assume that
either 1) ¢'(0) # 0 or ii) ¢ is nonconstant and has a global extremum at t = 0.
Then fy 4 is nowhere differentiable.

Similarly, we will say that a differentiable function ¢ : R¢ — R satisfies condi-
tion H if, for each unitary vector e € R?, either D.¢(0) # 0 or the one-variable
function ¢ — ¢(te) is nonconstant and has a global extremum at ¢ = 0. Our main
result is the following.
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Theorem 3. Let ¢ : R? — R be a function of class C*>*(RY) for some 0 < o < 1
which is 1-periodic in each coordinate. Forb > 1 let f, 4 be the Weierstrass function
associated to b and ¢ as in (1.7). Assume in addition that ¢ satisfies condition H.
Then:

1) fo.0 € A(R?) and fy,4 is nowhere differentiable.

2) For any unitary vector e € R? we have

te) —
md{m e R?: lim sup |[fo.6(x +te) — fo.6(x)]
t—0 |t|

<oo}=0.

In particular mq(D(fp.4)) = 0.
3) Dim(D(fp.6) N Q) = d for any cube Q C R

The most relevant result in Theorem 3 is part 3), which should be compared
with Theorem B. The key point is to show that if F' is the harmonic extension
of fp¢ to Rf‘l then condition H implies a certain uniform lower bound on HF
(Lemma 7.3 below), which is the substitute for the oscillation condition in Theo-
rem 1.2 in [10]. From such uniform lower bound, it is easy to deduce that VF is
weakly quasi-regular, which makes it possible to apply Theorem 1.

The paper is organized as follows. Section 2 contains some basic facts about
Zygmund functions and their connections with harmonic extensions. Section 3
describes how to use stopping-time methods to construct Cantor-like boundary
sets at which a gradient Bloch vector field is bounded. Section 4 shows how the
weak quasi-regularity condition guarantees that the boundary sets in Section 3
have large Hausdorff dimension. In Section 5, Theorem 1, part 1) is proved and a
sketch of the proof of part 2) is given. Section 6 contains some standard facts about
regularity of Poisson extensions. Section 7 is devoted to functions of Weierstrass
type in higher dimensions. Theorem 3 is proved in Section 8. Finally, Section 9
includes some remarks and questions.

2. Some properties of Zygmund functions and their harmonic
extensions

If f: R = Rand f € L>=(R?), recall that the harmonic extension of f to the upper

half-space Riﬂ is given by

Flaw) = [ Pla=z9)i()d @R y>0)

where (( )/ )
y I'((d+1)/2

P — = 3~

(7,y) = ca (o2 + g2) @7 cd r@yn/z

is the Poisson kernel in the upper half-space.
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We say that a harmonic function v in the upper half space R‘iﬂ is a Bloch
function, denoted v € B(R‘iﬂ), if and only if
sup {y [Vo(z,y)| : (2,y) € RE } = [lofls < oo,

If
sup {y|Vv(x,y)| : :E€Rd}*>0 asy — 0,

then we say that v belongs to the little Bloch class and write v € By(R%T). The
following proposition is elementary.

Proposition 2.1. Let v € B(Rf‘l). Ifa, be R? and s, t > 0 then
[b—al ' t
— < = -I1).
)t < ot (L s ()
Proof. Suppose that 0 < s <t. Then
[v(b,t) — v(a, s)| < |v(b,t) —v(a,t)| + |v(a,t) — v(a,s)|.
Use the Bloch condition on each term. O

If F is harmonic in RE™ we say that VF € B(R%M) (respectively VF €
BO(RiH)) if all the partial derivatives OF /0x;, OF /0y, i = 1,...,d are Bloch
(vesp. little Bloch). Whenever VF € B(R%!), we also write

0’F o
||VF||B :Sup{y’m(m’y) : ($,y) €Ri+1v )= 1,7d+1},

where, for simplicity, z4+1 denotes the y-variable. The following proposition, whose
proof can be found on p. 146 of [17], relates the Zygmund and Bloch classes.

Proposition 2.2. Let f € L>=(R%) and let F be its Poisson extension to the upper
half-space R‘iﬂ. Then f € A (R?) if and only if VF € B(R‘iﬂ). Moreover there
exists a positive constant C' depending only on d such that

CHIfll < IVFlls < C £l

Furthermore, f € M\ (R?) if and only if VF € BO(Riﬂ).

The following two propositions relate the incremental quotients of Zygmund
functions to the vertical behavior of the tangential components of the gradients of
their Poisson extensions. Given a smooth function F : R‘iﬂ — R, the tangential
component of its gradient is V,F = (0F /0x1,...,0F [0xq).

Proposition 2.3. Let f € A.(R?) and let F be its Poisson estension to Rf‘l.
Then, for any x, h € R%, h # 0, we have
|f(x+h) — f(z) = h-VoF(x,|h])
|h

< Cflls-
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Proof. We will use the following representation of f, which can be checked by
differentiation: for any y > 0,

0y?
Choose y = |h| so that f(x + h) — f(z) — h -V F(z,|h|) = A1 — Ay + As, where

Yy 2
(2.1) f(x) :m,y)fyg—j(x,w / 12 oty dr.

Av = F(z +hy[h]) = Fz, [b]) = h- Vo F(z, |h]),
OF oF
Ay = —_— -
2 = [h| [ay (z+h[hl) = 5 (:c,IhI)],

I 92F 0%F
Ay = /0 ¢ (a—yz(xjth,t) - a—yz(m,t)) dt.

Clearly |Agz| < 2||VF||g|h|, and Proposition 2.1 gives that |Az| < [|[VF|/z|h|. On
the other hand, also from Proposition 2.1,

1
Bl = | [ e (T (@t thbl) = V. F(e ] < [V b,

and the result follows from Proposition 2.2. )
The following result follows easily.
Corollary 2.4. Let f € A.(RY). Then
[f(x+h) - f(z)]

lim sup < oo <<= limsup|V,F(z,y)| < cc.
A =0 |h| y—0

The analogues of Proposition 2.3 and Corollary 2.4 for the little Zygmund class
read as follows and are proved in the same way.

Proposition 2.5. Let f € A\.(R?) and let F' be its Poisson extension to R,
Then for any x € R?, one has
iy L&+ h) = f(2) = h- Vo F(z, |h])
im
h—0 ||

=0.

Corollary 2.6. Let f and F be as in Proposition 2.5. Then

[ is differentiable at x <= lir% V. F(z,y) exists.
Yy—r

3. On the boundedness of Bloch gradients at the boundary

Let F' be harmonic in R‘f“l such that VF is Bloch (for instance F' could be the
Poisson extension of a Zygmund function in R?). We are interested in the size of
the set

(3.1) D(VF) = {z € R? : limsup,_,, |[VF(z,y)| < 0o}
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Since this is largely a technical section, let us briefly explain its content. In or-
der to determine conditions under which the set D(VF') has Hausdorff dimension d,
the strategy is to construct a Cantor-like subset of D(VF') by using stopping-time
constructions (Proposition 3.3) and to try to estimate its Hausdorff dimension from
below. It turns out that if the stopping time satisfies a certain homogeneity cover-
ing condition (see equation (3.9) below) then we get good control on the Hausdorff
dimension of such a Cantor-like set and we will be able to deduce (Corollary 3.8)
that Dim(D(VF)) = d.

Proposition 3.1. Let F' be a harmonic function in Rf‘l such that VF € B(Rf‘l).
Then

D(VF) ={z € R : lim, o VF(z,y) exists} UN ,
where N has d-dimensional measure zero. In particular, if F is the Poisson exten-
sion of a function f € A.(R?) and

i sup 1)~ @)

=00 ae. zeR?
h—0 |h| ’

then D(VF) has zero d-dimensional measure.

Proof. From Proposition 2.1, VF is nontangentially bounded at any point of
D(VF). From the local Fatou theorem for harmonic functions (see Theorem 3
in Chapter VII of [17]), it follows that for almost all points € D(VF), the limit
lim,_,o VF(x,y) exists. The second implication follows from Corollary 2.4. O

Since D(VF') could have d-dimensional Lebesgue measure zero, we may ask
what can be said about its Hausdorff dimension. The purpose of Sections 3 and 4 is
to establish that, if VF satisfies a certain quasiregularity assumption, then D(VF)
has Hausdorff dimension d. In dimension d = 1, this was proved by N. Makarov
([13], [14]). Observe that if d = 1, the quasiregularity assumption is always fulfilled.

One can obtain satisfactory lower bounds of the Hausdorff dimension of sets of
Cantor type, as the following lemma shows. It is a well known higher-dimensional
version of a lemma of Hungerford (see [15], Theorem 10.5). Hereafter, [(Q) stands
for the sidelength of a cube Q.

Lemma 3.2. Let o, > 0 with a < Y4 < 1. For k =0,1,2..., let E}, be a
countable union of disjoint cubes {QéC c7=1,2,...} in R Suppose that for any
k=0,1,2,... the following two conditions hold:

1) Whenever Q' 0 QF # 0 then Q' C Q% and 1(Q;™) < al(QF)

2) S (UQF ) > (H(Q5))?, where the sum is taken over all cubes QN such
that Qi C Q.
Then

A log(5/a)

In Sections 3 and 4 we will show that, under certain assumptions, D(VF')
contains Cantor-like subsets of Hausdorff dimension arbitrarily close to d.
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Pick an integer N > 2 that will remain fixed throughout the section. Let
Q C R? be a cube and let | = [(Q). Divide each side of Q into N open-closed
intervals of length I/N. In this way we get N disjoint cubes of sidelength [/N
whose union is Q). We call them the N-adic descendants of () of the first generation.
When repeating this to each descendant of a first generation cube we get N?¢
disjoint cubes of sidelength 1/N? whose union is @), the N-adic descendants of Q of
the second generation. We denote by &;(Q) the family of the N7¢ descendent cubes
of @ of generation j. If Q; € £;(Q) then thereisachain Q@ =Qp D Q1D --- D Q;
where Q; € £(Q),i=1,...,7. We call it the N-adic tower from @; to Q). Finally,
let £(Q) = U;io &;(Q) be the family of all N-adic subcubes of (). The reason for
using N-adic divisions instead of just dyadic divisions is merely technical.

Let F be a harmonic function in R4*! such that VF € B(RT). We describe
now a stopping-time argument that will produce a Cantor-like set contained in
D(VF). For cube Q C R? of sidelength 1(Q), we hereafter write

1
ma(Q)

where the integral is understood in a vector-valued sense.

G=Qx[0.1Q) and (VF)o= /Q VF(r,1(Q)) dz,

Fix a cube @ C R?. For any large positive number M we define a family
Su(Q) C £(Q) of N-adic subcubes of @ in the following way. Given @Q; € &;(Q)
whose N-adic tower is denoted by Q@ = Qo D @1 D --- D @, we say that Q; €
Sm(Q) if and only if

(VF)q — (VF)q,

<M, i=1,...,j—1,

and
(V) — (VF)q,| > M.

In other words, the family Sp/(Q) consists of the maximal N-adic subcubes @’
of @ which satisfy |(VF)q — (VF)q,| > M. The following proposition collects the
main facts about Sy (Q).

Proposition 3.3. Let F' be harmonic in R‘iﬂ and such that VI € B(Riﬂ).
Assume that mq(D(VF)) = 0. Then there exists a constant C = C(N,d) > 0 such
that:

1) For each Q' € Sy (Q), we have
M < |(VF)g — (VF)o | <M+ C|VF|5.
Furthermore, if v € Q', and 1(Q") <y <1(Q), then

IVE(z,y) = (VF)ol < M + C[[VF]|5.

2) md(Q\UsM(Q) Q) =0

3) Each Q' € Sy (Q) is a N-adic subcube of Q of generation at least WJWFHB.
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Proof. Part 1) follows from Proposition 2.1. Part 2) is consequence of part 1)
and the assumption that D(VF) has zero Lebesgue measure. To show 3), let
Q=0QoD>Q1D-DQ; =Q be the N-adic tower from @’ to Q. Then

i
M < |(VF)q = (VF)g| <Y [(VF)q,., = (VF)q.| < Ci|IVF|s. O

i=1
Given a € R4\ {0} and 0 < 0 < /2, let
To(a) = {bc R . (a—b)-a>|a||a—b| cosb}

be the symmetric cone of vertex a and aperture 26, whose axis is the line containing
the origin and the point a. Given M > 0and 0 < 6 < 7/2, we introduce a subfamily
of Sy (@), denoted by Sare(Q), that will play a role later. First, if (VF)g = 0,
we take Si6(Q) = Sm(Q). If (VF)q # 0, let &g = —(VF)q/|(VF)q| and
define Spr,0(Q) to be the collection of all cubes Q' € Sy (Q) that satisty

(32) (VF)q = (VF)q) - &g > cosO[(VF)q — (VF)q)!.
Observe that if (VF)g # 0, then Sy 0(Q) consists exactly of those cubes Q' €

Sm(Q) for which (VF)g € To((VF)q).
We will need the following elementary lemmas.

Lemma 3.4. Fix 7/3 <0 <7/2, R >0 and k > 0 such that R > r/cosf. Let
a,b € R be such that b € Ty(a) if a # 0. Suppose that Rcos® < |a — b| <
RcosO + k. Then

(3.3) la] < R = |b| < VR?sin’0 + k2 <R.

Proof. From the cosine theorem and the assumption b € T'p(a) it is enough to
compute the maximum of of g(z,y) = (2 + y?> — 22y cosh)/? in the rectangle
[0, R] x [Rcos B, Rcosf+k]. It is easy to check that the maximum must be attained
at one of the two corners (0, Rcos€ + k) or (R, Rcosf + k) and that, g(0, Rcosf +
k) < g(R,Rcosf + k) = V R?sin? @ + k2 provided R > k/cosf, n/3 < 0 < /2.

O

This proves the lemma.

The following refinement of Lemma 3.4 will be needed to deal with the little
Bloch case.

Lemma 3.5. Let 7/3 < 0 < /2, let {k,} be a bounded sequence of positive
numbers, and let g(x) = \/x(x + 1) for x > 0. Let Ry > g(k1/cosf) and define

recursively a sequence of positive numbers R,, n =1,2..., by
Rn+1 .

(3.4) Ryi1 :max{g(cgm> ,\/ R2 Sm29+/<;%}.

Then

limsup R,, = g((cos )" limsup,, k) -
n

In particular, if £, — 0 then R, — 0 but R, /K, — o0.
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Proof. Let k = limsup,, K, and R = limsup,, R,,. From the construction of R,
we have that {R,} is bounded and R,, > g(ky/cosf). Hence R > g(x/ cos#). On

the other hand,
R:max{g( ),\/stin29+/£2},

which implies R < g(k/ cos@), since g(x) > z for x > 0. If k,, — 0, it follows that
R, /kn — o0 since R, > g(kn/ cos). m

cosf

Corollary 3.6. Let R >0, 7/3 <0 <7/2, M = Rcosf, and F, Q, C and Sp(Q)
be as in Proposition 3.3. Consider the subfamily Sar,0(Q) defined in (3.2). Assume
that R > C||VF||/ cosf. Then for each Q" € Sp0(Q),

(35)  [(VF)ol <R = |(VF)g| < \/R*sin®0 + C2|VF|3 < R.
Furthermore, if |(VF)g| < R then

(3.6) [VF(z,y)] < (1+cos§)R+ C||VF|5

whenever x € Q' and 1(Q") <y < U(Q).

Proof. Take a = (VF)qg, b = (VF)qg and k = C|VF|g. By Proposition 3.3,
Rcosf < |a—b| < Rcosf + k. Since R > k/ cosf, (3.5) follows from Lemma 3.4.
Inequality (3.6) also follows from part 1) of Proposition 3.3. O

Now we are ready to construct a Cantor-type set that will be contained in
D(VF). Start with a fixed cube Qo C RY. Fix 7/3 < § < n/2 and M > 0. For
each k > 0 we will define a family of cubes G as follows. Let Gy = {Qo} and
G =Sm(Qo). If kK > 2 and Gi_1 has already been defined, we define

G= J SueQ.
QEGr 1
Let
(3.7) Ej, = U Q and E. = ﬂEk.
QEeGk k=0

Observe that from the construction and Proposition 3.3, assumption 1) of
Lemma 3.2 is satisfied with o = N—M/(CIVFls),

Proposition 3.7. Fix 7/3 <60 <n/2, R>0 and M = Rcosf. Let F and C be
as in Proposition 3.3. Given a cube Qo C RY, construct E, as in (3.7). Suppose
that

CIVFE|s
C

(3.8) RZmaX{ e |(VF)QO|}.

Then
ExC{zeQo: SUPg<y<i(Qo) I VF(,9)] < 2R} .
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Proof. First observe that from (3.5) in Corollary 3.6, we deduce that if k¥ > 0 and
Q € Gj, then |(VF)g| < R. Therefore, from Corollary 3.6 and the assumption on 6
we get

[VFE(x,y)| < (14+cos@) R+ C||VF|s < 2R

if v € Eoo and 0 <y <1(Qo). O
Corollary 3.8. Let F be a harmonic function in Rff_“ such that VF € B(Rf‘l).
Fix n/3 <0 < 7w/2, R >0 and M = Rcosf and let C > 0 be the constant

appearing in Proposition 3.3. Suppose that there is a constant 0 < 3 < 1 such that
for any cube Qo C R, any subcube Q C Qq, and any R satisfying

2C|VF C||IVF| glog(1
Rz wax {ZEE (o), AVT e oell/)),
we have
(3.9) S @)= BUQ).
Q'ESM,(Q)
Then

C|VF||s log(1/8)
R(cosf)log N

Dim {2 € Qo : supgy<iq, IVF(z,y)| <2R} > d —

In particular,
Dim(D(VF)N Qo) =d

for any cube Qo C RY.

Proof. If 3 is as in (3.9) and o = N~M/(ClIIVFl5) " the result follows from Proposi-
tion 3.7 and Lemma 3.2. )

4. A weak quasiregularity condition for harmonic gradients

Let F: Rf‘l — R be harmonic such that VF is a Bloch vector field. The aim of
this section is to ascertain conditions on F' implying that the homogeneity condi-
tion (3.9) in the stopping-time construction in Section 3 holds. By Corollary 3.8,
this would imply that Dim(D(VF)) = d and therefore it would essentially prove
part 1) in Theorem 1 (see Section 5 for details). We will see in this section that
one such condition is what we call weak quasireqularity of VF. The section is then
devoted to showing that if VF' satisfies a weak quasiregularity condition then the
technical homogeneity condition (3.9) is satisfied (see Corollary 4.5 below).

We recall some well known facts from elementary linear algebra. Suppose that
A= (a;;) isa (d+1) x (d+ 1) symmetric matrix. Then

min [A\;| = min |Ae|] < max|Ae| = max |\;|,
le]=1 le[=1
where {\;} are the eigenvalues of A. Therefore, A distorts exactly in the same way
along all directions if and only if A is a conformal matrix, that is, all its eigenvalues
have the same absolute value.
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On the other hand, observe that

d+1 d+1
2 2
AP = a; Z | Aes]”
4,j=1
where e, ..., eq41 is the canonical basis of R4+, Furthermore,

m 141} < max [Ae| < [[A]] -

If F: R‘fl — R, let HF be the Hessian matrix of F, that is, the (d+1)x (d+1)
matrix of all second derivatives of F. If ¢ € R4t we interpret (HF)¢ as the
function obtained by matrix multiplication. Furthermore, in accord to the previous
comments we write

d+1
O*F 2
41 HF(z,)|? ’ e, . .
(a.1) IEF I = 3 5
Here we write x = (z1,...,74) € R? and 2441 = y. Fix 0 < § < 1. For each cube

Q C R? we define the d-hyperbolic box associated to @ by

C5(Q) = {(z.y) eRT! - 2 €Q, 5UQ) <y <UQ)}.

Let 0 < § < 1 <. We say that VF satisfies a §- weak quasiregularity
condition with constant ~ if for any cube @ C R? there holds the inequality

(4.2) / max |(HF)e(x,y)|* dzdy < ~* mln/ (HF)e(z,y)|* dzdy,
C5(Q) lel=1 lel=1Jc5(Q)

where the max and min are taken over all unitary vectors e € R*!. If we are
not interested in the particular value of the constant v we will just say that VF
satisfies a d-weak QR condition. For technical reasons in this section we will
only use values of § of the form 1/N for an integer N > 2.

Now fix an integer N > 2, a sufficiently large number M > 0, and a cube
Q C R?. Let Sn(Q) be the family of N-adic subcubes of @ introduced in Section 3.
For j > 1, let §4,(Q) be the family of all cubes Q' € Sy (Q) of generation at most j.
Define also

(@)

{(2,1(Q)) : € Q},

) =Ugesi 7@ 5@ =Uyeg 0@

Q) ={(z,N71(Q)) : € Q\ S;(Q)},

:(Q\UQ/ESJ 0 @) Ny 2 Q. N7IQ) <y <1Q)}.
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Note that ©;(Q) is a sort of truncated domain associated to the stopping time
originating Sys(Q). In order to show that the cubes in Spr0(Q) take a fixed amount
of the d-dimensional measure of @) (as required in assumption (3.9)) we will need to
assume that VI satisfies a QR condition. The technique basically consists of using
Green’s formula applied to the functions y and |[VF — (VF)g|? in the domains ;.
We will prove a sequence of technical lemmas. In the rest of the section, mg4(E)
stands for the d-dimensional Lebesgue measure of E C R,

Lemma 4.1. Let F be a harmonic function in Ri'H such that VF € B(Riﬂ) and
mq(D(VF)) =0. Let M >0, Q, and Q;(Q) be as above. Then there is a constant
C=C(d,N) >0 such that if M > C'||VF|, then

1
(13) L, o pHEE P drdy 2 08 (@)
for sufficiently large j.

Proof. Note that Q; = Q;(Q) is bounded by a finite number of smooth hyper-

surfaces. We apply Green’s formula to y and |(VF — (VF)g|? in Q;. By simple
computation,

~ (VF)ql*) =2(HF)(VF — (VF)q),
A((VF = (VF)ql?) = 2||HF|.
Hence, from Green’s formula, the integral in (4.3) is equal to

1
@) [ YHPTF - (VF)o)n-j [ [VF (VPP n
09, 2 Joq,

where n denotes the outer normal unit vector. Observe first that by construction
of 2; and Proposition 3.3, we have

(4.5) IVF — (VF)o| < M +C||VF|ls on €,

(4.6) IVF —(VF)q| > M —C|VF|ls on | 7@,

QeSI(Q)

with C'= C(d, N). From the Bloch condition, (4.5), and the fact that the surface
measure of 9€); is smaller than a fixed multiple of (1(Q))?, it follows that

@1) | [ WHP)TF - (VF)o)-n| < CIVF (M + C [ VFs) (@),
09,

where C'= C(d, N). On the other hand,

L.,

J

VF—(VF)o*V(y)-n = / VF—(VF)o|* - / VF—(VF)of?.
T(Q) T;(Q)UB;(Q)
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From the Bloch condition we get
(4.8) / IVE — (VF)ol* < (C|VF|5)* (1(Q))",
T(Q)
(4.9) /B o [VE — (VF)ql* < (M + C|IVF|5)* ((1(Q))" —ma(5;(Q))) -
On the other hand, from (4.6) we get

(4.10) /T(Q) [VE — (VF)ql* = (M — C||VF|[5)* ma(S;(Q)).

Now, by part 2) of Proposition 3.3 we have that mq(S;(Q)) — (1(Q))? as j — oc.
Choose j large enough so that mg(S;(Q)) > 2(1(Q))?. It then follows, from

(4.7)—(4.9) and simple computation, that there is a positive constant C' = C'(d, N)
such that

M? 3
[ IV~ (VF)PY ) 0| = (G- - 3CIFsM - 5 C*|VFIE) ((Q))
09
M2
> 2@,
where the last inequality holds as soon as M > 14C'||[VF|/g. This proves the
lemma. O

We need now a variant of Lemma 4.1.

Lemma 4.2. Let F', Q, M and Q;(Q) be as in Lemma 4.1. Assume that VF
satisfies a weak (1/N)-QR condition with constant v > 1 for some integer N > 2.
Then there is a constant C = C(d, N) > 0 such that if M > 367>C||Vul||s then,
for sufficiently large 7,

M2
1642

u@)?,

min [ 97 - (9P)- )" 2

where the minimum is taken over all unitary vectors e € RI*1,

Proof. The proof mimics the proof of Lemma 4.1. Fix a unitary vector e € R4+1,
Consider the harmonic function v = (VF — (VF)q) - e. We apply Green’s formula
in Q; = Q;(Q) to the functions y and v2. A simple computation shows

Vv? =2((VF — (VF)g)-e) (HF)e and A(v?) =2|(HF)e|*.
Therefore, as in Lemma 4.1,
R
Q;

:/ 2y(VF—(VF)Q~e)(HF)e-n—/ [(VF—(VF)Q)~6]2V(y)-n.
0% 09,
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Now observe that, since §2; can be decomposed as a union of disjoint hyperbolic
boxes of the form C /x5 (Q"), we have, from the 1/N-QR condition and Lemma 4.1,
M2

(4.11) <

Q) < [ yIHFP <24 [ yl(HF)P.

J J

On the other hand, as in Lemma 4.1,
@12) | [ 4(VP=(VF)g)-e(HP)e-n| < CIVFIs (M +C[VFa) Q)"

As for the other surface integral, notice that V(y)-n vanishes outside the horizontal
part of 9€Q;, which consists of T;(Q) U T(Q) U B;(Q). Furthermore,

(4.13) /T@) (VF = (VF)g) - ¢]® < C2|VFI3 Q)"
@i [P (FF)) )" £ (4 I ma(B(Q)-

If j is large enough, mq(B;(Q)) can be made arbitrarily small. Then, combining
(4.11)—(4.14), we finally get

2
[ (57 =P 2 G a@)”

as soon as M > 362 C|VF| 5. O

Let 0 < @ < /2 and e € R%*! be a unitary vector. Define

Sio(Q) =1{Q €84,(Q) : (VF)q — (VF)q) - e > cos|(VF)q — (VF)ql},
Sheo(Q) =1{Q €81,(Q) : (VF)q — (VF)q) e < —cos|(VF)q — (VF)ql},
SJJQ,e,e(Q) = SJJQTe,G(Q) U S?CIT@,H(Q) .

If (VF)g # 0 and we make the particular choice e = —(VF)q/|(VF)qg| we recover
the family

(4.15) Smo(Q) = U Sires(@)

introduced in Section 3.

Lemma 4.3. Assume that VF satisfies a weak 1/N-QR condition with constant
v > 1. There is a constant C = C(d, N) > 0 such that if M > 367>C||VF| s and

cosf < 1/8y then
, 1
> U@ 2 55 Q)

QESY . o(Q)

for any unitary vector e € R+,
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Proof. It Q" € S,(Q) \ SJJQ’QG(Q) then on T(Q’) we have the estimate
(VE = (VF)q) el < C|[VF|p+cos0 (M +C|VF]5),
while, if Q" € 8%, . 4(Q) then on T(Q"),
(VF = (VF)q) el <M+ C[VF||5.

Therefore

/w) (VF = (VF)q)-€]” < [C|VFlis+cost (M +C |[VF||s)]* (@)

+(M+C|VFIs)® Y W@,
QESY, . o(Q)

and from Lemma 4.2 we obtain

rod - 1/(169%) — [cos 0 + (1 + cos O)C||VF|| g/ M]? d
X wayz e 1(Q)
M,e,0 1 J
> 1 1Q)
provided M > 32~ C|VF|p and cosf < 1/(8). O

Lemma 4.4. Let N, F, Q, M, and §; as in Lemma 4.1. Suppose that VF
satisfies a weak 1/N-QR condition with constant v > 1. Let 0 < 0 < /2 be such
that cos® < 1/6400~3. There is a constant C = C(d,N) > 0 such that for any
unitary vector e € R4 and sufficiently large j we have

Y @)t > WS

, ~ 160003
QeSS (@)

provided M > 10°~3 C ||V F||5.

Proof. Fix M and e. Choose 0 < #; < 0 = 6 such that cosf; = 1/(87). For
i=1,2,let Af = Sf\feﬁi @), A = ng},_e,ei (Q) and A; = A7 UA; . Furthermore,

set
A= 1@). 4= |J 1@,

Q' eAf Q'EA;

and A; = A7 UA; and H; = T;(Q) \ A;. From Lemma 4.3, we have my(A;) =
ma(AT) +ma(A7) > 1552 UQ))% T ma(AT) > 55552 (1(Q))* we are done, so

assume that mgq(A7) > ﬁ(l(@))d. Since |((VF)q — (VF)q) - e| > M cos 8, for

any Q' € A7, we deduce that

d
(4.16) /A|VF—(VF)Q).6|2(coselM—C||VF||B)md(A1)z%,

1

where for the last inequality we have used cos@y = 1/(8v) and M > 32vC ||V F||.
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Now we apply Green’s formula in €; to the functions y and
=(VF—(VF)q)-e
Note that v is harmonic, while Vv = (H F)e. Therefore, from Green’s formula,
(4.17) / (VF —(VF)g)-eV(y) -n= y(HF)e-n
9, 9,

Again, the integrand on the left-hand side of (4.17) vanishes outside T;(Q)UB;(Q)
UT(Q). Furthermore,

(118) | /8  YHP)e ] < CIFIs (@),
(1.19) [ (TP~ (TFa)e| < Mma(5,@).
(1.20) | /T(Q)(VF—(VF)Q)'e < OV F s Q)"

Now we use the decomposition T;(Q) = AF U Ay U Hy and observe that, since
AT C A5, we get, by (4.16),

(4.21) ‘/ (VE — (VF)g)-e| > 32%7 1(Q))?.

On the other hand,

(4.22) (VF = (VF)q) - e’ < (cosbs) (M + C|[VF|5) ((Q))*.

‘ Ho

Now since mq(B;(Q)) — 0 as j — oo, we get from (4.18)—(4.22) that if j is
large enough,
(4.23)

1
— e > - _ — d
/A;(VF (VF)o) e > (M(320073 coseg) 2 +00592)C||VF||B) 1(Q))
From (4.23) and the fact that |[VF — (VF)g| < M + C||VF||s on A} we finally

deduce J
160007
provided M > 1053 C | VF||. O

Finally, we collect the previous estimates in the following statement.

Corollary 4.5. Let F' be a harmonic function in Riﬂ such that VF € B(Riﬂ)
and mq(D(VF)) = 0. Assume that VF satisfies a weak 1/N- QR condition with
constanty > 1 for some integer N > 2. Then there are constants 0 < 0y = 0p(y) <
7/2,0< B =03(y) <1, and C = C(v,N,d) > 0 such that for any 0, 0y <0 < /2,
any cube Qo C R?, any subcube Q C Qo, and any M > C||VF||z we have

Y W@ =pue)

Q'ESM,6(Q)
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5. Proof of Theorem 1

Proof of part 1). Fix 7/3 < § < 7/2 as in Corollary 4.5 and a cube Qo C R?, and
assume that mq(D(VF) N Qo) = 0, because otherwise the result is trivial. If R is
large enough and M = Rcos6 then, by Corollary 4.5,

> @)= pu@)?,
Q'€Snm,0(Q)
where 8 = (v) > 0. Now it follows from Lemma 3.2 and Corollary 3.8 that

CIVF|5log(1/p)
R(cosf)logN

Dim {z € Qo : limsup, o |VF(z,y)| <2R} >d -

and the result follows upon letting R — oo. O

Now we will adapt the results in previous section to cover the case of gradients
in the little Bloch class (part 2) in Theorem 1). First, we obtain an analogue
of Plessner’s theorem on the boundary values of analytic functions in the unit
disc for gradients of harmonic functions in the upper half-space which are weakly
quasiregular. If f is analytic in the unit disc D, a classical result of Plessner
(Theorem 6.13 in [15]) says that for almost all points e € OD, either f has a
finite nontangential limit at ¢’ or the image under f of any symmetric cone with
vertex €% is dense in the complex plane C. Therefore the boundary behavior of f
at almost every e’ is either very good or very bad. If z = (2/,%) € Riﬂ and
2 € R, the notation z<(z means that z tends to x nontangentially, that is, z tends
to x and

ze€lu(z)={(2",y) : |z —2'| <ytana, 0 <y <1}

for a fixed 0 < o < w/2. We refer to [17] for the main results concerning non-
tangential boundary behavior of harmonic functions in the upper half-space. The
following proposition says that if a harmonic gradient is weakly quasiregular, then
Plessner’s theorem still holds. Observe that, as in the analytic case, no growth
assumption is required.

Proposition 5.1. Let u be harmonic in R‘fl and such that Vu is weakly quasireg-
ular. Then, for any cube Q C R? there holds one of the two following possibilities:

1) mq({z € Q :lim,q, Vu(z) exists}) > 0.

2) For any 0 < o < ©/2 and for almost every x € Q, Vu(T(x)) is dense
in R, In particular, for any a € R and for a.e. x € Q,

linilinf |Vu(z) —al = 0.
Proof. Fix a cube Q C R?. Assume that part 2) does not hold. Standard measure

theoretic arguments show that there are a set £ C Q with mg(FE) > 0, a € R4
0 <ap<m/2,and 0 < yg < 1 such that

inf [Vu(z) — al > 0.
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Here the infimum is taken over the set {z € Riﬂ iz €Tl (x),z € E}N{0 <
y < yo}. For simplicity, £ may denote hereafter different subsets of @ of positive

d-dimensional measure. Choose i € {1,...,d + 1} such that
ou
inf ’ —ai| >0
in oz, (z) —a; ,
where, as usual, z411 = y and a = (ai,...,a4+1). L. Carleson proved that a

harmonic function in Rf‘l which is nontangentially bounded from below on a
certain set of points in R?, has a nontangential limit at almost every point of this
set (see [5]). We deduce that lim,o, Ou/0z;(z) exists for almost every z € E.
From well-known results relating the boundary behavior and the area function of
harmonic functions in the upper half-space (see Theorem 4 in Chapter VII of [5]),
we deduce that

(5.1) Ai(g;i)(x) = /Fa(x) yt—d ‘V(aa;i (z)) ’2 dz < 00

for a.e x € F and any 0 < a < w/2. Here A,v(z) denotes the so-called area
function of v associated to the aperture a. (See [17] for details). Let x and «
be as in (5.1). Assume that Vu satisfies a d-weak quasiregularity condition with
constant ~y for a certain 0 < § < 1. Consider the truncated cones

Lan(2) = Tale) N {(@' ) 604D <y < 57).
Then, if @’ is the cube centered at = with [(Q) = 26", we have

Fﬂ,n(x) c Cﬁ(Q/) C Fa,n(m)a

where 0 < f < «a and tanff = dtana. Therefore, since V(0u/0x;) = (Hu)e,,
where e; is the ith vector of the canonical basis in R4, we get from the §-QR
condition,

2

)

_ _ ou |2 _ ou
/ y' dIIHUIIQSsz/ y' d’V(T) SCWQ/ y' d‘V(f)
Tpn(z) C5(Q") Li To.n(z) Li

where C only depends on §, «, and d. Therefore,

A%(au)(x) < 00

Oz

forallj =1,...,d+1. Using again the results relating nontangential limits and the
area function, this time in the opposite direction, we finally get that lim, <, Vu(z)
exists for almost every x € E. This proves the proposition. O

Sketch of proof of Theorem 1, part 2).

Suppose that F' : RT"' — R is harmonic and VF € By(R{™) satisfies a
(1/N)- QR condition with constant v > 1. Pick a cube Qo C R? and assume that
ma(Do(VF) N Qp) = 0 since otherwise the conclusion is obvious.
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We will actually show that
(5.2) Dim {z € Qo : limy_,o VF(z,y) =a} =d

for each a € R?*L. Hence in particular Dim Dy(VF) = d.

The proof is similar to the proof of part 1) of Theorem 1, the main modifications
coming from the following two key facts:

e Inpart 1) of Theorem 1, we could assume that mq(D(VF)NQo) = 0, so when
we ran the stopping time argument, VI must escape balls with full d-measure
(see part 2) in Proposition 3.3). In part 2) of Theorem 1, the hypothesis is
ma(Do(VF)NQo) = 0. By Proposition 3.1, mqs(D(VF)NQo) = 0. Therefore
we can run the same type of stopping-time arguments using even small balls.

e Related to the previous point is the fact that the meaning of ||V F| 5 should
now be relaxed, in the sense that it must be understood as a variable quan-
tity that tends to 0 as long as we approach the boundary of Riﬂ. This
implies that &k = C||VF|p in Sections 3 and 4 can be replaced now by a
sequence k, — 0, where n refers to the successive stopping-time steps in the
construction. Consequently, it follows from Lemma 3.5 that the sequence of
radius R, can be chosen in such a way that R, — 0, although R,,/k, — oo,
which allows replacing boundedness of VF' by convergence to a given point.

A brief sketch of the proof runs as follows.

It is enough to take a = 0 in (5.2). Fix n/3 < 6 < 7/2 as in Corollary 4.5.
Then we run a sequence of stopping times corresponding to sequences k, and
M, = R, cosf that can be defined as follows. Suppose that k; and R; have

already been chosen for j = 1,...,n. According to Proposition 3.3, part 3), we
define
(5.3) kni1 =sup{y |[HF(z,y)] : 0 <y < N~D9(Qq)},

(5.4) Rt :max{g(z:—;;),\/R%SinQHJrk%},

where S, = 22;1 R;/kj. Note that k, — 0 and that, by Lemma 3.5, R,, — 0 but
R, /k,, — co. Then the same arguments as in Section 3 can be used to obtain that

Dim {:E € Qo : limy o VF(z,y) = O} =d.

6. Some estimates for Poisson integrals

In this section we collect some estimates relating the regularity of a function defined
on R? to the regularity of its Poisson extension to the upper half-space RiH.
For 0 < a < 1 let A, (R?) be the Holder class of bounded functions f : R — R

for which
z,heRd Al
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The class C1®(R4) (resp. C%%(R?)) consists of those differentiable functions de-
fined in R? whose first partial derivatives (resp. second partial derivatives) belong
to the Holder class A, (R?).

The following two propositions, which relate the regularity of the Poisson ex-
tension to the regularity of the boundary data, are probably well known (see [17]
for similar results in this direction). We include here a detailed proof of the first.

Proposition 6.1. Let ¢ : RY — R be such that ¢ € CH%(RY) and let ® be the
Poisson extension of ¢ to R‘iﬂ. Then there exists a positive constant C, depending
only on d and a, such that

IVO(z,y)| < C([[dlloc + IVPlloc + Vo)
for all (z,y) € RE™.

Proof. First observe that, for ¢ = 1,...,d, 09/0x; is the Poisson extension of
0¢/0x;. This shows that

H 0x; llo H 0x; lloo

ifi=1,...,d. Now we estimate 0®/dy. For the case y > 1, we use the represen-

tation
S @) =5 [ P 9o +2)+ ola — 2) ~ 20(0)] dz

which follows from differentiation of the Poisson integral formula and the symmetry
properties of the Poisson kernel. Then

0P dz
5 @] < Adllél [

W = Bd ||¢Hoo

Now assume y < 1. Since for any ¢ = 1,2,...,d, the function d¢/dz; is in
Ao (R?), its Poisson extension O®/0z; satisfies

—

sup {12 [V (5o-@:)) | @) € R} < @) (190 + V)

(see [17], p. 142). Hence,

|| 0%
sup {' | G (#:0)| + (.)€ BEH | < 1) (196 + 1 90]c).
Integrating we deduce that if 0 < y < 1, then 0®/0y is uniformly bounded by
Ca(o, A)([[Volla + [[Volloo)- O

Actually the proof gives the stronger result
sup{y' = [H®(z, y)l| : (z,y) € RE'} < oo,

Let ¢ : R — R be a bounded function, let ® be the Poisson extension of ¢
to RIT!, and let H®(x,y) the (d+ 1) x (d + 1) Hessian matrix of ® at (z,y). Let
|H®(z,y)| be as in (4.1). The next proposition provides sufficient conditions on ¢
for the boundedness of |H®||. Let ||H |/, be the sum of the Holder norms of all
second order partial derivatives of the function ¢.
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Proposition 6.2. Let ¢ be a function in the class C**(R?). Then there is a
positive constant C, depending only on d and «, such that

[H®(z,y)l| < C([Volloo + |Holl + [Hlla)
for any (v,y) € RE.

Proof. 1t is easy to check that 0®/dx; (resp. 0?®/(dx;0x;)) is the Poisson integral
of d¢/0x; (resp. 82¢/(5‘:ﬂi5‘mj)), i =1,...,d. It follows then that

Jzz .. = Lo

89018% Ox;x;j

H <oo, i j=1,....d

For 0%®/(0ydx;), apply Proposition 6.1 to d¢/dz; instead of ¢. Finally, the esti-
mate for 92®/0y? follows from harmonicity. O

We will need the following result which says that the Poisson extension of a
periodic function and its derivatives decay exponentially at infinity. It is valid
under more general assumptions but this version will be sufficient for applications.

Proposition 6.3. Let ¢ : R? — R be a function in C**(RY). Assume that ¢ is 1-
periodic in each variable, that is, ¢(x+e;) = ¢p(z) for all z € R? and any vector e;
of the canonical basis in R, i = 1,...,d. Let ®(x,y) be the Poisson extension of ¢
to R Then there are positive constants C' = C(d), C1 = C1(d, @), Cs = Ca(d),
such that, for any (z,y) € Riﬂ,

(6.1) ’@( y)—C ) (2 dz' < Oy [0 e=C2Y,
(6.2) IVO(2,9)| < C1 (|]loo + [Vl + [[VH]la) e 72Y,
(6.3) |H®(z,y)|| < C1 (|V]loo + [|Holloo + | Hla) e,

where Qo = [0,1]% is the unit cube in RY.

Proof. We use the Poisson summation formula (see [8])

Z Y _ Z e~ 2mylk| g—2mi<ka>
2 2)(d+1)/2 ’
kezd (|:c+k| TY ) kezd

that holds for any (z,y) € R‘fl. Then, by periodicity, there is a C' = C(d) such
that

Y
B(a,y) = C o(2) dz
Qo kgz:d (|£L' —z+ k|2 +y2)(d+1)/2

so, by the Poisson formula,

(6.4) ®(z,y) /d) Ydz + Z 672’”/““‘/ 6727”'<k*xfz>¢(z)dz>.

kezZa\{0} 0
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Suppose first that y > 1. Then

L+ ) e <y o= 2my(kal+-+ ka)d />

kezZa\{0} kezd
1/2
d

[oe] _ —
=( N el 4 (Lemt
1 — e—2myd=1/2 )

n=—oo
and, therefore,

1+ 6727ryd71/2

[#0) - € [ o] <ol [(Emman) — 1] < e ol

as soon as y > 1, where C1, and C5 depend only on d. If 0 < y < 1, the maximum
principle gives |®(z,y)| < ||¢|loo. This proves (6.1). To prove (6.2), we differentiate
in (6.4) to obtain

IVO(z,y) < [dlloe Y [kle I
kezZ\{0}
Suppose that i > 1. Then, since te 2™ < =™ if t > 1 we have
Z |k|e—27fy|k| < Z e~ mYlkl _q < Cle—CQy)
kezZa\{0} kezd

as above. If 0 < y < 1, use Proposition 6.1. Essentially the same argument,
together with Proposition 6.2, proves (6.3). O

Lemma 6.5 below relates the differentiability properties of a function f in R? to
the boundary behavior of the Hessian of its harmonic extension F to the upper-half
space Riﬂ. Suppose that F : R‘iﬂ — R is smooth, t > 0 and e € R\ R? x {0}
is unitary. Then it is easy to check that

(6.5) %(F(m—i—te)) =VF(x+te)-e,
(6.6) %(F(m +te)) = (X (HF)e)(x + te),

where HF is the Hessian matrix of F and we interpret e? (H F')e in matrix form, e

being the vector e written in row form. We need the following technical proposition,
which is a generalization of formula (2.1).

Proposition 6.4. Let f € A.(R?) and let F be its Poisson extension to R,
Let e € RITL\R? x {0} be a unitary vector. Then, for any x € R? and any y > 0,
there holds the identity

(6.7) flx) = /Oy t(e"(HF)e)(x +te)dt —yVF(zx +ye)-e+ F(z + ye).
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Proof. Since (eI (HF)e)(x + te) = g—;F(m + te), integration by parts gives
U e (P teydt =t 2 F(z+te) = [ LPe+te)dt
| e ar o=t 5Pt - [ ra
=yVF(z+ye)-e— (Flz+ye) - f(z)),

which implies (6.7). Observe that, from Proposition 2.1 and the hypothesis on F,
t%—f(erte)%OandF(erte)%f(:c) as t — 0. O

Lemma 6.5. Let f € A(RY) and let F be the Poisson extension of f to Riﬂ,
Suppose that there are a unitary vector e € R4 and an open cube Q C RY for
which

(6.8) sup [(HF)e(x,y)| < co.
(z,y)€Qx(0,1]

Then:
1) If e = (¢,0) € R? x {0}, both limits

lim Jlo+16) = flz) and lim VF(x,t)-e
t—0 t t—0

exist for any x € Q.
2) If e € R\ RY x {0}, then, for anyi=1,...,d,

of (z) and lim F(:Ethe)

ox; t—0 Ox;

exist for any x € Q.

Proof. By (6.8), for any = € @), one has

0
sup |—VF(z,y) e| < oo,
O<y<110Y

which implies the existence of lim,_,o VF(z,y) - e.

Assume first that e = (¢,0) € RY x {0}. Apply Proposition 6.4 to the unit
normal vector in the y-direction. Then

fle+te) = flx) =1 + I + I3,

where
t 2 2
0°F 0°F
I = (At tey) — = d
1 /0 y|:ay2 (:L' + evy) 8y2 (iﬂ,y)} Y,

oF R oF
IQ =1 [a—y(ﬂf +t€,t) — a—y(.f,t):| 5

Is = F(x +té,t) — F(x,t).
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From (6.8) and the Cauchy estimates for harmonic functions it follows that

82
sup y‘—VF z,y)-e| < oo,
ox(04]  10y? (@.9)
which implies that |I;] < Ct2. By (6.8), |Iz| < Ct?, so both I; and I are o(t)
as t — 0. Finally, observe that

Is 1 [t .
—=— [ VF(x+sét)- eds
tt),

and that, again from (6.8),
|VE(x+ sé,t) — VF(x,t)] < Cs.

Therefore we deduce that I3/t has a limit as t — 0 and part 1) follows.
Now assume e € R\ RY. Fixi=1,...,d. From (6.8) we get

oF
x +te) —

OF
< —
5 G se)| < Cli—s),

so limy_,o gTF(m + te) exists. Now for t > 0, choose M = M(t) > 0 so that

i

M (t) — oo and tM(t) — 0 as t — 0. From Proposition 6.4 we get

Mt
flx+te;) — f(x) = /0 s[(eT (HF)e)(x + te; + se) — (e” (HF)e)(z + se)] ds

—t M [VF(z +te; + tMe) - e — VF(z + tMe) - e]
+ F(x+te; +tMe) — F(ax +tMe) =11 — Iz + I3.

As before, Cauchy’s estimates give that
|(eT(HF)e)(z + te; + se) — (el (HF)e)(z + se)| < Ct/s

so |I1| < CMt2. In the same way, |I2| < CMt2. As for I3,

I; 1 [YOF
?3:¥/0 8mi(x+sei+tMe)d5

and, from Propositions 2.1 and 2.2,

OF OF s C £l
4 tMe) — M ' < L < :
ami(m—i—sez—i—t e) axi(m—i—t e)| < Cf S T
Therefore, for any 0 < s < t,
I, OF

t 781‘1'

(:chtMe)JrO(%).

The lemma follows from the choice of M and the existence of lim;_,o OF /0x; (x+te).
O
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7. Functions of Weierstrass type

Now we turn to functions of Weierstrass type. Fix b > 1 and let ¢ : R? — R be as
in the statement of Theorem 3. Let

o0

(7.1) F@) = frp(z) =D b " (b )

n=0

be the Weierstrass function associated to b and ¢. Denote by ® (resp. F') the
Poisson extension of ¢ (resp. f) to R‘iﬂ. Then

oo

(7.2) F(x,y) = Z b P x, b"y),

n=0
which leads to the functional equation (7.3) here that will be used later:
(7.3) F(bx,by) =bF(z,y) —b®(x,y),
and by differentiation, to the equations
(7.4) VF(bx,by) =VF(z,y) — VP(z,y),
(7.5) bHF (bx,by) =HF(x,y) — H®(z,y) .

Proposition 7.1. Let f (resp. F) be as in (7.1) (resp. (7.1)). Then f € A.(R?)
and

11« < Cr([[@lloo + [[H]o0) -
Furthermore,
sup { y [HF(z,y)| : (z,y) € R} < Co([[lo + [1H|oo) ,

where Cy and Cy are positive constants depending only on d and b.

Proof. The fact that f € A.(RY) uses a trick standard in the theory of lacunary
series. If h € RY, denote A? f(z) = f(z+h)+ f(x—h) —2f(z). If |h| > 1, we have

1A% flloo < 41l < C ) Al 18]l ,

so we can assume that || < 1. Choose N > 0 so that b=(N*+1 < |n| < bp=N. A
simple computation shows that if a, h € R? then

(7.6) |ARb(a)| < C(d) [ Hllo [hI*.
Now split A? f(z) = A+ B, where

N o)
A= b AL, 6(0"x) and B= Y b AL, ¢(b"x).
n=0

= n=N+1

By (7.6) and the choice of N we get that |A] < C(d,b)|h||H¢||oc. On the other
hand, [B] < 467%(b — 1)~ [[¢]loc < C(B)[A[[¢]lcc- Hence [|f[l. < Ci(lld]lc +
|H¢|loo)- The last assertion follows from Proposition 2.2. O
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We recall now condition H on ¢, which, in the case d = 1, was used by
Heurteaux (see Theorem 3.1 in [10]). We say that ¢ satisfies condition H if, for any
unitary vector e € R?, either D.¢(0) # 0 or the one-variable function t — ¢(te),
is nonconstant and has a global extremum at ¢ = 0.

Proposition 7.2. Let b > 1 and let ¢ be as in Proposition 6.3. Let f = fy 4 be the
Weierstrass-type function associated to b and ¢ defined by (7.1) and let F be the
Poisson extension of [ to RiH, Assume, additionally, that ¢ satisfies condition H.
Then for any M > 0 there exists n, 0 <n < 1, such that

inf sup  [(HF)e(z,y)| > M,
le]=1 (z,y)€Qox[n,1]

where Qo = [—1/2,1/2]¢ and the infimum is taken over all unitary e € R4*1,

Proof. Suppose that the conclusion does not hold. Then there are M > 0 and a
sequence {e,} of unitary vectors in R4*! such that

sup |(HF)en(z,y)| < M.
(z,y)EQo%x[1/n,1]

Taking a subsequence if necessary we can assume that e,, — e , where e € R%*! is
also unitary and satisfies

sup [(HF)e(xz,y)| < M.
(z,9)€Q0%(0,1]

We will apply Lemma 6.5 only in the case x = 0. If e = (&,0) € R? x {0} then, by
Lemma 6.5, the functional equation (7.4), and the fact that V& is continuous up
to the boundary, we get

V3(0,0)-e = Ve(0)-é=0.

The rest of the argument follows [10]. By condition H, the function ¢(té) is
nonconstant and has a global extremum, say a global maximum, at t = 0. In
particular, f(¢é) has also a global maximum at ¢ = 0 and, by Lemma 6.5,

f(te) — f(0)

lim =0.
t—0 t
Fix t € R. Now for each positive integer n,
FO78) = £(0) = Y b7 (p(B*7"1e) — 9(0)) < b7 (o(t8) — $(0)) -
k=0

Therefore,
< o(te) — ¢(0),

which contradicts the fact that ¢(te) is nonconstant and has a global maximum
at t = 0.
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If e € R4\ RY then we deduce, again from Lemma 6.5, that

0P 9
(1) = - (0) =0

for each i = 1,2,...,d, so V¢(0) = 0. The same argument above, applied to any
of the coordinate directions, provides a contradiction as well. O

We are now ready to prove that, provided ¢ satisfies condition H, then the
gradient of the Poisson extension of fj, 4 defined by (7.1) satisfies a (1/N)-weak QR
condition for some integer N > 2. We need to recall the concept of an almost
periodic function and some of the basic properties of such functions.

Given g: R? — R and € > 0, we say that 7 € R? is an almost period of g
relative to e if

sup{|g(z +7) — g(z)| : # € R} <e.

A continuous function g: R? — R is said to be almost periodic (a.p.) if for
any € > 0 there exists [ > 0 such that any cube Q C R? of sidelength [ contains an
almost period of g relative to . A mapping ¢ : R? — R? is almost periodic if so is
each of its components. As in the classical case d = 1, almost periodic functions
in R? turn out to be those that can be uniformly approximated by trigonometric
polynomials. Any continous function which is periodic in each variable is almost
periodic in R%. It can also be shown that finite sums and uniform limits of almost
periodic functions are almost periodic too. We refer to the classical monograph by
Besicovitch ([3]) for these and other results.

Now let ¢ and fp ¢ and their respective Poisson extensions ® and F' be as in
the beginning of the section. Differentiating (7.2) twice we get

HF(z,y) =Y b HO(b"z,b"y),
n=0

where the series converges uniformly on any strip 0 < a < y < b thanks to the
exponential decay provided by Proposition 6.3. In the case of interest, 0 < a =
n(¢,b,d) <1 =b. Now, for n <y < 1 and unitary e € R?*! consider the mapping

x— (HF)e(z,y), (zecRY).

Since, for each n > 0, H®(b"x,b™y)e is b~ "-periodic in z, it follows from uniform
convergence that (HF)e(z,y) is a.p. in . But actually, a bit more is true. From
the inequality

|(HF)€(£L‘+T,y) - (HF)e(x,y)| < HHF(CL‘—f—T,y) —HF(.Z‘,y)H

and the basic properties of almost periodic functions it can be shown that the
almost periodicity of © — (HF)e(x,y) is uniform in e and y € [, 1] in the sense
that, given € > 0, the [ in the definition of almost periodicity will depend only
on €, ¢, b, and d but not on e. This fact will be useful in the proof of the following
lemma.

For 0 < § < 1 and any cube @ C R? as in Section 4, we denote by Cs5(Q) =
Q x [61(Q),1(Q)] the §-Carleson box associated to Q.
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Lemma 7.3. Let ¢: R — R be as in Proposition 6.3. Assume in addition that ¢
satisfies condition H. For b > 1, let f be the Weierstrass function associated to b
and ¢ as in (7.1) and let F be the Poisson extension of f given by (7.2). Then
there are positive constants § = 0(¢,b) < 1 and ¢ = ¢(¢p,b) such that, for any cube
Q C RY of sidelength 1(Q) < 1,

¢
inf sup |(HF)€(1’,y)| > 7Y
[eI=1 (2,9)€C5(Q) (@)

where the infimum is taken over all unitary vectors e € R4+1,
Proof. From the functional equation (7.5) for the Hessian we get
(7.7) (HF)e(b™ 'z, b~ y) = b(HF)e(x,y) + (H®)e(b™ z, b ty).

Tterating (7.7) we obtain

k—1
(HF)e(b™ b y) = 0" (HF)e(z,y) + > _ b"(H®)e(b" " z,b"Fy)
n=0
for any nonnegative integer k = 1,2,... Therefore,
H®
75) (P 2,b7)] 2 6 (Pt )] - T2,

By Proposition 7.2 there exists 0 < 1 < 1 so that for any unitary vector e € R%*!
there exist 29 € Qo = [~1/2,1/2]¢ and n < yo < 1 such that

3 HO|

(7.9) |(HF)e(zo,yo)| > h—1

Now, by the previous remarks, the function x — (HF)e(x,yo) is a.p., uniformly
in e and yo so we can choose [ = [(¢, b, d) > 1 such that for any cube Q' C R¢ with
1(Q') > I there is an almost period 7 € Q' relative to € = ||H®|o/(b — 1) that is
uniform respect to e. In other words,

[ H P

(7.10) [(HF)e(a +7,50) = (HF)e(, yo)| < 15—

for any 2 € R? and any unitary e € R, Fix a nonnegative integer k such that
b=kl < 1(Q) < b7 Let Q' = b*Q — 29 where, for a > 0, aQ = {az : © € Q}.
Then 1(Q’) > [ so there is 7 € Q' satisfying (7.10). Observe that b=%(xo +7) € Q.
From (7.8), (7.9) and (7.10) we get

|H®|] [ HB|

b ol (HF)e(b™ (a0 + 70D > o [[(HF)e(ao + 7y0)] — 5 —=] = niy—

On the other hand,
Q) < by <UQ),

so the conclusion follows upon taking 6 = n/(bl) and ¢ = n || H®||o /(b —1). O
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Corollary 7.4. Let b, ¢, f, and F be as in Lemma 7.3. Then there are N =
N(¢,b,d) € N, N > 2, and v = v(¢,b,d) > 1 such that VF verifies a 1/N-weak
QR condition with constant v. That is, for any cube Q C R?,

/ max |HF (z,y)|* dedy < ~* min/ (HF)e(z,y)|* dzdy .
Ci/n(Q) lel=1 lel=1J oy n (@

Proof. Given a cube Q in R, let @ be the cube with the same center and half its
sidelength. By Lemma 7.3, there are 0 < § = §()\,¢) < 1 and ¢ = ¢(¢, b) > 0 such

that for any unitary vector e € R?*! there exists a point (z,y) € Cs (@) such that

(HF)e(w. )| > 725

Let B C R be the ball centered at (z,y) of radius 61(Q)/4. Then, from subhar-
monicity,

2 & 2
(HP)e(e) < e [ 1P

for some C; = Cy(d). Choose N € N such that 1/N < /4 < 1/(N —1). Then
B C Cy/n(Q) and, combining the two previous inequalities, we get

(7.11) Cy (1(Q)4™! < min /C o |(HF)e|?
1/N

el =1

for some constant Co = C(b,d, ¢). On the other hand, from Proposition 7.1,

C3
sup ||HF|* < ,
C1/n(Q) | (1(Q))?

where C3 = C5(b,d, ¢). In particular,
(712) [ mrp<c@y
Ci/n(Q)

The conclusion follows from (7.11) and (7.12). O

8. Proof of Theorem 3

Proof. The fact that f, 4 € A.(R?) follows from Proposition 7.1. The fact that f, ,
is nowhere differentiable follows from Theorem 3.1 in [10]. Pick 2o € R%. If 2o # 0,
define e = x¢/|zo| and observe that the one-variable function ¢t — f(te) satisfies
the hypothesis of Theorem 3.1 in [10] so is nowhere differentiable. In particular f
has no directional derivative at o along the radial direction e. If g = 0 the same
argument shows that f has no directional derivative at 0 along any direction. This
proves part 1).
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Let 0 < § < 1 and ¢ > 0 be the constants appearing in Lemma 7.3. Fix zq € R?
and a unitary vector e € R Let @y be the cube centered at xy and hav-
ing sidelength §*. By Lemma 7.3, there is (z,y) € Qk x [6¥T1,6%] such that
|HF - e(x,y)| > ¢/y. Let By be the ball centered at (x,y) of radius 6¥/2. By
subharmonicity,

c 1 2
(81) 5Tk: S W/Bk |V(D6F)| dlﬂdy,

where D.F means the derivative of F' in the direction e and C' = C(d, b, ¢). It is
easy to check that

6k+1 6kr+1

(82) Bk C Q;c X [T,(Sk — Ti| C F(J)O),

where
T(z0) = {(z,y) € R{ ¢ & — @ < (1+Vd/6)y}.
On the other hand, from (8.1) and (8.2) we get

(8.3) / Y V(D F) (@, y) 2 dedy > C > 0
B

for some C' > 0 independent of k. Since each cone I'(zg) contains infinitely many
disjoint balls By, we get from (8.3) that

_ 2
/( VTR ) drdy = oo,
FCEO

which implies that the area function of D.F for cones of some fixed aperture is
infinite for all zyp € R?. From the area version of the local Fatou theorem for
harmonic functions (see Theorems 3 and 4 in Chapter VII of [17]), it follows
that D, F is nontangentially unbounded at almost every point = € R?. Part 2) of
Theorem 3 now follows from Proposition 2.1 and Corollary 2.4.

To prove part 3) of Theorem 3, let b, ¢, and f; 4 be as in the statement of the
theorem and let F' be the Poisson extension of f;, 4. Let NV € Nand v > 1 be as in
Corollary 7.4. The result follows from Corollaries 3.8 and 4.5. O

9. Remarks and questions

1) Quasi-regular mappings can be understood as a sort of higher-dimensional
analogue of holomorphic mappings. On the other hand, in harmonic analysis,
the higher-dimensional analogue of a holomorphic mapping is the gradients of
harmonic functions, or equivalently, a system of conjugate harmonic functions
(see [17], p.65). Can one describe the harmonic functions in an upper half-space
whose gradient is (weakly) quasi-regular? Quasi-regularity is typically an involved
property to handle. If u is harmonic in R? | for d > 3 and u is independent of
at least one direction, then it is clear that Vu cannot be quasi-regular. To what
extent is this the only obstacle for a harmonic gradient to be quasiregular?
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2) The weak quasiregularity condition used in section 4 raises some natural
but subtle questions. Suppose that VI is a harmonic gradient. It is not clear
(and probably false) that if VF satisfies a 0- weak QR condition then it also
satisfies a ¢’-weak QR condition for ' ~ §. The way to show that VF satisfies
a weak QR condition (Corollary 7.4) relies on the functional equation (7.5) and
on a certain lower uniform bound for the Hessian HF (Lemma 7.3) together with
sub-harmonicity. This is a sort of bypass that avoids the problem of comparing
directly the maximal and the minimal distortions of VF. Because of this, we have
been unable to adapt the method used to prove part 3) of Theorem 3 to cover the
case of lacunary series in A, of the form

fl@)=> e " o0 ),
n=0

where {e,} is a sequence of real numbers tending to 0.

3) The dichotomy given by Proposition 5.1 can fail dramatically if either har-
monicity or quasiregularity is dropped from the hypothesis. Indeed, if u is harmonic
in R4, d > 2, and u does not depend on one of the variables then Vu is not quasi-
regular (even in the weak sense) and the conclusions of Proposition 5.1 obviously do
not hold. On the other hand, there is a bounded quasiregular mapping g: Ri —C
that fails to have vertical limit at almost all x € R, as the following construction
shows. Let h be an increasing, singular, quasisymmetric homeomorphism of R
into R (see Theorem 3 in [4]). This implies the existence of E C R such that
mi(R\ E) = mi(h(E)) = 0. Extend h to a quasiconformal map H : RY — R%
(see Theorem 1 in [4]). Now take a bounded analytic function f : R — C such
that for any « € h(E), [ fails to have a limit along any curve ending at x (see
Lemma 1 in Chapter 2 of [6]). The statement follows by taking g = f o H (see
Theorem 5.5.1 in [4] for the quasiregularity of g).

4) Even if d = 1, the authors wonder which part of the results in [10] can be
saved if the base function ¢ is only assumed to be Lipschitz. On the other hand it
is also natural to ask to what extent the periodicity or almost periodicity of ¢ is
essential for the nowhere differentiability of the Weierstrass function.
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